Designs, Codes and Cryptography (2021) 89:859-893
https://doi.org/10.1007/510623-021-00850-2

®

Check for
updates

On the Resilience of Even-Mansour to Invariant Permutations

Bart Mennink' - Samuel Neves?

Received: 8 October 2020 / Revised: 26 January 2021 / Accepted: 3 February 2021/
Published online: 23 February 2021
© The Author(s) 2021

Abstract

Symmetric cryptographic primitives are often exposed to invariances: deterministic relations
between plaintexts and ciphertexts that propagate through the primitive. Recent invariant
subspace attacks have shown that these can be a serious issue. One way to mitigate invariant
subspace attacks is at the primitive level, namely by proper use of round constants (Beierle
et al., CRYPTO 2017). In this work, we investigate how to thwart invariance exploitation
at the mode level, namely by assuring that a mode never evaluates its underlying primitive
under any invariance. We first formalize the use of invariant cryptographic permutations
from a security perspective, and analyze the Even-Mansour block cipher construction. We
further demonstrate how the model composes, and apply it to the keyed sponge construction.
The security analyses exactly pinpoint how the presence of linear invariances affects the
bounds compared with analyses in the random permutation model. As such, they give an
exact indication how invariances can be exploited. From a practical side, we apply the derived
security bounds to the case where the Even-Mansour construction is instantiated with the 512-
bit ChaCha permutation, and derive a distinguishing attack against Even-Mansour-ChaCha in
2128 queries, faster than the birthday bound. Comparable results are derived for instantiation
using the 200-bit Keccak permutation without round constants (attack in 2°° queries), the
1024-bit CubeHash permutation (attack in 220 queries), and the 384-bit Gimli permutation
without round constants (attack in 2° queries). The attacks do not invalidate the security
of the permutations themselves, but rather they demonstrate the tightness of our bounds
and confirm that care should be taken when employing a cryptographic primitive that has
nontrivial linear invariances.
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1 Introduction

The core of symmetric cryptographic primitives and modes alike has been, historically, the
block cipher. Its applications range from compression functions to authenticated encryption.
For example, the AES block cipher [44] is at the core of AES-GCM [83], AES-CCM [104],
AES-CBC [52], OCB [77], AEZ [67], and many other widely used modes.

Block ciphers usually consist of two main components: a (iterated) round function, which
deals with input data, and a key schedule, which expands one key to multiple, random-
looking, block-sized keys. Key material is regularly added to the data in-between evaluations
of the round function. More recently, tweakable block ciphers [82] added a third input, the
tweak, which in existing designs is essentially treated as key material [70].

A different approach has been gaining momentum in the last few years: permutation based
cryptography. In this paradigm, there is no key; every part of the input is treated equally. Key
material is then added only “at the top”, as in the Even-Mansour construction [50,53], or
the various keyed sponge modes [2,19,31,41,85]. This arguably makes designs cleaner and
easier to analyze, as there are no separate processing lanes for key and data, and enables a
clearer mixing of the key and the data.

For most permutation based modes of operation, security is argued in the random permuta-
tion model, meaning that the underlying permutation is assumed to be perfect. So as to meet
this assumption as close as possible, permutations are often designed to prevent all kinds
of structural defects, harmless as they may seem. This is the so-called “hermetic” design
strategy. One usually accomplishes this by designing a strong iterated round function resis-
tant to differential, linear, and other standard attacks, and adding round constants in-between
evaluations of the round function. These constants achieve two goals:

— They make every round distinct, preventing internal differentials [94], slide attacks [22],
and a defective cycle structure [86];

— They can prevent invariant subspace attacks, by breaking the symmetries that are pre-
served across round functions [9,79].

Many permutations follow this design pattern, such as the Keccak permutation [18,56], Ascon
[49], PHOTON [66], Prgst [74], Gimli [16], Mixifer [99], or Xoodoo [40].

Other permutations, often single-purpose components of larger modes of operation, decide
to omit such round constants, and let the mode of operation ensure that “bad” states are never
reached. This is the case of Salsa20 [15] or NORX [4], in which invariance-breaking constants
are simply added “at the top”. This can result in simpler designs, at the cost of losing the
random permutation model as a useful modeling tool.

1.1 Invariances

Consider the event that for a permutation P : {0, 1}* — {0, 1}", there are one or more
functions A : {0, 1} — {0, 1}" such that

AoP(x) =Pol(x) (D

for any x € {0, 1}". We say that P is invariant under A, and call A an invariance for P. The
identity mapping is always an invariance for P, but ideally, it is the only one, the reason being
that non-trivial invariances expose non-random behavior of P and may allow and attacker to
distinguish the primitive from random. Various examples of invariances for permutations are
given in Sect. 2.
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Invariances are inherent to symmetric cryptographic primitives. Barkan and Biham [8§]
studied invariances in AES under the guise of “self-duality”. The work was revisited by Van
Le [102] and Bouillaguet et al.[25]. A particularly fruitful invariance in the AES round Fy is
that of column rotation [102, Proposition 11]:

Ai (Fr(x)) = Fy (A (x)) , ()

where A; is any of the byte permutations

X4 X X12 X0 Xg X12 X0 X4 X12 X0 X4 Xg
X5 X9 X13 X] X9 X13 X1 X5 X13 X] X5 X9
X6 X10 X14 X2 | " | x10 X14 X2 X6 | " | X14 X2 X6 X10
X7 X11 X15 X3 X11 X15 X3 X7 X15 X3 X7 X1

This property was exploited for attacking the ALRED family of authenticators [45] based on
the keyless AES round [51, Sect. 4]. This property has also been used for attacks on various
AES based ciphers and permutations, such as on PAES [105] by Jean et al.[71,72], on Simpira
vl [63] by Rgnjom [97], and on Haraka v1 [76] by Jean [69]. Likewise, the permutations
underlying ChaCha [13], BLAKE2 [5], and NORX [4] have similar invariances as the AES
round. Notably, the cryptanalysis of NORX v2.0 [21,30] and the “chosen-IV” attacks on
BLAKE2 [65] exploit these properties.

Invariant subspace attacks were formalized by Leander et al.[79] alongside their crypt-
analysis of the PRINTcipher [75]. The notion received further formal analysis by Leander et
al.[80] and Beierle et al.[9]. Todo et al.[100] expanded the notion to nonlinear invariances.
Beyne generalized the analysis, and applied it to Midori-64 [20].

1.2 Dealing with Invariances

Basically, there are two ways to resolve the potential weaknesses caused by the presence of
invariances:

— At the primitive level: avoid the presence of invariances. This is achieved by using more
involved key schedules and round constants. Most invariant subspace attacks to date
[20,27,64,69,79,80,97,100] exploit weaknesses at the primitive level. Beierle et al.[9]
studied the issue of invariances in SPNs, with particular focus on the linear layer, and
investigated the effect of round constants on the resistance against invariant subspace
attacks;

— At the mode level: ensure that invariances are never inspected. In this case, the primitive
must be “masked” at the mode level so that it is never evaluated for two values x and
A(x), where X is any of the non-trivial invariances of P.

The former approach delivers primitives that may function as standalone objects to be used as a
black-box by mode designers and implementers. The latter approach allows for simpler, more
minimalistic primitives, but mode designers should pay attention to the fact that invariances
are avoided. Theorists, however, typically ignore the issue of invariances entirely, simply
assuming ideal primitives.

1.3 Invariances in Practice

The issue of invariances is not a purely theoretical matter. Invariances are inherent to sym-
metric cryptography, and some cryptographic permutations, including the ones underlying
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Salsa20 [15], ChaCha [13], NORX [4], BLAKE2 [5], and CubeHash [14], do have certain
invariances that make them easily distinguishable from their ideal counterparts. These invari-
ances are not always attributed to flaws in the scheme: sometimes, the presence of invariances
allows to obtain simpler and faster schemes. Yet, there are no available tools to study their
behavior when used in permutation based modes. Given the popularity of ChaCha and AES-
like building blocks to build new schemes, the case deserves proper formal understanding.

We stress that we do not advocate for general purpose primitive designers to design
purposefully imperfect cryptographic primitives. Instead, our focus is on combined mode and
primitive designers, noting that nowadays many cryptographic modes are designed alongside
their single-purpose primitives. We have noticed this pattern in many CAESAR candidates
[28], e.g., Prgst, NORX, ICEPOLE, Minalpher, PRIMATEs, and PAEQ. When designing a
single-purpose permutation, as in these cases, it seems reasonable to handle properties that
simplify or speed up the permutation by relying on the mode to protect against them (as is
already the case, in a simpler setting, with Salsa20 and ChaCha).

1.4 Our Contribution

We present a structural analysis of how to handle the problem of invariant primitives at the
mode level. Whereas Beierle et al. specify conditions on the use of round constants so as
to avoid invariances, we describe how the security of masked primitive modes behaves in
the presence of invariances. The work consists of a theoretical part (settling the model and
deriving security bounds) and a practical part (translating the security bounds to attacks on
concrete cryptographic permutations), as we will detail below.

Invariant Random Permutation Model

We first formalize a model for the use of invariant permutations in cryptographic modes. The
model is fairly straightforward: instead of randomly drawing an n-bit permutation from the
set of all n-bit permutations, one fixes a set of linear invariances A and draws the permutation
from the set of all n-bit permutations that satisfy (1) for all » € A. The model is given in
Sect. 3.1. Note that the model is general; in fact, it covers more than the typical invariances we
observe in Salsa20, ChaCha, NORX, and so on. We also point out that this practice is riskier
than the hermetic design approach, as one needs to be sure that every allowed invariance is
adequately covered by the analysis.

