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New families of self-dual codes

Lin Sok*

Abstract

In the recent paper entitled “Explicit constructions of MDS self-
dual codes” accepted in IEEE Transactions on Information Theory,
doi: 10.1109/TIT.2019.2954877, the author has constructed families of
MDS self-dual codes from genus zero algebraic geometry (AG) codes,
where the AG codes of length n were defined using two divisors G
and D = P} 4+ --- + P,. In the present correspondence, we explore
more families of optimal self-dual codes from AG codes. New families
of MDS self-dual codes with odd characteristics and those of almost
MDS self-dual codes are constructed explicitly from genus zero and
genus one curves, respectively. More families of self-dual codes are
constructed from algebraic curves of higher genus.

Keywords: Self-orthogonal codes, self-dual codes, MDS codes, almost MDS
codes, optimal codes, algebraic curves, algebraic geometry codes, differential
algebraic geometry codes

1 Introduction

Self-dual codes are one of the most interesting classes of linear codes that
find diverse applications in cryptographic protocols (secret sharing schemes)
introduced in [4] 5], 18] and combinatorics [I7]. It is well-known that binary
self-dual codes are asymptotically good [16].

MDS codes form an optimal family of classical codes. They are closely
related to combinatorial designs [17, p. 328], and finite geometries [17, p.
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326]. Due to their largest error correcting capability for given length and
dimension, MDS codes are of great interest in both theory and practice. The
most well-known family of MDS linear codes is that of Reed-Solomon codes.
MDS linear codes exist in a very restrict condition on their lengths as the
famous MDS conjecture states: for every linear [n, k,n — k + 1] MDS code
over F,, if 1 < k < ¢, then n < g+ 1, except when ¢ is even and k = 3 or
k = q — 1, in which cases n < ¢ + 2. The conjecture was proved by Ball [I]
for ¢ a prime. However, for self-dual case, the conjecture may not be true.

Due to the reasons mentioned above, MDS self-dual codes have been of
much interest to many researchers. As we have already known that determin-
ing the parameters of a given linear code is a challenging problem in coding
theory. However, the parameters of an MDS self-dual code are completely
determined by its length. Constructions of MDS self-dual codes are valuable.
For classical constructions of MDS self-dual codes, we refer to [2, 8 [14] [11].
Existing families of MDS self-dual codes can be described as follows. Grassl
et al. [10] constructed MDS codes of all lengths over Fom and of all highest
possible length over finite fields of odd characteristics. Jin et al. [13] proved
the existence of MDS self-dual codes over I, in odd characteristic for ¢ =1
(mod 4) and for ¢ a square of a prime for some restricted lengths. Using
the same technique developed in [13], more families of MDS self-dual codes
have been constructed in [24, [7]. Tong et al. [23] gave constructions of MDS
Euclidean self-dual codes through cyclic duadic codes. The families of known
MDS self-dual codes are summarized in Table [l

The discovery of algebraic geometry codes in 1981 was due to Goppa [9],
where they were also called geometric Goppa codes. Goppa showed in his
paper [9] how to construct linear codes from algebraic curves over a finite
field. Despite a strongly theoritical construction, algebraic geometry (AG)
codes have asymptotically good parameters, and it was the first time that
linear codes improved the so-called Gilbert-Vasharmov bound. Self-dual AG
codes were studied by Stichtenoth [20] and Driencourt et al. [6], where they
first characterized such codes. However, the construction of MDS self-dual
AG codes with odd characteristics or almost MDS self-dual AG codes was
not considered there.

On the contrary to the MDS case, almost MDS codes exist more fre-
quently, and it is thus worth exploring families of self-dual codes in such a
case and those of optimal self-dual codes. In [20], Stichtenoth gave construc-
tions of self-orthogonal AG codes (and self-dual AG codes for some special
cases) but did not consider an embedding the self-orthogonal codes into the
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Table 1: Existing families of MDS self-dual codes, n: the quadratic character

of F,
q n References
qg=2" n<gq
q = p™, p odd prime n=q+1 [10]
q=r2 n<r
g=7r%r=3 (mod4) n=2tr,t <(r—2)/2 [13]
g=3 (mod 4) n=3 (mod4),(n—1)[(¢g—1)
g=1_(mod 4) (n— 1)l(g - 1) 23]
g=1 (mod 4) nl(g—1),n<qg—1
g odd (n—1)[(g—1),n(1 —n) =1
g odd (n—2)l(g - 1,92 —n) =1
g=r2,r odd n=tr,teven ,1 <t<r
q=r2,r odd n=tr+1,todd ,1<t<r
g=r%rodd,s>2 n =1Ir,l even ,2l|(r — 1) 24]
g=r%rodd,s>2 n=Ir,leven ,(l—1)|(r—1),n(1 -1 =1
g=r%rodd,s>2 n=Ir+1,lodd , I|(r—1),nl) =1
g=r%rodd,s>2 n=Ilr+1,lodd,(l—-1)|(r—1),nl—-1)=n(-1) =1
q =p™,p odd prime n=pr+1,r/m
q = p™, p odd prime n=2p¢,1<e<m,n(-1)=1
g=p" n|(g —1),(qg — 1)/n even
g=p™,meven,r =p°, s|F n=2rt,0<l<m/s,1<t < (r—1)/2
g=p™,q=1 (mod 4) n=2pt,0<l<m
g=p™,meven,r =p°, s|F n=2t+)r*+1,0<£<m/s,0<t < (r—1)/2 or (¢,t) = (m/s,0) 7
g=p™,qg=1 (mod 4) n=p'+1,0<L<m
q=p" (n=2))(¢g=1),n2-n)=1
g=p" n = no, plno, (no — 1)|(g — 1)
g=p™,q=1 (mod 4) n =ng + 1,p|no, (no — 1)|(g — 1)
g=p™,q=1 (mod 4) n=p"+1,1<r<m,rlm
q =p™,q a square n =mng,(no —1)|(g — 1)
q =p™,q a square n=no+1,(no—1)(g—1)
q = p™, q a square n = 2ng,no odd , (no — 1)|(¢ — 1)
— pm - (g—1)
q=p n = no,no|-5
g=p™,q=1 (mod 4) n:n0+1,no\%
g=p™,q=1 (mod 4) n=2p",1<r<m,rlm [19]

q=p",m=2mg

q=p™,m=2mg
q =p™,q a square
q =p™,q a square

q = p", q a square

n:(t+1n0+27n0 =p"0 —1,ng =0 (mod4),t0dd,0<t§%+1

n=(t+1)no+2,n0=p" —1,no=2 (mod 4),0 <t < 7

(
(
(
(

P
-1

> 2(pm—1)

> 2(pm—1)

q—1 even,1 <r <m,7|F, 1<t <p" —2

n —=
n =
n= =1

t+ 1)ng +2,n0

)
) 0
t+1no + 2,np = L1 even,1§r<mModd,todd,lﬁtﬁpr
t+1)n0+2,no—pq¢‘ 1even,1§r<mmeven,1§t§p"

)



self-dual ones.

