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THE DUAL OF AN EVALUATION CODE

HIRAM H. LÓPEZ, IVAN SOPRUNOV, AND RAFAEL H. VILLARREAL

Abstract. The aim of this work is to study the dual and the algebraic dual of an evaluation
code using standard monomials and indicator functions. We show that the dual of an evaluation
code is the evaluation code of the algebraic dual. We develop an algorithm for computing a basis
for the algebraic dual. Let C1 and C2 be linear codes spanned by standard monomials. We give
a combinatorial condition for the monomial equivalence of C1 and the dual C⊥

2 . Moreover, we
give an explicit description of a generator matrix of C⊥

2 in terms of that of C1 and coefficients
of indicator functions. For Reed–Muller-type codes we give a duality criterion in terms of the v-
number and the Hilbert function of a vanishing ideal. As an application, we provide an explicit
duality for Reed–Muller-type codes corresponding to Gorenstein ideals. In addition, when the
evaluation code is monomial and the set of evaluation points is a degenerate affine space, we
classify when the dual is a monomial code.

1. Introduction

Let S = K[t1, . . . , ts] =
⊕∞

d=0 Sd be a polynomial ring over a finite field K = Fq with the
standard grading and let X = {P1, . . . , Pm}, |X| ≥ 2, be a set of distinct points in the affine
space As := Ks. The evaluation map, denoted ev, is the K-linear map given by

ev : S → Km, f 7→ (f(P1), . . . , f(Pm)) .

The kernel of ev, denoted I = I(X), is the vanishing ideal of X consisting of the polynomials
of S that vanish at all points of X. This map induces an isomorphism of K-linear spaces between
S/I and Km. If f ∈ S, we denote the set of zeros of f in X by VX(f). Let L be a linear subspace
of S of finite dimension. The image of L under the evaluation map, denoted LX , is called an
evaluation code on X [28, 40, 42].

The basic parameters of the linear code LX that we consider are:

(a) length: m = |X|,
(b) dimension: k = dimK(LX), and
(c) minimum distance: δ(LX) = min{|X \ VX(f)| : f ∈ L \ I}.

The dual of LX , denoted (LX)⊥, is the set of all α ∈ Km such that 〈α, β〉 = 0 for all β ∈ LX ,
where 〈 , 〉 is the ordinary inner product in Km. The dual of LX is an [m,m−k] linear code [27,
Theorem 1.2.1]. The aim of this paper is to study (LX)⊥ by fixing a graded monomial order on
S and using the information encoded in the quotient ring S/I and in the linear space L.

Let ≺ be a graded monomial order on S, that is, monomials are first compared by their total
degrees [11, p. 54]. The monomials of S are denoted tc := tc11 · · · tcss , c = (c1, . . . , cs) in Ns, where
N = {0, 1, . . .}. We denote the initial monomial of a non-zero polynomial f ∈ S by in≺(f) and
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the initial ideal of I by in≺(I). A subset G = {g1, . . . , gn} of I is called a Gröbner basis of I
if in≺(I) = (in≺(g1), . . . , in≺(gn)). A monomial ta is called a standard monomial of S/I, with
respect to ≺, if ta /∈ in≺(I). The footprint of S/I or Gröbner éscalier of I, denoted ∆≺(I), is
the finite set of all standard monomials of S/I. The footprint has been used in connection with
many kinds of codes and their basic parameters [8, 17, 18, 19, 21, 25, 28].

If A ⊂ S, the K-linear subspace of S spanned by A is denoted by KA. The linear code LX

is called a standard evaluation code on X relative to ≺ if L is a linear subspace of K∆≺(I). A
polynomial f is called a standard polynomial of S/I if f 6= 0 and f is in K∆≺(I). As the field K
and the footprint ∆≺(I) are finite, there are only a finite number of standard polynomials. Any
evaluation code LX on X can be regarded as a standard evaluation code on X after a suitable
transformation of a generating set for L [28] (Proposition 3.1). Furthermore, given L ⊂ S and

a monomial order ≺, there exists a unique linear subspace L̃ of K∆≺(I) such that L̃X = LX

(Corollary 3.2, Example 8.1). We call L̃ the standard function space of LX . In principle, the

basic parameters of LX can be computed once we determine finite generating sets for L̃ and I
[28].

Following [4, p. 16], let ϕ be the K-linear map given by

ϕ : S → K, f 7→ f(P1) + · · ·+ f(Pm).

The kernel of ϕ is a linear subspace of S and S/ker(ϕ) ≃ K. The linear subspace of S of all
g ∈ S such that gL ⊂ ker(ϕ) is denoted by (ker(ϕ) : L). The algebraic dual of LX relative to ≺,
denoted L⊥, is the K-linear subspace of S given by

L⊥ := (ker(ϕ) : L)
⋂
K∆≺(I),

we will also call L⊥ the dual of L. The dual L⊥ is isomorphic to (L⊥)X (Lemma 3.6).

Families of linear codes that are closed under taking duals include generalized toric codes [4,
Proposition 3.5], [36, Theorem 6], monomial evaluation codes over the affine space As that are
divisor closed [4, Proposition 2.4, Remark 2.5], q-ary Reed–Muller codes [12, Theorem 2.2.1], [25,
Remark 4.7], projective Reed–Muller-type codes over complete intersections [22, Theorem 2],
and algebraic geometry codes [40, Theorem 2.2.10]. In these cases duality formulas for the
respective dual codes are given.

The next result gives a formula for the dual of LX in terms of its algebraic dual.

Theorem 3.5. (LX)⊥ is the standard evaluation code (L⊥)X on X relative to ≺.

A subspace L of S is called a monomial space of S if L = K{ta1 , . . . , tak} for some ta1 , . . . , tak .
We say that LX is a monomial code if L is a monomial space of S, and we say that LX is a

standard monomial code if the standard function space L̃ of LX is a monomial space of S (cf.
[32, Definition 1.1]). If I is a binomial ideal, that is, I is generated by elements of the form
ta− tb, and L is a monomial space of S, then LX is a standard monomial code (Proposition 3.8).
As an application of Theorem 3.5 we obtain an effective criterion for verifying whether or not
the dual of an evaluation code is a monomial code (Proposition 3.10, Procedure A.1).

The formula of Theorem 3.5 can be used to compute a generating set for the algebraic dual
of LX . We show an effective algorithm, based on Gaussian elimination, to compute a K-basis
of any linear subspace of S of finite dimension (Theorem 3.11). This algorithm can be used to

compute a K-basis for the algebraic dual L⊥ of LX and also for the standard function space L̃
of LX (Examples 8.1, 8.3–8.6, Procedure A.1).

In Section 4 we introduce and study the v-number of I [10], and the indicator functions of
X that are used in coding theory [10, 38], Cayley–Bacharach schemes [20], and interpolation
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problems [29]. As is seen later in the introduction these notions are used as devices to study
the duality of standard monomial codes, as well as the asymptotic behavior of the minimum
distance and the duality of Reed–Muller-type codes.

Let Ass(I) = {p1, . . . , pm} be the set of associated primes of I, that is, pi is the vanishing
ideal IPi

of Pi and I =
⋂m

i=1 pi is the primary decomposition of I (Lemma 2.4). The v-number
of the ideal I at pi, denoted vpi(I), is given by

vpi(I) := min{d ≥ 0 | ∃ 0 6= f ∈ S, deg(f) = d, with (I : f) = pi},

where (I : f) := {g ∈ S | gf ⊂ I} is a colon ideal, and the v-number of the ideal I, denoted v(I),
is given by v(I) := min{vpi(I)}

m
i=1. The notion of v-number is related to indicator functions as

we now explain. A polynomial f in S is called an indicator function for Pi if f(Pi) 6= 0 and
f(Pj) = 0 if j 6= i [38]. Indicator functions can be computed using [29, Corollary 6.3.11]. The
v-number of I at pi is the least degree of an indicator function for Pi (Lemma 4.4).

For an ideal M 6= 0 of S/I, we define α(M) to be the minimum degree of the non-zero
elements of M . To compute the v-number using Macaulay2 [24] (Example 8.5), we give the
following description for the v-number of I at pi (Proposition 4.5):

vpi(I) = α((I : pi)/I) for all i.

This computation, along with other coding theory tools, is implemented in [3].

For each point Pi there exists a unique indicator function fi for Pi in K∆≺(I) satisfying
fi(Pi) = 1, furthermore the degree of fi is vpi(I), and F = {f1, . . . , fm} is a K-basis for K∆≺(I)
(Proposition 4.6(a)). We call fi the i-th standard indicator function for Pi and call F the set of
standard indicator functions for X. As a byproduct we obtain an algebraic method to compute
the set F (Remark 4.7, Example 8.5, Procedure A.1). We give the following formula

ker(ϕ) = K{fi − fm}m−1
i=1 + I,

for the kernel of the map ϕ that was used earlier to define L⊥ (Proposition 4.6).

Given a subset Γ ⊂ ∆≺(I), let L(Γ) be the K-span of the set of all ta ∈ Γ. Then L(Γ)X
is called the standard monomial code of Γ. Consider two standard monomial codes L(Γ1)X
and L(Γ2)X for some Γ1,Γ2 ⊂ ∆≺(I). We give a combinatorial condition for the monomial

equivalence of L(Γ1)X and L(Γ2)X
⊥. For convenience we recall the definition of this notion. We

say that two linear codes C1, C2 in Km are monomially equivalent if there is β = (β1, . . . , βm)
in Km such that βi 6= 0 for all i and

C2 = β · C1 = {β · c | c ∈ C1},

where β · c is the vector given by (β1c1, . . . , βmcm) for c = (c1, . . . , cm) ∈ C1.

To state the main result of Section 5 we will need the following definition. We say a standard
monomial te ∈ ∆≺(I) is essential if it appears in each standard indicator function of X.

Theorem 5.4. Let te be essential. Then for any Γ1,Γ2 ⊂ ∆≺(I) satisfying

(1) |Γ1|+ |Γ2| = |X|,
(2) te does not appear in the reduction of u1u2 modulo I for every u1 ∈ Γ1 and u2 ∈ Γ2,

we have β · L(Γ1)X = L(Γ2)X
⊥, for some β = (β1, . . . , βm) ∈ Km such that βi 6= 0 for all i.

Moreover, βi is the coefficient of te in the i-th standard indicator function fi, for all i.

Given an integer d ≥ 0, we let S≤d =
⊕d

i=0 Si be the K-linear subspace of S of all polynomials
of degree at most d and let I≤d = I

⋂
S≤d. We set S≤−1 = {0}, by convention. The function

Ha
I (d) := dimK(S≤d/I≤d), d = −1, 0, 1, 2, . . .
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is called the affine Hilbert function of S/I. In particular, Ha
I (−1) = 0. The regularity index

of Ha
I , denoted r0 = reg(Ha

I ), is the least integer ℓ ≥ 0 such that Ha
I (d) = |X| for d ≥ ℓ

(Proposition 2.2). Note that r0 ≥ 1 because |X| ≥ 2.

If L is equal to S≤d, then the resulting evaluation code LX is called a Reed-Muller-type code
of degree d on X [13, 23] and is denoted by CX(d).

The minimum distance of CX(d) is simply denoted by δX(d). The v-number of I is related
to the asymptotic behavior of δX(d) for d≫ 0. By Proposition 2.2, there n in N such that

|X| = δX(0) > δX(1) > · · · > δX(n − 1) > δX(n) = δX(d) = 1 for d ≥ n.

The number n, denoted reg(δX), is called the regularity index of δX . By the Singleton bound
[27, p. 71], one has the inequality reg(δX) ≤ reg(Ha

I ). Using indicator functions we prove
that v(I) is equal to reg(δX) (Proposition 6.2), and consequently using Proposition 4.5 we can
compute reg(δX ) with Macaulay2 [24] (Example 8.1).

In Section 6 we give a duality criterion for the monomial equivalence of the linear codes
CX(d) and CX(r0 − d− 1)⊥ for −1 ≤ d ≤ r0, where r0 = reg(Ha

I ). As dimK(CX(d)) = Ha
I (d),

a necessary condition for this equivalence is the equality

Ha
I (d) +Ha

I (r0 − d− 1) = |X| for − 1 ≤ d ≤ r0.

In Section 2 we characterize this equality in terms of the symmetry of h-vectors and the
symmetry of the function ψ(d) = |∆≺(I)

⋂
Sd| (Proposition 2.8).

We come to one of our main results.

Theorem 6.5. (Duality criterion) Let r0 = reg(Ha
I ). The following are equivalent.

(a) CX(d) is monomially equivalent to CX(r0 − d− 1)⊥ for −1 ≤ d ≤ r0.
(b) Ha

I (d) +Ha
I (r0 − d− 1) = |X| for −1 ≤ d ≤ r0 and r0 = vp(I) for p ∈ Ass(I).

(c) There is g ∈ K∆≺(I) such that g(Pi) 6= 0 for all i and

CX(r0 − d− 1)⊥ = (g(P1), . . . , g(Pm)) · CX(d) for −1 ≤ d ≤ r0.