Analysis of Even-Mansour

Then, in Sect. 3.2 we analyze the plain single-key Even-Mansour construction [53] in the
invariant permutation model. The tight security bound derived for this construction exactly
pinpoints how the original (i.e., the random permutation model based) security bound dete-
riorates in the presence of invariances. Quite surprisingly: the loss is less trivial and more
significant than initially thought. The reason for this is that a strong security bound can be
derived only if for any input x to the primitive P, the value A(x) should never be evaluated
by P, for any A € A.

In detail, the analysis leads to a security bound in the invariant permutation model that is
at most | A| times the bound in the random permutation model plus |A| — 1 times a technical
term P* that bounds the probability of collisions over the invariances.
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Analysis of Keyed Sponge

The analysis of the Even-Mansour construction is particularly useful as it appears as
building block in many security proofs. For example, security of the keyed sponge
[2,19,31,41,59,85,90] and other MAC designs [87,89] can be reduced to the security of
the Even-Mansour construction. In Sect. 3.4, we show how the security analysis of the Even-
Mansour construction generalizes to a security analysis of the keyed sponge in the invariant
permutation model.

Instantiation

The term P* is involved, and can be described as a combinatorial property of the invariances
(refer to Theorem 1 for precise statement of the bound). Further derivation of the bound
is then tied to the specific primitive and invariances associated with it. This, so far, leaves
us with only a partial solution. In Sect. 4 we look at the remaining term in more detail for
specific cryptographic primitives and invariances.

In Sect. 4.1 we consider additive invariances for the Salsa20 permutation. This permutation
satisfies that it is invariant under parallel addition of 16 times the value A = 23!. We present
a simple attack on Even-Mansour-Salsa20 in a constant number of construction queries that
matches our security bound. The attack does not invalidate the security strength of Salsa20;
it just confirms that its permutation should not be used in the Even-Mansour construction.

In Sect. 4.2 we consider linear invariances, noting that for a linear invariance A, the proba-
bility term P* can in turn be related with the rank of id @ A. This rank can be easily computed,
and attacks can be mounted on the Even-Mansour construction based on the cryptographic
permutations exhibiting that invariance. For the 512-bit Chacha [13] permutation, we obtain a
distinguishing attack with a complexity of 2128 queries. For the 1600-bit Keccak permutation
without round constants [18], a distinguishing attack in complexity 2*%° queries is derived,
and this attack scales down to smaller versions of Keccak, up to an attack in 250 construction
queries for 200-bit Keccak. We likewise derive a distinguishing attack for 1024-bit Cube-
Hash [14] in 225° construction queries, and for 384-bit Gimli without round constants [16]
in 2% construction queries. Again, none of these attacks invalidate the security claims of
the primitives themselves. They rather demonstrate that one must be careful when using a
cryptographic primitive that has invariances, and exemplify decisions that designers could
conceivably make when designing a particular scheme.

The framework is likewise able to capture the attacks on NORXv2 [21,30], as well as
the BLAKE?2 [65] attacks with chosen IV. It can furthermore readily be extended to match
the invariant subspaces found on Simpira v1 [97], or the attacks that rely on a block cipher
hitting a particular set of bad keys.

Discussion

The attacks on Even-Mansour instantiated with ChaCha, Keccak without round constants,
CubeHash, and Gimli without round constants are well below the birthday bound on the cor-
responding state sizes. In Sect. 5.1, we consider different avenues to salvaging Even-Mansour.
One approach is to consider tweakable variants of Even-Mansour, such as a generalization
of the Masked Even-Mansour construction [62] that masks the key before it is added to the
message. Details on this construction are given in Appendix A. In this appendix, we also
explain how the results subsequently extend to the Offset Public Permutation (OPP) authen-
ticated encryption scheme by Granger et al.[62]. Another approach is to consider 2-round
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Even-Mansour. In the random permutation model, this construction has received solid inves-
tigation lately [23,32]. The attacks of Sect. 4 rely on the fact that an attacker may observe
the structure of the inputs to and outputs of the cryptographic permutation, and by masking
the input and output, or by adding an extra round, the attacker cannot observe this structure
anymore, and the attack fails. Note that a minimal construction of 2-round Even-Mansour
would take a single key, and add “round constants” to derive mutually slightly different round
keys. Stretching the idea to multiple round Even-Mansour, this idea resembles the current
practice of primitive level invariant subspace attack mitigation.

In Sect. 5.2, we discuss how our security analysis can be translated to multi-key security,
where the attacker can query multiple instances of the constructions simultaneously. It appears
that in this case, the attacker does not get any significant gain over the single-key setting.
Finally, in Sect. 5.3, we informally discuss how our analyses may generalize to invariances
that do not necessarily apply to the entire domain.

1.5 Notation

Throughout, parameters «, t,n € N denote key size, tweak size, and state size. The set of
n-bit permutations is denoted perm(n). We denote by tperm(7, n) the set of all families of
n-bit permutations indexed by t € 7. For m € N such that m < n, we denote the falling
factorial as (n),, =n(n —1)---(n —m + 1) = n!/(n — m)!. For a finite set X', we denote

by x < X the uniformly random sampling of x from X'

2 Invariances

A permutation P € perm(n) is invariant under bijection A € perm(n) if for any x € {0, 1}",
AoP(x) =PoA(x). 3)

We call A an invariance for P. Note that the identity function id is always an invariance for P
(regardless of P), and if P is invariant under A, A/, it is also invariant under A landao ). In
particular, the set of invariances for P forms a group (A, o). For a group of invariances A, we
write perm[A](n) as the set of all permutations that are invariant under A. In our work, we
restrict our focus to /inear invariances. We refer to Courtois [37,38] for research on nonlinear
invariances.

In the remainder of this section, we discuss invariances for various theoretical and practical
functions.

2.1 Random Permutation
IfP: {0, 1}* — {0, 1} is arandom permutation, i.e., a function that generates each response

uniformly at random without replacement from {0, 1}", with high probability A = {id}. Stated
differently: with high probability, this function has no invariances except for the trivial one.

2.2 Iterated Random Permutation

In the case P : {0, 1} — {0, 1}" is the repeated composition of the same round function
/" (), we have the invariant
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fofi=fof.

In the case of an unknown round function, as in the case of block ciphers, finding pairs
of inputs of the form (x, f(x)), i.e., slid pairs, is a core step of slide attacks [7,22]. Since
(x, f(x)) implies (P (x), f(P(x)) at the output, recovering the key from such a slid pair is
often efficiently achievable (e.g., KeeLoq [1]).

2.3 Salsa Family of Permutations

Salsa20 [15] is part of the eSTREAM portfolio of stream ciphers. Its core primitive is a
permutation operating on a 16-word state, usually treated as a 4 x 4 matrix

X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

The Salsa20 round consists of four parallel “quarter-round” operations, as follows:

X0, X4, x8, X12 = G(x0, x4, X8, X12) ,
X5, X9, X13, X1 = G(xs, X9, x13, X1) ,
X10, X14, X2, X6 = G(x10, X14, X2, X6) ,

X15, X3, x7, Xx11 = G(x15, X3, X7, X11) ,

followed by a transposition of the state. In other words, Salsa20 consists of the composition
of “column rounds” followed by “row rounds”. The transposition is omitted after the last
round.

Determining the invariances of Salsa20 is straightforward. The column rounds, when
treating G as a random permutation, are invariant under any permutation of the diagonals.
Furthermore, the transposition forces the admissible invariant permutations to be restricted
to rotations.

Besides this set of rotational invariances, Salsa20’s G has itself some invariant properties.
In particular, G is invariant with respect to addition (or xor) by {231}%, as observed by Wagner
[103], Robshaw, and Castro et al.[29].

It is interesting to note that Salsa20’s predecessor, SalsalO [12, §5], did not have any
simple invariances, owing to its different quarter-round and the addition of a constant every
two rounds. Salsa20’s invariances were an explicit design choice.

2.3.1 ChaCha, BLAKE2, and NORX

ChaCha [13] is a variant of Salsa20. It operates on the same 4 x 4 state as Salsa20, but the
linear layer is slightly different. The ChaCha round first applies four parallel “quarter rounds”

X0, X4, X8, X12 = G(x0, X4, X8, X12) ,
X1, X5, X9, x13 = G(x1, X5, X9, X13) ,
X2, X6, X10, X14 = G(x2, X6, X10, X14) ,

X3, X7, X11, X15 = G(x3, X7, X11, X15) ,
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followed by a “shift rows” operation

X0 X1 X2 X3 X0 X1 X2 X3
X X X X X X X X.
4 X5 X6 X7 5 Xe X7 X4
Xg X9 X10 X11 X10 X11 X8 X9
X12 X13 X14 X15 X15 X12 X13 X14

The next round uses the same quarter-round, followed by the inverse of the “shift rows”
operation.

The invariances here are similar to Salsa20. The quarter-round layer is invariant under any
permutation of state columns. The linear layer, however, is only invariant under rotations of
columns. Thus, ChaCha is invariant under rotations of columns.

Several other permutations based on the ChaCha, such as the ones in
BLAKE2 [5] and NORX [4], share the same property. The rotational invariance of this
round structure was implicitly used in the “chosen-IV” BLAKE? attacks of Guo et al.[65],
as well as explicitly described in the cryptanalysis of NORXv?2 [21,30].

