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Cryptographically Strong Permutations
from the Butterfly Structure

Kangquan Li, Chunlei Li, Tor Helleseth and Longjiang Qu

Abstract

In Crypto’2016 Perrin et al. discovered the butterfly structure that contains the Dillon APN permutation
of six variables. The novel idea of this structure is the representation of certain permutations of Foz2n in
terms of bivariate polynomials over Fsn. The butterfly structure was later generalized, which turns out
to be a powerful approach that generates infinite families of cryptographic functions with best known
nonlinearity and differential properties. This motivates us to construct cryptographically strong permutations
from generalized butterfly structures.

Boomerang connectivity table (BCT) is a new tool introduced by Cid et al. in Eurocrypt’ 18 to evaluate the
vulnerability of cryptographic functions against boomerang attacks. Consequently, a cryptographic function
is desired to have boomerang uniformity as low as its differential uniformity. Based on generalized butterfly
structures, this paper presents infinite families of permutations of Fy2. for a positive odd integer n, which have
high nonlinearity 227~! — 2" and boomerang uniformity 4. We investigated both open and closed butterfly
structures. It appears, according to experiment results, that open butterflies do not produce permutation with
boomerang uniformity 4. On the other hand, for the closed butterflies, we obtain a condition on coefficients

«, B € Fan such that the functions
‘/'L'(:rv y) = (Rz(za y)v Rz(yv IE)),

where R;(z,y) = (z + ay)? T + By2 T and ged(i,n) = 1, permute F2, and have boomerang uniformity
4. The main result in this paper consists of two major parts: the permutation property is investigated in terms
of the univariate form of V;, and the boomerang uniformity is examined in terms of the original bivariate
form. In addition, experiment results for n = 3,5 indicate that the proposed condition seems to cover all
coefficients «a, 8 € Fan that produce permutations V; with boomerang uniformity 4.

However, the experiment result shows that the quadratic permutation V; seems to be affine equivalent to
the Gold function. Therefore, unluckily, we may not to obtain new permutations with boomerang uniformity
4 from the butterfly structure.
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1. INTRODUCTION

Substitution boxes, known as S-boxes, are crucial nonlinear building blocks in modern block ciphers. In
accordance with known attacks in the literature, Sboxes used in block ciphers are required to satisfy a variety
of cryptographic criteria, including high nonlinearity [EI], low differential uniformity E] and bijectivity. In
Eurocrypt’18, Cid et al. introduced a new tool of S-boxes, so-called the boomerang connectivity table
(BCT), which similarly analyzes the dependency between the upper part and lower part of a block cipher
in a boomerang attack [B]. This new tool quickly attracted researchers’ interest in studying properties and
bounds of BCT of cryptographic functions. Boura and Canteaut in [u] investigated the relation between entries
in BCT and difference distribution table (DDT), and introduced the notion of the boomerang uniformity,
which is the maximum value in BCT among all nonzero differences of inputs and outputs. They completely
characterized the BCTs of 4-bit S-boxes with differential uniformity 4 classified in [E], and also determined
the boomerang uniformities of the inverse function and the Gold function. Later Li et al. in da] provided
an equivalent formula to compute the boomerang uniformity of a cryptographic function. Using the new
formula, they characterized the boomerang uniformity by means of the Walsh transform, and computed the
boomerang uniformities of some permutations with low differential uniformity. Mesnager et al. considered
the boomerang uniformity of quadratic permutations in [H], where they presented a characterization of
quadratic permutations with boomerang uniformity 4 and showed that the boomerang uniformity of certain
quadratic permutations is preserved under extended affine (EA) equivalence. Very recently, Calderini and
Villa dg] also investigated the boomerang uniformities of some non-quadratic permutations with differential
uniformity 4.

It is shown that the boomerang uniformity of a cryptographic function is greater than or equal to its
differential uniformity, and that the lowest possible boomerang uniformity 2 is achieved by almost perfect
nonlinear (APN) functions [H, Q]. Clearly, APN permutations operating on even number of variables are of
greatest interest, which is referred to as the BIG APN problem in the community. Nonetheless, by far no
other instance for this problem, except for the Dillon APN permutation of Fos, has been found. Therefore,
it is particularly interesting to construct permutations of Fo2» that have high nonlinearity, differential and
boomerang uniformity 4. Up to now, there are only three infinite and inequivalent families of permutations
over o2 that have boomerang uniformity 4 for odd integers n > 1:

(1) £(z) =2 over Fau 4]
(2) f(z) = 22"+ over Fyn, where ged(i,n) = 1 [u];
(3) f(z) = ax® T 4 o 22 2" over Fyen, where n = 3k, 31k, 3| (k+ ), ged(3k,s) = 1, and o

is a primitive element of Fo2n ﬂ].



In Crypto’16, Perrin et al. investigated the only APN permutation over [Fgs [B] by means of reverse-
engineering and proposed the open butterfly and the closed butterfly structures dﬂ]. A generalized butterfly
structure was later proposed by Canteaut et al. ]. The butterfly structures represent functions over F2,
in terms of bivariate form. It is shown that the open butterfly structure produces permutations of F3,,
which are CCZ-equivalent to the functions with simpler forms derived from the closed structure dﬂ]. Since
differential uniformity is an invariant under CCZ-equivalence, one may consider to combine open and
closed butterfly structures to construct permutations with low differential uniformity. As a matter of fact, by
investigating differential uniformity of functions from the closed butterfly structure, researchers constructed
several infinite families of differentially 4-uniform permutations over F2, with the open butterfly structure
]. Motivated by recent works on the butterfly structure, this paper aims to construct infinite families
of permutations with boomerang uniformity 4 from generalized butterfly structures.

Let n be a positive odd integer and g = 2. Let  be a primitive element of Fo2, i.e, 72 = v + 1. Since n
is odd, the finite field F,» = [ () and the basis 1, of F, over F, induces a one-to-one correspondence

between F7 and 2 as follows:
z=x+yy < (z,y) = (V2472927 + 2).
Define a bivariate polynomial
Ri(z,y) = (x+ay)” ™ + 8y* "', a,BeF,

Since n is odd, it is clear that the mapping x — R;(x,y) is a permutation of [, for any fixed y € F,.
From experiment results, the open butterfly structure based on R;(x,y) given in [Iﬁl] seems not to yield
permutation with boomerang uniformity 4 of F%d Therefore, we will concentrate on the closed butterfly

structure. Recall that the closed butterfly structure of Fg from R;(z,y) is given by

‘/;(Cﬂ,y) = (Rl(xay)’Rl(y’x))

According to the one-to-one correspondence between Fg and F,2, the closed butterfly structure V;(x,y)
over Fg can be expressed in a univariate form as R;(z,y) + vYRi(y,x) with z = = + vy and (z,y) =
(722 + 729,29 + 2). By substituting z with vz when i is odd (resp. ¥?z when i is even), this univariate

polynomial can be transformed as
f(Z) — 612q-(2i+1) + €2Zq-2i+1 + 6322i+q + E4Z2i+1, (1)

where the coefficients satisfy (e, €2, €3,€4) = (£1,€2,€3,€4) for even i; and (€1, €2, €3,€4) = (€3,€4,€1,€2)

for odd ¢ with _
eg=ac2 +a+1

e=a+a+p+1
= 1o + 841
es=a?t 40 +a+ 5.