The standard polynomial g of part (c) is unique up to multiplication by a scalar from K∗,
where K∗ := K \ {0}. If F = {f1, . . . , fm} is the unique set of standard indicator functions for
X, then g is equal to

∑m
i=1 lc(fi)fi (see Example 8.2 for an illustration). The value of g at Pi is

lc(fi), the leading coefficient of fi. We will use this criterion to show duality for some interesting
families and recover some known results. The condition r0 = vp(I) for p ∈ Ass(I) that appears
in the duality criterion defines a Cayley–Bacharach scheme (CB-scheme) in the projective case
when K is an infinite field [20, Definition 2.7], and is related to Hilbert functions.

Gorenstein and complete intersection ideals—and some of their properties—are introduced in
Section 2. If I is a complete intersection generated by a Gröbner basis with s elements, then
the ideal I is Gorenstein (Corollary 2.9(c)). The converse is not true (Example 8.2). If I is
Gorenstein, then Ha

I (d) +Ha
I (r0 − d− 1) = |X| for −1 ≤ d ≤ r0 (Corollary 2.9(a)). This result,

together with the next theorem, shows that the combinatorial condition of Theorem 5.4 and the
conditions of Theorem 6.5(b) are satisfied when I is a Gorenstein ideal.

Theorem 6.11. Let F = {f1, . . . , fm} be the set of standard indicator functions for X. If I is
Gorenstein, then reg(Ha

I ) = vp(I) for p ∈ Ass(I) and in≺(fi) = in≺(fm) for all i.

The following result includes the family of Reed–Muller-type codes over complete intersections
and in particular—since vanishing ideals of Cartesian sets are complete intersections generated
by a Gröbner basis with s elements [33, Lemma 2.3]—we recover the duality theorems for affine
Cartesian codes given in [2, Theorem 5.7] and [31, Theorem 2.3].
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Corollary 6.15. Let r0 be the regularity index of Ha
I . If I is a Gorenstein ideal, then there is

g ∈ K∆≺(I) such that g(Pi) 6= 0 for all i and

(g(P1), . . . , g(Pm)) · CX(r0 − d− 1) = CX(d)⊥ for −1 ≤ d ≤ r0.

As an application, we produce self-dual Reed–Muller-type codes when I is Gorenstein,
char(K) = 2, and r0 is odd (Corollary 6.16).

In Section 7 we give an explicit description for the algebraic dual of LT when L is a monomial
space of S and T = {P1, . . . , Pm} is the set of points in a degenerate torus (Proposition 7.2,
Example 8.7). In this case the vanishing ideal of T is a complete intersection binomial ideal and,
by Proposition 3.8, LT is a standard monomial code. Let T = (K∗)s be a torus in As and let LT

be a generalized toric code on T [30, 36, 37], that is, L is a monomial space of S. Bras-Amorós
and O’Sullivan [4, Proposition 3.5] and independently Ruano [36, Theorem 6] compute the dual
of LT and show that the dual of LT is a generalized toric code. As an application we recover
these results (Corollary 7.4).

The rest of this paper is devoted to study the dual of monomial codes on a degenerate affine
space. Let K = Fq be a finite field of characteristic p, let A1, . . . , As be subgroups of the
multiplicative group K∗ of K, let Bi be the set Ai

⋃
{0} for i = 1, . . . , s, let

X := B1 × · · · ×Bs,

and let LX be a monomial code on X . The set X is called a degenerate affine space. In this case
the vanishing ideal I = I(X ) is a complete intersection binomial ideal. By Proposition 3.8, we

may assume that L is the standard function space L̃ of LX and that A = {ta1 , . . . , tak} ⊂ ∆≺(I)
is a K-basis for L with ai = (ai,1, . . . , ai,s) for i = 1, . . . , k. Following [4, p. 16], we say that A
is divisor-closed if ta ∈ A whenever ta divides a monomial in A. To classify when the dual of
LX is a standard monomial code, we introduce a weaker notion than divisor-closed that we call
weakly divisor-closed (Definition 7.7). The order of the multiplicative monoid Bi is denoted by
ei and the order of Ai is denoted by di for i = 1, . . . , s. For use below we set

tbi = t
bi,1
1 · · · t

bi,s
s :=

∏s
j=1 t

dj−ai,j
j ,

for i = 1, . . . , k and B := {tb1 , . . . , tbk}. Note that (L⊥)X is a standard monomial code if and
only if L⊥ is a monomial space of S because the standard function space of (L⊥)X is L⊥.

We come to another of our main results.

Theorem 7.8. Let K be a field of characteristic p and X a degenerate affine space as above.
Assume that gcd(p, ei) = p, where ei = |Bi|, for i = 1, . . . , s. The following are equivalent.

(a) A = {ta1 , . . . , tak} is weakly divisor-closed.
(b) L⊥ = K(∆≺(I) \ B).
(c) (LX )

⊥ is a standard monomial code on X .

Let LX be a monomial standard evaluation code on X = Ks. Then L is generated by a subset
A of ∆≺(I). Bras-Amorós and O’Sullivan [4, Proposition 2.4, Remark 2.5] compute the dual of
LX when A is divisor closed. As an application we recover this result (Corollary 7.10).

In the next result we determine the dual of K(S≤d
⋂

∆≺(I)).

Theorem 7.11. Let K be a field of characteristic p and X a degenerate affine space as above.
Assume that gcd(p, ei) = p, where ei = |Bi|, for i = 1, . . . , s. If −1 ≤ d ≤ r0 =

∑s
i=1(ei − 1)

and L = K(S≤d

⋂
∆≺(I)), then

L⊥ = K(∆≺(I) \ {t
b1 , . . . , tbk}) = K(S≤r0−d−1

⋂
∆≺(I)).



6 HIRAM H. LÓPEZ, IVAN SOPRUNOV, AND R. H. VILLARREAL

The codes CX (d)
⊥ and CX (r0 − d − 1) are monomially equivalent because I is a complete

intersection (Corollary 6.15). We show they are equal if char(K) divides ei for all i (Proposi-
tion 7.12). When X = Ks the equality CX (d) = CX (r0 − d− 1)⊥, r0 = s(q − 1), has long been
known; see for example [12, Theorem 2.2.1] and [25, Remark 4.7].

We include one section with examples (Section 8) and an appendix with implementations
of the algorithms in Macaulay2 [24] that we used in the examples to compute bases for algebraic
duals, v-numbers, and standard indicator functions (Appendix A).

For all unexplained terminology and additional information we refer the reader to [11, 29, 39,
43] (for the theory of Gröbner bases and Hilbert functions), and [27, 35, 42] (for the theory of
error-correcting codes and linear codes).

2. Preliminaries: Hilbert functions and vanishing ideals

In this section we introduce Hilbert functions and characterize the symmetry of the h-vector
of the homogenization of a vanishing ideal.

Let S = K[t1, . . . , ts] =
⊕∞

d=0 Sd be a polynomial ring over a finite field K = Fq with the
standard grading and let I be an ideal of S. The Krull dimension of S/I is denoted by dim(S/I).
We say that I has dimension k if dim(S/I) is equal to k. The height of I, denoted ht(I), is

s− dim(S/I). We set S≤d =
⊕d

i=0 Si, S≤−1 = {0}, and I≤d = I
⋂
S≤d. The function

Ha
I (d) := dimK(S≤d/I≤d), d = −1, 0, 1, 2, . . . ,

is called the affine Hilbert function of S/I. In particular, Ha
I (−1) = 0. For simplicity we also

call Ha
I the affine Hilbert function of I. The Hilbert function of a graded ideal J of S, denoted

HJ , is the function given by HJ(d) := dimK(Sd/Jd) for d ≥ −1, where Jd = Sd
⋂
J .

Let u = ts+1 be a new variable. For f ∈ S of degree e define

fh := uef (t1/u, . . . , ts/u) ,

that is, fh is the homogenization of the polynomial f with respect to u. The homogenization of
I is the ideal Ih of S[u] given by Ih := ({fh| f ∈ I}), where S[u] is given the standard grading.
One has the following two well-known facts

(2.1) dim(S[u]/Ih) = dim(S/I) + 1 and Ha
I (d) = HIh(d) for d ≥ −1,

where HIh is the Hilbert function of the graded ideal Ih, see for instance [43, Lemma 8.5.4]. If

k = dim(S/I), by a Hilbert theorem [39, p. 58], there is a unique polynomial haI (z) =
∑k

i=0 aiz
i

of degree k in Q[z] such that haI (d) = Ha
I (d) for d ≫ 0. By convention the degree of the zero

polynomial is −1. The integer k! ak, denoted deg(S/I), is called the degree of S/I. The degree
of S/I is equal to deg(S[u]/Ih). If k = 0, then Ha

I (d) = deg(S/I) = dimK(S/I) for d≫ 0. Note
that the degree of S/I is positive if I ( S and is 0 otherwise.

We say that I is a complete intersection if I can be generated by ht(I) elements. The ideal
I and the ring S/I are called Gorenstein if the localization of S/I at every maximal ideal is a
Gorenstein local ring in the sense of [43, Definition 2.8.3]. If I = I(X) is the vanishing ideal of
a set of points in Ks, using Lemma 2.4 below, it follows that I is Gorenstein. Permitting an
abuse of terminology, we say that I = I(X) is Gorenstein if S[u]/Ih is a Gorenstein graded ring,
that is, S[u]/Ih is Cohen–Macaulay and the last Betti number in the minimal graded resolution
of S[u]/Ih is equal to 1 [43, Corollary 5.3.5] (Example 8.2).

An element f ∈ S is called a zero-divisor of S/I—as an S-module—if there is 0 6= a ∈ S/I
such that fa = 0, and f is called regular on S/I otherwise. Note that f is a zero-divisor of S/I
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if and only if (I : f) 6= I. An associated prime of I is a prime ideal p of S of the form p = (I : f)
for some f in S. The radical of I is denoted by rad(I). The ideal I is radical if I = rad(I).

Theorem 2.1. [43, Lemma 2.1.19, Corollary 2.1.30] If I is an ideal of S and I = q1
⋂

· · ·
⋂
qm

is an irredundant primary decomposition with rad(qi) = pi, then the set of zero-divisors ZS(S/I)
of S/I is equal to

⋃m
i=1 pi, and p1, . . . , pm are the associated primes of I.

Recall CX(d) denotes the Reed–Muller-type code of degree d on a set X of points in Ks and
δ(CX (d)) represents the minimum distance of the code.

Proposition 2.2. [34, Corollary 2.6] Let X be a subset of Ks and let I = I(X) be its vanishing
ideal. Then, Ha

I is increasing until it reaches the constant value |X|, and δ(CX(d)) is decreasing,
as a function of d, until it reaches the constant value 1. In particular, deg(S/I) = |X|.

If I = I(X) and X ⊂ Ks, the least integer r0 ≥ 0 such that Ha
I (d) = |X| (resp. HIh(d) = |X|)

for d ≥ r0, denoted reg(Ha
I ) (resp. reg(HIh)), is called the regularity index of Ha

I (resp. HIh).
By Eq. (2.1), r0 = reg(Ha

I ) = reg(HIh). It is known that reg(HIh) equals the Castelnuovo–

Mumford regularity of S[u]/Ih in the sense of [15, p. 55], see for instance [43, p. 346]. For this
reason reg(HIh) is simply called the regularity of S[u]/Ih.

Lemma 2.3. [43, Proposition 3.4.5] Let X be a subset of Ks. Then, the ideal I(X)h is the
homogeneous vanishing ideal I(Y ) of the set Y := {[x, 1] | x ∈ X} of projective points in Ps.

Lemma 2.4. [29, p. 389] Let X be a subset of Ks, let P be a point in X, P = (p1, . . . , ps), and
let IP be the vanishing ideal of P . Then IP is a maximal ideal of S of height s,

IP = (t1 − p1, . . . , ts − ps), deg(S/IP ) = 1,

and I(X) =
⋂

P∈X IP is the primary decomposition of I(X).

Lemma 2.5. Let X be a subset of Ks. Then, the variable u is regular on S[u]/I(X)h.

Proof. We set I = I(X). From Lemma 2.3, we get Ih =
⋂

P∈X I[P,1]. If P = (p1, . . . , ps) is a
point in X, then I[P,1] is generated by G = {t1 − p1u, . . . , ts − psu}. Hence, by Theorem 2.1, it
suffices to show that u is not in I[P,1]. Pick a graded order with t1 ≻ · · · ≻ ts ≻ u. The set G is
a Gröbner basis for I[P,1]. If u is in I[P,1], then u ∈ in≺(I[P,1]) = (t1, . . . , ts), a contradiction. �

Let I ⊂ S be an ideal, let ≺ be a monomial order, and let ∆≺(I) be the set of standard
monomials of S/I. The image of ∆≺(I), under the canonical map S 7→ S/I, x 7→ x, is a basis
of S/I as a K-vector space [1, Proposition 6.52].

Lemma 2.6. Let I ⊂ S be an ideal and let ≺ be a graded monomial order on S. Then Ha
I (d)

is equal to Ha
in≺(I)(d) for d ≥ 0, Ha

I (d) is |∆≺(I)
⋂
S≤d|, the number of standard monomials of

S/I of degree at most d, and dim(S/I) = dim(S/in≺(I)).