2.4 CubeHash

CubeHash [14] is an ARX permutation based SHA-3 candidate which, like Salsa20, had a
highly symmetric round function. The underlying permutation works on a state of 32 words
x[0..31] of 32 bits each. It is invariant under the following 15 permutations of words:

(1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14,17,16,19,18,21,20,23,22,25,24,27,26,29,28,31,30) ,
(2,3,0,1,6,7,4,5,10,11,8,9,14,15,12,13,18,19,16,17,22,23,20,21,26,27,24,25,30,31,28,29) ,
(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12,19,18,17,16,23,22,21,20,27,26,25,24,31,30,29,28) ,
(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11,20,21,22,23,16,17,18,19,28,29,30,31,24,25,26,27) ,
(5,4,7,6,1,0,3,2,13,12,15,14,9,8,11,10,21,20,23,22,17,16,19,18,29,28,31,30,25,24,27,26) ,
(6,7,4,5,2,3,0,1,14,15,12,13,10,11,8,9,22,23,20,21,18,19,16,17,30,31,28,29,26,27,24,25) ,
(7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8,23,22,21,20,19,18,17,16,31,30,29,28,27,26,25,24) ,
(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7,24,25,26,27,28,29,30,31,16,17,18,19,20,21,22,23),
9,8,11,10,13,12,15,14,1,0,3,2,5,4,7,6,25,24,27,26,29,28,31,30,17,16,19,18,21,20,23,22) ,
(10,11,8,9,14,15,12,13,2,3,0,1,6,7,4,5,26,27,24,25,30,31,28,29,18,19,16,17,22,23,20,21) ,
(11,10,9,8,15,14,13,12,3,2,1,0,7,6,5,4,27,26,25,24,31,30,29,28,19,18,17,16,23,22,21,20) ,
(12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3,28,29,30,31,24,25,26,27,20,21,22,23,16,17,18,19) ,
(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,29,28,31,30,25,24,27,26,21,20,23,22,17,16,19,18) ,
(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1,30,31,28,29,26,27,24,25,22,23,20,21,18,19,16,17) ,
(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16) .

These invariances, or “symmetric states”, were first identified by Aumasson et al.[3] and later
further classified by Ferguson et al.[55]. One of these invariances will be considered in detail
in Sect. 4.2.3.
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2.5 Bitsliced Designs

Keccak [18], Ascon [49], CBEAM [98], Mixifer [99], Xoodoo [40], and many others are part
of a design principle that intentionally creates rotationally-invariant functions, and later adds
constants as a symmetry-breaking step. As first exhibited by Daemen [39], such bitsliced
designs are advantageous for practical reasons, both in implementation and performance
tradeoffs, protection against side-channel attacks [42], as well as ease of analysis [98].

In the particular case of Keccak, whose state consists of a 5 x 5 matrix of {1, 2, 4, §, 16,
32, 64}-bit words, the round function x o 7 o p o 6 is invariant under the rotation of every
word by the same amount. Comparable invariances occur for the other primitives.

2.6 Gimli

Gimli [16] is a recently proposed permutation operating on a 3 x 4 matrix of 32-bit words.
Its round functions, without the constant additions, lead to invariance under the following
permutations of state columns:

X1 X0 X3 X2 X2 X3 X0 X1 X3 X2 X1 X0
X5 X4 X7 X6 |, | X6 X7 X4 x5 ), | X7 X6 X5 X4
X9 X8 X11 X10 X10 X11 X8 X9 X11 X10 X9 X8

3 Secure Usage of Invariant Random Permutations

We consider the security of constructions reminiscent of the Even-Mansour construction
[53]. The security model is outlined in Sect. 3.1, and Even-Mansour and its security in the
invariant permutation model are stated in Sect. 3.2. The security proof is given in Sect. 3.3.
This Even-Mansour construction and analysis is particularly useful as it appears as building
block in many security proofs. In particular, by considering that the keyed sponge can be
seen as a composition of the Even-Mansour construction, we demonstrate in Sect. 3.4 how
the analysis of Even-Mansour in the invariant permutation model carries over to the keyed
sponge.

We remark that the ideas generalize to other permutation based constructions, includ-
ing multiple-round Even-Mansour [23] and generalizations of the Masked Even-Mansour
construction [62]. See also Sect. 5.1.

3.1 Security Model

A distinguisher D is an algorithm that is given access to an oracle O, written as D, and
outputs a bit b € {0, 1}. Its complexity is measured (solely) by the number of calls to its
oracle. As such, we can consider it to be deterministic (as for any probabilistic distinguisher
there is a deterministic one with at least the same success probability). The security of a
construction C based on a primitive P is measured by the advantage of distinguishing c?
from a random function R with the same interface and functionality as C:

Ap (CP, P. R, P) - ‘Pr (1 < DCP’P) —Pr (1 - DR'P)) , &)
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Fig. 1 The indistinguishability
model of (4) ‘ ‘

Q&

where the randomness is taken over the distributions of C, P, and R. The security distance of
(4) is depicted in Fig. 1. In our work, P is always an invariant permutation from perm[A](n),
unless explicitly stated otherwise.

Note that if A = {id}, we retrieve indistinguishability in the random permutation model.
Any caution that must be paid in the random permutation model must be paid in the invariant
permutation model as well. For example, if a construction C is proven secure in the invariant
permutation model, and it is subsequently instantiated using a concrete permutation, security
may differ from the promised security statement and one must re-assess security of the scheme
in combination with the permutation.

We will use the H-coefficient technique [33,92,93]. Consider any two oracles O or O;
and an information-theoretic deterministic distinguisher D trying to distinguish both. It can
make a finite amount of queries, gathered in a view v. Denote by X (resp. X») the probability
distribution of views in interaction with O (resp. Oz). Denote by V the set of “attainable
views”, i.e., views v such that Pr (X, = v) > 0.

Lemma 1 (H-coefficient technique) Consider a partition V = Vgood U Viad 0f the set of views

into “good” and “bad” views. Let ¢ € [0, 1] be such that g;g‘ =v) > 1—¢forallv € Vgooq.
Then,

Ap(O1; 02) < e+ Pr(Xs € Vo) - ©)
For view v = {(x1, y1), ..., (x4, ¥4)} consisting of ¢ input/output tuples, we denote by

O F v the event that oracle O satisfies that O(x;) = y; foralli = {1, ..., ¢}.

3.2 Even-Mansour

We consider the plain single-key Even-Mansour construction EM : {0, 1}* x {0, 1}" —
{0, 1}, where k < n [53]:

EMP (k, m) = P(m & k0*) & kO* (6)

(here, the number of appended zeros is, obviously, # — «). In the random permutation model,
where P < perm(n), the Even-Mansour construction is known to be indistinguishable

from a random permutation & perm(n) up to 2gp /2, where the distinguisher makes ¢
construction and p primitive queries [2,35,50,53,54,84,89]. We perform an analysis if EM is

instantiated with a random invariant permutation P’ < perm[A](n), for a fixed A.
Theorem 1 Consider any fixed A. Let k < {0, 1}, P/ S perm[A](n), and < perm(n).

Consider any distinguisher D making at most q construction queries and p primitive queries.
We have,
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2|4]
PI)S 2qu
N Yy 2#{k |z ® kO* = A (2 eako*)}.

z={z1, zq}c {o,1}y 2K

Ap (EMkP,P’ o,

reA\{id} z,7’ez

We stress that in the summation, indeed, the case z = 7’ is included.

Unlike intuition, the proof is more complicated than the ideal permutation based one,
and contains various hurdles to be overcome. The proof is given in Sect. 3.3. In Sect. 4, the
second part of the bound of Theorem 1 will be considered for specific invariant permuta-
tions, including the 512-bit ChaCha permutation [13], the {200, 400, 800, 1600}-bit Keccak
permutation [18] with omitted round constants, the 1024-bit permutation of CubeHash [14],
and the 384-bit permutation Gimli [16] with omitted round constants.

3.3 Proof of Theorem 1

Letk < {0, 1}, P’ < perm[A]({0, 1}"), and = <~ perm(n). Consider any fixed determin-
istic distinguisher D that has access to either O = (EMP/, P’) or Oy = (r, P'). Gather its ¢
constructions queries in a view v. = {(m1, c1), ..., (my, cq)} and its p primitive queries in a
view vp = {(x1, y1), ..., (xp, yp)}. After D’s interaction with its oracle but before it outputs
its decision bit b, we reveal the random key k (this simplifies the probability analysis in the
H-coefficient technique later on). The complete view is denoted

v = (v, vp, k).

We assume that D never repeats any query, hence v, and v, do not contain duplicate queries.
We particularly assume that D never repeats any primitive query transformed over any A.
A view v is called bad if it satisfies one of the following conditions:

BAD. <= 3 (m, c) € v, 0r € A\{id} :

m @ k0* = A(m @ k0*) or ¢ ® k0* = A(c ® k0*),
BAD.. <= I distinct (m, c¢), (m’,c’) € ve, A € A:

m @ k0* = A(m" @ k0*) or c ® k0* = A(c’ ® k0*),
BADcp <= I (m,c) € ve, (x,y) €Evp, AEA:

m @ k0" = A(x) or c & k0* = A(y).

In the real world Oy, any construction query (m, ¢) € v, corresponds to a primitive evalua-
tion (m @ kO*, ¢ @ k0*) of P’. Events BAD.. and BAD,, resemble much of what is typically
considered in simple Even-Mansour proofs: they capture the event of collisions among con-
struction queries (the former) or between a construction query and a primitive query (the
latter). In current proof, however, they cover the event of a collision even if transformed over
any invariance ). € A.' New compared to classical Even-Mansour proofs is BAD,. This event
considers the case that a single query collides with itself non-trivially under a transformation
of a A € A\{id}. Note that, by attainability of transcripts, we do not have to take into account
collisions among primitive queries, not even under a transformation by any A € A.