In this paper, we will discover more families of optimal self-dual codes
from algbraic curves over finite fields. Optimal self-dual codes are con-
structed from rational points on the curves and embedding their orthog-
onal subcodes. We improve the construction [I9] and other known con-
structions over F, with ¢ a prime (see Theorem [2) and also give explict
constructions of the cosets of F, with desired properties (see Lemma [I0]
and Lemma [[I). Due to Lemma [0 and Lemma [0, new classes of self-
dual codes with prescribed minimum distance are constructed. Addition-
ally, we construct MDS self-dual codes with new parameters [24,12,13]s7,
32,16, 17]41, [26,13,14)e1, [42,21,22]61, [50,25,26]73, [24,12,13]s;, almost
MDS self-dual codes with new parameters [16,8, 8]q, [16, 8,816, [18,9, 9],
20, 10, 10]¢, [22, 11, 11]16, [24, 12, 12]16 and optimal self-dual codes with new
parameters [28, 14, 12]g, [26, 13, 12]16, [28, 14, 13]1, [30, 15, 14]1¢, [32, 16, 15]16.

The paper is organized as follows: Section 2l gives preliminaries and back-
ground on algebraic geometry codes. Section Bl provides explicit constructions
of self-dual codes from various algebraic curves. New families of self-dual
codes are presented as well some numerical examples are also given. We end
up with concluding remark in Section [l

2 Preliminaries

Let IF, be the finite field with ¢ elements. A linear code of length n and
dimension k over F,, denoted as g-ary [n, k| code, is a k-dimensional subspace
of Fp. The (Hamming) weight wt(x) of a vector x = (z1,...,,) is the
number of nonzero coordinates in it. The minimum distance (or minimum
weight) d(C) of C' is d(C') := min{wt(x)|x € C,x # 0}. The parameters of
an [n, k] code with minimum distance d are written [n, k, d]. If C'is an [n, k, d|
code, then from the Singleton bound, its minimum distance is bounded above
by
d<n-—k+1.

A code meeting the above bound is called Mazimum Distance Separable
(MDS). A code is called almost MDS if its minimum distance is one unit
less than the MDS case. A code is called optimal if it has the highest pos-
sible minimum distance for its length and dimension. The Fuclidean inner
product of X = (z1,...,2,) and y = (y1,...,¥n) iIn FP is x -y = > 20,
The dual of C, denoted by C*, is the set of vectors orthogonal to every
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codeword of C' under the Euclidean inner product. A linear code C'is called
self-orthogonal if C C C*+ and self-dual if C = C*. It is well-known that a
self-dual code can only exist for even lengths.

We refer to Stichtenoth [21] for undefined terms related to algebraic func-
tion fields.

Let X be a smooth projective curve of genus g over F,. The field of
rational functions of X is denoted by F,(X). Function fields of algebraic
curves over a finite field can be characterized as finite separable extensions
of F,(x). We identify points on the curve X with places of the function field
F,(X). A point on X is called rational if all of its coordinates belong to F,.
Rational points can be identified with places of degree one. We denote the
set of F,-rational points of X by X(F,).

A divisor G on the curve X is a formal sum ) npP with only finitely
Pex
many nonzeros np € Z. The support of G is defined as supp(G) := {P|np #

0}. The degree of G is defined by deg(G) := > npdeg(P). For two divisors
Pex
G = > npPand H= ) mpP, we say that G > H if np > mp for all

PeXx Pex
places P € X.

It is well-known that a nonzero polynomial f(x) € F,(x) can be factorized
into irreducible factors as f(z) = o [ pi(x)*, with a € F;. Moreover, any
=1

irreducible polynomial p;(x) correspo;ds to a place, say P;. We define the
valuation of f at P; as vp,(f) :=t if p;(2)!| f(z) but p;(z)*V ff(z).
For a nonzero rational function f on the curve X', we define the “principal”

divisor of f as
(f) =D vp(f)P.
Pex

If Z(f) and N(f) denotes the set of zeros and poles of f respectively, we
define the zero divisor and pole divisor of f, respectively by

(flo:= > vp(f)P,

pPeZz(f)

(floo = > —vp(f)P.

PeN(f)

Then (f) = (f)o — (f)oo, and it is well-known that the principal divisor f
has degree 0.

We say that two divisors G and H on the curve X are equivalent if
G = H + (z) for some rational function z € F (X).
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For a divisor G on the curve X, we define

L(G) = {f e Fy(X)\{0}(f) + G = 0} U{0},

and

QG) = {w e N\{0}|(w) - G = 0} U {0},

where ) := {fdz|f € F,(X)}, the set of differential forms on X. It is well-
known that, for a differential form w on X, there exists a unique a rational
function f on X such that

w = fdt,

where t is a local uniformizing parameters. In this case, we define the divisor
associated to w by

(w) =Y wvp(w)P,

Pex

where vp(w) := vp(f).

Through out the paper, we let D = P, 4+ --- + P,, called the ratio-
nal divisor, where (P;)1<;<, are places of degree one, and G a divisor with
supp(D) N supp(G) = 0. Define the algebraic geometry code by

and the differential algebraic geometry code as
Cao(D,G) = {(Resp, (w),...,Resp, (w))|w € UG — D)},

where Resp(w) denotes the residue of w at point P.
The parameters of an algebraic geometry code C,(D, G) is given as fol-
lows.

Theorem 1. [21], Corollary 2.2.3] Assume that 2g — 2 < deg(G) < n. Then
the code Cp(D,G) has parameters n, k,d] satisfying

k=deg(G) —g+1 and d > n — deg(G). (1)

The dual of the algebraic geometry code Cr(D,G) can be described as
follows.

Lemma 1. [21, Theorem 2.2.8] With above notation, the two codes Cr(D, Q)
and Cq(D,G) are dual to each other.



Moreover, the differential code Cq(D, GG) is determined as follows.

Lemma 2. [2], Proposition 2.2.10] With the above notation, assume that
there exists a differential form w satisfying

1. vp(w)=—-1,1<i<n and
2. Resp,(w) = Resp,(w) for 1 <i <n.

Then Co(D,G) = a-Cr(D,D — G+ (w)) for some a € (F;)".

3 Self-dual algebraic geometry codes

In this section, we will construct self-dual codes from algebraic geometry
codes. Self-dual codes can be constructed directly from Lemma [3 or from
their self-orthogonal subcodes by extending the basis of the existing codes.

Lemma 3. [20, Corollary 3.4] With the above notation, assume that there
exists a differential form w satisfying

1. vp(w)=—-1,1<i<n and
2. Resp,(w) = Resp,(w) = a7, 1 <i < n, for some a; € F;.
Then the following statements hold.

1. If 2G < D + (w), then there ezists a divisor G' such that Cz(D,G) ~
Cre(D,G"), and Cr(D,G’) is self-orthogonal.

2. If 2G = D + (w), then there exists a divisor G' such that Cp(D,G) ~
Cr(D,G"), and Cr(D,G’) is self-dual.

The existence of self-dual algebraic geometry codes can be given as fol-
lows.