Proof. By [11, Chapter 9, Section 3, Propositions 3 and 4], we have that Ha
in≺(I)(d) is the number

of monomials of S not in the ideal in≺(I) of degree ≤ d, and Ha
I (d) is equal to H

a
in≺(I)(d) when

≺ is graded. Hence, Ha
I (d) is the number of standard monomials of S/I of degree at most d. As

S/I and S/in≺(I) have the same affine Hilbert function, they have the same dimension. �

Lemma 2.7. Let X be a subset of Ks, I = I(X), r0 = reg(Ha
I ), and let ≺ be a graded monomial

order on S. Then ∆≺(I) ⊂ S≤r0, ∆≺(I) 6⊂ S≤r0−1, and |X| = Ha
I (r0) = |∆≺(I)|.
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Proof. By Proposition 2.2, Ha
I (r0−1) < Ha

I (r0) = |X|. Hence, by Lemma 2.6, it suffices to show
the inclusion ∆≺(I) ⊂ S≤r0 . We proceed by contradiction assuming that ∆≺(I) 6⊂ S≤r0 . Pick a
monomial ta in ∆≺(I) with deg(ta) = d0 > r0. Then, one has the strict inclusion ∆≺(I)

⋂
S≤r0 (

∆≺(I)
⋂
S≤d0 and, by Lemma 2.6, one has |X| = Ha

I (r0) < Ha
I (d0), a contradiction because

Ha
I (d) = |X| for d ≥ r0 (Proposition 2.2). �

Let J be a graded ideal of S and let FJ(z) :=
∑∞

i=0HJ(i)z
i be its Hilbert series. We now

introduce the notion of h-vector of S/J . By the Hilbert–Serre theorem [39, 43] there is a (unique)
polynomial h(z) =

∑r
i=0 hiz

i, hr 6= 0, with integral coefficients such that h(1) 6= 0 and

FJ (z) =
h(z)

(1− z)k
,

where k = dim(S/J). The h-vector of S/J is defined as h(S/J) := (h0, . . . , hr). We say that the
h-vector of S/J is symmetric if hi = hr−i for 0 ≤ i ≤ r. The h-vector of a Gorenstein graded
algebra is symmetric [39]. For almost Gorenstein algebras and coordinate rings of CB-schemes
their h-vectors satisfy certain interesting linear inequalities [20, 26].

Proposition 2.8. Let I = I(X) be the vanishing ideal of a subset X of Ks, let r0 be the
regularity index of Ha

I , let ≺ be a graded monomial order on S[u] with t1 ≻ · · · ≻ ts ≻ u, and

let Ih be the homogenization of I with respect to u. The following are equivalent.

(a) The h-vector of S[u]/Ih is symmetric.
(b) Ha

I (d) +Ha
I (r0 − d− 1) = |X| for −1 ≤ d ≤ r0.

(c) Hin≺(I)(d) = Hin≺(I)(r0 − d) for 0 ≤ d ≤ r0.
(d) |∆≺(I)

⋂
Sd| = |∆≺(I)

⋂
Sr0−d| for 0 ≤ d ≤ r0.

Proof. As S[u]/Ih is Cohen–Macaulay of dimension 1, its Hilbert series can be written as

(2.2) FIh(z) =
h0 + h1z + · · ·+ hr0z

r0

1− z
,

where h(z) = h0 + h1z + · · · + hr0z
r0 is a polynomial with positive integer coefficients and the

degree and regularity of S[u]/Ih are h(1) and r0, respectively [39, 43]. The ideal I (resp. Ih)
and its initial ideal in≺(I) (resp. in≺(I

h)) have the same affine Hilbert function (resp. Hilbert
function) (Lemma 2.6). As u is not in the ideal in≺(I

h), there is an exact sequence

0 −→ (S[u]/in≺(I
h))[−1]

u
−→ S[u]/in≺(I

h)−→S[u]/(in≺(I
h), u)−→0.

Hence, noticing the equalities in≺(I
h) = in≺(I)S[u] and S[u]/(in≺(I

h), u) = S/in≺(I) and, by
taking Hilbert series in this exact sequence, we obtain

FIh(z) = zFIh(z) +Hin≺(I)(0) +Hin≺(I)(1)z + · · ·+Hin≺(I)(r0)z
r0 .

Therefore, by Eq. (2.2), the h-vectors of S/in≺(I) and S[u]/I
h are equal and

(2.3) hi = Hin≺(I)(i) for 0 ≤ i ≤ r0.

(a) ⇒ (b): Note that when d = −1 or d = r0 (b) holds by the definition of r0, so we may
assume that 0 ≤ d < r0. Now assume that h(S[u]/Ih) = (h0, . . . , hr0) is symmetric. Hence, by
Eq. (2.3), we obtain Hin≺(I)(i) = Hin≺(I)(r0 − i) for 0 ≤ i ≤ r0. The affine Hilbert function of I



THE DUAL OF AN EVALUATION CODE 9

in degree d is given by Ha
I (d) = Ha

in≺(I)(d) =
∑d

i=0Hin≺(I)(i) (Lemma 2.6). Therefore

|X| = deg(S[u]/Ih) =

r0∑

i=0

hi =

r0∑

i=0

Hin≺(I)(i) =

d∑

i=0

Hin≺(I)(i) +

r0∑

i=d+1

Hin≺(I)(i)

= Ha
I (d) +

r0−d−1∑

i=0

Hin≺(I)(r0 − i) = Ha
I (d) +

r0−d−1∑

i=0

Hin≺(I)(i)

= Ha
I (d) +Ha

I (r0 − d− 1).

(b) ⇒ (c): As |X| = Ha
I (d) +Ha

I (r0 − d − 1) and |X| = Ha
I (d − 1) +Ha

I (r0 − d), by adding
the following two equalities

Ha
I (d) =

d∑

i=0

Hin≺(I)(i) = Ha
I (d− 1) +Hin≺(I)(d),

Ha
I (r0 − d− 1) =

r0−d−1∑

i=0

Hin≺(I)(i) = Ha
I (r0 − d)−Hin≺(I)(r0 − d),

we obtain the equality Hin≺(I)(d) = Hin≺(I)(r0 − d).

(c) ⇒ (a): The symmetry of the h-vector of S[u]/Ih follows from Eq. (2.3).

(c) ⇔ (d): The number of standard monomials of I of degree d is Hin≺(I)(d) [11, p. 433], that
is, Hin≺(I)(d) is equal to |∆≺(I)

⋂
Sd|. Hence (c) and (d) are equivalent. �

Corollary 2.9. Let I = I(X) be the vanishing ideal of a subset X of Ks, let ≺ be a graded
monomial order on S, and let r0 be the regularity index of Ha

I . The following hold.

(a) If I is Gorenstein, then Ha
I (d) +Ha

I (r0 − d− 1) = deg(S/I) = |X| for −1 ≤ d ≤ r0.
(b) If I is Gorenstein, then there is only one standard monomial of degree r0.
(c) If I is generated by a Gröbner basis G = {g1, . . . , gs} of s elements, then I is Gorenstein.

Proof. (a): As S[u]/Ih is a graded Gorenstein algebra of dimension 1, its h-vector is symmetric
[39, Theorems 4.1 and 4.2]. Then, by Proposition 2.8, the equality follows.

(b): By part (a) and Proposition 2.8(d), one has |∆≺(I)
⋂
Sd| = |∆≺(I)

⋂
Sr0−d| for 0 ≤ d ≤

r0. Setting d = 0 in this equality, we get 1 = |∆≺(I)
⋂
Sr0 |.

(c): As I is generated by the Gröbner basis G, one has Ih = (gh1 , . . . , g
h
s ) [43, p. 132]. The

ideals I and Ih have height s. Then, Ih is a graded ideal of height s generated by s homogeneous
polynomials forming a regular sequence. Hence, by [14, Corollary 21.19], Ih is Gorenstein. �

3. The dual of evaluation codes

To avoid repetitions, we continue to employ the notations and definitions used in Sections 1
and 2. In this section we show that the dual of an evaluation code is the evaluation code of the
algebraic dual. We give an effective criterion to determine whether or not the algebraic dual is
monomial and show an algorithm that can be used to compute a basis for the algebraic dual.

Proposition 3.1. [28] Let LX be an evaluation code on X, let ≺ be a monomial order, let G be
a Gröbner basis of I = I(X), let {h1, . . . , hk} be a subset of L \ {0} and for each i, let ri be the
remainder on division of hi by G. If L = K{h1, . . . , hk} and

L̃ := K{r1, . . . , rk},
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then L̃ ⊂ K∆≺(I), L̃X is a standard evaluation code on X relative to ≺ and L̃X = LX .

Corollary 3.2. Let LX be an evaluation code on X and let ≺ be a monomial order. Then there

exists a unique linear subspace L̃ of K∆≺(I) such that L̃X = LX .

Proof. The existence follows from Proposition 3.1. Assume that L1 and L2 are two linear
subspaces of K∆≺(I) such that (L1)X = (L2)X . Let P1, . . . , Pm be the points of X. To show
the inclusion L1 ⊂ L2 take f ∈ L1. Then ev(f) = (f(P1), . . . , f(Pm)) is in (L1)X . Thus there
is g ∈ L2 such that ev(f) = ev(g) = (g(P1), . . . , g(Pm)). Hence f − g ∈ I(X) and f − g = 0
because f and g are in K∆≺(I). Thus f ∈ L2. The inclusion L2 ⊂ L1 follows from similar

reasons. Therefore L1 = L2 and L̃ is unique. �

Recall that ϕ is the K-linear map given by

ϕ : S → K, f 7→ f(P1) + · · ·+ f(Pm).

Definition 3.3. Let LX be an evaluation code on X and let ≺ be a monomial order on S. The
unique linear subspace L̃ of K∆≺(I) such that L̃X = LX is called the standard function space
of LX . The dual of L, denoted L⊥, is the K-linear space given by L⊥ := (ker(ϕ) : L)

⋂
K∆≺(I).

We will also call L⊥ the algebraic dual of LX relative to ≺.

Lemma 3.4. Let LX be an evaluation code on X and let ≺ be a monomial order on S. If

I = I(X) and L̃ is the standard function space of LX , then

L⊥ = (ker(ϕ) : L)
⋂
K∆≺(I) = (ker(ϕ) : L̃)

⋂
K∆≺(I) = L̃⊥.

Proof. There are g1, . . . , gk in L \ {0} such that L = K{g1, . . . , gk}. By the division algorithm
[11, Theorem 3, p. 63], for each i, we can write gi = hi + ri for some hi ∈ I and ri ∈ K∆≺(I).

By Proposition 3.1, one has L̃ = K{r1, . . . , rk}. To show the inclusion “⊂” take f ∈ L⊥, that

is, fL ⊂ ker(ϕ) and f ∈ K∆≺(I). Then fri ∈ ker(ϕ) for all i, and consequently f ∈ L̃⊥. To

show the inclusion “⊃” take f ∈ L̃⊥, that is, f L̃ ⊂ ker(ϕ) and f ∈ K∆≺(I). Then fri ∈ ker(ϕ)
for all i and, since ri = gi − hi, we get fgi ∈ ker(ϕ) for all i. Thus, f ∈ L⊥. �

Theorem 3.5. Let LX be an evaluation code on X and let I = I(X) be the vanishing ideal
of X. If ≺ is a monomial order and L⊥ = (ker(ϕ) : L)

⋂
K∆≺(I), then (LX)⊥ is the standard

evaluation code (L⊥)X on X relative to ≺.

Proof. First we show the inclusion (LX)⊥ ⊂ (L⊥)X . Take α ∈ (LX)⊥. Let r0 be the regularity
index of Ha

I . The evaluation map

evr0 : S≤r0 → Km, f 7→ (f(P1), . . . , f(Pm)) ,

is surjective since Ha
I (r0) = dimK(S≤r0/I≤r0) = |X| = m. Then, α = (g1(P1), . . . , g1(Pm)) for

some g1 ∈ S≤r0 . By the division algorithm [11, Theorem 3, p. 63], we can write g1 = g2 + g,
where g2 ∈ I and g ∈ K∆≺(I). Thus, α = (g(P1), . . . , g(Pm)). Using that α ∈ (LX)⊥, we obtain

〈α, (f(P1), . . . , f(Pm))〉 =
m∑

i=1

g(Pi)f(Pi) =

m∑

i=1

(gf)(Pi) = 0

for all f ∈ L. Thus, g ∈ (ker(ϕ) : L)
⋂
K∆≺(I) = L⊥. From the equality

(L⊥)X = {(h(P1), . . . , h(Pm)) | h ∈ L⊥},
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we obtain α ∈ (L⊥)X . To show the inclusion (LX)⊥ ⊃ (L⊥)X take α ∈ (L⊥)X , that is,
α = (g(P1), . . . , g(Pm)) for some g ∈ L⊥. Then, gf ∈ ker(ϕ) for all f ∈ L and

〈α, (f(P1), . . . , f(Pm))〉 = 0

for all f ∈ L. From the equality LX = {(f(P1), . . . , f(Pm)) | f ∈ L}, we obtain α ∈ (LX)⊥. �

We will need the following observation.

Lemma 3.6. [28, Lemma 3.1] Let X be a subset of Ks and let LX be a standard evaluation
code on X relative to a monomial order ≺. Then, L

⋂
I(X) = (0) and L ≃ LX .

Proof. We set I = I(X). Take f ∈ L
⋂
I and recall that L is a linear subspace of K∆≺(I). If

f 6= 0, then in≺(f) ∈ in≺(I), a contradiction since all monomials of f are standard monomials
of S/I. Thus, f = 0. Hence, the evaluation map gives an isomorphism between L and LX . �

The next result shows that the dual of L behaves well.