! In a strict sense, BADc happens with probability O if 1 = id, as the distinguisher never repeats queries. We
have left it in for completeness.
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In below two lemmas, we will derive an upper bound on Pr (X, € Vy,q) (in Lemma 2),
and show that for any good view, Pr (X| = v) > Pr (X2 = v) (in Lemma 3). This completes
the proof using Lemma 1 on the H-coefficient technique.

Lemma2 We have
2| Algp
2/(

#{k |z ® k0* = A (' @ k0¥)}
+ max Z Z o .
AeA\{ld} 2,7 €z

Pr (X2 € Vpad) <

Proof The probability Pr (X, € Vyaq) equals the probability that BAD := BAD, v BAD. Vv
BAD,,, holds in the ideal world. By basic probability theory,

Pr (X> € Vbaa) = Pr (BAD) < Pr (BAD,) + Pr (BAD..) + Pr (BAD,) , @)

where we recall that in the ideal world, & & {0, 1}*<.

BAD,. Consider any query (m, ¢) € v. and any A € A\{id}. As k 2 {0, 1}*, the bad event
is set with probability at most

#{k|m @ k0* = A(m & k0*)} + #{k | c & kO* = A(c & k0*)}
2k '
Taking the sum over all queries and all choices of A, the bad event is set with probability at
most

#{k |m @ k0* = A(m & k0*)}

Pr(BAD) < Y > T

(m,c)eve re A\{id}

klc@kO* —A(c@ko*)}
+ X >

(m,c)ev. re A\{id}

2#{k |z ® kO* = A(z ® k0*)}

Sm Yy .

2=zt S0V Ty Ter

Note that the second bound is pretty tight. For each of the construction queries, the distin-
guisher either chooses m and receives randomly generated c or it chooses ¢ and receives
randomly generated m. For bounding the bad event, we simply give it the power to choose
both m and c for every query. As the distinguisher achieves highest advantage if it chooses
all m’s at its own discretion, the sum over the #{k |m @ k0* = A(m @ kO*) } ’s will dominate
and the sum over the #{k | ¢ @ k0* = A(c @ k0*)}’s will disappear. Our bound is at most a
factor 2 larger.

BAD,.. Consider any distinct queries (m, ¢), (m’,¢’) € v and any A € A. If A = id the

event happens with probability 0; we consider A € A\{id}. As k & {0, 1}, the bad event is
set with probability at most
#{k |m @ k0* = A(m’ @ k0*)} + #{k | c ® kO* = A(c’ & k0O*)}
2K ’

Taking the sum over all distinct queries and all choices of A, the bad event is set with
probability at most
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#{k |m @ k0* = A(m’ ® k0*)}

Pr(BADc) < ) > T

(m,c)#(m’ ,c’)ev, e A\{id}

3 3 #{k|c @ k0* = A(c' ® k0*)}

2K

+
(m,c)#(m’ ,c")ev. reA\{id}

Yy 2#{k |z @ kO* = A(z/ @kO*)}.

<
= b

z={z1,...

)»EA\ id} z£7' ez
BAD,,,. Consider any queries (i, ¢) € v, (x,y) € vp, and any A € A. The bad event is set
if
0*e{mdAr(x), c®A(Y)]}. 8)
Ask & {0, 1}, Eq. (8) holds with probability at most 2/2. Taking the sum over all queries
and all choices of A, the bad event is set with probability at most

2|Algp
Pr (BAD,p) < TanE

Conclusion. Adding the separate bounds in accordance with (7) gives

204
Pr (BAD) < 2 Klq”

Yy 2#{k |z ® kO* = 1(z' @ k0*)}

+ "

z={z1,...,2 c{o, 1}

)

reA\lid} z,z'ez
where in the summation the values z, 7/ may be identical. O
Lemma 3 For any good view v € Vgood, Pr (X1 =v) > Pr (X2 = v).
Proof In the real world Oy, every tuple in (v, vp) defines exactly one input-output tuple of
pr perm[A](n). Therefore, we derive
Pr(X; = v) =Pr <P/ < perm[Al(n) ; EM v AP v | k)

-Pr(k’ S0, 1) - k’:k)

1 _

= Pr (P & perm[Al(n) ; P F B U vp) ,

where Ve = {(m ® k0*, ¢ @ k0*) | (m, ¢) € v}, and where Ve U v, contains a total amount
of ¢ + p tuples among which there are no input or output collisions even when the tuples are
transformed over any A € A.
In the ideal world O;, we have
Pr (X, =v) =Pr (71 & perm(n) ; vc)
Pr (P’ & perm[Al(n) : P+ up)
Pr (K< (0, 1) K =k)

1
—— Pr (P/ & perm[A](n) : P+ vp) .
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where v}, represents a list of p tuples for which there are no input or outputs collisions even
when transformed over any A € A.
We obtain that

Prix,—v) Pr (P < permlAl(n) ; P’ Up)

— - $
PrXa=v) b Pr (P < permAlmn) : P/ v,)

Pr (P’ < perm[Al(n) ; P’ i U, | P/ F vp)

1

o,

Pr(P < perm(n) ; PF i Uy | Pmp)

e I
@,

o
_ (2”—p)q > 1
= =b

@,

where for the approximation we use that the list of tuples in Ve U vy do not collide even when
transformed over any A € A. O

3.4 Keyed Sponge

The sponge hash function construction [17] consists of a sequential application of a per-
mutation on a state, where the permutation evaluations are interleaved with absorption of
data into the outer part of the state or extraction of data from that part of the state. Security
is determined by the capacity, the size of the state that is not involved in the absorption
or extraction. The construction has led to various MAC designs based on a permutation
[2,19,31,41,59,85,87,89,90], that also consist of a sequential application of a permutation,
but with the initial state masked using a key. For the sake of exemplification, we will consider
the full-state keyed sponge of Mennink et al.[85]. We remark that follow-up work considered
a more general scheme with a more accurate bound [41], but the scheme of the former is
easier to describe concisely. We will drop the adjective “full-state” for simplicity.

The keyed sponge (KS) is a message authentication code. On input of a message M €
{0, 1}* and a parameter £ € N, it outputs a tag T € {0, 1}*. For identical messages but
different parameters ¢, £/, the shortest response is a prefix of the longer one. Internally, it
uses a permutation on an n-bit state split in an inner part of ¢ bits and an outer part of r
bits, in such a way that ¢ + r = n. We furthermore assume that k = ¢ (but see the proof of
Theorem 2). The function is depicted in Fig. 2.

Security of the keyed sponge is measured by its “PRF security”, a distance to a variable
output length random oracle R [10], i.e., (4) with R as random function:

4o (KSf.P: R.P) .
Mennink et al.[85] proved the following security bound for KS.

Theorem 2 (Mennink et al. /[85]) Let k & {0, 1}, P & perm(n), and R be a random oracle
as described above. For any distinguisher D making at most o construction query blocks and
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Fig.2 The keyed sponge (KS) of [85]

p primitive queries,

202 n 202 20p

2n 2¢ * 2K ©)

40 (KS{. P R P) <
Proof (sketch) Consider any fixed deterministic distinguisher D that makes a total amount

of o construction query blocks and p primitive queries. Consider EM,F: of (6). By xoring the
key k twice in-between each two consecutive evaluations of P,2 we can observe that

p EMP
KS, =KS, ©,
where the subscripts denote the key input. Therefore,
P
4p (KSf.P: R.P) = Ap (ngMk, P: R P)
< Ao (KSF.P: R.P) + Ap (EM].P: 7.P)

= Ap (KSF 5 R) + 4o (EM[.P; 7.P) | (10)

5 . . . C
where w <~ perm(n) is a random permutation, and D’ is some distinguisher that makes at
most o construction queries and p primitive queries. For the first term of (10), Mennink et
al. proved that (simplified)

202 207
Ao (KS : R) = S + 5 (n
The second term of (10) is at most 20 p/2* (see the introductory text of Sect. 3.2).3 O

. L . , 8
We demonstrate how a security bound for KS based on an invariant permutation P’ <«
perm[A](n) is easily derived.

2 If i < ¢, a better bound can be derived if we would xor a c-bit dummy value / instead, cf. [41].

3 A smarter bound can be derived here, noting that in the KS construction the distinguisher has no full freedom
over the entire input to EME [41].
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Theorem 3 Consider any fixed A. Let k . {0, 1)<, P/ . perm[ Al(n), and R be a random
oracle as described above. For any distinguisher D making at most o construction query
blocks and p primitive queries,

20% 207
= o + e + BOUNDyy,, 1(0, P) , (12)

where BOUNDyy,,, 1 (0, p) is the bound of Theorem 1 for distinguisher’s parameters o and p.

D(KS?,P’;R,P’)

Proof Consider any fixed deterministic distinguisher D that makes a total amount of ¢ con-
struction query blocks and p primitive queries. Consider EM,': of (6). By xoring the key k
twice in-between each two consecutive evaluations of P’, we can observe that

ksP = kst
where the subscripts denote the key input. Therefore,
Ap (KSf.Ps RP) = 4p (KS(E)M’F:’, P': R, P’>
< Ap (KST.P': R.P) + Ap (EM,F:', P o P')
= Ap (KST : R) + Ap (EM,E',P'; 7, P') , (13)
where 7 < perm(n) is a random permutation, and D’ is some distinguisher that makes at

most ¢ construction queries and p primitive queries. The first term is bounded as (11) as
before, and for the second term of (13) we rely on Theorem 1. O

4 Understanding Invariance Loss

The bound of Theorem 1 precisely demonstrates what aspect of the invariant permutation
must be exploited in order to break the Even-Mansour construction: further analysis boils

down to upper bounding the sizes of the sets #{k | ...}. Focus on Even-Mansour with key
size k¥ = n, and consider the task of upper bounding
max Yo #lklzok=1( ®k)) (14)

z={z1.....24}<{0,1}" -
Z,7' €z

for any invariance A # id. In the specific case that A satisfies L(x @ y) = A(x) @ A(y), which
always holds in our work as we consider linear invariances, we will resort to a rewritten
version of (14) that will be easier to work with:

/
e Z #lklk®rk) =z ()} . (15)
z,7'€z

Bounding this quantity seems to relate to upper bounding the set of weak keys k, but the
goal is not quite the same. Rather, the current issue boils down to quantifying the image
of k = k @ A(k) and the ability of an adversary in selecting z = {z1,...,24} S0 as to
maximize the number of “hits”: choices z, 7 € z such that z @ A(z’) has many preimages
over (id ® 1)~ L.