2)



For the coefficients €y, €9, €3, €4 in the polynomial f;(z), define

p1 = €1€3 + €2€4

(P2 = €1€9 + €3€4
2 2

w3 =€t €

@4:e%+6§+6§+ei.

3)

This paper aims to characterize the condition on « and § such that V; permutes FZ and has boomerang

uniformity 4, and the main result is given as follows.

Theorem 1. Let ¢ = 2" with n odd, ged(i,n) = 1 and Ri(z,y) = (x + ay)?> 1 + By 1 with o, 3 € F,
where T = T\ {0}. Then the function Vi(z,y) := (Ri(z,y), Ri(y,x)) permutes F2 and has boomerang
uniformity 4 if («, B) is taken from the following set

P={(0.0) € Fy x F; | ¢ = o108 " and 1 # 0}, @)
where o1, 2, 04 are given in ().

According to Mesnager et al.’s resut in ﬂ], a quadratic permutation of Fym in the form

f(z)= Z cijz4j+4k, Cjk € Fam, 5)
0<j<k<m—1

has boomerang uniformity 4 if its differential uniformity equals 4. The function in Theorem [ has the
univariate polynomial f;(z) = €129 2+ 4 202+ 4 3220 4 €422 +1 with ¢ = 2" and n odd. Clearly,
q-(2°4 1) and 2° + 1 can not belong to the same cyclotomic class of 47 + 4 for any integers j, k since n

is odd. Hence, it seems that our results can not be reduced by the above result.
The rest of this paper is organized as follows: we firstly recall the definitions of differential uniformity,
boomerang uniformity, butterfly structure and introduce some useful lemmas in Section 2l Sections [3] and @]
are devoted to proving the permutation property and the boomerang uniformity in Theorem [I] respectively.

Finally, Section [5| draws a conclusion of our work and raises some open questions.

2. PRELIMINARIES

In this section, we assume 7 is an arbitrary positive integer and ¢ = 2". Let Tr,(-) denote the absolute
trace function over F,, ie., Try(z) = x + 22+ --- + 2¥"" for any x € F,. For any set E, the nonzero
elements of F is denoted by E\{0} or E*.

A. Differential Uniformity and Boomerang Uniformity

The concept of differential uniformity was introduced to reveal the subtleties of differential attacks.



Definition 2. [B] Let f(x) be a function from Fy to itself and a,b € F,. The difference distribution table
(DDT) of f(x) is given by a q X q table D, in which the entry for the (a,b) position is given by

DDT(a,b) = #{x € Fy|f(z + a) + f(z) = b}.
The differential uniformity of f(x) is given by
Ay = aegﬁ}éﬂ?q DDT(a,b).

It is straightforward for any function from [, to itself, each entry in its DDT takes even value and its
differential uniformity is no less than 2. A function with the minimum possible differential uniformity 2 is
called an almost perfect nonlinear (APN) function.

In [3], Cid et al. introduced the concept of boomerang connectivity table of a permutation f from F% to
itself as follows, which is also suitable for the case Fo» clearly. Later, Boura and Canteaut introduced the
concept of the boomerang uniformity, which is defiend by the maximum value in BCT excluding the first

row and column.

Definition 3. [B ] Let f be an invertible function from F, to itself and a,b € I, The boomerang
connectivity table (BCT) of f is given by a q X q table, in which the entry for the (a,b) position is given by

BCT(a,b) = 4 {z € Fy: [T (f(2) +b) + [T (f(z +a) +b) = a}. (©6)
The boomerang uniformity of f is defined by

= BCT .
¢ a{rggé CT(a,b)

It is shown in [B, u] that BCT(a,b) > DDT(a,b) for any a,b in F,. In [Ia], Li et al. presented an
equivalent formula to compute BCT and the boomerang uniformity without knowing f~!(z) and f(z)

simultaneously as follows.

Proposition 4. [Ia] Let ¢ = 2" and f(x) € Fy[x] be a permutation polynomial over F,. Then the BCT of
f(x) can be given by a q x q table BCT, in which the entry BCT(a,b) for the (a,b) position is given by

the number of solutions (x,y) in Fy x Fy of the following equation system.
fle+a)+ fly+a) =0,
f(x)+ fly) =0

Equivalently, the boomerang uniformity of f(x), given by &, is the maximum number of solutions in Fq x F
of (@ as a, b run through I,

(N

Let f be a quadratic function from F, to itself with f(0) = 0. The associated symmetric bilinear mapping



is given by S¢(z,y) = f(x +y) + f(x) + f(y), where z, y € F,. For any a € [, define
Imyf, = {S¢(a,z) : x € Fy}.
Very recently, Mesnager et al. [H] presented a characterization about quadratic permutations with boomerang
uniformity 4 using the new formula ().
Lemma 5. [H] Let ¢ = 2" and f be a quadratic permutation of F, with differential uniformity 4. Then the

boomerang uniformity of f equals 4 if and only if Imy , = Imy, for any a,b € ¥} satisfying S¢(a,b) = 0.

B. The Butterfly Structure

In Crypto’16, Perrin et al. [@] analyzed the only known APN permutation over Fas [B] and discovered

3

that the APN permutation over Fos has a simple decomposition relying on z” over Fos. Based on the power

permutation x¢ over Fyn, they presented the ﬁn butterfly structure and the closed butterfly structure, which
1.

were later generalized by Canteaut et al. in

Definition 6. [IE] Let ¢ = 2" and o € Fy, e be an integer such that x¢ is a permutation over F, and
Ry e, a] be the keyed permutation

Rile, a)(z) = (v + ak)® + k°.

The following functions
HE(@,9) = (R oy @), Byleal(@))

Vi (@,y) = (Ryle, o] (x), Rale, o] (y))
are called the open butterfly structure and closed butterfly structure respectively.

Definition 7. ] Let ¢ = 2" and R(x,y) be a bivariate polynomial of F, such that R, : © — R(x,y) is
a permutation of ¥, for all y in F,. The closed butterfly Vg is the function of Fg defined by

Vr(z,y) = (R(z,y), R(y, ©)),
and the open butterfly Hg is the permutation of Fg defined by
Hi(e,y) = (Bpp ), By (@)
where Ry(x) = R(z,y) and R, (Ry(x)) = x for any x,y.