Proposition 3.7. Let LX be a standard evaluation code on X relative to a monomial order ≺
on S and let I = I(X). The following hold.

(a) dimK(L) + dimK(L⊥) = |X|.
(b) The conditions (b1)-(b3) are equivalent

(b1) LX
⋂
(LX)⊥ = (0), (b2) L

⋂
L⊥ = (0), (b3) L+ L⊥ = K∆≺(I).

(c) LX = (LX)⊥ if and only if L = L⊥.
(d) (L⊥)⊥ = L.

Proof. (a): By [27, Theorem 1.2.1], Theorem 3.5 and Lemma 3.6, we get

|X| = dimK(LX) + dimK(LX)⊥ = dimK(LX) + dimK(L⊥)X

= dimK(L) + dimK(L⊥).

(b): (b1) ⇒ (b2) Assume LX
⋂
(LX)⊥ = (0) and take g ∈ L

⋂
L⊥. Then, ev(g) ∈ LX

⋂
(L⊥)X

and, because of Theorem 3.5, we get that ev(g) is in LX
⋂
(LX)⊥ = (0) and ev(g) = 0. Hence,

g ∈ I, and consequently g = 0 because g ∈ K∆≺(I).

(b2) ⇒ (b3) Assume L
⋂
L⊥ = (0). By part (a) one has

|X| = dimK(L) + dimK(L⊥) = dimK(L+ L⊥) + dimK(L
⋂

L⊥).

Hence, |X| = dimK(L + L⊥). From the inclusion L+ L⊥ ⊂ K∆≺(I) and noticing that these
linear spaces have dimension |X| (Lemma 2.7), we get L+ L⊥ = K∆≺(I).

(b3) ⇒ (b1) Assume L + L⊥ = K∆≺(I). The evaluation map “ev” induces an isomorphism

between K∆≺(I) and K
|X|. Then, by Theorem 3.5, we get

LX + (L⊥)X = LX + (LX)⊥ = K |X|

and the dimension of LX + (LX)⊥ is |X|. Therefore, from the equality

|X| = dimK(LX) + dimK(LX)⊥ = dimK(LX + (LX)⊥) + dimK(LX
⋂
(LX)⊥),

we obtain LX
⋂
(LX)⊥ = (0).

(c): ⇒) Assume LX = (LX)⊥. Let P1, . . . , Pm be the points of X. First we show the inclusion
L ⊂ L⊥. Take f ∈ L. Then, ev(f) = (f(P1), . . . , f(Pm)) is in LX . By Theorem 3.5, (LX)⊥ is
equal to (L⊥)X . Thus, there is g ∈ L⊥ such that ev(f) = ev(g) = (g(P1), . . . , g(Pm)). Then
f − g ∈ I, and f = g because f, g are in K∆≺(I). Thus, f ∈ L⊥. Now we show the inclusion
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L⊥ ⊂ L. Take f ∈ L⊥. Then, ev(f) = (f(P1), . . . , f(Pm)) is in (L⊥)X . By Theorem 3.5, (L⊥)X
is equal to (LX)⊥ = LX . Thus, there is g ∈ L such that ev(f) = ev(g) = (g(P1), . . . , g(Pm)).
Then f − g ∈ I, and f = g because f, g are standard polynomials. Thus, f ∈ L.

⇐) Assume L = L⊥. Then, by Theorem 3.5, LX = (L⊥)X = (LX)⊥.

(d): To show the inclusion (L⊥)⊥ ⊂ L take g ∈ (L⊥)⊥. Then gf ∈ ker(ϕ) for all f ∈ L⊥.
Hence 〈ev(g), ev(f)〉 = 0 for all f ∈ L⊥, that is, ev(g) ∈ ((L⊥)X)⊥. By Theorem 3.5 and the
fact that the dual of (LX)⊥ is equal to LX [35, p. 26], one has ((L⊥)X)⊥ = ((LX)⊥)⊥ = LX .
Thus, ev(g) ∈ LX and there is h ∈ L such that ev(g) = ev(h). From this equality we get that
g − h is in I. As g, h are in K∆≺(I), it follows that g = h and g ∈ L. To show the inclusion
L ⊂ (L⊥)⊥ take f ∈ L. Then ev(f) ∈ LX . For any g ∈ L⊥, one has gL ⊂ ker(ϕ). In particular,
gf ∈ ker(ϕ) for any g ∈ L⊥, and consequently f is in (ker(ϕ) : L⊥)

⋂
K∆≺(I) = (L⊥)⊥. �

Proposition 3.8. Let LX be an evaluation code on X and let ≺ be a monomial order on S. If
I(X) is a binomial ideal and L is a monomial space, then LX is a standard monomial code.

Proof. There exists a Gröbner basis G of I(X) consisting of binomials [43, Lemma 8.2.17]. The
linear space L is generated by a finite set {ta1 , . . . , tak} of monomials. By the division algorithm
[11, Theorem 3, p. 63] it follows that the remainder ri on division of tai by G is a monomial.

Hence, L̃ = K{r1, . . . , rk} is a monomial space. �

Let A = {xc1 , . . . , xcs} be a finite set of monomials in a polynomial ring K[x1, . . . , xn]. The
affine set parameterized by A is the set X of all points (xc1(α), . . . , xcs(α)) such that α ∈ Kn.
The next result gives a wide class of standard monomial codes that includes the family of
parameterized affine codes [34] and the subfamily of q-ary Reed–Muller codes [25].

Corollary 3.9. If X is parameterized by monomials and L is a monomial space, then LX is a
standard monomial code. In particular if L = S≤d, then LX is a standard monomial code.

Proof. By [41, Theorem 4, p. 435], I(X) is a binomial ideal. Hence, by Proposition 3.8, LX is
a standard monomial code. �

Using the equality (LX)⊥ = (L⊥)X (Theorem 3.5) and the next result we obtain an effective
criterion to verify whether or not the dual of an evaluation code is a standard monomial code.

Proposition 3.10. Let LX be an evaluation code on X, let I be the vanishing ideal of X, and
let ≺ be a monomial order. Then, (L⊥)X is a standard monomial code on X if and only if

|(ker(ϕ) : L)
⋂

∆≺(I)| = |X| − dimK(LX).

Proof. By Corollary 3.2, the standard function space of (L⊥)X is equal to L⊥ because L⊥ is
generated by standard polynomials of S/I. Then, as (L⊥)X is a standard evaluation code, one
has L⊥ ≃ (L⊥)X (Lemma 3.6). Hence, by Theorem 3.5, we get

(3.1) dimK(L⊥) = dimK(L⊥)X = dimK(LX)⊥ = |X| − dimK(LX).

⇒) Let B be a finite monomial K-basis for L⊥. By Eq. (3.1), |B| is equal to |X|−dimK(LX).
Hence, the desired equality follows by noticing that (ker(ϕ) : L)

⋂
∆≺(I) = B.

⇐) There are monomials ta1 , . . . , tan in (ker(ϕ) : L)
⋂

∆≺(I) with n = |X| − dimK(LX). By
Eq. (3.1), one has dim(L⊥) = n. Hence, as tai ∈ L⊥ for all i, we get L⊥ = K{ta1 , . . . , tan}. �
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3.1. Computing a basis. In this subsection we show an effective algorithm to compute the
dimension and a K-basis for a linear subspace of S of finite dimension. Let (S∗)<ω be the set
of finite subsets of S∗ = S \ {0}, let ≺ be the graded reverse lexicographical order (GRevLex
order) on S, and let σ and φ be the functions

σ, φ : (S∗)<ω → (S∗)<ω, σ(A) = {g ∈ A | in≺(g) = in≺(max(A))},

φ(A) = ({max(A)− (lc(max(A))/lc(g))g | g ∈ σ(A)} \ {0})
⋃
(A \ σ(A)),

where lc(g) denotes the leading coefficient of g and max(A) is any polynomial in A whose initial
monomial is max{in≺(g) : g ∈ A}. Note that σ(A) is the set of all polynomials in A with largest
initial monomial relative to ≺ and, hence, is independent of the choice of max(A). The following
result is based on Gaussian elimination.

Theorem 3.11. (Basis algorithm) Let L = KA be a subspace of S generated by a finite subset
A of S∗. Then one can construct a K-basis for L using the following algorithm:

Input: A
Output: a K-basis B for L
Initialization: B := A
while B 6= ∅ list max(B) do B := φ(B).

Proof. As σ(B) ⊂ B we can write B = {g1, . . . , gn}, where σ(B) = {g1, . . . , gr}, r ≤ n, and
in≺(g1) is equal to in≺(gi) for i = 1, . . . , r. Any gi ∈ σ(B) can be chosen to be max(B). Setting
g1 := max(B) and hi := g1 − (lc(g1)/lc(gi))gi for i = 1, . . . , r, one has

φ(B) = ({hi}
r
i=1 \ {0})

⋃
{gi}

n
i=r+1.

Note that in≺(g1) ≻ in≺(gi) for i > r and in≺(g1) ≻ in≺(hi) for i = 2, . . . , r. Thus,
max(B) ≻ max(φ(B)) and the algorithm terminates after a finite number of steps. If the
algorithm terminates at B, that is, B 6= ∅ and φ(B) = ∅, then B = σ(B), g1 = (lc(g1)/lc(gi))gi
for i = 1, . . . , r, and KB = Kg1 = Kmax(B). That the output is a generating set for L = KA
follows by noticing that KB = Kmax(B)+Kφ(B). Finally, we show that the output is linearly
independent over K. The output is the list

B = {max(A),max(φ(A)),max(φ(φ(A))), . . . ,max(φk−1(A))},

where φk−1(A) 6= ∅ and φk(A) = ∅. Since max(φi−1(A)) ≻ max(φi(A)) for i = 1, . . . k − 1 it is
not hard to see that B is linearly independent. �

4. Indicator functions and v-numbers of vanishing ideals

Recall that K is a finite field, X = {P1, . . . , Pm} is a set of points in Ks, |X| ≥ 2, and
I = I(X) is its vanishing ideal. Fix a graded monomial order ≺ on S. In this section we
introduce and study the v-number of I and the indicator functions of X.

We begin with the notion of an indicator function of a point in X [38]. For a projective point
an indicator function is called a separator [20, Definition 2.1].

Definition 4.1. Let X = {P1, . . . , Pm} be a subset of Ks. A polynomial f ∈ S is called an
indicator function for Pi if f(Pi) 6= 0 and f(Pj) = 0 for all j 6= i.

An indicator function f for Pi can be normalized to have value 1 at Pi by considering f/f(Pi).
The following lemma lists basic properties of indicator functions.
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Lemma 4.2. (a) If f, g are indicator functions for Pi in K∆≺(I), then g(Pi)f = f(Pi)g.

(b) The set of indicator functions for Pi is (I : pi) \ I, where pi is the vanishing ideal of Pi.

(c) There exists a unique, up to multiplication by a scalar from K∗, indicator function f for
Pi in K∆≺(I), and f is unique if f(Pi) = 1.

(d) If pi is the vanishing ideal of Pi, then dimK((I : pi)/I) = 1 and (I : pi)/I = Kf for any
indicator function f for Pi, where f = f + I.

Proof. (a): The polynomial h = g(Pi)f − f(Pi)g vanishes at all points of X, that is, h ∈ I.
If h 6= 0, then the initial monomial of h is in the initial ideal of I, a contradiction since all
monomials of h are standard. Thus, h = 0 and g(Pi)f = f(Pi)g.

(b): Note the equalities I =
⋂m

j=1 pj (Lemma 2.4) and (I : pi) =
⋂

j 6=i pj . Let f be an indicator

function for Pi, then f 6∈ pi and f ∈ pj for j 6= i. Thus, f ∈ (I : pi) and f /∈ I. Conversely, take
f in (I : pi) \ I. Then, f ∈

⋂
j 6=i pj and f /∈ pi. Thus, f is an indicator function for Pi.

(c): The existence of f follows from the division algorithm [11, Theorem 3, p. 63] and part
(b) because (I : pi) \ I 6= ∅. The uniqueness of f follows from part (a).

(d): Let f be an indicator function for Pi. By part (b), f is in (I : pi) \ I. Therefore, one
has (I : pi)/I ⊃ Kf . To show the other inclusion take 0 6= g ∈ (I : pi)/I and note that g is an
indicator function for Pi by part (b). By the division algorithm [11, Theorem 3, p. 63], one has

(I : pi)/I = {h | h ∈ (I : pi)
⋂
K∆≺(I)}.

Hence, using part (b), we may assume that f is an indicator function for Pi in K∆≺(I), and
we can write g = h for some h in (I : pi)

⋂
K∆≺(I). By part (b), h is an indicator function for

Pi. Hence, by part (a), we get g = h = λf , λ = h(Pi)/f(Pi). Thus, g ∈ Kf . �

The following numerical invariant will be used to determine the regularity index of the mini-
mum distance of a Reed–Muller-type code (Proposition 6.2).

Definition 4.3. The v-number of I = I(X), denoted v(I), is given by

v(I) := min{d ≥ 0 | there is 0 6= f ∈ S, deg(f) = d, and p ∈ Ass(I) with (I : f) = p},

where Ass(I) is the set of associated primes of S/I.