We will consider the problem of bounding (14) for the case of additive invariances in
Sect. 4.1, and derive a practical attack on Even-Mansour based on Salsa20. Then, in Sect. 4.2,
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we will consider linear invariances (that satisfy A(x @ y) = A(x) @ A(y)), and restrict our
focus to bounding (15). We will investigate how to maximize this set, and subsequently
show how the analysis applies to the 512-bit ChaCha permutation [13] (distinguishing attack
in 2128 construction queries), the n-bit Keccak permutation without round constants [18]
(distinguishing attack in 21/4 construction queries), CubeHash [14] (distinguishing attack in
223 construction queries), and Gimli without round constants [16] (distinguishing attack in
2% construction queries).

4.1 Additive Invariances

As mentioned in Sect. 2.3, the Salsa20 permutation P’ is invariant under addition of the
constant A = 23! to each of the 16 words. Call this invariance 2249:
A4 s k@ (Ao, (16)
It is easy to verify that
2¢ for 7/ = z @ {A}O,
#lklz@k =27 k) =
{ | ( )} 0 otherwise .

Based on this observation, we can describe a simple distinguishing attack on Even-Mansour-
Salsa20 that succeeds in constant time.

1. Fix any m, m' that satisfy m @ m’ = {A}'°. Query m and m’ to the construction oracle to
obtain the corresponding ¢ and ¢’;
4 .
2. For the real world EMP |, we necessarily have

cOk=Pmak) =P or¥m @k
=24 P’ k) =2 k)= Bk d{AO.
3. If, indeed, ¢ ® ¢’ = {A}'®, D is with high probability interacting with EM,':/; otherwise, it
is interacting with 7.

The attentive reader will recognize this as an elementary differential distinguisher.

Concretely, the attack means the following for the second term of Theorem 1. Assume that
A = {x29d} Above attack shows that there exists an adversary that makes g = 2 construction
queries, and that can in this way select 2 values z = {z1, z2} such that

2#{k |z @ kO* = 24 (' @ k0*)} .

2 >

z,7'€ez

In other words, the bound of Theorem 1 becomes void, and as ¢ = 2, this can be considered
a practical attack.

4.2 Linear Invariances

For linear A, quantifying the image of k +— k @ A(k) is easy: if the rank of id & A is r, its
image has size 2. Consequently, the lower the rank of id & A, the higher (15) can get. On
the other hand, if A is a linear orthomorphism* there is no image size reduction.

4 An orthomorphism is a bijection ¢ such that ¢ — id is also a bijection.
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The second challenge is to choose z in such a way as to hit as many elements of the image
of id @ A as possible. One way this can be accomplished is by random sampling z € z from
linear combinations of a basis of id @ A. Query both z and A~ ! (z) if they are distinct. Given
g (not necessarily distinct) queries we have up to (g) values, and the expected number of
queries until every element of id @ A is covered is a variant of the coupon collector’s problem
[57], and is given by («/8 227 - Hor +1 4 1) /2, where H,, is the nth harmonic number. We
can approximate it by \/8 - (log(2") + 0.5772156649 . ..) - 2" or, more loosely, v/8r - 2"/2.

In some cases a basis of id@ A can be generated quite easily. For example, in the invariances
covered below, it suffices to find the smallest set z C F} such that {z @z’ : z,z" € z} =T}
This is equivalent to a well-studied problem in coding theory: finding a minimal length code
[n, n —r] of co-dimension r and covering radius 2 [36]. Explicit constructions of these codes
are given in, e.g., [26,47,58]. Such sets are also known, in Galois geometry, as “1-saturating
sets” [48,61], “saturated sets” [47,101], “dense sets” [24], or “spanning sets” [26]. Clark and
Pedersen [34] give a particularly simple solution, described in Algorithm 1, for » > 4, of
length 2 - 27/2 — 2 forevenr, and 3 - 217721 — 2 for odd r.

Algorithm 1 Clark-Pedersen saturating set
Require: F,n > 4
Ensure: |S| = 2"/2+1 _ 2

S < {0} > Vectors in IF; are identified by integers
for x < 1t02"/2 — 1 do

S« SU{2 x4+ (hw(x) + 1 mod 2)} > Ensure odd parity
for y « 1to2n/2=1+nmod2 _ 1 g4

w < hw(y) > hw(-) denotes Hamming weight

if w = 1 then

S« SU{y.2n/2tl
S« SU{y-2v/2l 4y
else
S« Su{y- on/2+1 +2w—l}
S« SUfy- 22 pow=l gy
return S

The above reasoning immediately translates to a distinguisher for the single-key Even-
Mansour block cipher when used with a permutation carrying a linear invariance A:

1. Query the oracle with z such that as much—or all—possible values of k & A(k) are
covered by z @ A(z'), with z, z’ € z. This can be accomplished by random sampling or
by an appropriate covering code as described above;

2. If there are two queries such that k @ A(k) = m; ® A(m ), then we also have

ci ®k=Pm; ®k)
=Po A(m; @ k)
=AroP'(mj®k)
=c; Dk,
whence m; ® A(m ;) =c¢; ® A(cj) andm; ®c; = A(m; @ cj);
3. Such a pair will be found in approximately 2'/2 queries, where r is the rank of id @ A. If

r is significantly smaller than 7, this leads to a distinguisher that also yields the value of
(id @ 1) (k).
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In terms of Theorem 1, above attack rather aims at recovering (id @ A)(k), which can
possibly be done faster than recovering k as the id @ A has rank r < k. Nevertheless, every
image of id @ A has 2¢~" preimages, and after ¢ ~ 2'/2 queries, above attack maximizes

Y Hklk@ak) =z @)}
z,7/€z
to approximately 2. For the second term of Theorem 1, this implies that
3 2#{k |z ® kO* = A(z' ® kO*)} '
2¢ -

z,7'€ez

As in Sect. 4.1, the bound of Theorem 1 becomes void. In this case, however, more con-
struction queries are needed, namely ¢ ~ 2"/2. It depends on the construction and on the
invariance whether r is low enough for this attack to be considered practical.

4.2.1 ChaCha

The invariance A : {0, 1}°'2 — {0, 1}°!2 present in ChaCha [13] for which id @ A has the
lowest rank is the rotation of each 128-bit column by 2 positions (see also Sect. 2.3.1). The
rank of id @ A is thus 256, and the image of k & A (k) can be given by two copies of F%Sé side
by side. Using Algorithm 1, the attack succeeds in at most 2'%° — 2 queries.

4.2.2 Keccak

We may consider the n-bit Keccak permutation [18], with n € {200, 400, 800, 1600}, mod-
ified to omit the constant addition . In this case, we have 25 parallel operations that swap
one half of each word with the other half. The rank of this operation is n/2 and, as above,
the attack would succeed in approximately 2"/4 queries.

4.2.3 CubeHash

The 1024-bit state of CubeHash [14] is split into 32 words of 32 bits. The state can then
be decomposed into 32 independent 32-bit vectors, corresponding to each bit of each word,
and an invariance reminiscent of those in Sect. 2.4 is applied. In this case, we can consider
the invariance corresponding to “swap each adjacent word”, which has rank 512. The attack
succeeds in approximately 22°° queries.

4.2.4 Gimli

For Gimli [16], assuming omission of the round constants, one can decompose its 384-bit
state into 96 independent 4-bit vectors, corresponding to each bit of each column, after which
a permutation matrix 7 is applied. From Sect. 2.6, we can conclude that this permutation &
is either of

0100 0010 0001
1000 0001 0010
0001)’{1000}°|0100
0010 0100 1000

For each of these, the rank of id @ 7 equals 2, meaning that the rank of id @ A is 192. The
attack succeeds in approximately 2°¢ queries.

amn
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5 Conclusion
5.1 Salvaging Use of Even-Mansour

One way to mitigate the attacks on Even-Mansour of Sect. 4 is to consider a tweakable variant
of Even-Mansour, such as a generalization of the Masked Even-Mansour construction [62].
This construction uses a tweak to mask the key before it is added to the message. In detail,
it does not simply add k0* to the message (as in (6)), but rather it adds

D(u,s),

where s is a tweak and u is a subkey derived from the key using the permutation P. This
masking function can be assumed to eliminate any structure in

D, s)Drod(u,s).

We elaborate on this generalization of the Masked Even-Mansour construction, and prove
security in the invariant permutation model, in Appendix A.1. In Appendix A.2, we subse-
quently explain how the analysis extends to security of the Offset Public Permutation (OPP)
authenticated encryption scheme by Granger et al.[62]. For these constructions, it particularly
becomes clear that exploiting invariances becomes significantly harder, if not impossible. On
the downside, the security analysis becomes much more technically involved. A less (concep-
tually) costly way of salvaging Even-Mansour is to add the key using, say, Fo» multiplication
instead of xor, after which the typical invariance is no longer linear.