Proposition 1. [22, Corollary 3.1.49, p.292] With the above notation, as-
sume that N = |X(F,)| > 2g. Then there exists a self-dual code with param-
eters [n, 5, > 5 — g+ 1] over F, for some n even such that n > N —2g — 1.

The following lemma will be applied many times for constructing a ¢-ary
self-dual code of length n (if it exists for such a length).



Lemma 4. Letn be an odd positive integer and C' a q-ary self-orthogonal code
with parameters [n,"52]. Then there exists a self-orthogonal code Cy with
parameters [n+ 1,251] and a self-dual code C§ with parameters [n + 1, %3]

such that Cy C C} C Cy.

Proof. Let G be the generator matrix of C' and Cj be a self-orthogonal code
obtained from C' by lengthening one zero coordinate. Clearly, the code Cjy
has parameters [n+ 1, 251], and Cg- has parameters [n + 1, %24 + 1]. Denote
G the generator matrix of Cy, that is,

Gy = G o
0

Let x be a nonzero element in the quotient space Cjy/Cj such that x - x = 0.
Then the code Cj with its following generator matrix Gy is self-dual with
parameters [n + 1, "T“] :

e G

Moreover, we have the following inclusion

C() C C(l) C C()J'.

Similarly, we have the following embedding.

Lemma 5. Let n be an even positive integer and C' a q-ary self-orthogonal
code with parameters [n, 5 — 1]. Then there exists a self-dual code C" (if it
exists for such a length) with parameters [n, %] such that C'C C' C C*.

Lemma 6. Let X be a smooth projective curve having genus g. Let n be an
odd positive integer and D = Py + -- -+ P, be a divisor on X. Assume that

there exists a differential form w satisfying
1. vp(w)=—1, fori=1,...,n and

8



2. Resp,(w) = Resp,(w)) = af with a; € F; for 1 <i,j < n.

If G = MPM with supp(G) N supp(D)

(), then there exists a self-
orthogonal code Cp(D,G) with parameters [n, "L, ™2 — g]. Moreover, the
ntl

2 2
code Cr(D,G) can be embedded into a self-dual [n + > 2 — g] code
C'(if a self-dual code ezists for such a length n).

Proof. Choose U as a subset of F, with its size |[U| = n so that w = %,
where h(x) = [] (x — «), satisfying the above two conditions. Then the

aclU
divisor (w) = (29 — 2+ n)Px — D, and thus 2G < (w) + D. From Lemma B
and Theorem [I], there exists a self-orthogonal code C (D, G) with parameters
[n, 25+, > 3 — g]. The second assertion follows from Lemma . First note
that
Cr(D,G)r =a-Cr(D,D -G+ (w)) (from Lemma [2))

_ (29— 1+4n) (2)
—a-C¢ (D, 2P, )

We now calculate the lower bound on the minimum distance of the dual code.
d(Ce(D,G)) >n— M (due to (2) and Theorem [I)

_ n+l
=2 9

The minumum distance of C” follows from the fact that C' ¢ CZ (D, G), and
this completes the proof. O

Lemma 7. Let X be a smooth projective curve having genus g. Let n be an
even positive integer and D = Py + -+ -+ P, be a divisor on X. Assume that
there exists a differential form w satisfying

1. vp(w)=—1, fori=1,...,n and

2. Resp,(w) = Resp,(w)) = af with a; € F; for 1 <i,j < n.

If G = B2 pwith supp(G) N supp(D)

(), then there exists a self-
orthogonal code Cc(D,G) with parameters [n, 3, 5

+1—g].

n
’ 27

Proof. The result follows from the same reasoning as that in Lemma O



3.1 Self-dual codes from projective lines

In this subsection, we will discover new families of MDS self-dual codes based
on the work from [19]. In what follows, we let for a € Fy, n(a) :=1if a is a
square in F,, and n(a) := —1 if a is not a square in F,.

The following two lemmas [19] will be used to construct self-dual codes
of genus zero.

Lemma 8. [19, Lemma 6] For G = sPs with s < |22|, if (W (P;))1<i<n are
squares in B}, then Cz(D, G — (1/v/IY)) is an MDS self-orthogonal code.

The following lemma is useful for constructing a self-dual code from its
self-orthogonal subcode.

Lemma 9. [79, Lemma 7] Let ¢ = 1 (mod 4). Assume that G = (k —
1)Ps,n =2k + 1, and (I'(P;))1<i<n are squares in F;. Then the q-ary self-
orthogonal code Cp(D,G — (1/v/I)) with parameters [n, k] can be embedded
into a q-ary MDS self-dual [n + 1,k + 1] code.

Now, we construct MDS self-dual codes from Lemma [§ and Lemma

Theorem 2. Let ¢ = p™ be an odd prime power. If n(—1) = n(n) = 1,
n|(¢—1) andn even, then there exists an [2n+2,n+1,n+2] self-dual code over F,,.

Proof. Let U, = {a € F;|a" = 1}. Let 3, € F; such that 8 —1 is a nonzero
square in F,. Put U = U,, U ,U,, U {0}, and write

h) = [ - 5)

BeU

Then we have that
h'(z) = ((n+ 1)z" — 1)(z" — B7) + nz"(z" — 1).

Consider the following quadratic equation

a®+ v =1. (3)
For any ¢, [B) has T" = (¢ — 1) — 4 solutions, say (aj, +by),..., (a%,ﬂ:b%),
with (a;,b;) # (0, £1), (£1,0). Take 8; = {/a? for some 1 <i < ¢, (t < ).

Then we get 1 — ' = 1 — a7 = b7 which are squares in F,.
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We have that —1, n are squares in F,. Moreover, since 8] and (8] —1) are
squares in F7, it implies that A'(3) is a square in F}, for any 8 € U. Now, the
fact that all the roots of h(z) are simple gives rise to a self-orthogonal code
with parameters [2n + 1,n,n + 2|. Thus, by Lemma [ it can be embedded
into a g-ary self-dual code with parameters [2n +2,n+ 1,n + 2]. O

Example 1. We construct MDS self-dual codes with new parameters as fol-
lows.

1. Taking q = 37,n = 12, we obtain a self-dual code over Fs; with param-
eters [26,13, 14].

2. Taking g = 61,n = 12,20 we obtain self-dual code over Fg; with param-
eters [26,13,14], [42, 21, 22], respectively.

3. Taking q = 73,n = 24, we obtain a self-dual code over F;3 with param-
eters [50, 25, 26].

Remark 1. In the proof of Theorem [2, we have found many values of B;
such that 1 — B is a square. Furthermore, if there exist 51 and [y such that
By — BY is again a square, then we can construct an MDS self-dual code of
length 3n + 2 over F,. For example, taking ¢ = 41,n = 10 and considering
two non-zero multiplicative cosets of U, yields a self-dual code over Fyq with
parameters [32,16,17]. The generator matrixz of the self-dual code over Fyy is

gien as follows.