The v-number is finite by the definition of associated primes and v(I) ≥ 1 because |X| ≥ 2.
Let p1, . . . , pm be the associated primes of I, that is, pi is the vanishing ideal IPi

of Pi. One can
define the v-number of I at each pi by

vpi(I) := min{d ≥ 0 | ∃ 0 6= f ∈ S, deg(f) = d, with (I : f) = pi}.

Lemma 4.4. The least degree of an indicator function for Pi is equal to vpi(I).

Proof. A polynomial f ∈ S is an indicator function for Pi if and only if (I : f) = pi. This follows
using that the primary decomposition of I is given by I =

⋂m
j=1 pj (Lemma 2.4) and noticing

that (I : f) =
⋂

f /∈pj
pj Hence, vpi(I) is the minimum degree of an indicator function for Pi. �

Note that the v-number of I is equal to min{vpi(I)}
m
i=1. To compute the v-number using

Macaulay2 [24] (Example 8.5), we give a description for the v-number of I using initial degrees
of certain ideals of the quotient ring S/I.

For an ideal M 6= 0 of S/I, we define α(M) := min{deg(f) | f ∈ M,f /∈ I}. The next result
was shown in [10, Proposition 4.2] for unmixed graded ideals. For vanishing ideals we prove that
the graded assumption is not needed.
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Proposition 4.5. Let I ⊂ S be the vanishing ideal of X. Then

v(I) = min{α ((I : p)/I) | p ∈ Ass(I)},

and α ((I : p)/I) = vp(I) for p ∈ Ass(I).

Proof. Let p1, . . . , pm be the associated primes of I. If I is the vanishing ideal of a point, then
(I : 1) = I, (I : I) = S, and v(I) = α(S/I) = 0. Thus, we may assume that X has at least two
points. Since v(I) = min{vpi(I)}

m
i=1, we need only show that α ((I : p)/I) is equal to vp(I) for

p ∈ Ass(I). Fix 1 ≤ k ≤ m. There is f ∈ S such that (I : f) = pk and vpk(I) = deg(f). Then,
f ∈ (I : pk) \ I and

vpk(I) = deg(f) ≥ α((I : pi)/I).

Since I =
⋂m

i=1 pi (
⋂

i 6=k pi = (I : pk), we can pick a polynomial g in (I : pk) \ I such that

α((I : pk)/I) = deg(g). Note that g 6∈ pk since g /∈ I. Therefore, from the inclusions

pk ⊂ (I : g) =

m⋂

i=1

(pi : g) =
⋂

g 6∈pi

pi ⊂ pk,

we get (I : g) = pk, and consequently vpk(I) ≤ deg(g) ≤ α((I : pk)/I). �

By the next result, for each Pi in X there is a unique indicator function fi for Pi in K∆≺(I)
of degree vpi(I) satisfying fi(Pi) = 1. We call F = {f1, . . . , fm} the set of standard indicator
functions for X (Example 8.5).

Proposition 4.6. Let X = {P1, . . . , Pm} be a subset of Ks, let I = I(X) be its vanishing ideal,
and let ≺ be a graded monomial order on S. The following hold.

(a) For each 1 ≤ i ≤ m there is a unique fi in K∆≺(I) such that fi(Pi) = 1 and fi(Pj) = 0 if
j 6= i. The degree of fi is vpi(I) and the set F = {f1, . . . , fm} is a K-basis for K∆≺(I).

(b) ker(ϕ) = K{fi − fm}m−1
i=1 + I.

(c) K{fi − fm}m−1
i=1 = ker(ϕ)

⋂
K∆≺(I) = K⊥.

(d) If r0 = reg(Ha
I ), then deg(fi) ≤ r0 for all i and deg(fj) = r0 for some j.

Proof. (a): The existence and uniqueness of fi follows from Lemma 4.2. By Proposition 4.5, we
can pick g ∈ (I : pi)\I such that vpi(I) = α ((I : pi)/I) = deg(g). As ≺ is graded, by the division
algorithm [11, Theorem 3, p. 63], we can write g = h+rg for some h ∈ I and some rg ∈ K∆≺(I)
with deg(rg) ≤ deg(g). Noticing that rg ∈ (I : pi) \ I, we get deg(rg) = deg(g). Since rg is an
indicator function for Pi in K∆≺(I), by Lemma 4.2(a), we get rg = λfi for some λ ∈ K∗. Thus
deg(fi) = vpi(I). To show that F is linearly independent assume that

∑m
i=1 λifi = 0 for some

λ1, . . . , λm in K. Hence, evaluating both sides of this equality at each Pj gives λj = 0. Now, the
dimension of the linear space K∆≺(I) is m = |X| because |∆≺(I)| = |X| (Lemma 2.7). Thus,
F is a K-basis for K∆≺(I).

(b): First we show the inclusion “⊃”. Clearly ker(ϕ) ⊃ I. Thus, this inclusion follows by
noticing that fi − fm is in the kernel of ϕ since ϕ(fi − fm) = fi(Pi) − fm(Pm) = 0. To show
the inclusion “⊂” take f ∈ ker(ϕ). By the division algorithm, we can write f = h+ rf for some
h ∈ I and rf ∈ K∆≺(I). By part (a) we can write rf =

∑m
i=1 λifi for some λi’s in K. Then, by

noticing that rf ∈ ker(ϕ), we get ϕ(rf ) =
∑m

i=1 λi = 0, and consequently

rf =

(
m−1∑

i=1

λifi

)
+ λmfm =

m−1∑

i=1

λi(fi − fm).

Thus, f = h+ rf ∈ I +K{fi − fm}m−1
i=1 .
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(c): This follows from the proof of part (b).

(d): By Lemma 2.7 one has the inclusion K∆≺(I) ⊂ S≤r0 . Thus, deg(fi) ≤ r0 for all i. Note
that Ha

I (r0 − 1) < Ha
I (r0) by definition of r0 = reg(Ha

I ). Then, by Lemmas 2.6 and 2.7, we
obtain ∆≺(I) 6⊂ S≤r0−1. Hence, we can pick ta ∈ ∆≺(I) of degree r0. Then, by part (a), ta is in
K{f1, . . . , fm}, and consequently deg(fj) = r0 for some j. �

Remark 4.7. Using Lemma 4.2 and the ideal (I : pi)/I of Proposition 4.5, we obtain an algebraic
method to compute the standard indicator functions for X (Example 8.5, Procedure A.1).

Remark 4.8. It is convenient to have a matrix interpretation of the standard indicator functions
for X. Recall that the evaluation map defines an isomorphism of vector spaces

ev : K∆≺(I) → Km.

The standard monomials ∆≺(I) ordered using ≺ form a basis for K∆≺(I). Also an order of
the points in X = {P1, . . . , Pm} defines the standard basis for Km. We let Mev be the matrix
of the evaluation map in these bases, i.e. the i-th column of Mev consists of the values of the
i-th standard monomial at P1, . . . , Pm. Then the i-th column of the inverse M−1

ev consists of the
coefficients, relative to ∆≺(I), of the standard indicator function fi for Pi.

5. Duality of standard monomial codes

We continue with our original setup where K is a finite field, X a subset of Ks of size at least
two, and I = I(X) the vanishing ideal of X. Fix a monomial order ≺ and let ∆≺(I) be the
corresponding set of standard monomials. In this section we consider standard monomial codes,
that is evaluation codes defined by subspaces which have a basis of standard monomials.

Definition 5.1. Given a subset Γ ⊂ ∆≺(I), let L(Γ) be the K-span of the set of all monomials
u ∈ Γ. Then L(Γ)X is called the standard monomial code corresponding to Γ.

Consider two standard monomial codes L(Γ1)X and L(Γ2)X for some Γ1,Γ2 ⊂ ∆≺(I). The
main result of this section (Theorem 5.4 below) is a combinatorial condition for L(Γ1)X to be

monomially equivalent to the dual L(Γ2)X
⊥. In what follows Γ1Γ2 denotes the pair-wise product

of the subsets, i.e.
Γ1Γ2 = {u1u2 ∈ S | u1 ∈ Γ1, u2 ∈ Γ2}.

Also, we write u ∈ K∆≺(I) for the representative of u ∈ S modulo the ideal I.

First, recall the definition of monomial equivalence of codes and its properties.

Definition 5.2. We say that two linear codes C1, C2 in Km are monomially equivalent if there
is β = (β1, . . . , βm) in Km such that βi 6= 0 for all i and C2 = β · C1 = {β · c | c ∈ C1}, where
β · c is the vector given by (β1c1, . . . , βmcm) for c = (c1, . . . , cm) ∈ C1.

Remark 5.3. Monomial equivalence of codes is an equivalence relation. If C2 = β · C1, then
C1 = β−1 · C2, (β · C2)

⊥ = β−1 · C⊥
2 , and if C⊥

1 = β · C2, then C
⊥
2 = β · C1.

To state the main result we will need the following definition. We say a standard monomial
te ∈ ∆≺(I) is essential if it appears in each standard indicator function ofX (cf. Proposition 4.6).

Theorem 5.4. Let X be a subset of Ks of size m = |X| ≥ 2, and I = I(X) be the vanishing ideal
of X. Fix a monomial order ≺ and let te ∈ ∆≺(I) be essential. Then for any Γ1,Γ2 ⊂ ∆≺(I)
satisfying

(1) |Γ1|+ |Γ2| = |X|,
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(2) te does not appear in u for any u ∈ Γ1Γ2,

we have β · L(Γ1)X = L(Γ2)X
⊥, for some β = (β1, . . . , βm) ∈ (K∗)m. Moreover, βi is the

coefficient of te in the i-th standard indicator function fi, for i = 1, . . . ,m.

Proof. Let β ∈ (K∗)m be as in the statement of the theorem. Then, by Remark 4.8, β is the
last row of the matrix M−1

ev . Clearly β is orthogonal to all but the last column of Mev. Since
ev is an isomorphism, there is a unique polynomial g ∈ K∆≺(I) such that g(Pi) = βi for
Pi ∈ X, i = 1, . . . ,m. Therefore, the orthogonality property is equivalent to ϕ(gta) = 0 for any
ta ∈ ∆≺(I), t

a 6= te. By linearity, this implies

(5.1) ϕ(gf) = 0 for any f ∈ K (∆≺(I) \ {t
e}) .

Now pick any hi ∈ L(Γi), for i = 1, 2. Note that the monomials appearing in h1h2 belong
to Γ1Γ2. Let f = h1h2 ∈ K∆≺(I) be the representative of h1h2 modulo I. Then, according to
condition (2) above, the essential monomial te does not appear in f . Therefore, we have

ϕ(gh1h2) = ϕ(gf) = 0,

by Eq. (5.1). This shows that gL(Γ1) ⊂ (ker(ϕ) : L(Γ2)). Applying the evaluation map to both
sides and using Theorem 3.5, we obtain

β · L(Γ1)X ⊂ L(Γ2)X
⊥.

Finally, condition (1) ensures that the above inclusion is equality, as

dimK (β · L(Γ1)X) = dimK(L(Γ1)X) = |Γ1| = |X| − |Γ2| = dimK(L(Γ2)X
⊥).

Note that the first equality holds since βi 6= 0 for all i, as te is essential. �

Remark 5.5. Note that in the case when Γ1Γ2 is contained in ∆≺(I), condition (2) in the
statement of Theorem 5.4 can be relaxed to Γ1Γ2 ⊂ ∆≺(I) \ {t

e}.

Duality formulas for certain toric complete intersection codes are given in [9, Theorem 3.3].
These codes are a generalization of projective evaluation codes on complete intersections.

6. A duality criterion for Reed–Muller-type codes

In this section we concentrate on the class of evaluation codes, called Reed–Muller-type codes,
defined by evaluating the subspace of polynomial of total degree up to d at a set of points
X ⊂ Ks. As before we assume X = {P1, . . . , Pm} where m ≥ 2. The main result of this
section is a duality criterion for Reed–Muller-type codes. It is then applied to the case when
the vanishing ideal I = I(X) is Gorenstein.

Definition 6.1. [13, 23] Fix a degree d ≥ 1 and let S≤d =
⊕d

i=0 Si be the K-linear subspace of
S of all polynomials of degree at most d. If L = S≤d then the resulting evaluation code LX is
called a Reed–Muller-type code of degree d on X and is denoted by CX(d).

The minimum distance of CX(d) is simply denoted by δX(d). As is seen below the v-number
of I = I(X) is related to the asymptotic behavior of δX(d) for d≫ 0. There is n ∈ N such that

|X| = δX(0) > δX(1) > · · · > δX(n − 1) > δX(n) = δX(d) = 1 for d ≥ n,

see Proposition 2.2. The number n, denoted reg(δX ), is called the regularity index of δX .

Proposition 6.2. If I = I(X), then v(I) = reg(δX) ≤ reg(Ha
I ).
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Proof. By of the Singleton bound for linear codes [27, p. 71], δX(d) = 1 for d ≥ reg(Ha
I ). Thus,

reg(δX) ≤ reg(Ha
I ). By Lemma 4.4, v(I) is the minimum degree of the indicator functions of

the points of the set X. Then, there is a point Pi and an indicator function f for Pi such that
n0 = v(I) = deg(f). Thus, δX(n0) = 1 and reg(δX) ≤ v(I). If n = reg(δX) < v(I), then
δX(n) = 1, and consequently there is g ∈ S≤n and there is a point Pj such that g is an indicator
function for Pj , a contradiction because n0 = v(I) ≤ deg(g) ≤ n. �

Lemma 6.3. Let I be the vanishing ideal of X, let r0 be the regularity index of Ha
I , and let C

be the set S≤r0−1
⋂
K∆≺(I). The following are equivalent.