Another way to mitigate the attacks on Even-Mansour is to consider 2-round Even-
Mansour [23,32]:

2EMP (k, m) = P(P(m @ k0*) @ 1 (k0*)) @ kO*, (18)

where ¢ is an orthomorphism (i.e., both ¢ and ¢ & id are a permutation). An attacker that has
oracle access to 2EMP for an invariant permutation P* € perm[A](n) is unable to observe
the input-output pattern of P’ and cannot mount attacks comparable to those of Sect. 4.

The attack could be slowed down as well by preventing the adversary to have full control
over the input of the construction. For example, in the keyed sponge of Sect. 3.4, the data is
absorbed over the entire state, but the original keyed sponge [2,19] maintains an inner part
on which no data is absorbed. The adversary has to run the algorithm and wait for the inner
part to fall into a symmetric state.

5.2 Multi-Key Security

In the random permutation model, the Even-Mansour construction is known to admit only a
small loss: it is proven to be secure up to (g2 +2¢p) /2* [88]. The loss is caused by the possible
presence of cross-collisions between construction queries for different keys. A similar loss
occurs in analyses in the random invariant permutation model: the adversary succeeds if two
evaluations for different keys, say (m, ¢) for key k and (m’, ¢) for key k', collide under a
transformation of any invariance A:

m @ k0* = A(m" @ k'0*) or c ® k0" = A(c’ ® k'0%) .

The extra loss is marginal as for each query m (or, in inverse direction, c) that the distinguisher
makes, it has to tie itself to a specific key instance. As noted by Lee et al.[81], one may consider
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this extra choice as a tweak, transforming the scheme into a specific form of tweaked Even-
Mansour [35].

5.3 Extension to Different Primitives and Invariances

The treatment of Sect. 2 can be generalized to cover invariances that only apply to a subset
S C {0, 1}" of potential inputs. Or perhaps this subset is not known, but only the probability
of randomly hitting it. Midori [6] is an interesting example of that kind. The high number
of fixed points (3, 7, 8, 9) of its S-box, combined with a simple binary diffusion matrix and
poor choice of key schedule constants, results in a weak set of 23% keys {0, 1}10*2 for which
the cipher is entirely linear—and invariant—for inputs of the form {8, 9}16 [64].

Furthermore, Sect. 2 generalizes to arbitrary (not necessarily bijective) functions
{0, 1}" — {0, 1}" verbatim. The generalization is particularly meaningful for block ciphers
E: {0, 1} x {0, 1}* — {0, 1}, recalling the invariance in AES of (2) that has been exploited
in cryptanalytic attacks of AES based ciphers [69,71,72,97], as explained in Sect. 1.1.

For example, one may consider NOEKEON without round constants [43], for which

A o NOEKEON(k, m) = NOEKEON(A(k), A(m)) . (19)

We stress that this condition does not apply to NOEKEON due to the presence of round
constants.

Related to invariance subspace attacks are weak key attacks on block ciphers. An example
of such a similarity is the complementation property of DES [46]:

Ek,x) DA=Ek® A, xDA),
forA=11...11.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Extension to Masked Even-Mansour

We will demonstrate how the results of Sect. 3 extend to more involved modes. We will do
so by considering the Masked Even-Mansour construction in Appendix A.1, and the Offset
Public Permutation authenticated encryption scheme in Appendix A.2.

A.1 Generalized Masked Even-Mansour

We will consider an abstraction, formally a generalization, of the Masked Even-Mansour
construction of Granger et al.[62]. The tweak space is now composed of {0, 1}* x 7 for
some space 7. Formally, we consider the tweakable block cipher genMEM : {0, 1} x
({0, 1}* x 7) x {0, 1}* — {0, 1}" based on a permutation P : {0, 1} — {0, 1}", where
K+71<n:
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genMEMP (k, (1, 5), m) = P(m & ® (P(kt0*), 5)) ® ®(P(kt0*), s), (20)

for some masking function @ : {0, 1}* x 7 — {0, 1}"". We assume that @ (u, s) = u for any
u € {0, 1}" if and only if s = 0.

The original construction MEM of Granger et al.[62] can be retained by fixing v € N,
fixing v LFSRS ¢, ..., ¢y—1, setting 7 = N”, and defining

®(u,8) =@, o0 (), 2

where s = (s, ..., Sy—1) € 7. In this construction, indeed, @ (u, s) = u fors = (0, ..., 0),
and the space 7 is further restricted in such a way that this is the only element (see [62]). The
choice of MEM as our starting primitive is arbitrary, arguably better choices for the sake of
generality would have been Tweakable Even-Mansour (TEM) [35] or XPX [84]. However,
TEM is general in the sense that it takes an arbitrary mask based on a universal hash function
independent of the permutation P, and XPX considers masks of the form §1k @ §,P(k) which
suits generality but makes the proof more technical. Application-wise, as we will see in
Appendix A.2, starting from MEM is more convenient.

The security of genMEM is highly dependent on restrictions put on the masking function.
This was also the case for the original MEM, which for example becomes insecure if an
adversary manages to find two distinct s, s” such that

Sv—1 Sv—1 5
9,10 oy —‘/’v 1977799 -
Our abstraction of the masking function allows us to discard these peculiarities. Inspired by
[62], we define e-properness of the masking function @ as follows:

Definition 1 The masking function @ : {0, 1} x 7 — {0, 1}" is called e-proper if the family
of functions

{@@,): T — {0, 1}" [u e {0, 1}"} (22)
is e-universal and e-xor-universal, respectively:

Pr(®u,s)=y) <27¢,
Sngryli?OIHr( (u,s)=y) <

max Pr((D(u 5) D P(u, s)—y)<2€
s#s'eT, yel{0,1}"

where the randomness is taken over u.

We are ready to prove security of genMEM in the random invariant permutation model.
Theorem 4 Consider any fixed A. Let k & {0, 1}, P & perm[A](n), and 7 &
tperm({0, 1}* x T, n). Let @ be an e-proper masking function. Consider any distinguisher
D making at most q construction queries and p primitive queries, that never queries its con-
struction oracle in inverse direction for any tweak of the form (t,0) € {0, 1}* x 7. Among

the g construction queries, assume that there are at most q’ different tweaks t € {0, 1}7, and
each of these occurs at most £ times. We have,

Ap (genMEMP', P 7, P’)

q 3 3|Alglqg+p) | 1Alp |, #Hulu = r(u)}
<A . Hulu =A@}
=| '(2)min{2é,2n}+ min(2¢, 2] T 2 T4 2 "

reA\{id}
#{k | k0* & 0°20* = A(kO* & 0°Z'0%)}

* z=(21,..s z /)C {0,1}7 Z Z K

reA\(id} z,7/ez
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2#8lu|lz® P(u,s) =Ar(zZ & d(u, s’
L max Z { | (u,s) ( ( ))}
z={z1,...,2¢}<{0,1}" n
s={51 ..... sppcT  AeA\lid) g, z ez
S, S €s
#HulOu,s)dz= }»(u)}
+4q - max
q i DY >

oo = AU EEI R

The proofis very similar to those in [62,84], and included in Appendix B. Again, for A = {id}
the theorem gives security of genMEMP in the random permutation model, for P < perm (n).

In this case, it matches the security bound derived by Granger et al.[62] on MEMP: M +
4=, where the authors used that n > ¢ and simplified their bound accordingly.

The analysis is more involved than that of Even-Mansour in Theorem 1 due to the fact
that (i) the masking consists of evaluations of P and (ii) the distinguisher can influence the
masking by the use of tweaks. These differences result in additional bad events in the analysis.
The last two terms of the bound have a form of ¢’ times a maximum taken over £ values. If the
number of choices of 7 is evenly distributed, ¢’ - £ ~ g and the bound is pretty tight. If there
are outliers, for example, g — ¢ tweaks occur 1 time and 1 tweak occurs £ times, a slightly
more accurate bound can be derived straightforwardly from the proof. In typical applications
of genMEM, ¢ represents a nonce, and each nonce is used an approximately equal amount of
times.

A.2 Offset Public Permutation

Offset Public Permutation (OPP) is an authenticated encryption scheme by Granger et al.[62].
It is designed on top of the MEM tweakable block cipher, with the specific masking function
of (21) for cleverly chosen LFSRs. It takes nonces of size n — « bits, and outputs tags of
size t < n. The encryption function & of OPP gets as input a nonce N, associated data A,
and a message M, and outputs a ciphertext C and tag T. The function & for integral data is
depicted in Fig. 3; we refer to [62] for the full version. Associated with & is a decryption
function Dy: it should satisfy the property that for any input tuple (N, A, M) to &,

Dr(N, A, &(N, A, M)) =M

If Dy does not receive a valid input, it outputs a dedicated L symbol.

Security of the authenticated encryption scheme is slightly more advanced. The distin-
guisher has access to both & and Dy, with the restriction that it never relays the response of
an encryption query to the decryption oracle. The encryption oracle should never be queried

OPPAbs, header absorb OPPEnc, message checksum absorb OPPEnc, message encryption

Hy .. Hy_y @;’51 M; M,y e My
D D D D v
50,0,0 h—1,0,0 cm—1,2,1 0,0,1 m—1,0,1
oy (P P BN P L LI B R GLID)
\—'9 \—’9 \—'9 \—'9 \—‘9
0 HLE} 7777777777777 D9 s —»@—:4 T Co Crna

Fig. 3 Offset Public Permutation (OPP) of [62] for integral data. Here, §°y'"? is short for
@ (P(kNO*), (50, s1, s2)) with the function @ of (21)
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twice on the same nonce (there is no such restriction for couples of queries involving a
decryption query). Security is measured by a distance to a random oracle R that for each
input M responds with a random string of size | M| + ¢, and a function that outputs a bot sign
L for each decryption query:

4o (€0.Df.P5 RL.P),
where for simplicity we now assume the distinguisher can make one forgery attempt. Granger
et al.[62] proved the following security bound for OPP based on a random permutation
I perm(n):

2" 45¢7 43

4 q qp 4 P ’
2n — 1 2¢ 2K

where ¢ is the number of construction query blocks, and with € = n (the masking of (21) is

optimal). The proof idea is related to that of Theorem 2 but more advanced as a tweakable
block cipher is involved. We demonstrate how a security bound for OPP based on an invariant

permutation P’ & perm[A](n) is derived.