In ], Li et al. discussed the cryptographic properties, including the differential uniformity, the nonlin-

earity and the algebraic degree, of the butterfly structure of the form
Vi= (Rl(xa y)’ Rl(y, x))

with R;(z,y) = (z + ay)? 1 + py* +L.



Lemma 8. ] Let n be odd, q = 2", i be an integer with ged(i,n) = 1, a, 8 € Fy and 3 # (o + )2+,
Then the differential uniformity of
is at most 4, where R;(z,y) = (z + ay)? 1 + gy +1.

Since the boomerang uniformity of a function is no less than its differential uniformity, functions with
differential uniformity 4 is a natural starting point for constructing permutations with boomerang uniformity
4. In fact, the condition 8 # (o + 1)2i+1 in Lemma [§] corresponds to the condition ¢4 # 0 in the set I

required in Theorem [1

C. Useful Lemmas

This subsection summarizes some lemmas that will be used for proving the permutation property of the

function in Theorem [11

Lemma 9. ] Pick d,r > 0 with d | (¢ — 1), and let h(z) € Fy[z]. Then f(z) = 2"h (z(4=D/2)
permutes ¥, if and only if both

(1) ged(r, (¢ —1)/d) =1 and

(2) g(x) = 2"h(x) @D/ permutes g, where g = {x € Fy: 2% = 1}.

Let the unit circle of F,2 be defined by
fgr1 = {r € Fpe: 29t =1}
The unit circle of 42 has the following relation with the finite field F,,.

Lemma 10. [IE] Let ~y be any fixed element in Fp2\F,. Then we have

_
pai V1 ={ v em, |

The following lemma is about the solutions of a linear equation. The proof is easy and we omit it.

Lemma 11. Let ¢ = 2" and gcd(i,n) = 1. Then for any a € F,, the equation 22 + x = a has solutions

2

in T, if and only if Try(a) = 0. Moreover, when Tr,(a) = 0, the equation x> + x = a has exactly two

solutions x = xg,x9 + 1 in Fy.

Lemma 12. [IE] Let R be a commutative ring with identity. The Dickson polynomial Dy (x,a) of the first

kind of degree k
k—1 . .
Difa,a) = 3 = < . J) (~apat=

J

has the following properties:

(1) Dp(z1 + z2,2122) = x’f + xg, where x1, x9 are two indeterminates;



(2) Dypio(z,a) = xDpyq(z,a) — aDy(x,a);
(3) Dyy(z,a) = Dy, (Dg(x,a),az);
(4) if R = Fon, then Dy:(z,a) = x2".

By the above lemma, the Dickson polynomial of degree k = 2° — 1 over Fo. can be explicitly given.

Lemma 13. For any positive integer i and element a € Fan,
i +1
D2 _1 z, CL ZQQJ 1 2 —27 +1 (8)

Proof. We prove the statement by induction. It is clear that (8) holds for i = 1 since D;(x,a) = z. Suppose
that (8)) holds for i — 1, namely,

1—2
i—1 +1
DgzllvaE:QQ g2 AL 9)
Jj=0

By Lemma [12] (3) and (4), we have

Dgi_g(x,a) = D2i—1_1 (DQ(I‘,G),GQ)

J i_9i+1
_ a2 2,20-27+142

—_

<.

In addition, according to the second item of Lemma
Dsi(xz,a) = xDyi_1(x,a) + aDyi_o(x,a).
Thus,

Dyi_i(z,a) = z7* (azzi + aDQi_Q(x,a))

i—1
_ i J i_9j+1
_ CEl x2—|—a§:a2 2$2 2 +2
j=1

i—1
J— i _9i+1
_ Za2 12 =241
J=0

which implies that () holds for the i case. Therefore, the desired conclusion follows. O

In the end of this section, we provide a lemma about some properties of the elements in I' defined by

(@), which will be heavily used in the proof of the main theorem.



Lemma 14. Let ¢ = 2" with n odd and gcd(i,n) = 1. For any element («,3) in T in @), the elements

01,92, 3, p4 defined by (3) satisfy the following properties:

2 53
(1) (p1+ 1) (92 + @a) (03 + pa)p3 # 0, (—L) = % and (u“"—) = eats,

P2+pa T p1tpa P2+pa

(2) when i is even, Tr, (%i) = 0, moreover, the equation
W pe e BT
P4

have two solutions —"02—;:&0[ and 502—;:@(1 +1inFy;
(3) when i is odd, Tr, (%) =1;
) _

(4) T, (£2) =0,

Proof. From the definition of 1, v2, ¢3, 04 in @), it follows that
o1 =" Lo a2 o 2t af+ 52+
pr=0a" 242" L p @2 ra+ ¥ B2+
pr=a?" 4o 10t + B2 41,

and

a2 48241 for even i
ps=14
a4 a2 for odd 1.

The above equations imply

pr+er =021 faf+a? T 1 a¥ra= (" + )@ T+ B+ 1)

and
{@37 03 + <p4} = {(aQi +a)? (¥t 4 B+ 1)2} .

(10)

(In

(12)

(13)

(1) Recall from the definition of I’ that @2 = 10 L. Suppose (1 + @4)(p2 + p4) = 0. Then it
is clear that o1 = o = 4. Thus § = o2t 41 or o +a = 0. In fact, if 3 = o+ + 1, then
o1+ @1 =a* T2 +a® +af =a® + a = 0. Thus we always have a? + o = 0. This implies 1 + @4 =

o2 4 a? +af = af = 0, which is in contradiction with the assumption that o3 # 0 in the definition of

I. Suppose ©3(p3 + @4) = 0, we obtain (' + a)(a® + a) = 0. This leads to the contradiction a/f = 0

in an exactly similar manner. The equalities

( 2 )21: LT <s01+s04)2”:¢2+s04
P2+ P4 P11 P4 Y2 + ¢4 ©4

1

can be easily verified by the relation ap%i = wii_ in the definition of T'.



(2) From (I0) and (I1), we have

o1 +os =02+ +ap (14.1)
prt+os=a>"t ¥ B+a (14.2)
o3+ s =0 +a (14.3)

From the above equalities, it is easy to verify that

a (o2 + 1)+ (o1 + 1) = @3+ pu. (15)
2i
Moreover, using ((p—;%) = E%’ we have
2i
8034—804:802+904a+901+804a21:902+304a+<902+904a) _ (16)
P4 P4 P4 P4 P4

Thus,

Tr, <M> = Tr, <ﬁ> + Try(1) = 0.
P4 P4

Furthermore, from Lemma [[T} the solutions in F, of 22" + 2 = “’3;1“’4 are ”2;;“’404 and “’2;“’404 + 1.