(a) C⊥ := (ker(ϕ) : C)
⋂
K∆≺(I) = Kg for some 0 6= g ∈ S.

(b) CX(r0 − 1)⊥ = K(g(P1), . . . , g(Pm)) for some 0 6= g ∈ K∆≺(I).
(c) Ha

I (r0 − 1) + 1 = |X|.

Proof. (a) ⇒ (b): Under the evaluation map “ev” the left (resp. right) hand side of the equality
C⊥ = Kg map onto CX(r0 − 1)⊥ (resp. K(g(P1), . . . , g(Pm))).

(b) ⇒ (c): 1 = dimK(CX(r0 − 1)⊥) = |X| − dimK(CX(r0 − 1)) = |X| −Ha
I (r0 − 1).

(c) ⇒ (a): Using Proposition 3.7 together with the equality C = K(S≤r0−1
⋂

∆≺(I)) and
Lemma 2.6, we get dimK(C⊥) = |X| − dimK(C) = |X| −Ha

I (r0 − 1) = 1. Hence, dimK(C⊥) = 1,

and C⊥ = Kg for some 0 6= g ∈ S. �

Proposition 6.4. Let I be the vanishing ideal of X and let r0 be the regularity index of Ha
I .

Then, there exists g ∈ K∆≺(I) such that

CX(r0 − 1)⊥ = K(g(P1), . . . , g(Pm))

and g(Pi) 6= 0 for all i if and only if Ha
I (r0 − 1) + 1 = |X| and vpi(I) = r0 for all i.

Proof. By Lemma 6.3, CX(r0 − 1)⊥ = K(g(P1), . . . , g(Pm)) if and only if Ha
I (r0 − 1) + 1 = |X|.

Note that the latter is equivalent to having exactly one standard monomial of degree r0 in ∆≺(I),
by Lemma 2.6. Thus we only need to prove that g(Pi) 6= 0 for all i if and only if vpi(I) = r0
for all i. Recall that vpi(I) equals the degree of the i-th standard indicator function fi, see
Proposition 4.6. Let Mev be the matrix defined in Remark 4.8. Since M−1

ev Mev = Im, the m-th
row (c1, . . . , cm) of M−1

ev is orthogonal to the first m − 1 columns of Mev, i.e. (c1, . . . , cm) is
orthogonal to CX(r0 − 1). By Remark 4.8, ci is the coefficient in fi of the monomial of degree
r0. We obtain g(Pi) 6= 0 for all i if and only if ci 6= 0 for all i, which happens if and only
vpi(I) = deg(fi) = r0 for all i. �

We come to one of our main results.

Theorem 6.5. (Duality criterion) Let X be a subset of Ks, |X| ≥ 2, let I = I(X) be its
vanishing ideal, let r0 be the regularity index of Ha

I , and let ≺ be a graded monomial order. The
following conditions are equivalent.

(a) CX(d) is monomially equivalent to CX(r0 − d− 1)⊥ for −1 ≤ d ≤ r0.
(b) Ha

I (d) +Ha
I (r0 − d− 1) = |X| for −1 ≤ d ≤ r0 and r0 = vp(I) for p ∈ Ass(I).

(c) There is g ∈ K∆≺(I) such that g(Pi) 6= 0 for all i and

CX(r0 − d− 1)⊥ = (g(P1), . . . , g(Pm)) · CX(d) for −1 ≤ d ≤ r0.

Moreover, one can choose g =
∑m

i=1 lc(fi)fi, where fi is the i-th standard indicator
function and lc(fi) is its leading coefficient.



THE DUAL OF AN EVALUATION CODE 19

Proof. (a)⇒ (b): Since dimK(CX(r0−d−1)⊥) = |X|−Ha
I (r0−d−1) and dimK(CX(d)) = Ha

I (d),
one has Ha

I (r0 − d − 1) +Ha
I (d) = |X| because equivalent codes have the same dimension. As

CX(0) is equivalent to CX(r0 − 1)⊥, there is β = (β1, . . . , βm) in Km such that βi 6= 0 for all
i and CX(r0 − 1)⊥ = β · CX(0) = Kβ. The image of S≤r0 under the evaluation map “ev” is

equal to K |X|. This follows from the equalities Ha
I (r0) = dimK(S≤r0/I≤r0) = |X|. Hence, by

the division algorithm, it follows that there is g ∈ K∆≺(I) such that β = (g(P1), . . . , g(Pm)).
Then, by Proposition 6.4, we get vp(I) = r0 for p ∈ Ass(I).

(b) ⇒ (c): This implication follows from Theorem 5.4 if we let Γ1 and Γ2 be the set of
monomials in ∆≺(I) of degree up to d and up to r0 − d − 1, respectively. Then we have
L(Γ1) = S≤d

⋂
K∆≺(I) and L(Γ2) = S≤r0−d−1

⋂
K∆≺(I) and, consequently,

L(Γ1)X = CX(d) and L(Γ2)X = CX(r0 − d− 1).

The largest standard monomial te with respect to ≺ has total degree r0 (Lemma 2.7). By
Proposition 2.8(d), there exists a unique standard monomial of degree r0 that is equal to te.
Now, the condition r0 = vp(I) for all p ∈ Ass(I) means that every standard indicator function
fi has total degree r0 (Proposition 4.6(a)) and, hence, the leading monomial of every fi is equal
to te. Thus, te is an essential monomial. Furthermore, condition (1) of Theorem 5.4 translates
to Ha

I (d) +Ha
I (r0 − d − 1) = |X| (Lemma 2.6). Also, since d + (r0 − d + 1) < r0 we see that

Γ1Γ2 ⊂ ∆≺(I) \{t
e} and, hence, condition (2) of Theorem 5.4 is also satisfied (see Remark 5.5).

Therefore, by Theorem 5.4, we get

β · L(Γ1)X = L(Γ2)X
⊥,

where βi is the coefficient of te in the i-th standard indicator function fi for i = 1, . . . ,m. Setting
g =

∑m
i=1 lc(fi)fi, one has g(Pi) = lc(fi) = βi for all i.

(c) ⇒ (a): This follows from the definition of equivalent codes. �

The next result is known for a complete intersection homogeneous vanishing ideal I [22,
Lemma 3]. As an application we show this result under weaker conditions.

Corollary 6.6. Let X be a subset of Ks, let I be its vanishing ideal, and let r0 be the regularity
index of Ha

I . If Ha
I (r0 − 1) + 1 = |X| and r0 = vp(I) for p ∈ Ass(I), then δ(CX (r0 − 1)) = 2.

Proof. By Theorem 6.5, CX(r0 − 1)⊥ is equivalent of K(1, . . . , 1) = CX(0). Hence, CX(0)⊥ is
equivalent to CX(r0 − 1). Since CX(0) is a repetition code, it is easy to see that CX(0)⊥ has
minimum distance 2. Therefore, δ(CX (r0 − 1)) = 2. �

Definition 6.7. [20, p. 171] Let Y be a finite subset of a projective space Ps over a field K
and let I(Y ) be its homogeneous vanishing ideal in R = K[t0, . . . , ts]. We say that Y is a
Cayley–Bacharach scheme (CB-scheme) if every hypersurface of degree less than reg(R/I(Y ))
that contains all but one point of Y must contain all the points of Y .

To show the following proposition we need a result of Geramita, Kreuzer and Robbiano [20,
Corollary 3.7] about CB-schemes. In loc. cit. the field K is assumed to be infinite [20, p. 165]
but the result that we need it is seen to be valid for finite fields.

Proposition 6.8. Let X be a subset of Ks, let I be its vanishing ideal, and let r0 be the regularity
index of Ha

I . If r0 = vp(I) for all p ∈ Ass(I), then

(a) Ha
I (d) +Ha

I (r0 − d− 1) ≤ |X| for 0 ≤ d ≤ r0, and

(b) dimK(CX(d)⊥) ≥ dimK(CX(r0 − d− 1)) for 0 ≤ d ≤ r0.
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Proof. (a): The ideal Ih is the homogeneous vanishing ideal I(Y ) of the set Y = {[P, 1] | P ∈ X}
of points in the projective space Ps (Lemma 2.3). One has the equality Ha

I (d) = HIh(d) for
d ≥ 0 [43, Lemma 8.5.4]. Hence, by [20, Corollary 3.7], it suffices to show that Y is a CB-scheme.
Let f be a homogeneous polynomial of S[u] of degree less than r0 and let Q be a point in X
such that f(P, 1) = 0 for P ∈ X \ {Q}. We need only show that f(Q, 1) = 0. Assume that
f(Q, 1) 6= 0. Consider the polynomial g = f(t1, . . . , ts, 1). Then, g is an indicator function for
Q of degree less than r0, and consequently vq(I) < r0, where q = IQ, a contradiction.

(b): This follows from part (a) and the equality Ha
I (d) + dimK(CX(d)⊥) = |X|. �

In the next theorem (Theorem 6.11 below) we show that when the vanishing ideal I(X)
is Gorenstein then all standard indicator functions fi have the same degree which equals the
regularity of I(X). The proof is based on the following lemma which relates the Castelnuovo–
Mumford regularity and the socle of Artinian rings. Recall that the socle of an Artinian positively
graded algebra N =

⊕
d≥0Nd is

Soc(N) = (0 : N+), where N+ =
⊕

d>0

Nd.

Lemma 6.9. [43, Lemma 5.3.3] Let J be a homogeneous ideal in a polynomial ring R. If R/J
is Artinian then the Castelnuovo–Mumford regularity reg(R/J) equals the maximal degree of
generators of Soc(R/J).

The statement can also be found in [16]. We will also need the following lemma.

Lemma 6.10. Let X = {P1, . . . , Pm} be a subset of Ks and let I = I(X) be its vanishing ideal.
If f ∈ S is an indicator function for Pi of minimum degree d, then its homogenization fh, with
respect to the variable u, is not in the ideal (Ih, u) and deg(f) = vpi(I).

Proof. If fh = g + uh for some g ∈ S[u]d
⋂
Ih, h ∈ S[u]d−1. The ideal Ih is the homogeneous

vanishing ideal of the set Y = {[Pi, 1]}
m
i=1 of projective points in Ps (Lemma 2.3). Hence, setting

H = h(t1, . . . , ts, 1), we get f(Pi) = fh(Pi, 1) = H(Pi) 6= 0 and f(Pj) = fh(Pj , 1) = H(Pj) = 0
for j 6= i, a contradiction because deg(H) < deg(f). By Lemma 4.4, deg(f) = vpi(I). �

Theorem 6.11. Let X = {P1, . . . , Pm} be a subset of Ks and let fi be the i-th standard indicator
function for Pi. If I = I(X) is a Gorenstein ideal and pi is the vanishing ideal of Pi, then
vpi(I) = deg(fi) = reg(Ha

I ).

Proof. Let M = S[u]/Ih and consider the Artinian ring M/uM . Then

Soc(M/uM) = ((Ih, u) : m)/(Ih, u),

where m is the maximal ideal (t1, . . . , ts, u). We set gi = fhi . By Lemma 6.10, gi /∈ (Ih, u).
We claim that gi, the class of gi modulo (Ih, u), is in Soc(M/uM). Indeed, let Pij be the j-th
coordinate of Pi. Then, for any 1 ≤ j ≤ s, the polynomial (tj − Piju)gi vanishes on the set of

projective points Y = {[Pi, 1]}
m
i=1 and, hence, tjgi ∈ (Ih, u) (see Lemma 2.3). Also, ugi ∈ (Ih, u),

trivially. Thus, mgi ∈ (Ih, u) which shows the claim.

Now if S[u]/Ih is Gorenstein, then the socle of M/uM is a K-vector space of dimension 1 [43,
Corollary 5.3.5] spanned by gi. By Lemma 6.9, the Castelnuovo–Mumford regularity of M/uM
equals the degree of gi. It remains to note that since u is regular in M (see Lemma 2.5) and M
is Cohen–Macaulay, the Castelnuovo–Mumford regularity of M/uM and M are equal (cf. [5, p.
175]). Therefore,

vpi(I) = deg(fi) = deg(gi) = reg(M/uM) = reg(M) = reg(Ha
I ),
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where the first equality follows from Proposition 4.6 and the last equality was discussed before
Lemma 2.3. �

Remark 6.12. Note that the above proof implies that in≺(fi) = in≺(fm) and the class of
in≺(fi) modulo the ideal (Ih, u) is in Soc(S[u]/(Ih, u)) for all i. Indeed, by Corollary 2.9(b),
there is only one standard monomial of degree r0 = reg(Ha

I ). Hence in≺(fi) = in≺(fm) because

fi ∈ K∆≺(I). We may assume that gi is monic. Then, gi = in≺(fi) because fhi − in≺(fi) is

equal to uhi for some hi ∈ S, and in≺(fi) is in the socle of S[u]/(Ih, u).

Corollary 6.13. Let X be a set of points in Ks and let I = I(X) be its vanishing ideal. If I is
Gorenstein, then δX(d) ≥ reg(Ha

I )− d+ 1 for 1 ≤ d < reg(Ha
I ).