20 15 20 11 6 11 22 10 39 15 5 9 20 31 33 40
37 5 11 12 3 15 4 100 37 18 35 8 3 26 32 8
12 29 9 14 13 11 8 30 16 20 17 22 3 9 13 10
2 17 11 25 14 3 1 27 38 5 1 15 36 2 1 21
27 21 21 13 20 7 36 15 29 30 25 20 1 11 2 32
39 7 2 1 26 25 5 38 38 13 33 20 17 15 7 36
40 39 34 15 18 12 6 28 25 10 21 23 8 35 26 26
Ig 30 36 28 2 1 11 12 28 2 27 34 35 4 4 20 2
22 18 5 24 5 40 23 9 34 40 12 34 9 34 33 31
20 13 9 12 31 35 37 33 26 37 23 39 29 18 25 19
11 19 18 16 38 40 2 29 8 30 30 10 12 2 20 30
34 13 10 13 18 28 19 14 28 31 4 34 24 9 31 35
24 31 21 40 12 23 25 4 17 27 13 4 31 40 23 30
40 31 36 35 28 38 21 31 14 20 16 36 20 37 34 21
9 100 23 11 36 23 30 9 16 22 27 32 37 26 39 26
36 4 32 32 4 4 10 14 12 14 20 30 29 34 8 21

The two following lemmas play the key role in determining whether the
difference of two special elements in [, is a square or not and also in deter-
mining the number of cosets of a multiplicate subgroup of F}.
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Lemma 10. Let ¢ = p™ with p an odd prime, n = ;11 and for a;, o € F,

with o; # «j, denote a;; = o — o, Then for w a pmmztive element of I,
we have the following equality:

n(p"+1)
W 2™=1)

Oéij =

(4)

Q04

Proof. Raising o;; to the power p” — 1, we get

T

ot ) @)
) a;’—a;? a?—a;’
(agflfn_aq_flfn) ain in
frd 2 J — ? J
a?—a;? alt— ;L
wn(prﬂ)
- afal 7
where the last equality come from the fact that w = 1.
By taking the (p” — 1)-th root, the result follows. O

Lemma 11. Let ¢ = p™ with p an odd prime, r|m, n = pqr;ll and for a;, a5 €
Fy with o; # «;, denote ay; = o — f. Then for w a primitive element of
Iﬁ‘q, we have the following:

(0771 € Fpr. (5)

Proof. Raising o;; to the power p”, we get

p" np” np’\ __ qg—1+n qg—14+4n\ _ n n __
ag; = (" —aj”) = (o —aj ) = —af = .
Thus the result follows. O

Theorem 3. Let ¢ = p™ be an odd square and n even. Put s = (t + 1)n.

1. If2

: -1
eters [ S, 5,5 + 1], withn = =,

50 @ +1 is even, then there exists a self-dual code over F, with param-
for1 <t <p".

2. If % 50 pr +i is odd, then there exists a self-dual code over F, with param-
eters[ 5,5, 5 + 1], with n = ,+1,f07“t odd and 1 <t < p".

3. There exists a self-dual code over F, with parameters s, 5,5 + 1], with

n = qr 11) |27f07ﬂ1§t§p — 2.
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Proof. Let U, be a multiplicative subgroup of Fy of order n, say U, =
{ur, ..., u,}. Let aqU,, ..., U, be t nonzero cosets of U,, where (a;)i<i<t

t
will be determined later. Put U = U,, U (U aiUn) , and write
i=1
hz) =[] - a).
aclU
Clearly, all the roots of h(z) are simple. The derivative of h(z) is given by
t t t
W(z)=na" [[(a" = o) + na" ' (a" — 1) (Z IT @ - ay)> .
i=1 i=1 j=1,j#i

For1<j<t,1<s<n,wehave

W(ug)  =nui™(af =1) I (1—-af),
=it
i=1,i#j

For 1 <i,j <tandn= -2l we have from @)

p"“+17
wZ pm—1
— A n __
O{Z‘] — Oél - Oé] — 9
QO

where w is a primitive element of F,.
Fixing j and taking all the product of a;; for 1 < ¢ <t,i # j, we get that

t n n(p”+1)
[T te;—en)= JT <20
i=1,i#j i=1,i#j v
Obviously, n and (us)1<s<n, are squares in F, for ¢ a square. Now, the
squareness of h'(u,) and h'(ajus) depend on the parity of T = g((;’ :fi))

If T is even, then «; is chosen to be a square element in F,, and thus
(1 —af) and (o} — af) are square elements in F, due to (l) of Lemma [0

If T"is odd, then «; is chosen to be a non-square element in F,, and thus
(1 —af) and (o] — o) are again square elements in IF, due to ().

In conclusion, we have
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1. If 721((pr+1) is even, then A'(u,) and h'(a;u,) are squares in F; for 1 <

s<nmnand 1 <j<twithte{l,...;p"}.

2. If g(@ﬁi is odd, then h/(us) and ' (cju,) are squares in F; for 1 < s <n

and 1 < j <twithtoddand t e {1,...,p"}.

For 1 <i,7 <tandn = ;.;_11, from (B) in Lemma [T we get that o;; =
af —af} € Fyr, and hence it is a square if r[. We have shown that 7'(«)

is a nonzero square in F, for any a € U, and thus the constructed code is
self-dual by Lemma [l O

. - _ 92_1 o _
Example 2. Taking q = 9*,n = o = 3.t =2, we get an MDS self-dual

with parameters [24,12,13]. These parameters are new. The generator matriz
of the code is given as follows.

w8 w20 w2 w7 wl? wl® w4 wl0 w37 me w7 w36
w20 w26 w3 w36 2 w26 w80 w3 w83 w37 wi w37
w32 w33 w34 wl4 w3t w2 w? w26 w63 w78 w7 w6
w37 wl6 wl4 wl6 w33 w?? w33 w3 w® w28 w28 w7
wl? 2 wl4 wl3d wt w? w37 w? w3 w66 wld w39
Iio wl6 w26 w?? w19 w? 2 w? wl? wl3 w? w60 wid
wt w20 w? w33 wl? w9 2 wid wl? w2 w26 wl6
wl0 w38 w56 w3 w? wl? w? w4 wld w34 2 wl?
w37 w88 w28 wid w3 wl3 w32 wl3d wl6 wd? wl6 w37
w36 w? w’® w?d w26 w7 w2 wl4 wl4 w4 w33 w32
wi7 wi! w? w83 wld w00 w56 2 wl6 w3 w06 w80
w36 w7 w36 w37 w30 w4 w36 wl® w37 w2 w80 w®

Theorem 4. Let g be an odd prime power with ¢ = 1 (mod 4),1 < r <
m,r|% and n even with n(n) = 1. Put s = (t + 1)n

1. If & " +1 is odd, then there em'sts a self-dual code over IF, with param-

20p
eters[,2,5+1],withn— fort odd and 1 <t <p".