(3) From the expressions of @3, ¢4 in (I0), (II), it is easily seen that ¢4 = @3 + ©3,, Where @3¢, ©3,
denotes 3 for even ¢ and for odd ¢, respectively. Since n is an odd integer, we have

Tr, <&> + Tr, <%) =Tr,(1) = 1.

2

The desired assertion follows from the fact Tr, (%) = 0 proved in (2).
(4) From (12) and (13, it is easily seen that

©1 + 05 = V5 + P304,

2 2 2
(ﬂ) +<ﬂ> :<ﬂ> ey (17
2 P4 ©4 ©4

2'L
Plugging % = (“’—j) into Eq. (I7), we get

[72)
2i+1 2 2 2
+ +
(ﬂ) N <ﬂ> _ <@> L8 <L> @4) L psten
2 2 2 2 P4 2

By the relation between ¢4 and 3 for even and odd ¢, it is clear that the expression on the right side of

1.€.,

the above equation is independent of the parity of the integer 7. W.L.O.G., we can assume that 7 is even,



since the case 7 odd can be proved by just replacing @3 by @3 + 4. Together with (I6), we have

9i+1 2 2\ 2' 2
<ﬂ> +<ﬂ> _ ¢2+s04a+<s02+s04a> +tpz+tp4a+<tpz+tp4a>
P4 P4 P4 P4 P4 P4

Therefore, ) )
(@2) _ P2t <¢2+304 >
r= — o _|_ [0
¥4 P4 P4
or ) )
<ﬂ) :802+804a+<902+904a) ey (18)
P4 P4 P4
If Eq. (I8) holds, then
2
(1—{—@2) <ﬂ> —|—a(ﬂ>—|—a2+a+120. (19)
P4 P4
If o = 1, it is easy to obtain that 8 = 1 from the definition of I'. Moreover, 2 = 0 and thus Tr, (%) =0.
In the following, we assume that o # 1. Then after multiplying Eq. (I9) by % and simplifying, we get
a?+1 P2 2+a2+1 Y2 a?+1 2+a2+1
« P4 « ©4 N « o
and thus )
P2y o tafl
= 5 )
V4 as+1
It is clea;that w2 + w4 # 0. Suppose we have % = a;ﬁﬂ'l Moreover, “02;“’4 = o7 and “"1;:"4 =
<—¢2;¢4) = 7(}2512: — - Furthermore, —g;iii = o~ and thus ”2;“’4 = (i;igj) o= ~21» Which

is impossible.
Therefore, Eq. (I8) does not hold and thus

2 2
<ﬂ> _ 802+804a+ <802+804a> . (20)
2 2 P4

Clearly,

3. THE PERMUTATION PROPERTY OF THE BUTTERFLY STRUCTURE

In this section, we firstly give a general necessary and sufficient condition about the permutation property

of the function V; from the closed butterfly. Throughout what follows, we always assume n is an odd integer.

Recall that the univariate representation of V; have the following form

flx) = ez @) 42+l 4 63x2i+q + 64$2i+1, €j € Fy. (21)



Below we first present a necessary and sufficient conditions for f(z) to be a permutation of > without

imposing any additional restrictions on ¢;. For simplicity of presentation, we denote

1 = €1€3 + €2€4
= €€ €3€
P2 ;24-234 22)
@3:614‘64
@426%4-6%4-6%4-6421.

The following proposition investigates the permutation property of f(z) defined by (1) over F.

Proposition 15. Ler ¢ = 2", f(x) be defined by 1), h(z) = e1z® ™! + e3a? + 32 + €4 and g(x) =
¥+ h(x)9 L. Define pig11 = {x € Fpe : 29t =1} and

zy + 1 Ty
T= ,
r+y 22+ y?

Then f(x) permutes F 2 if and only if

(1) ged (20 4+1,9g—1) =1;

(2) h(xz) =0 has no solution in fgq1;

(3) g(x) =1 if and only if x = 1;

(4) there does not exist some (X,Y) € T such that the following equation holds:

T,y € lu‘qul\{l}’y 7& CE,,Iq} C Fg

i—1
e X” + X s toa | D Y| =0, (23)
j=0

where pj for j =1,2,3,4 are defined by (22).

Proof. It is clear that f(z) = 2% *1h (z971). According to Lemma [l f(x) permutes Fy. if and only if
ged (20 +1,¢—1) =1 and

eax? T+ e32? + o + €
a2t 4+ €12 4 €37 + €4

gla) = 2> ()" =

permutes jiq.41, which obviously implies that h(z) = 0 has no solution in p,41 and g(z) = 1 if and only if
x = 1. In the following, we assume that the conditions (1),(2) and (3) hold. Therefore, g(z) permutes /i1
if and only if g(z) + g(y) = 0 has no solution for z,y € pg41\{1} with = # y. In fact, if g(z) + g(y) =0
for some y = 9, then we have g(x) = g(y) = g(29) = g(x)? = g(x)~! and thus g(z) = 1, which
means that x = 1. Thus we can only consider the conditions such that g(z) + ¢g(y) = 0 has no solution for
x,y € pg+1\{1} with y # z, 2%. Next, we prove the necessity and sufficiency of the condition (4).

The sufficiency of (4). Suppose g(z) + g(y) =0, i.e.,

64$21+1 + €3$21 + e + € e4y21+1 + 63y21 + €2y + €1

ar? Tl +ex? +esr+e4 eyt + ey +esytes




After a routine calculation, we obtain

1+ y)ay+ 1) + ea@+y)? (y+1) +gale +9)* '+ (a7y +ay? ) =0,

where ¢; for j = 1,2,3,4 are as defined in (22). By the previous discussion, we now only need to consider

the case that (z + y)(xy + 1) # 0. Therefor, the above equation is equivalent to
xy+1 my+1) 2y +ay
+ +o3t+es| ——57 | =0 24
(pl<x+y> @2<x+y 3+ P4 @+ g2 (24)

22y + zy* _ PR 1= z \*H! (v 2 1
(x+y)¥+H (z+y)?H! r+y z+y '

It follows from Lemma [12] (1) that the coefficient of (4 can be expressed in terms of Dickson polynomial

Note that

as (2 i
22 Y+ ny

Ty
Iy (1, —2 ) 1
(@ +y)>Ft < (z + y)?)
In addition, by Lemma [12] (2), (4) and Lemma [I3]

i—1

Dyii1(z,a) = Dyi(x,a) + aDyi_y(2,a) = 2% + Z a¥ 2?2 (25)
j=0
Denote X = Zy—J:r; and Y = ﬁ It is straightforward that g(x) = g(y) can be rewritten as
P X> + X +osteu | Y Y| =0 (26)
j=0

Thus, if there exist some x,y € pg+1 With y # z, 29 such that g(z)+ g(y) = 0 holds, there must exist some
(X,Y) € T such that Eq. (26) holds. Thus if the condition (4) holds, g(x) permutes fig41.