Proof. Let r0 be the regularity of Ha
I . If r0 = 1, there is nothing to prove. Assume r0 ≥ 2. By

Corollary 6.6, δX(r0−1) = 2. Hence, by Proposition 2.2, we get δX(d) ≥ (r0−1−d)+δX(r0−1).
Thus, δX(d) ≥ r0 − d+ 1. �

Corollary 6.14. Let X be a subset of Ks, let I be its vanishing ideal, and let r0 be the regularity
index of Ha

I . If C = S≤r0−1
⋂
K∆≺(I) and I is Gorenstein, then there is g ∈ S such that

C⊥ = Kg and g(Pi) 6= 0 for all i.

Proof. As I is Gorenstein, by Corollary 2.9, one has 1 = Ha
I (0) = |X| − Ha

I (r0 − 1) and, by
Theorem 6.11, one has r0 = reg(Ha

I ) = vp(I) for all p ∈ Ass(I). Hence, the result follows from
Theorem 6.5. �

The following result can be applied to any Reed–Muller-type code CX(d) when the vanishing
ideal I(X) is a complete intersection generated by a Gröbner basis with s = dim(S) elements
(Corollary 2.9(c)). In particular, since the vanishing ideal of a Cartesian set is a complete
intersection generated by a Gröbner basis with s elements [33, Lemma 2.3], we recover the
duality theorems for affine Cartesian codes given in [2, Theorem 5.7] and [31, Theorem 2.3].

Corollary 6.15. Let X = {P1, . . . , Pm} be a subset of Ks, |X| ≥ 2, let I = I(X) be its vanishing
ideal, let r0 be the regularity index of Ha

I , and let ≺ be a graded monomial order on S. If I is
Gorenstein, then there is g ∈ K∆≺(I) such that g(Pi) 6= 0 for all i and

(g(P1), . . . , g(Pm)) · CX(r0 − d− 1) = CX(d)⊥ for −1 ≤ d ≤ r0.

Moreover, one can choose g =
∑m

i=1 lc(fi)fi, where fi is the i-th standard indicator function and
lc(fi) is its leading coefficient.

Proof. By Corollary 2.9(a) and Theorem 6.11, the two conditions of Theorem 6.5(b) hold, and
the result follows from Theorem 6.5. �

When r0 is odd and char(K) = 2 this construction produces self-dual Reed–Muller-type codes
as the following Corollary shows. Recall that a linear code C is self-dual if C = C⊥.

Corollary 6.16. Let X = {P1, . . . , Pm} be a subset of Ks, |X| ≥ 2, let I = I(X) be its
vanishing ideal, let r0 be the regularity index of Ha

I , and let ≺ be a graded monomial order.
Assume char(K) = 2, r0 is odd, and I is Gorenstein. Define α = (α1, . . . , αm) ∈ (K∗)m by
α2
i = lc(fi), where lc(fi) is the leading coefficient of the i-th standard indicator function fi for
Pi. Then the linear code α · CX((r0 − 1)/2) is self-dual.

Proof. Setting d = (r0 − 1)/2 in Corollary 6.15, we have

(6.1) β · CX((r0 − 1)/2) = CX((r0 − 1)/2)⊥,
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for some β = (g(P1), . . . , g(Pm)) ∈ (K∗)m. Recall that we can choose g such that βi = g(Pi) =
lc(fi). As char(K) = 2, there exists αi ∈ K∗ such that α2

i = βi. Then Eq. (6.1) implies that for
any u, v ∈ CX((r0 − 1)/2),

〈α · u, α · v〉 = 〈β · u, v〉 = 0.

Therefore, α ·CX((r0−1)/2) is contained in its dual and, by Eq. (6.1), has the same dimension
as its dual, i.e. is self-dual. �

7. The algebraic dual of monomial evaluation codes

In this section we study the dual and the algebraic dual of two families of evaluation codes.
If an evaluation code is monomial and the set of evaluation points is a degenerate torus (resp.
degenerate affine space), we show that its algebraic dual is a monomial space (resp. we classify
when its algebraic dual is a monomial space).

7.1. Monomial evaluation codes on a degenerate torus. Let A1, . . . , As be subgroups of
the multiplicative group K∗ of the finite field K = Fq, let

T := A1 × · · · ×As = {P1, . . . , Pm}

be the Cartesian product of A1, . . . , As, and let LT be a monomial code on T , that is, L is
generated by a finite set of monomials of S. The set T is called a degenerate torus [33]. In
this subsection we determine the algebraic dual L⊥ and the dual (LT )

⊥ of LT in terms of the
generators of L and show that (LT )

⊥ is a standard monomial code on T .

The order of the cyclic group Ai is denoted by di for i = 1, . . . , s. Let ≺ be a graded monomial
order on S. The vanishing ideal I = I(T ) is generated by the Gröbner basis G = {tdii − 1}si=1
[33, Lemma 2.3], and consequently ∆≺(I) is the set of all monomials tc, c = (c1, . . . , cs), such
that 0 ≤ ci ≤ di − 1 for i = 1, . . . , s. By Proposition 3.8 and Lemma 3.4, the standard function

space L̃ of LT is a monomial space of S and L⊥ = L̃⊥. Thus, we may assume that L = L̃. Let
A = {ta1 , . . . , tak} ⊂ ∆≺(I) be the unique monomial K-basis of L where

tai = t
ai,1
1 · · · t

ai,s
s , ai = (ai,1, . . . , ai,s) ∈ Ns, for i = 1, . . . , k.

The support of tai , denoted supp(tai), is the set of all tj such that ai,j > 0. To construct a

monomial basis for L⊥ we will need the following set of monomials. For each 1 ≤ i ≤ k, we set
tbi := 1 if tai = 1 and

(7.1) tbi = t
bi,1
1 · · · t

bi,s
s :=

∏

tj∈supp(tai )

t
dj−ai,j
j if tai 6= 1.

The set B := {tb1 , . . . , tbk} has cardinality k, B ⊂ ∆≺(I), and the support of tbi is the support
of tai for i = 1, . . . , k. The regularity index of Ha

I is r0 =
∑s

i=1(di − 1) [33, Proposition 2.5] and
Ha

I (r0) = |∆≺(I)| = |T | = d1 · · · ds (Lemma 2.7).

Lemma 7.1. Let tc, c = (c1, . . . , cs), be a monomial of S. If ci ≡ 0 mod(di) for all i, then
tc /∈ ker(ϕ). If ci 6≡ 0 mod(di) for some i, then tc ∈ ker(ϕ).

Proof. Let P1, . . . , Pm be the points of T and let βi be a generator of the multiplicative cyclic
group Ai for i = 1, . . . , s. Recall that q = pv for some prime number p > 0 and v ∈ N+.
Note that each di is relatively prime to p because di = |Ai| divides q − 1 = |K∗| = |(Fq)

∗|.
Thus, gcd(m, p) = 1 because m = |T | = d1 · · · ds. Assume that ci ≡ 0 mod(di) for all i. Then,
ϕ(tc) =

∑m
i=1 t

c(Pi) = m · 1 and m · 1 6= 0 because gcd(m, p) = 1. Thus, tc /∈ ker(ϕ). Assume
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that ci 6≡ 0 mod(di) for some i. Then, ci ≥ 1. For simplicity of notation assume that i = 1. The
cartesian set T can be partitioned as

T = {P1, . . . , Pm} =

d1⋃

i=1

{(βi1, Q) | Q ∈ A2 × · · · ×As}.

Hence, setting T1 = A2 × · · · ×As, we obtain

ϕ(tc) =

m∑

i=1

tc(Pi) =
(
1 + βc11 + (β21)

c1 + · · ·+ (βd1−1
1 )c1

)


∑

Q∈T1

tc22 · · · tcss (Q)


 .

Hence, using the equality (
∑d1−1

i=0 (βc11 )i)(βc11 −1) = (βc11 )d1−1 = 0 and, noticing that βc11 −1 =

0 if and only if c1 ≡ 0 mod(d1), we get
∑d1−1

i=0 (βc11 )i = 0. Thus, ϕ(tc) = 0 and tc ∈ ker(ϕ). �

The main result in connection with monomial evaluation codes over T is the following.

Proposition 7.2. (Monomial basis) Let L be a subspace with a basis of standard monomials
A = {ta1 , . . . , tak}. Then L⊥ = K(∆≺(I) \ B), where B = {tb1 , . . . , tbk} is defined in Eq. (7.1).

Proof. As |∆≺(I)| = |T | and LX is a standard evaluation code, by Proposition 3.7, one has

dimK(L⊥) = |T | − dimK(L) = |T | − k = |∆≺(I) \ B|.

Thus, to show the equality L⊥ = K(∆≺(I) \ B), we need only show that ∆≺(I) \ B ⊂ L⊥.
Take tα ∈ ∆≺(I)\B, α = (α1, . . . , αs). Since L is generated by the set {ta1 , . . . , tak} it suffices to
show that tαtai is in ker(ϕ) for i = 1, . . . , k. Assume tai = 1. Then, tbi = 1 and tα 6= 1. Hence,
by Lemma 7.1, 1 · tα ∈ ker(ϕ) since tα is a standard monomial of S/I and α 6= 0. Assume that
tai 6= 1. If supp(tα) 6⊂ supp(tai), then there is tj ∈ supp(tα) and tj /∈ supp(tai). Thus, t

αj

j divides

taitα, tℓj does not divide taitα for ℓ > αj , and αj 6≡ 0 mod(dj) because αj ≤ dj − 1. Hence, by

Lemma 7.1, we get taitα ∈ ker(ϕ). The case supp(tα) 6⊃ supp(tai) can be treated similarly. Thus,
we may assume supp(tα) = supp(tai). By definition of tbi one also has supp(tbi) = supp(tai). As
tai 6= 1, by Eq. (7.1), we obtain

taitα = t
ai,1+α1

1 · · · t
ai,s+αs
s =

∏

tj∈supp(hi)

t
dj−bi,j+αj

j .

If cj = dj − bi,j + αj 6≡ 0 mod(dj) for some j, then taitα is in ker(ϕ) by Lemma 7.1. If
cj = dj − bi,j + αj ≡ 0 mod(dj) for all j, then it follows readily that bi,j = αj for all j, that is,

tbi = tα, a contradiction since tα is not in B. �

Corollary 7.3. Let LT be a monomial code on T and let L⊥ be its algebraic dual. Then,
(LT )

⊥ = (L⊥)T and (LT )
⊥ is a standard monomial code on T .

Proof. The linear code (LT )
⊥ is the evaluation code (L⊥)T on T (Theorem 3.5) and L⊥ is

generated by the set of monomials ∆≺(I) \ B (Proposition 7.2). Thus, (LT )
⊥ is a standard

monomial code on T because its standard function space is L⊥. �

Corollary 7.4. [4, 36] Let LT be a generalized toric code on T = (K∗)s, K = Fq, and let L⊥

be its algebraic dual. Then, (LT )
⊥ = (L⊥)T and (LT )

⊥ is a generalized toric code.

Proof. It follows at once from Corollary 7.3 by making Ai = K∗ for i = 1, . . . , s. �
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7.2. Monomial evaluation codes on a degenerate affine space. Let K = Fq be a finite
field of characteristic p, let A1, . . . , As be subgroups of the multiplicative group K∗ of the field
K, let Bi be the set Ai ∪ {0} for i = 1, . . . , s, let

X := B1 × · · · ×Bs = {P1, . . . , Pm}

be the Cartesian product of B1, . . . , Bs, and let LX be a monomial code on X , that is, L is
generated by a finite set of monomials of S. The set X is called a degenerate affine space. In
this subsection we classify when the algebraic dual L⊥ is generated by monomials. We also
classify when the dual (LX )

⊥ of LX is a standard monomial code, and show that in certain
interesting cases (LX )

⊥ is a standard monomial code.

The order of the multiplicative monoid Bi is denoted by ei and the order of Ai is denoted by
di for i = 1, . . . , s. Let ≺ be a graded monomial order on S. By [33, Lemma 2.3], the vanishing
ideal I = I(X ) of X is generated by the Gröbner basis G = {teii − ti}

s
i=1, and consequently

the set of standard monomials ∆≺(I) of S/I is the set of all tc, c = (c1, . . . , cs), such that

0 ≤ ci ≤ di for i = 1, . . . , s. By Proposition 3.8 and Lemma 3.4, the standard function space L̃
of LX is a monomial space of S and L⊥ = L̃⊥. Thus, we may assume that L = L̃. Note that
L has a unique basis A consisting of standard monomials of S/I. We will classify when L⊥ is a
monomial space of S and also when (LX )

⊥ is a standard monomial code in terms of this basis.
Let A = {ta1 , . . . , tak} ⊂ ∆≺(I) be the unique monomial K-basis of L where, as before,

tai = t
ai,1
1 · · · t

ai,s
s , ai = (ai,1, . . . , ai,s) ∈ Ns, for i = 1, . . . , k.

To construct a candidate for a basis of L⊥, for each 1 ≤ i ≤ k, we set

(7.2) tbi = t
bi,1
1 · · · t

bi,s
s :=

s∏

j=1

t
dj−ai,j
j .