7‘+1 )

2. If 24D o cven, then there exists a self-dual code over F, with param-

207 —1)
eters [s, 5,5 + 1], with n = =L o for1<t<yp.

pr+1 )

3. There exists a self-dual code over F, with parameters [s, 5, 5 + 1], with

n—qr 17| ,for1 <t<p" —2.

Proof. The proof follows from that of Theorem [Bl O

14



Table 2: Numbers of rational points of elliptic curves

Elliptic curve & m #E1p.e(Fym)
m odd qg+1-2/q
Yy +y=a m=0 (mod4) |q+1-2y/7
m=2 (mod4) |q¢+1+2/q
2 _ .3 m=1,7 (mod 8) | ¢ +1+2,/4q
yoryme m=3,5 (mod 8) | g+1—2,/q
2., . _ 3 m=1,7 (mod 8) | ¢+ 1+2,/q
y +y=x"+r+1 m =35 (mod 8) | ¢+ 12/
v +y =23+ bx(Tr(b) = 1) m even qg+1

=0 (mod4) |g+1+24q
=2

2 _ .3 m(.\ — m
y ty =t (T =1) m (mod 4) |¢+1-2/4

3.2 Self-dual codes from elliptic curves and hyper-elliptic
curves

In this subsection, we will consider elliptic curves and hyper-elliptic curves
over F,, q even.

First, we will consider elliptic curves in Weierstrass form to construct
self-dual codes. Let ¢ = p™ and an elliptic curve defined by the equation

Eabe: v +ay =23 +br +c, (6)

where a,b,c € F,. Let S be the set of z-components of the affine points of
Eap,c over Fy, that is,

Sape = {a € F,|38 € F, such that 5%+ af = o + ba + c}. (7)

For ¢ = 2™, any o € St gives exactly two points with z-component «,
and we denote these two points corresponding to o by P and P?. Then
the set of all rational points of &, over F, is {Pél)\a € Sipet U {Péz)\a €
S1p.c} U{Px}. The numbers of rational points of elliptic curves £ over F, are
given in Table 2l

Lemma 12 (Hilbert’s Theorem 90). Let ¢ = p™. The equation y? —y = k
has solutions over ¥y if and only if Try, s, (k) = 0.

15



Lemma 13. Let gy = 2™,m > 2 and ¢ = ¢2. If « is an element in F,, then

Trw, r, () = 0, and Tre, jr, (o + o) = 0.

q0-

Proof. For any a € F, , we have

q0»

’I‘I'ng/]p2 (Oé) = Tl"[gqo /]F2 (Tr]Fq/]FqO (a))
= TrFqO/Fz (Oé —+ Oéqo)
= TrIFqO/]FQ (Oé) —+ Tr]FqO/]FQ (aqo)
=0,

where the first and second equality come from the properties of the trace
function and the last one from the fact that o € [F,,. Since F} is a multi-

plicative group, the second part follows.
O

Proposition 2. Let gy = 2™ and q = q3. Then there exists a [2qo, qo, d > o
self-dual code over F,.

Proof. Consider the elliptic curve defined by
81,170 . y2 + Yy = 1’3 + x.

From Lemma [[3, we get that F, is a subset of S119. Put U = F,, and

h(z) = [] (x — «). Then the residue Resp, (w) = ﬁ is a square for any
aclU “

a € U, and by Lemmal[3], the constructed code a-Cr (D, G) is self-dual, where

a? = Resp, (w). O

Theorem 5. Let ¢ = 2™ and U = {a € F,|Tr(a® + «) = 0}. Then there
ezists a self-dual code over F, with parameters [2n,n,d > n] for 1 <n < |U]|.

Proof. Let U be defined as in the theorem. Put

hz) =[] - a).

aclU

Since any element in [F, (¢ even) is a square in F,, we conclude that h'(«) is
a nonzero square in [, for any a € U.
Consider the elliptic curve defined by

81,170 : y2+y = 1’3 + x.

16



From Lemma [I2] we get that U is a subset of S; 1. Put

D= Y (PW4P®) =P+t P, s=2U,G= %Poo,w -
acUpCU

dx
P

Then the residue Resp, (w) = m is a square for any « € Uj, and by Lemma
B, the constructed code a - Cr(D, Q) is self-dual, where a? = Resp,(w). O

Example 3. The elliptic curve
Eino: Y +y=2"+u,

has rational points in the set {Ps, = (1 :0:0),(1:0:1),(1:1:1),(w?:
w’ 1), (w? s w® 1), (wh s wd 1), (w® s w1, (w!? s w1, (w?
wh 1), (W s w 1), (W w1, (w o w s 1), (wth s wt 1), (WP w?
1), (wd:wd 1), (w” :w?: 1), (w” :wd 1), (w?:w?: 1), (w': wd: 1)}
Put D =P+ -4 Pig,G = 9P,. The code Cr(D,G) is self-dual. The set

{££1(i,5) € {(0,0),(0,1),(0,2),(0,3),(1,0), (1,1),(1,2),(2,0), (2, 1)}} is a
basis for Cr(D,G), and thus its generator matriz is given by

111111111111111111

01w wwiwl*wlwBwwwwiw?wdwwdw2ws

01w w3 wbwBwl2wllw2wdw2wiwtwwtwww

01w w12w2w12w3 w2 w3 w2 w3 w2 wb w2 W w2wsw?

G = 11w3w3wlwlwl2w12w10w10 11wl wdwdw w wldwl3
01w10w12w9w5w3w10w11w14w12 1w wlBw211w®
01w2wbw2wAw2wd w2 w3wB w4 w2 wWlwl  wsw2w4

11w w8 w12w12w2w2wi W w T w T wl0w10 1414111l

01w 11w 1w wlwwdw w2 w3ww wldw?

By Magma [3)], the code with generator matriz a-G is self-dual, and it has

parameters [18,9,9] over Fig, where a = (w®, w®, w2, w'? w’ w", 1,1, w? w?

'lU14, w14’ ’lU4, w4’ wg’ ,w9’ ’LUlO, wlO)‘

This code is an almost MDS code. We also find almost MDS self-dual
codes over Fig with parameters [20,10,10], [22,11, 11], [24,12,12].

Corollary 1. Let ¢ = 2™ and U = {«a € F | Tr(a?®) = 0}. Then there exists
a self-dual code over F, with parameters [2n,n,d > n] for 1 <n < |U|.

Theorem 6. Let ¢ = 2™, m > 3 and U = {a € F,|Tr{a’) = 0}. Then
there exists a self-dual code over F, with parameters [2n,n,d > n — 1] for
1<n<|U|

17



Proof. Let U be defined as in the theorem. Put

hz) =[] (@ - a).

acU

Since any element in F, (¢ even) is a square in F,, we conclude that h'(«) is
a nonzero square in I, for any a € U.
Consider the hyper-elliptic curve defined by

Xy ty=2" (8)

From Lemma [I2] we get that U is a subset of the solution to (). Put
D= 5 (PP4PP) = Pitot Pus = 2Ul.G = (5 + 1)Px and

acUgCU
dzx

w = . Then the residue Resp, (w) = m is a square for any a € Uy, and
by Lemma 3, the constructed code a-Cr(D,G) is a [s, 5,d > 5 — 1] self-dual
code, where a? = Resp, (w).