The necessity of (4). On the contrary, if the condition (4) does not hold, which means that there exist
some (X,Y) € T such that Eq. (26) holds, then there must exist some x,y € jqy1\{1} with y # =,z
such that g(z) + g(y) = 0, which implies that g(x) does not permute fi441.

On combining the sufficiency and necessity, we have proved the desired conclusion. U

Proof the permutation part in Theorem [l

In the following, we will prove the permutation part in Theorem [ by verifying the conditions in
Proposition

First of all, if &« = 1, it is easy to obtain that 8 = 1 from the definition of I" and

272+ when 7 is even
filz) = {

22 +4, when i is odd,

clearly permutes F,2. Thus in the following, we assume that o # 1. It suffices to show the four items of



Proposition

(1) Since n is odd and ged(i,n) = 1, we have ged(2/+1,2" — 1) = 1 due to the fact ged(2!+1,2" —1) |
ged(2% — 1,27 — 1) = 28¢d@in) 1 =1,

(2) Next we show that h(z) = 0 has no solution in p,1\{1} (h(1) = 90411/ > £ 0 according to the
definition). Suppose that there exists some xo € pg+1\{1} satisfying

qx%iﬂ + egmgi + e3xg + €4 = 0. 27
Raising Eq. (27) to the g-th power and re-arranging it according to z{ = z ! we obtain
€4$gi+1 + egxgi + €gxg + €1 = 0. (28)
Summing €4 x ([27) and €; x ([28)) gives
@175 + P2 + 3 = 0. (29)
Computing @3 x @I) + 1 x @9 x 23 yields
801902$3i71 + 2320 + 7 + 95 = 0. (30)
Furthermore, by computing (30) x xo + ([29) x 2, we obtain

20375 + (SD% + @3 + 303) xo + pap3 = 0. (3D

Note that in the above equation o3 # 0. Otherwise, we have p? + @2 = gp%. Recall that ¢? + 03 =
©3(p3 + ¢4) from (I2) and (I3). Thus we obtain ¢34 = 0, which is in contradiction with ¢4 # 0 in
definition of T and 3 # 0 in Lemma [14] (1). which is also a contradiction. Thus Eq. (3I) becomes
PA+ed+ed
P23

©2¥3 ©Y2¥3 ©2
Trg | 5——5—= | =Tr =Tr, | — ) =0.
! (@% + ¢} +<p§> ! <tp3<p4> I <w4>

This implies that Eq. (32) has a solution x¢ € F,, which contradicts pi4+1\{1}. Therefore, h(z) = 0 has no

T3+ 0o+1=0. (32)

Note that

solution in fig41.

(3) If there exists some xg € jtq+1\{1} such that g(xo) = 1, then we have

(e1+ex) 22T + (g + e3) a2 + (€2 + €3) o + €1 + €4 = 0. (33)

According to Lemma([I0] we know that for any z¢ € p441\{1}, there exists a unique element yy € I, such

that ¢ = ;U“TJ;L where v € Fy2\Fy. By plugging 2o = ;UOTJZ:Z into Eq. (33) and a routine rearrangement,



we obtain

o+ —0, 34
BT e+ e+ e (34)

where €1, &4 are defined as in (@) satisfying that 1 + 4 = €1 + ¢4 for even i and €1 + €4 = €5 + €3 for odd

i. In other words, &1 + €4 corresponds to 3 + ¢4 for even i and 3 for odd i. By Lemma [4] (2) and (3),

Tr fLte —1
“\ep+eatete '

This implies (34) has no solution in FF,. Hence g(x) = 1 if and only if = = 1.
(4) Recall that Y = " for some z,y € 1441 \{1} with = # y and thus

$2+y2
Y Y ?
Tr, (V) = Tr, <x+y+ <x+y> ) =1,

since mLer € Fp2\FF,. It is clear that Eq. (26) required in Proposition [[3]is equivalent to

we have

i—1
STyY oo Ay Py P8
e P4 ¥4 ¥4

2i
- (ﬂX) p 254 58
¥4 P4 P4

By Try(Y) =1 we have

1—1 ..
i 0, when 7 is even
Tr Y? | = ' 35

I jz; { 1, when 7 is odd, (53)

on the other hand, the expression on the right hand side satisfies

I, (ﬂx) 2i N ﬂX . w3\ _ 1, when i ?s even
P4 P4 P4 0, when 7 is odd,
according to Lemma [T4] It is clear that Eq. (26) does not hold for any X,Y € F,,.

Up to now, all the four items in Proposition [[3 are confirmed. Hence the function V;(z,y) in Theorem [II

2
permutes .

4. THE BOOMERANG UNIFORMITY OF V; IN THEOREMI]

In this section, we will prove that the function

‘/i = (Rz(xa y)? Rl(y7 .YJ))

with R;(z,y) = (z + ay)?> ' + By> ! has boomerang uniformity 4 when the pair («, 3) is taken from the

set I" as in given in Theorem [Il Here and hereafter, we assume that n is odd, ¢ = 2" and (a, 8) € T.



First of all, the condition 3 # (04—1—1)2”rl in Lemmal(8] corresponds to the condition ¢4 # 0 in I". Hence the
differential uniformity of with R;(z,y) = (z+ay)* t1+8y> ! is at most 4 for any («a, 3) € I'. Furthermore,
Canteaut et al. ] showed that if V; is APN then it operates on 6 bits. Therefore, the differential uniformity
of V; is equal to 4. Since V; in Theorem [I] permutes Fg and hasdifferential uniformity 4, we can use Lemma

to show the boomerang uniformity of V;. For any (a,b) € Fg, denote
Sv. (ab)(®,y) = Vi(z + a,y +b) + Vi(z,y) + Vi(a,b)
and
Imy, (s = {Svi.(ap)(@,y) | (z,y) EF2}.

According to Lemma[5] we need to determine (a1, b1), (a2, b2) € F2\{(0,0)} satisfying Sy, (4, 5,)(a2,b2) =
(0,0), and then to prove that for any such pairs the equation Imy, (a1,by) = 1My, (a,.p,) holds.

A. The solutions of Sy, (4, p,)(az2,b2) = (0,0)
The solution of the equation Sy, (4, 5,)(a2,b2) = (0,0) is studied in the following proposition.