Theorem 5 Consider any fixed A. Let k & {0, 1}, P/ & perm[A](n), and R be a random
oracle as described above. Consider any distinguisher D making at most q' construction
queries, each of length at most € blocks and in total at most q blocks, and p primitive
queries. We have,

n—t

40 (6f . Df P RLP) < + BOUNDy;,, 4(q. 4, €. p) . 23)

2n —1
where BOUNDyy,,,, 4(q. q', £, p) is the bound of Theorem 4 for distinguisher’s parameters
(g4, ¢, p), and with € = n.

Proof Consider any fixed deterministic distinguisher D that makes a total of ¢ construction
query blocks and p primitive queries. Consider genMEM,f' of (20) with the masking function
@ of (21) and for v = 3, three LFSRs ¢, ¢1 = ¢o @ id, and ¢ = ga(% ® o @ id, and
tweak space 7 = {0, ..., £ — 1} x {0, ..., 3} x {0, 1} (where £ denotes the maximum query
length). The tweak (0, 0, 0) is called in forward direction only, and we will be able to apply
Theorem 4 later on.

We can observe that

’ P’
opp? = ecal™ M

where ©OCB is a tweakable block cipher based authenticated encryption scheme of Krovetz
and Rogaway [77] (see [62] for details). Denote, for brevity, the encryption and decryption
functions of ©CB by ©€ and ©D. We have:

/ / MEM?’ MEM?’
4o (& 7D157P/§R,J—,P/)=AD(eggen ¢, @pIenMEM:

P R, L, P/)
< Ap (egg, ODI . P': R L, P') + Ap (genMEM,’j, P 7, P')
< Ap (@gg, oDi : R, J.) + Ap (genMEM,’j’, P 7, P') , (24)

~ $ . . .
where 7 < tperm({0, 1}* x 7, n) is a random tweakable permutation, and D’ is some
distinguisher that makes at most g construction query blocks, for ¢’ distinct tweaks ¢ and
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each tweak occurring at most £ times, and p primitive queries. For the first term of (24),
Krovetz and Rogaway [77] proved:

znft
o —1°

For the second term of (24) we rely on Theorem 4. ]

Ap (O], ODf 5 R, 1) =

B Proof of Theorem 4

The proof follows [84] almost verbatim, but extends it in the presence of the invariances A.

Letk < {0, 1}¢, P/ & perm[A]({0, 1}*), and 7 < tperm({0, 1}* x 7, n). Consider
any fixed deterministic distinguisher D that has access to either O = (genMEMP/ ,PYorO; =
(77, P"). Gatherits ¢ constructions queries ina view ve = {(t1, s1, m1, 1), - . ., (tg, 84, mg, cq)}
and its p primitive queries in a view v, = {(x1, y1), ..., (xp, ¥p)}. Let ¢’ be the number
of unique values #; in v¢, and denote these unique values by {r{, ..., t(; ,}. We recall that any
construction query of the form (¢, 0, m, ¢) must have been made in forward direction.

After D’s interaction with its oracle but before it outputs its decision bit b, we reveal the
random key k and a tuple vy, = {(wy, uy1), ..., (wy, ug)}. In the real world, this tuple is
generated as w; = kti/ 0* and u; = P(w;). In the ideal world the w;’s are unchanged but the

values uy, ..., uy & {0, 1}"* are uniformly randomly drawn.
The complete view is denoted

v = (v, Vp, Vm, k).

We assume that D never repeats any query, hence v, and v, do not contain duplicate queries.
We particularly assume that D never repeats any primitive query transformed over any A. For
vm, two tuples never have colliding inputs (by definition of the values 1) but they may have
colliding outputs. Also, v, satisfies the property that for any two tuples with (#;, ;) = (¢, si7),
we have m; # m; and ¢; # cjr.
For any t € {1, ..., 14}, write vy () = u as shortcut notation for the unique u such that
(kt0*, u) € vy. A view v is called bad if it satisfies one of the following conditions:
BAD, <= 3 (t,s,m,c) € v, A € A\{id} :
m® ®(vm(r),s) = )\(m D @ (vm (1), S)) or
c® D), 5) = 1(c® P(m(0),5)),
BAD.. <= 3 distinct (¢, s,m, c), (t', s, m',c') ev., A€ A:
me®(n(t),s) =r(m ®P(n),s")) or
cB®DP(m(1),5) =A(d ® D), s)),
BADcy, <— 3 (t,s,m,c) € v¢, (W,u) € vy, L€ A :
me®n(t),s) =r(w)orc®®wn(),s) =Ar(u),
BAD;p <= 3 (t,5,m,c) €ve, (x,y) €Evp, AEA:
m®®(n(t),s) =r(x) orc®@m(r),s) =Ar(y),
BADy <= 3 (w,u) € vy, A € A\{id} :
w = A(w) oru = A(u) s
BADm <= 3 distinct (w, u), (W', ') € vm, A€ A :
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w:k(w’) oru:k(u/),
BADpp <= I (w,u) € vy, (x,y) €vp, A€ A
w:k(x) oru:A(y).

The bad events look technically involved, but in fact are not. Restricted to the case that A = id,
the events capture that v does not include any two evaluations of P with identical input or
identical output. Stretching the analysis to arbitrary A, we want that there are no collisions
transformed over A. This explains all bad events, except for the presence of BAD, and BADy,:
these are included as for A # id, a query may non-trivially collide with itself.

In below two lemmas, we will derive an upper bound on Pr (X2 € Vpaq) (Lemma 4), and
show that for any good view, Pr (X; = v) > Pr (X; = v) (Lemma 5). This completes the
proof using Lemma 1 on the H-coefficient technique.

Lemma4 We have

q 3 3|Alg(g +p) | 1Alp
Pr(XZEV"ad)S|A|<2)mm{26,2n} min{2€, 20} | 2K
, #u |1 = A(w))

D e

+4q
reA\(id)

#{k | kO* @ 0¢20* = A(kO* @ 0XZ/0%)}
+ {0 1}r Z Z 2/(

ST reAN(id) 2.7 ez

e - 5 Z Hulz@ P, s) =17 & P, ")}
e=(a1,2) <O, 4 2
s={s1.spycT  A€AMid) z.2ez
s,s’es
#u | Pu,s) ®z=ru)}
+q - max .
T 0.1y 2 2 2

s={s1,...s0)CT\{0) *EANIA} ZET

Proof The probability Pr (X, € Vyaq) equals the probability that BAD := BAD, v BAD Vv
BADciy V BADp v BADy, vV BADiym VvV BADyy)p holds in the ideal world. By basic probability
theory,

Pr (X, € Vyaq) =Pr (BAD)
<Pr (BAD,) + Pr (BAD..) + Pr (BADc) + Pr (BAD.p)
+ Pr (BADy,) + Pr (BADpy) + Pr (BADpyp) | (25)

where we recall that in the ideal world, k& . {0, 1} and uy, ..., uy & {0, 1}". In addition,
for any construction query of the form (¢, 0, m, c), ¢ is randomly drawn from a set of size at
least 2" — ¢ elements.

BAD.. Consider any query (¢, s, m, c) € v. and any A € A\{id}. As vy, (¥) = u & {0, 1}*is
arandomly generated n-bit value, the bad event is set with probability at most

#Hulmd P, s) =r(m® P, s))} +#klcdPu,s) =r(cdP(u,s)}
on '

Taking the sum over all queries and all choices of A, the bad event is set with probability at
most
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PrBAD) < Y. Y. #klc®®u,s) =1(c®Pu,s)}

on
(t,s,m,c)ev. re A\{id}

#hklc® P, s) =r(c®Pu,s)))
+ > X o

(t,s,m,c)eve re A\{id}

/ #Hulz@ d,s) = Az ® P, s))}
<q- DI

271

75:{51 ..... }CT )»EA\{Id} ZEZ

Here, we made a similar simplification as in the proof of Lemma 2.
BAD,.. Consider any distinct queries (¢, s, m, ¢), (t', s, m’, ¢’) € v. and any A € A.

— If t # ', then vy, (r) and vy, (¢) are two independent randomly generated n-bit values
and we argue based on the former. The bad event is set if

D (v (1), 5) € m dA(m' ® D (n(1),5)). c D A(c' ® P(vm(1'), sN)} .

As @ is e-proper, it is e-universal (Definition 1), and the bad event is set with probability
2/2¢;

— If r = ¢, then vy (f) = vy (¢') is a single randomly generated n-bit value. In this case,
either s # s’ or (m # m’ and ¢ # ¢’).