O

Example 4. The hyper-elliptic curve defined by

vty =a’,
has rational points in the set {Pe=(1:0:0),(w?:0:1),(w?:1:1),(w?:
0:1),(w?:1:1),(w®: 1), (wb: 1 : 1),(w9 20 1), (w10 1), (wh
w 1), (w 11:11)4:1),( :w:l),( cwt 1), (W w s 1), (wP o wt
D, (wd:w:1),(wd:w:1),(w:w?:1),(w:w®:1),(w?:w?:1),(w?:
wgzl),(w4:w2: 1), (w :w® 1), (0" w? 1), (w” o wd 1), (w: w?
1), (w': w®: 1)}, Put D =P+ - +P26,G_14Poo. The set {Z5(i,j) €

7)
{(0,0),(0,1),(0,2),(1,0), (1,1),(1,2),(2,0),(2,1),(2,2),(3,0), (3,1), (4,0), (4, 1)} }

is a basis for Cp(D,G), and thus its generator matriz G is given by

18



11111111111111111111111111

01010101 ww*ww*ww*ww* w?wdw?wiw?wdw?wdw?wsd

01010101 w?wiw?wdw?wdwwdwiwwww*ww* www
w2 2wl w3 wbwbwww  w w2 w2 wd wiwdwSwww B w B wrwiw ww w0
0w'20w30wb 0w w2 1w wlwbw w2 wr? wiw? 1wbwbw 2w 1w w?
0w 203 0wb 0w w 3wt w 0w w3 w0 wwd w2ww A wSwd w  wiw 4w

,w9w9w6w6w12w12w3w3w7w7w4w4w10w10www2w2w11w11w8w8w14w14w5w5

0w90w60w120w3w8w11w5w8w11w14w2w5w4w10w13w4w10www7w7w13

- 0w? 0wl 0w 20w w? 1wl w2 w2 ww3w wlw? 1w w2 w w3 1w ws
w2 w2 w3 w3 w 2w 2 w3 w3 ws 1w 11w w w3 w3 www 2w 2w w11
0wS0w?0w30w 2w w  wCwwiw w3 wd W w w2 4w WS w w2 wd
W3 w3 w 21w 2w w10 wh w4 4 wBwB W wP w2 w2 wiww  w www B w 3w 0w 0
0w 0w 0w? 0w 1w w? w2 wl w w3 w ww'?w? lwdw? 1wdw?w?
11111111wlOw10w10w10w10w10w10w10w5w5w5w5w5w5w5w5w5w5

w12w12w3w3w6w6w9w9w6w6w12w1211w3w3w6w6w3w3w9w9w12w1211

w9w9w6w6w12w12w3w3w2w2w14w14w5w5w11,wllw7w7wwwl3w13w4w4w10w10

By Magma [3], the code with generator matriz a-G is self-dual, and it has

parameters [26,13,12] over Fig, where a = (w', w'*, w, w, w8, wb w'® w'® w?,
w?, wh wt, wh wb wd, wd, wh wb, w, w3 w, W, w, w, w w'3). We also find

self-dual codes over F1g with parameters [28,14,13], [30, 15, 14], [32, 16, 15].

Next, we will consider hyper-elliptic curves over F,, ¢ = p™ with p an odd
prime.

Theorem 7. Let ¢ = p™ and t be a positive odd integer such that ged(t,q —
1) =1. If n(n) = 1 and 4n|(q — 1), then there exists a self-dual code with
parameters [2n,n,d > n + %]

Proof. Denote C; = {jxi (mod ¢—1)|i =0,1,...}. For 6 a primitive element
of Fy, let U, = {#']i € Cy=1}, and label the elements of U, as as,...,aq,.
Under the condition 4n|(q — 1), the set U, is a multiplicative subgroup of [,

of order n. Put
W)= ] (@—a).

ann

Clearly, all the roots of h(x) are simple, and the derivative /(z) = nz"!,

and thus for any « € U,,, we have that h'(«) is a square. Consider the elliptic
curve defined by
X oyt =2t

19



Since ged(t,q — 1) = 1, the set {zf|z € F,} is in bijection with F,. For any

a € U,, there are two places, say Po(ll) and PO(?), arising from z-component

a.PutD=Y PV 4+ PP =P+ -4 P,s=2nG=nPyand w =%,
acUn

With the choice of o; € Uy, and 37 = af, the residue Resp, (w) = m is a

square for any «; € U, and by Lemma [3] the constructed code a - C(D, Q)

is self-dual, where a? = Resp, (w).

O

Corollary 2. Let g = p™. Then we have the following:

1. if ged(3,q—1) =1, n(n) = 1 and 4n|(q—1), then there exists a self-dual
code with parameters [2n,n,d > nl;

2. If gcd(5,q—1) =1, n(n) = 1 and 4n|(q¢—1), then there exists a self-dual
code with parameters 2n,n,d > n — 1].

Example 5. The hyper-elliptic curve over Foy defined by

Yy’ =a’,
has rational points in the set {Psx, = (1 : 0 : 0),(1 : 1 : 1),(1 : 4 :
1), (w® : w? : 1), (w?® : w" 1), (w® w1, (W' w!® 1), (4
20 1),(4:3 1), (w s wt 1), (w® s w? 1), (wt s w!® 1), (Wt
w?)}. Put D = Py + -+ + Py and G = TPs. The set {£4](i,j) €
{(0,0),(0,1),(1,0),(1,1),(2,0),(3,0)}} is a basis for Cz(D,G), and thus its
generator matriz is given by

11 1 1 1 1 11 1 1 1 1
1 4 w2 w4 wr ws 2 3 wd wH WO P2
g 1 1 w?® w2 w6 w6 4 4 w8 W wr wh
11 04 w2 w® w0 W 3 2 W wt w4 w2
1 1 w% w% wd w® 1 1 w'® wb w b
11 4 4 1 1 4 4 1 1 4 4

By Magma [3], the code with generator matriz a-G is self-dual, and it has
parameters [12, 6, 5] over Fos, where a = (1,3, w?', w', 3,1, w! w? 1,3, w?, w'®).

By considering curves in higher genus, we can release the gcd condition
in Theorem [7l
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Theorem 8. Let g = p™ with p an odd prime.

1. If n is odd, n(n) = 1 and 4n|(q — 1), then there exists a self-dual code
with parameters 2n,n,d > 5 + 2].

2. If n is even, n(n) =1 and 2n|(q — 1), then there exists a self-dual code
with parameters 2n,n,d > 5 + 2].

Proof. Assume that n is odd. Let U, and h(x) be defined as in Theorem [7
Consider an algebraic curve given by

Xyt =am

Take w = % and G = 2P, Then by Lemma [, the code a - C,(D,G),
where a; = Resp,(w), is self-dual with parameters [2n,n, 5 + 2], and this
proves point 1).