Proposition 16. Let V; be defined as in Theorem [l with (o, ) € I and ¢ for j = 1,2,3,4 defined as in
(3). Then the elements (a1,b1), (az,bs) € Fg\{(O, 0) }such that

Vi(ar + az, by + b2) + Vi(ai,b1) + Vi(az, ba) = (0,0)

are given as follows:
(]) a = ap and bg - bl,'
(2) as = (50—‘&2; ‘o + 1) a; + 50—‘&2; 2by and by = ¢2;‘p4a1 + 902;%@1)1;

_ p2tpa p2tpa _ P2t@a P2+@a
(3) as = = taa + o by and by Eryanls| + (—% a+ 1) by.

Proof. Note that the equation
SV, (a1,b1) (a2, b2) = Vi(a1 + az, b1 + ba) + Vi(a1,b1) + Vi(az, b2) = (0,0)
can be rewritten as

(a1 + oebl)agi + (a%i + onib%i)ag + (erial + (042141 + ﬂ)bl)bgi + (aa%i + (0421.+1 + ﬂ)b%i)bg =0 (36.1)
((a2i+1 + Bar + oz?ibl)agi + ((042i+1 + ﬂ)a%i + ab?i)ag + (aar + bl)bgi + (aQia? + bfi)bg =0. (36.2)

Let ¢; for j = 1,2,3,4 be defined by (3). Eliminating the terms a%i in the above equations by computing

@6 x <<a2i+1 + ﬁ) ar + aTbl) + @82) x (a1 + aby), we obtain

Aag 4+ Aab2 + Agby =0, (37)



where the coefficients are given by

A = (o1 + @1) a2 by + (02 + @4) ar1b? + (g3 + <P4)b%i+1
A2 = (p2 + 1) af + @aarby + (92 + @a) b2
A3 = (@1 + 1) ad T4 p3a1b? + (o2 +pa) b2 T

where 1, 9,4 are as defined in (@) and 3 is indeed w3, = (a® ! 4 4+ 1)? for even i. Here and
hereafter, we use @3 to denote 3 . for simplicity of notation.

When b; = 0, we have a; # 0, A\; = 0, )2 = (p2 + @4)a? and A3 = (o1 + @4)(1?“. Moreover, Eq.
(37) becomes A\ob3 = A3by. This together with Lemma [[4] (1) implies
1+ @4) 2t P2 + P4
— ap = —""ay.
P2 1 @4 P4
Note that in the case of b; = 0, Eq. (36.1) becomes

a9 a9 OébQ Oébg
2) 4+ 2= (=) + =
aj ap aj ap
Therefore, if by = 0, then ay = aq; if by = %al, then ay = %aal or ag = “"2;“’4 aal +ay.

When b; # 0. Eliminating the terms b3 by computing B6.1) x ((oﬂiJrl + B)a? +ozb%i) + (36.2) x

(a%i + a2ib%i), we obtain

bQZOOI”b2:<

ma3 +meb3 + by = 0, (38)

where
m= A

= (92 + @a) ad T+ 0303 by + (01 + pa) BT H
m = (p1 4+ pa)ad "+ sal b3+ (o1 + pa) b7

Furthermore, computing B7)% 4+ A? ~! x (B8], we eliminate the terms a2 and obtain

N3 (M e+ A3 )0 AT T =0 (39)
Here we note that Ay # 0. Otherwise one has (o + 1) a2 + p4a1by + (g2 + p4) b3 = 0, i.e.,

P2+ P4 a1 ? P2 +w1 a1 Y2+ P4 2 .
re @ Tt = 4+ = o= = _O’
P4 by P4 by P4

which is in contradiction with the fact Tr, (%) = 0 by Lemma [I4] (4).

In addition, since the differential uniformity of V; is 4, Eq. (39) has three nonzero solutions by = by, b

and b+ b; and we only need to obtain the expression of b. Clearly, by = b%iil is a solution of

AZBE L 4 (Af”lng + Agi) by + A2 1py = 0. (40)



Hence, Eq. @0) can be written as

V4 (52 + b?—l) (531' + 022 b

2'L
where ¢ = =L

b3 4+ b7

R I A L c) =0,

Now we consider the equation

2

Let by = - +;2_1. Then Eq. (41) becomes

1

1.€.,

In addition, we have

.(2-;_1)531'_2 bt ngi_l).(Zi—l)BQ +c= 0. (41)
P |
b3 + L—by+ - =0,
C
i 2'L 1 1
T S0 (“42)
by 2 by ? b% o

201

7 2171
A3'b7
N[ erted) (“%m + 555l b + b%”l)

by o3 2i72i 2i+1>
~as b +b
(patepa)® 171 1

2i+1

(02 + p2)* (Cﬁ +

1

M pites T
by (2 + 904)21
A

bips’

where the last two equalities follow from Lemma [I4] (1). Moreover,

1

cFi A
by’ N
_ (prtpa)al + (2 +pa)arb? Tt (o5 + pa) T
o4b?
<(902 + ¢4) a1>21 (2 +p4)ar | @3+ 4
= + +
p4b1 waby ©4

2i
_ <(¢2+¢4)a1+u> +(tpz+¢4)a1+u’

‘~P4b1 L,O4bl



where © = %a due to the second item of Lemma [I4l Hence, from Eq. (@2), we have
c¥ol s { (p2 + pa) a1

by € (p2 + 1) ar
b1 ©4b1

©4b1

+ u, —|—u+1},

which means that there are exactly two solutions in F, for Eq. @I). W.L.O.G., we only consider the first

expression here. Namely, we get

N b
by —= ! <(<P2+<P4)a1+u>
T ©4b1
_ (g2t @d)arbr + aub?
A '
Thus, ) \
by = & 4 p2 1= 1 21
by ! (2 + 1) arby + paub? !

is one solution of Eq. (). Furthermore, one solution of Eq. (39) is

1

by — (52) e

- ((801 +pa)af + 804U2ib%i> o

(p2 + 1) a1 + pauby

() (o)
= (2 : e

P2+ P4 a1 + 55 ub

_|_
_ P27 ¥4 <a1 4

P4 Y2+ @4

P2+ P4 ay + P2+ P aby (recall that u = wa).

P4 P4 P4
It follows directly from Eq. (37) that

ub1> (by the first item of Lemma [I4)

= 22p2 4+ D3
as )\1 2 + )\1 2
_ (@24-%04

2

w2 + 804b1.

a—l—l)al—i—
2!