— If A = id, the bad event is set if
D (v (1), 8) ® P(vm(1).s") e m@®m', cdc'}. (26)

As @ is e-proper, it is e-xor-universal (Definition 1), and (26) holds with probability
at most 2/2¢;

- Ifx #id,as vy (t) = u & {0, 1}" is arandomly generated n-bit value, the bad event
is set with probability at most

#Hulm®d @, s)=xr(m' ® P, s))} +#{ulcd P,s) =1 ®Pu,s))}
n '
Taking the sum over all distinct queries and all choices of A, the bad event is set with
probability at most

2
Pr (BADcc) <|A|< ) e
#Hulm®d P, s)=r(m' ® du,s")}
+ > > >
(t,s,m,c)#(t', s' m’,c")eve. reA\{id}
1=t
#{u lc® Pu,s) = A(c/ ® D(u, s/))}
+ > > 5
(t,5,m,c)£(t' s ,m’ ") ev, Le A\{id}
t=t'
2
=1ai(2) 5
, 2#lu|z® P, s) =17 ® D(u, s’
—I—q max Z ful (u, 5) ( (u,s")} .
={z1nze ) (01" - 2n
—{rl Se)CT reA\fid}  z7ez

s,s'es

(z.9)#(Z ")
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Here, we made a similar simplification as before. We stress that in the summation, we have
to include the case that 7 = 7’ (but necessarily s # s") and s = 5" (but necessarily z # 7).
BAD.,. Consider any queries (¢, s, m, c) € v, (W, u) € vy, and any A € A. For the first

part of the bad event, m @ ® (v (1), s) = A(w), we can observe that vy, (1) 20, 1)" is
independently generated from w. As @ is e-proper, it is e-universal (Definition 1), and the
bad event is set with probability 1/2¢. Taking the sum over all queries and all choices of A,
the first part of the bad event is set with probability at most |Az|—?ql.

For the second part of the bad event, ¢ @ @ (v (2),s) = A(u), the analysis is more

complicated. Let w = kt’0*, such that u = v, (¢'). The bad event is set if
D (v (1), ) B A () =c, 27)
or equivalently
D (v (1), s) B MP(vn(2),0) =c. (28)

— If r # ¢/, then vy, (r) and vy, (¢) are two independent randomly generated n-bit values
and we argue based on the former. As @ is e-proper, it is e-xor-universal (Definition 1),
and Eq. (28) holds with probability at most 1/2€¢;

— If r = ¢/, then vy (f) = vy (') is a single randomly generated n-bit value.

— If s # 0, we have the following two cases:
e If A =id, as @ is e-proper, it is e-universal (Definition 1), and (28) holds with
probability at most 1/2€;

o If A #id,asvy(t) =u & {0, 1}, Eq. (27) holds with probability at most

Hu|D(u,s) ®c=ru)}
n ’
— If s = 0, we have @ (v (¢), s) = @ (v (t),0) = vy (¢), and we cannot rely on the

randomness of vy, (¢). Instead, we use that in this case c is randomly drawn from a set
of size at least 2" — g > 27=1 "and hence (28) holds with probability at most 2/2".

Taking the sum over all queries and all choices of A, the second part of the bad event is set
with probability at most

2|Algq’ n Z Z #u | D(u,s) ®c=ru)}

1 € n
m1n{2 ’ 2 } (t,s,m,c)ev. re A\{id}
2|Algq’ / #Hu | P (u, S)GBZ—)»(M)}
ST R AL SN DA D

zi sg}CT\{o} reA\{id} zez

Here, we made a similar simplification as before.
Aggregating both cases, the entire bad event is set with probability at most

3|Alqq’
Pr (BADy,) <1 Al94”
min{2¢, 2"}
#u | Pu,s) ©z = ru)}
+4q - max .
q z={z1,...,2¢}<{0,1}" Z Z o
s=(s1,...5¢}CT\{0) +€A\(id} 2€2
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BAD,p. Consider any queries (¢, s, m, ¢) € v, (x, y) € vp, and any A € A. The bad event is
set if

D (vm(1), 5) € (m® A(x),cdA(y)}.

As @ is e-proper, it is e-universal (Definition 1), and the bad event is set with probability
2/2¢. Taking the sum over all queries and all choices of A, the bad event is set with probability
at most

2|Algp

2¢
BAD,,. Consider any query (w, u) € vy and any A € A\{id}. Recall that w = kt0* for some
t. The first part of the bad event, w = A(w), is set if

Pr (BAD.,) <

k0* @ 0°10* = A(k0* & 0°10%) . (29)

Ask < {0, 1}, Eq. (29) holds with probability at most
#{k | kO* @ 0°10* = A(kO* & 0°10%)}
2K ’
The second part of the bad event, u = A(u), likewise holds with probability at most

#{u|lu=ru)}
n ’

asu < {0, 1)".
Taking the sum over all queries and all choices of A, the bad event is set with probability
at most

Pr (BAD,)

IA

#u|lu=ru)}
/
D D

reA\{id)

k | kO* @ 0¥10* = A(kO* ® 0“10*)}

+ X >

(w,u)€vy AeA\{id}

#Hulu=2r(u)}

<q"- Z —

reA\lid)

#{k | k0* @ 0°20* = A(kO* ® 0°z0%)}
g X 2 5 ’

= AeA\ id} z€z

where in fact the w’s are parsed as k70*, and we made a similar simplification as before.
BADym. Consider any distinct queries (w, u), (w’, u’) € vy and any A € A. The second part
of the bad event, u = A(u’), happens with probability 1/2". The first part of the bad event,
w = A(w’), happens with non-zero probability only if A # id; we consider A € A\{id}.
Recall that w = kr0* for some ¢, and similarly for w’. The bad event is set if

k0* @ 0°t0* = k(kO* &) OKt/O*) . (30)
Ask <& {0, 1}, Eq. (30) holds with probability at most

#{k | kO* @ 0°10* = A(kO* @ 0°1'0*)}
2¢ '
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Taking the sum over all distinct queries and all choices of A, the bad event is set with
probability at most

/
1
Pr (BADmm) <IAI( )2,,
#{k | kO* @ 0%10* = 1(k0* @ 0%1'0%))

LD >

(w,u)# W', u’)eve Ae A\{id}

I
1
_|A|<q ) =
#k | k0" @ 020" = A (k0" @ 0°2'0%) )
+ z=(z1,..., zq/)C {0,1}7 Z Z 2K ’

reA\{id} z#£7 ez

where we made a similar simplification as before.

BADy,p. Consider any query (x, y) € v, and any A € A. The first part of the bad event,
w = A(x), happens if the first « bits A(x) equal k, which happens with probability 1/2%.
The second part of the bad event, u = A(y), happens with probability ¢’/2" (noting that we
have to sum over all possible queries (w, u) € vy,). Taking the sum over all queries and all
choices of A, the bad event is set with probability at most

|Alp  |Alg'p

Pr (BADpyp) < on >

Conclusion. Adding the separate bounds in accordance with (25) gives

3 3|A A
Pr (BAD) <|4|( 1) — L 3Alaa+p) 1Al
2 /) min{2¢, 2"} min{2¢, 2} K
#Hulu = Au)}
+q - Z -
reA\(id)

#{k | kO* @ 0% 20* = A(k0* ® 0°Z/0%)}
+z=(zl ..... zq,)c 0,1)7 Z Z 2K

reA\{id} z,z’ ez

, #ulz@ P, s) =1 ® Pu,s))}
+q { maX Ol}n Z Z 2}1

z={z1,
S={51 00y AZ}CT reA\{id} z, z €z
S, S €s

#Hu|Du,s) ®z=ru)}
+4q - max ,
e M > X o
={51,8e cT\ 0} reA\(id) ZEZ

where in the summations the values z, 7z’ and s, s” may be identical, and we have simplified
the bound by allowing a factor 2 for some of the terms. O

Lemma5 For any good view v € Vgood, Pr (X1 =v) > Pr (X = v).
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Proof 1In the real world Oy, every tuple in (v, vp, Vi) defines exactly one input-output tuple

of P/ & perm[A](n). Therefore, we derive

Pr (X, = v) =Pr (P’ < perm[Al(n) : genMEM?' F ve AP F vy Uy | k)
-Pr(k/ 290,15 - k’:k)

:2% .Pr (P’ < perm[Al(n) ; P’ F e Uy U vm) ,
where Ve = {(m ® @ (v (t), 5), c® P (v (1), 5)) | (£, 5, m, c) € vc}, and where ve U vp Uy
contains a total amount of ¢ + p + ¢’ tuples among which there are no input or output
collisions even when the tuples are transformed over any A € A.

In the ideal world O, for (¢, s) € {0, 1}* x 7, define q(;s) to be the number of tuples in
v for tweak (z, ¢). We have

Pr (X, = v) = Pr <7r S tperm{0, 1) x T,n); 7 - vc>

Pr (P’ & perm[Al(n) : P F vp)

/ $

-Pr u/l,...,uqm—{O,l}”; (u/l,...,u;/):(ul,...,uq/)>

/N

-Pr(k’ S0, 1) - k’:k)
B 1
l_[(t,s) (Zn)%,s) - 2nq'+K

$
.Pr (P’ & perm[Al(n) ; P F vp) .

$ /
.Pr (P’ & perm[Al(n) ; P F up)

5 —
(2”)q+q’ -2
where v}, represents a list of p tuples for which there are no input or outputs collisions even

when transformed over any A € A.
We obtain that

$ -
Pr(X,=v) _ Pr (P’ < perm[A](n) ; P'F Ve Uv, U vm)

— - $
Pr (Xz - V) (Zn)lq#»q/ -Pr (P/ < perm[A](n) 5 P l}p)

Pr (P’ < perm[Al(n) ; P+ e Uvy Uy | P F vp)

1
@grq’

Pr(Piperm(n); Pkacu];pu\)mypwp)

z 1
@+’
S S—
_ 2 —117)q+,,/ > 1.
@y 1y
where for the second approximation we use that the list of tuples in v U v, do not collide

even when transformed over any A € A. O
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