For point 2), we put U,, = {a*|a € F,,a" = 1}. The rest follows from the

same reasoning as the first part. 0

3.3 Self-dual codes from other curves

In this subsection, we will construct self-dual codes over F, from algebraic
curves of high genus.
Let o = p™, ¢ = g2 and X be the Hermitian curve over F, defined by

X : yQO _'_y — xqo-i—l'
The Hermitian curve X has genus g = w, and for any o € [F;, x — a has
q zeros of degree one in X'. All rational points of the curve X different from
the point at infinity are obtained in this way. Self-orthogonal AG codes from
Hermitian curves were already considered in [20]. In what follows, we embed

those codes into the self-dual ones and provide the parameters of the latter
codes. We also construct new families of self-dual codes from this curve.

Theorem 9. Let p be an odd ]?rime, o =p",q=q,9 = w. Put
dy=5+1-g,s=s+1,dy=5%5—y.
1. If pln,(n — 1)|(¢ — 1), then there exists a q-ary self-dual code with

parameters [s,5,d > do] (resp. [s, %,d > dj))), where s = gon with n

even (resp. n odd).
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10.

11.

12.

15.

’ d 2

Ifrlm , then there exists a q-ary self-dual code with parameters [s', 5,

di], where s = qop”.

If(n 1)|(g—1), then there exists a q-ary self-dual code with parameters

[/,g,d>d], where s = qo(2n — 1).

Ifn|%5=, then there exists a q-ary self-dual code with parameters [s, 5, d >

do) (resp. [s',£,d > dy)]), where s = qon with n even (resp. n odd).

If 1 < r < m, then there exists a q-ary self-dual code with parameters

s ’,z,d > d’], where s = qo(2p" — 1).

Ifn=q¢g—-1n=0 (mod 4), then there exists a q-ary self-dual code
with parameters [s, 52 ,d > di)], where s = qo (n(t+ 1)+ 1), for t odd,
0<t<2Z41,

If n = qo— 1,n = 2 (mod 4), then there exists a q-ary self-dual code

with parameters [s, 52,d > dp), where s = qo (n(t+1)+1),0 <t < 3.

If1<r<mandz pr 1s odd, then there exists a q-ary self-dual code

d > dy] (resp. [§',%,d > dj)]), where s = qo(t+1)n

with parameters [s, 5, ; 2 ;
fortodd, 1 <t<p".

(resp. s=qo((t+1)n+1)+1), n=

'r+1 )

If1 <r<mand g((p:ﬁ)) is even, then there exists a q-ary self-dual code
with parameters [s, 5, d > do] (resp. [s', 52 ,d > dj)]), where s = qo(t+1)n

(resp. s=qo((t+1)n+1)+1), n= T+1,f0r1<t<p

If 1 < r < m, then there exists a q-ary self-dual code with parameters

[s,5.d > dy] (resp. [s’,;,d > dyl), where s = qo(t + 1)n (resp. s =

qo((t—i—l)n—l—l)—l—l),n—pr_l,r|2,f0r1§t§p7’—2,

If t is even such that 1 <t < qo, then there exists a g-ary self-dual code

with parameters [s, 5,d > do], where s = qo(qot).

If t is odd such that 1 <t < qq, then there exists a q-ary self-dual code
with parameters [s', 82 ,d > dj], where s = qo(qot).
Ifr =p* klm,0 <l <m/k,1<t<(r—1)/2, then there exists a q-ary

self-dual code with parameters [s,$,d > do], where s = qo(2tr").
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14. If 0 < 0 < 2m, then there exists a q-ary self-dual code with parameters
[Sa %7 d > dO]} where s = QO(2p£)

15. If r = p* klm,0 < £ < m/k,0 <t < (r—1)/2 or ({,t) = (m/k,0),
then there exists a q-ary self-dual code with parameters [s', %/, d > di),
where s = qo(2t + 1)r*.

16. If 0 < 0 < 2m, then there exists a q-ary self-dual code with parameters
ES %l,d > dj)], where s = qop.

Proof. It should be noted that each z-component a € I, gives ¢ places of
degree one. Let U be a subset of {a € F,|f?+ 3 = a®*'} such that ¢|U| = s.

Put
dx

h(z) = H(m—a) and w = W

aclU

For each case, it is enough to prove that the residue Resp, (w) of w at place
P, is a nonzero square for any o € U, that is, h'(«) is a nonzero square in
F,. Take U as follows.

o for 1), U ={a €F,a" =a},
o for 2), U = {a € Fla? = a},

e for 3), U = U,_1 UqU,_1, where U,_; = {a € FJa"! = 1} and
a; € F,\U,,—1 such that 1 — ot is a square,

o for 4), U = {a € F,|a" =1},

o for 5), U =U,UU, U{0}, where n =p" —1,U,, = {a € F Ja" =1}
and oy € F,\U, such that 1 — a” is a square,

e for 6)-10), take U = {0} UV or U =V, where V=U,UayU, U---U
aU,, U, ={a e Fjla” =1} and oy, ..., € F,\U, as in Theorem [3]

e for 10)-12), label the elements of F,, as ai,...,a,. For some fixed
element 8 € F\F,,, take U = {ax + a;|1 < k,5 < qo},

e for 13)-16), label the element of F, as ay,...,a,_1, take H as an IF,-
subspace and set H; = H + a; for some fixed element 5 € F,\F,. Put
U:H()U"'UHQt_l OrU:HOU"'UHQt.
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For 1)-5), it can be easily checked that h'(«) is a square for any « € U.

For 6)-10), it has been already checked, in Theorem [3 that h'(a) is a
square for any o € U.

For 11)-12), it was proved in [24, Theorem 2| that h'(«) is a square for
any a € U.