B. The proof of Imy;, (4, ,) = Imy; (4, 4,)
In this subsection, we prove that for any (ay,b1), (az,b2) € F2\{(0,0)} satisfying Sy (4, s,)(az,b2) =

(0,0), Imy; (4, b,) = Imy; (q,,6,)-
According to Eq. (36), we know that for any (a1,b1) € Fg, SV, (a1,0:)(2,y) can be represented as

1’2i y2i
S‘/«;,(al,bl)(x7y) =4 + By y ,

T
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where v o
s ai + aby, a4+ a*' b A 011, Q12
! (a2i+1 + Bar + a2ib1, (a2i+1 + ﬁ)a%i + ozb%i a3, 14
and v v v v v
B — o¥ar + (T + B)by, aal + (@ T+ B)bT| 4 |11, bio
1 — i o i - .
aaq + by, a? a% + b% bi3, big

For the three relations between (a1,b1), (a2,b2) € F2\{(0,0)} presented in Proposition [I6l such that
SV, (a,b)(asip) = (0,0), it is clear that if az = a; and by = by, we have Imy;, (4, 5,) = Imy; (q,,)- In
addition, if we have proved that Imy; (4, 5,) = Imy;, (4,,) holds for the second relation in Proposition
then so does it for the third relation since the sum of two same subspace equals to the subspace. Therefore,
it suffices to show that Imy; (4, 5,) = Imy; (4, ,) holds for the second relation in Proposition Below we

will again use 3 to denote 3 for 3. for simplicity.
Let u = —"%ﬁa. Then u?' = u + %ﬂ. Moreover, as = (u+ 1)a; + 502—;:@1)1 and by = -"02—;:@&1 + uby.
Furthermore, we get

a3 = (qu + 1) a? + (7802 S04) b2
P4

i + i
_ <u+@>a% Lot
P4 Y4

and

P2 P2+ 4 g 2i 2100
* T e ) e

- A E P, <u T ahal J“p“) b
Y4 P4

Therefore, in Sy, (4, 5,)(,y), we have

A as + abo, a%i + QZib%i A |G21, @22
2 = i i i i i = )
(@® T+ Blag + a®'by, (a® !+ B)a3 + abj azs, 24
and _ _ _ . .
B a®ag + (@ + Bby, a3 + (@ T+ )03 | A |b21, bao
2 = i 9 i = 5
aas + bo, a? a% + b% bog, by
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where the explicit expressions of entries in Ay and Bs in terms of aq, b; are given as follows:

a21

a22

a23

a24

bo1
bao
bas3

baa

a2 + abs
(u+1)ay + ‘pi:;“o“ by + “02;“’4 aay + uaby
(u—i—l—l—%a)al—i— (%—i—ua) by

a1 + (o +1) %ﬁbl (recall that u = %ﬁa),

a? 4+ a? b3

a? + <a2i+l + 1) %b%i (due to the first item of Lemma [T4),

(a 2+1+ﬁ a2+a "by
a? T4 B (u+1) 4 ao? “’2“"4) a; + (( 241 ﬁ) —W;Z@“ + a2iu) by
<p2+304 (<p1+<,04) + 042 +1 + 5) a + <P2+<P4Bb

(a1 + B)a3’ + abf

(7 03) (1 ) rosie)

+ ((a?“ +5) 1:4 o (u+ 3;2 4)) b

(Lesbedlonton 10241 4 g) oF + 222480 (due to () and (D)),

2i Q2+l _ g gg (p2+@4)(p1+4)
« @4—( + B)be = (a + ﬁ)a—l— = by,
aad + (a2 1+ B)bf = (a+ 5"—“"—% ﬁ) af + ety
aag + by = (%(az +1)+ a) ai,

a¥a? + b3 = <—‘PI;Z“’4 (@ +1)+a? ) a¥.

Note that the determinants of A; and B; are

and

Det(A1) = anais+ azais

= (o1 + 1) aZ' by + (92 + 1) 12 + (03 + @a) b2,

Det(By) = bi1big + b12b13

= (p3+@a)ad M 4 (2 + 1) ad by + (o1 + 1) arb? .

Now we consider the necessary and sufficient conditions such that Det(A;) = 0. Clearly, from Det(A;) = 0,

we have by =0 or

2'L
a a
(p1 + ¢a) <b_i> +(802+804)b—i+803+804=0,
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namely,

(¢2+s04 'ﬂ)zl+¢2+¢4 a1 gt
ps b es b P4

and thus a; = ab; or (a + ) by due to Lemma [I4l Therefore, Det(A1) = 0 if and only if b = 0 or

et
a1 = aby or (a +5 ‘i“w ) by. Similarly, Det(By) = 0 if and only if a; = 0 or by = aay or (a + W‘i‘@) aj.
It is easy to verify that Det(A;) = 0 and Det(B;) = 0 holds at the same time if and only if
) a=1 a1=b1;
(i) o+ s ﬂo
(i) « (a + P = +904
If o« + 2 =1, then % = 397 Recall that @20) holds, namely,

P2tpa
2 n n 2
<ﬂ) _ P2 804a+ (@2 804a>
P4 2 Y4

=1,a1 = by;

= 1,(11 = Oébl.

Pluggmg = 577 into the above equation and simplifying, we obtain o = 1, implying eoﬁlw = 0, which
is 1mp0ss1ble. If o (a + 90_;%) = 1, then i—z = aj;gi;rl =oq+ a++1 + 1, which is also impossible

since Tr, (%) = 0. Therefore, Det(A;) = 0 and Det(B;) = 0 holds at the same time if and only if

a = 1,a; = by, under which it is clear that Imy; (,, 5,) = Imy; (a4, 5,)-

Next, we consider the following two cases:
(i) Det(By) # 0;
(ii) Det(A;1) # 0.
It is clear that Imy; (4, 5,y = Imy; (4, 5,) if there exist some invertible matrix P such that PA; = Ay and
PB; = Bs.
As for (i), it suffices to show that
BoB[ A = As. (43)

After computing, we know that (43)) is

ba1bigart + barbioais + bagbizair + bazbiiaiz, baibiraaiz + barbiaais + baobizais + baobiiais
basbraarr + bagbiaais + basbizary + basbi1arz, bazbiaais + bazbioars + basbizais + basbiiars

= Det(Bl)

a21, Cb22]

a23, 24

After complicated computation and simplification, we get

bisair + bizarz = (01 +pa) a T + 803a1b1 (02 + o) b2 T
braaiz + bisats = (o1 +@a) a2 + paa b + (o1 + 0a) b3

bizai1 + biiaiz = (92 + @a) af + paarby + (@2 + a) b7

bizaiz + biiais = (92 + a) a T+ pzad by + (g1 + pa) b2
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Moreover, we have

1)
ba1braaiy + barbiaais + baobizarr + bazbiiars
2
: ; + + + ;
— (o3 +p) a4 (@3042 L pslpaten) o, (P2t en) (e @4)) o2
2 Y4
n <(<p2 b a? + (2 + ¢4) 84 (3 + ¢a) (P2 + p4) (1 + @4)) b2+
2 Y4
2
+ + i + + i
+ (@4@ + o1+ pu) B+ 22 904)(;:01 2 ) af by + <(<P2 oot &2 SD“;iﬁ Wﬂ) at' b}
i i CY2 +1 (2] + 904) ((pl + @4) i
= (p3+@a)ai P2+ (o1 + @a) aib} + ( ) - arby
148241 , a? +1) (g2 +01)” 5
n (a* + B+ )(@2"‘@4)&% +1b1 n ( )(‘PQ 1) a% b%,
2 P4
2)
ba1biaaiz + ba1bi2ais + baobizaia + bazbiiais
2
= (p3+@a)d® T4 <<P4062 + (2 + @4) B+ L @4)@4(@1 (p4)> aj b}
+ <(<P1 +pg)a? + (2 1 1) (1 + 904)ﬁ> arb?™”
22
2
+ + + .
n ((@2 ©4) (p1 + 1) s+ w3(p1 @4)ﬁ> "'y
2 P4
+ ¢4)? + + -
+ <(<P2 + ©4) (1 + 04) + (1 + 04) a + (e @4@4) B+ 23 (2 @;z (o1 <P4)> a% b? i
9i+2 9 9i+1 2
" (oz + B +1)(s01+s04) o (oz +1)(s01+s04) -
= (ps+epa)ad Tty a2t p2 4 ab? "
2 4
- <a21+1 + 1) (pr+00) (g2 +01) .,
+ (@2 + 904) ay by + a161 ,
©4
3)

bazbigaiy + bagbi2ais + basbizarr + basbiiars

2

+ i + i + + i
(1 + ¢2) 5a% 2, ¥3 (¢1 + @4) Ba%b% n (¢1 + ©4) (P2 + pa) ﬁalbf 41
P4 P4 2

2

(p2 + ¢a) ﬁa?b?
22

+ (P2 + @) Ba by +



4)
bagbiaa12 + bagbiaais + bagbizaia + basbiiars
2 2
—‘l_ 41 i 7 —‘l_ i+ 1
_ (801 802) /Ba% +1qq i (801 I 804) 50% +1b% I (@1 @4) 5a1b% +
2 P4
Lo (2 + ¢4) ﬁa%mbl n (¢1 + p4) (92 + 1) ﬁa?b?“.
¥4 2
Furthermore, after computing and simplifying, we have
§)
Det(Bl)agl
2i 42 220 (@2 +1) (p2+¢a) (p1+91) oy
= (p3+@a)a] "+ (o1 + @) arby + > a1 by
4 2 2 2
L Bt gy (@D (02401 e
P4 ©4
2)
Det(Bl)agz
i <a2¢+2 + 52 + 1) (Lpl + Lp4) . . <a2i+1 + 1) (‘Pl + @4)2
= (p3+pa)al Ty ai oy +
P4 ©4
S (042i+1 + 1) (o1 + ©4) (p2 + @4) -
+ (p2+a)ay b+ o1 ajby
3)
Det(Bl)agg
(p1 + ¢2) 5a%1+2 L ¥ (p1 + 1) Ba%b%z n (¢1 + ¢4) (P2 + pa) ﬁalbf 41
¥4 P4 2
2
(o +pr) Bad iy 4 LT D g
2!
4)
Det(Bl)a24

2 2
+ i1 i i + i1
_ (801 802) /Ba% +14q 4 (801 n 804) 5(1% +1b% + (‘101 ‘~P4) ﬂalb% +
Y4 ®4
©3 (302; ©4) ﬁa?“bl i (o1 + 904);@ + 1) ﬁa%ib%i—i—l.
4 4

+

a1

2i+1
1

24
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Hence, it is clear that

barbigart + barbioais + bagbizarr + bazbiiaiz, baibiaaiz + barbiaais + baobizais + baobiiais
basbiaarr + bagbioais + basbizary + basbi1ars, bazbiaais + bazbioais + basbizais + basbiiars

= Det(Bl)

az1, a22
az3, a24
and Eq. @3) holds.

As for (ii), we need to show that

AsAT' By = B, (44)

whose proof can be obtained through just changing a; and by in the proof of (3).
Therefore, for any (a1,b1), (az,b2) € Fg\{(0,0)} satisfying By, (4, 5,)(az2,b2) = (0,0), Imy; (4, 5,) =

Imy; (4, ,5,) holds and by Lemma [3] we know that the boomerang uniformity of V; is 4.

5. CONCLUSIONS

In this paper, we construct permutations with boomerang uniformity 4 from the butterfly structure. For the
open butterfly, there seems to be no any experiment results about permutation with boomerang uniformity
over Fg with ¢ = 23 by MAGMA. As for the closed butterfly, we provide a condition such that V; is a
permutation over Fg with boomerang uniformity 4, where with ¢ = 2". Moreover, the experiment results
by MAGMA over Fg with ¢ = 23,25 show that our condition in Theorem [I] such that V; is a permutation
with boomerang uniformity 4 over Fg is also necessary. We give the following conjecture here and invite

interested readers to solve it.

Conjecture 17. Let ¢ = 2™ with n odd, gcd(i,n) = 1 and V; = (R;(z,y), Ri(y,x)) with R;(x,y) =
(ac—i—ay)?”rl + By L. Then if V; is a permutation over FZ with boomerang uniformity 4, we have («, ) € T’
defined by ().

Based on a private communication with M. Calderini, we look into the relation between the proposed
quadratic permutation V; and the Gold function 22 +1 characterized in [4]. Let ¢ = 2" with n odd. Let
Li(z) = Az9 + Bz, Lo(z) = Cz?+ Dz with A, B,C, D € F, be permutations over F,. and

Gi(w) = Lo(Lr(2)* ),
where ged(i,n) =1, I =1 for ¢ even and I = ¢ for ¢ odd. For 7 even, it is easy to obtain that

(2141 241 2 2141
Gi(ﬂ:):elxq( ) o eont? Tt 4?4 ey 1
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where _ v
6 = A*T1D 4+ B¥*iC

€a = A BD + AB*C
es = AB%' D + A? BC
€4 = A¥H1C 4+ B¥+1D.

(45)

Moreover, after computing directly, we have go%i = gplgoiifl and ¢4 # 0, where ¢; and ¢; are defined by (3)
and @3), respectively. The case i odd is similar. Furthermore, experimental results on n = 3,5 indicate that
there exist some A, B,C, D € F, such that G;(x) = V;(z) for any (a, 5) € I'. In other word, the quadratic
permutation V; seems to be affine equivalent to the Gold function. Therefore, unluckily, we may not obtain

new permutations with boomerang uniformity 4 from the butterfly structure.
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