For 13)-16), it was proved in [7, Theorem 4] that h'(«) is a square for
any o € U. O

Example 6. The Hermitian curve defined over Fy has all rational points in
the set {Pyy = (1:0:0),(0:0:1),(0:w?:1),(0:w®:1),(1:w:1),(1:
wd 1), (1:2:1),(w?rw: 1), (w?:w 1), (w?:2:1),(2:w:1),(2:
wd o 1),(2:2: 1), (wb w1, (wb w1, (wb 2 1), (w1 1), (w
w® 1), (w:w” 1), (w1 1), (w? s wd 1), (wd w1, (w1 1), (wP
w® 1), (w®:w”1), (w1 1), (w' w1, (wT s w” 1)} Put D= Py +
-+ Py, G = 15P,,. The code Cr(D,G) has parameters [27,13,12]. The set
{Z51(i,5) € {(0,0),(0,1),(0,2),(0,3), (1,0), (1, 1), (1,2), (1,3),(2,0), (2, 1),
(2,2),(3,0),(3,1)}} is a basis for the code Cr(D,G), and thus its generator
matrix is given by

111111111111111111111111111

ow? w8 ww? 2ww? 2ww3 2ww3 21w W7 1w w7 1w’ w7 1w’ w”
022w? w8 1w? wl1w? wé w2 wo11w? Wb 1w wl 1w? wb 1w ws
0wl w? w3 w2w3 w2w3 w2w w21w” W 1w’ W 1w’ W’ 1w” wd
000111w? w? w2 222w wl wl wwww3 w3 w3 wd W w?w W w?
000ww? 2w3 w® Wl wP W 1w Www? ww’ 1w 1w2 w3 w? 2w 2w’
g = 000w? w%121w2 wlw? 212w ww3 w” w3 wd ww® w w3 w” ww®
000w w2w® w3 ww wd 1ww” w2 wlwd w3 w? 1w® 2w w” wb2

000111222111222w?2 w2 w? w8 wéwb w2 w? w2 wbwbw’
000ww? 2w® w7 1ww?3 2w’ w7 1w? w” Wwwl w3 w? w? w” wwd w3 w®

000w? w8 1wl w2 2w w8 1wl w2 2w? 21wl 12w 21w 12
000111w8 w8 w°222w? w2 w? w3 w3 w3 wwww” w W W W w?
000ww? 2w ww? 3w wlw?

wPw Tw3 wdwl w3 1w wws 1w 2wl w w22

Take G' = ( i 0 ) , where g = (0,1,1,2,2,1,2,2,1,2,2,1,2,2,1,1,2,2,
14

1,2,2,1,2,2,1,2,2,1). By Magma [3], the code with generator matriz a-G' is
an optimal [28,14,12] self-dual code with new parameters, where a; = w%, 1 <
1 < 28. Other parameters from different constructions in Theorem[d are given
in Table[3.

(qo—1)?
4

Theorem 10. Let g = p™,q = qg be an odd prime power, g = and

5= qoq‘%2—+1. Then,
1. there exists a [s,5,d > 5 — g+ 1] self-dual code if s is even, and

2. there ezists a [s + 1, %, d> % — g| self-dual code if s is odd.
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Table 3: Self-dual codes of length s from Hermitian curves defined over Fyg

Theorem Length s Distance  Lower bound | Extended length Distance Lower bound

1) 3.3 3 3 10 3 2

3.9 12 12 28 12 11
2) 3.3 3 3 10 3 2
3) 3(2.3-1) 6 6 16 6 5

3.2 3 1 — — —
4 3.4 4 4 — — —
5) 3(1+1)2 4 4 — — —
6) 3(1+1D)2+1) 6 6 16 6 5
10) 3(3.2) 7 7 - - -

Proof. Consider an algebraic curve defined by

gqot+1

Xyl +y=ua2

The curve has genus g = %. Put

qo+1

U={aeF,36 €F,such that p*+ 5 =a"2 }.

The set U is the set of xz-component solutions to the Hermitian curve whose

2
. +1 . .
elements are squares in F,. There are qOT square elements in F,, and this

2
gives rise to qq q“; ! rational places. Write
dx
h(x) = r—a)and w=—.
(@) =Jw-a) -
acU
2
Then h(z) = 2™ — z, where n = 9 and thus #/(z) = na"' — 1. Since ¢

2
is a square, we have that h'(a) = n — 1 is a square for any o € U\{0}. Put

D= (PS’+-~-+P§@)> — Py+ -4 Py s = gL Set

2
aclU

o {(g—1+§)Poo if s is even,

(9— 1+ 5Py if s is odd.
Then the residue Resp, (w) = m is a square for any o € U, and by Lemma
B, the constructed code a - Cr(D,G) is self-orthogonal, where a? = Resp, (w).
If s is even, then point 1) follows, otherwise the self-orthogonal code can be

embedded into a self-dual code using Lemma[6, and thus point 2) follows. [
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Example 7. There ezist self-dual codes with parameters [16,8, > 73z, [66, 33, >
2952, [176,88, > 79]72, [370, 185, > 169]g2, [672,336, > 311];;2, [1106, 553, >
517)132, [2466, 1233, > 1169|172, [3440, 1720, > 1639]192, [7826, 3913, > 3769]552.
We now calculate the exact distance of the self-dual code over Fs2. The alge-
braic curve over Fy defined by

Pty = o
has all rational points in the set {Pyx, = (1: 0 : 0) (0:0: 1) 0 : w?:
1),0:w8:1),1:w:1),(1:w?:1),(1:2: 1)( ),( 1),(2:2:
1), (w?:1:1), (w?: w5:1),(w2:w7:1)( 1 1)( 6. 1),(w6:w7:
D} Put D P+ 4 Pi5,G =TP,. The code Cr(D ,G) has parameters
[15,7,8].
The set {wzﬂ |(i,7) € {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)}} is a
basis for the code Cr(D,G), and thus its generator matriz is given by

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 w? wb w w2 w w2 1 w w 1 w

0 2 2 w w1 w w1 1 w? w 1 w? s
G=10 wb w?> v w 2 w w 2 1 w w 1 w W

00 0 1 1 1 2 2 2 w w w w w

0 0 0 w w 2w w 1 w v w w w

0 0 0 w w1 wh w2 w 2 1 w 1 2

Take

g = ( G0 )
gs ’
where a = (w8 w®, w% 1,1,1,1,1,1,1,1,1,1,1,1), gs = (0, w, 0,0, 0,0, 0,0, w”,

0, w®, w2, w®, w’, w’,2). By Magma [3], the code with generator matriz G' is
a [16,8, 8] self-dual code, which is optimal and has new parameters.

Theorem 11. Let gy = p™,q = q2 be an odd prime power, g = (q021)2 and
-1
0—. Then,

1. there exists a [s,5,d > 5 — g+ 1] self-dual code if s is even, and

727

2. there exists a [s + 1,52+, d > =+ — g] self-dual code if s is odd.
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Proof. Consider the same setting as the proof of Theorem [0 Take U’ =
U\{0}, and write

dz
h(x) = - dw=—.
() H (x — ) and w h
aclU’
The rest follows with the same reasoning as that in Theorem [10 O

Example 8. There exist self-dual codes with parameters [12, 6, 6]s2, [60, 30, >
27]52, [168,84, > 76]2, [360, 180, > 1652, [660,330, > 306] 1,2, [1092, 546, >
511]15, [2448, 1224, > 116172, [3420, 1710, > 1630]142, [7800, 3900, > 3757]sz.

We update parameters of MDS self-dual codes from the previous con-
structions in Table [l

4 Conclusion

In this correspondence, we have constructed new families of optimal g-ary
Euclidean self-dual codes from algebraic curves. With the same spirit, con-
structing more families of Euclidean self-dual codes from genus zero and genus
one curves (over F, with ¢ a prime) is worth considering. Characterization
and constructions of Hermitian self-dual codes from algebraic geometry codes
are also valuable.
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