The set B := {tb1 , . . . , tbk} has cardinality k and B ⊂ ∆≺(I). The index of regularity of Ha
I is

r0 =
∑s

i=1 di [33, Proposition 2.5] and Ha
I (r0) = |∆≺(I)| = |X | = m = e1 · · · es (Lemma 2.7).

Lemma 7.5. Let tc, c = (c1, . . . , cs), be a monomial of S. The following hold.

(a) If ci 6≡ 0 mod(di) for some i, then tc ∈ ker(ϕ).
(b) If p = char(K) and gcd(ei, p) = p for some i, then 1 ∈ ker(ϕ).
(c) If gcd(ei, p) = p and ci ≡ 0 mod(di) for all i, and |supp(tc)| < s, then tc ∈ ker(ϕ).

(d) If tc = tλ1d1
1 · · · tλsds

s and the λi’s are positive integers, then tc /∈ ker(ϕ).

(e) If gcd(ei, p) = p for all i, then ∆≺(I)
⋂

ker(ϕ) = ∆≺(I) \ {t
d1
1 · · · tdss }.

Proof. Let P1, . . . , Pm be the points of X , m = |X | = e1 · · · es, and let βi be a generator of the
multiplicative cyclic group Ai for i = 1, . . . , s.

(a): Assume that ci 6≡ 0 mod(di) for some i. Then, ci ≥ 1. For simplicity of notation assume
that i = 1. The cartesian set X can be partitioned as

X =

(
d1⋃

i=1

{(βi1, Q) | Q ∈ B2 × · · · ×Bs}

)
⋃

{(0, Q) | Q ∈ B2 × · · · ×Bs}.

Hence, setting X1 = B2 × · · · ×Bs, we obtain

ϕ(tc) =
m∑

i=1

tc(Pi) =
(
1 + βc11 + (β21)

c1 + · · ·+ (βd1−1
1 )c1

)


∑

Q∈X1

tc22 · · · tcss (Q)


 .
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Hence, using the equality (
∑d1−1

i=0 (βc11 )i)(βc11 −1) = (βc11 )d1−1 = 0 and, noticing that βc11 −1 =

0 if and only if c1 ≡ 0 mod(d1), we get
∑d1−1

i=0 (βc11 )i = 0. Thus, ϕ(tc) = 0 and tc ∈ ker(ϕ).

(b): Assume gcd(ei, p) = p for some i. Then, ϕ(1) = (e1 · · · es) · 1 = 0. Thus, 1 ∈ ker(ϕ).

(c): By part (b), we may assume supp(tc) 6= ∅, that is, tc 6= 1. For simplicity of notation
assume that supp(tc) = {t1, . . . , tℓ}, where 1 ≤ ℓ < s. For each 1 ≤ i ≤ ℓ, there is λi ∈ N+ such
that ci = λidi. We set λi = 0 for ℓ < i ≤ s. The set X = {P1, . . . , Pm} can be partitioned as

X = A
⋃
(X \ A), A = A1 × · · · ×Aℓ ×Bℓ+1 × · · · ×Bs.

Note that tc(Pi) = 1 if Pi ∈ A and tc(Pi) = 0 if Pi ∈ X \A. Hence

(7.3) ϕ(tc) =
m∑

i=1

tc(Pi) =
m∑

i=1

tλ1d1
1 · · · tλsds

s (Pi) = ((d1 · · · dℓ)(eℓ+1 · · · es)) · 1.

Since ℓ < s and gcd(ei, p) = p for all i, we get (eℓ+1 · · · es) · 1 = 0. Thus, tc ∈ ker(ϕ).

(d): As gcd(di, p) = 1 for all i, from Eq. (7.3), we get ϕ(tc) = (d1 · · · ds) · 1 6= 0.

(e): The inclusion “⊂” follows from part (d). To show the inclusion “⊃” take a monomial

tc = tc11 · · · tcss in ∆≺(I) \ {t
d1
1 · · · tdss }. Then, ci ≤ di for all i and cj < dj for some j. We need

only show tc ∈ ker(ϕ). By part (a), we may assume ci ≡ 0 mod(di) for all i. Hence cj = 0, and
consequently |supp(tc)| < s. Therefore, by part (c), we get tc ∈ ker(ϕ). �

If (L⊥)X is a standard monomial code, then L⊥ has a unique basis of standard monomials of
S/I because L⊥ is the standard function space of (L⊥)X . The next result identifies this basis
and classifies when (L⊥)X is a standard monomial code.

Proposition 7.6. Let L be a subspace with a basis of standard monomials A = {ta1 , . . . , tak}.
Then (L⊥)X is a standard monomial code on X if and only if L⊥ = K(∆≺(I) \ B), where
B = {tb1 , . . . , tbk} is defined in Eq. (7.2).

Proof. ⇒) By Proposition 3.7, dimK(L⊥) = |X| − k. Assume that L⊥ = K{tγ1 , . . . , tγm−k},
m = |X |, k = dimK(L). Take 1 ≤ ℓ ≤ m − k. Then, tγℓ is in (ker(ϕ) : L)

⋂
K∆≺(I). If

tγℓ is in B = {tb1 , . . . , tbk}, then tγℓ = tbi for some i, and consequently tbiL ⊂ ker(ϕ). Thus,

tγℓtai = tbitai =
∏s

j=1 t
dj
j and, by Lemma 7.5(d),

∏s
j=1 t

dj
j is not in ker(ϕ), a contradiction.

Hence, tγℓ ∈ ∆≺(I) \ B, and we obtain the equality {tγ1 , . . . , tγm−k} = ∆≺(I) \ B because one
has the inclusion “⊂” and these two sets have the same cardinality.

⇐) This part is clear since ∆≺(I) \ B consists of standard monomials. �

Following [4, p. 16], we say that a set of monomials A of S is divisor-closed if ta ∈ A whenever
ta divides a monomial in A. Families of linear codes generated by monomials that are divisor-
closed are also studied in [6]. Applications of these sort of codes to polar codes are given in [7].
To classify when the algebraic dual of LX is generated by monomials, we now introduce a weaker
notion than divisor-closed (cf. [4, Remark 2.5]).

Definition 7.7. A set A = {ta1 , . . . , tak} ⊂ ∆≺(I), t
ai =

∏s
j=1 t

ai,j
j , of standard monomials of

S/I is weakly divisor-closed if
tai∏

tj∈D

t
ai,j
j

is in A for all monomials tai in A and all subsets D of Di := {tj | ai,j = dj}. If D = ∅, the
product

∏
tj∈D

t
ai,j
j is equal to 1 by convention.
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We come to one of the main results of this section.

Theorem 7.8. Let K be a field of characteristic p and let I be the vanishing ideal of X . Assume
that gcd(p, ei) = p, ei = |Bi|, for i = 1, . . . , s. Let L have a monomial basis A = {ta1 , . . . , tak} ⊂
∆≺(I). The following are equivalent.

(a) A is weakly divisor-closed.
(b) L⊥ = K(∆≺(I) \ B), where B = {tb1 , . . . , tbk} is defined in Eq. (7.2).
(c) (LX )

⊥ is a standard monomial code on X .

Proof. (a) ⇒ (b): By Lemma 2.7, one has the equality |∆≺(I)| = |X |. Then, by Proposition 3.7,
one obtains the equalities

dimK(L⊥) = |X | − dimK(L) = |X | − k = |∆≺(I) \ B|.

Thus, to show the equality L⊥ = K(∆≺(I) \ B), we only need to show that ∆≺(I) \ B ⊂ L⊥.
Take tα ∈ ∆≺(I) \ B, α = (α1, . . . , αs). Since L is generated by the set {ta1 , . . . , tak} it suffices
to show that tαtai is in ker(ϕ) for i = 1, . . . , k. Fix 1 ≤ i ≤ k. If αj + ai,j 6≡ 0 mod(dj) for some
j, by Lemma 7.5(a), one has tαtai ∈ ker(ϕ). Thus, we may assume αj +ai,j ≡ 0 mod(dj) for j =
1, . . . , s. There are λ1, . . . , λs in N such that αj +ai,j = λjdj for j = 1, . . . , s. By Lemma 7.5(c),
we may also assume that supp(tαtai) = {t1, . . . , ts} and λj ≥ 1 for all j. If λj = 1 for all j, we
obtain that tα = tbi , a contradiction. If λj ≥ 2 for some j, since αj + ai,j = λjdj ≤ 2dj , we
obtain that λj = 2 and αj = ai,j = dj. Therefore, for each 1 ≤ j ≤ s either αj + ai,j = dj or
αj = ai,j = dj . Next we show that this cannot occur. We set

tδ :=
tai∏

tj∈D

t
ai,j
j

,

where D := {tj | αj = ai,j = dj} is a subset of Di = {tj | ai,j = dj}. Since the set A is

weakly divisor-closed, we get tδ ∈ A, and tδ = tar for some 1 ≤ r ≤ k. From the equalities

tαtar = tαtδ =
∏s

j=1 t
dj
j , we obtain tα ∈ B, a contradiction.

(b) ⇒ (a): Assume that L⊥ = K(∆≺(I) \ B). Take tai in A and let D be a subset of Di. If
D = ∅, there is nothing to prove. For simplicity of notation we may assume that D = {t1, . . . , tℓ}

for some 1 ≤ ℓ ≤ s. Then, we can write tai = td11 · · · tdℓℓ t
γ , where tγ = t

ai,ℓ+1

ℓ+1 · · · t
ai,s
s and

1 ≤ ai,j ≤ dj for j > ℓ. If ℓ = s, by convention tγ = 1. To show that A is weakly divisor-closed
we need only show tγ ∈ A. We proceed by contradiction assuming tγ /∈ A. From the equality

(td11 · · · tdℓℓ t
dℓ+1−ai,ℓ+1

ℓ+1 · · · t
ds−ai,s
s )tγ = td11 · · · tdss ,

we obtain that the monomial tu := td11 · · · tdℓℓ t
dℓ+1−ai,ℓ+1

ℓ+1 · · · t
ds−ai,s
s is not in B since tγ is not in

A. Thus, tu ∈ ∆≺(I) \ Γ ⊂ L⊥. Then, tuL ⊂ ker(ϕ). As tai is in L, one has

(7.4) t2d11 · · · t2dℓℓ t
dℓ+1

ℓ+1 · · · tdss = tutai ∈ ker(ϕ),

a contradiction because by Lemma 7.5(d), the left hand side of Eq. (7.4) is not in ker(ϕ).

(b) ⇔ (c): The linear code (LX )
⊥ is the evaluation code (L⊥)X on X by Theorem 3.5. Thus,

that (b) and (c) are equivalent follows from Proposition 7.6. �

Corollary 7.9. If X = K, L = K{ta11 , . . . , t
ak
1 }, and 0 ≤ a1 < · · · < ak ≤ q − 1, then (LX )

⊥ is
a standard monomial code on X if and only if either ak < q − 1 or ak = q − 1 and 1 ∈ L.
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Proof. We set A1 = K∗, B1 = K, d1 = q − 1, and e1 = q. Note that gcd(q, p) = p, where
p = char(K). By Theorem 7.8, it suffices to note that A = {ta11 , . . . , t

ak
1 } is weakly divisor-closed

if and only if either ak < q − 1 = d1 or ak = q − 1 = d1 and 1 ∈ L. �

Corollary 7.10. [4, Proposition 2.4] Let LX be a standard monomial code on X = Ks, let A
be the monomial basis of L, and let I be the vanishing ideal of X . If A is divisor-closed, then

L⊥ = ∆≺(I) \ {t
q−1−c1
1 · · · tq−1−cs

s : tc11 · · · tcss ∈ A} and (LX )
⊥ = (L⊥)X .

Proof. It follows from Theorems 3.5 and 7.8 by making Bi = K for i = 1, . . . , s. �

We now determine the algebraic dual of K(S≤d

⋂
∆≺(I(X )).

Theorem 7.11. Let K be a field of characteristic p and let I be the vanishing ideal of X . Assume
that gcd(ei, p) = p, ei = |Bi|, for all i. If 1 ≤ d < r0 =

∑s
i=1(ei − 1), A := S≤d

⋂
∆≺(I) =

{ta1 , . . . , tak}, and L = KA, then

L⊥ = K(∆≺(I) \ B) = K(S≤r0−d−1
⋂

∆≺(I)),

where B = {tb1 , . . . , tbk} is defined in Eq. (7.2).

Proof. We set A⊥ := S≤r0−d−1
⋂

∆≺(I), and k = dimK(KA) = Ha
I (d). Note that |A| = |B|.

We claim that A⊥ = ∆≺(I) \ B. As I = I(X ) is a complete intersection, by Corollary 2.9, one
has Ha

I (d) +Ha
I (r0 − d− 1) = |X |. Then, using Lemmas 2.6 and 2.7, one has

Ha
I (r0 − d− 1) = |∆≺(I)

⋂
S≤r0−d−1| = |A⊥| = |X | −Ha

I (d) = |∆≺(I) \ B|.

Hence, to show that A⊥ = ∆≺(I) \ B, we need only show the inclusion “⊃”. Given c ∈ Nn,
c = (c1, . . . , cs), we set |c| :=

∑s
j=1 cj . Take tc ∈ ∆≺(I) \ B, c = (c1, . . . , cs). We proceed by

contradiction. Assume that tc /∈ A⊥, that is, |c| > r0 − d− 1. Setting a = (d1 − c1, . . . , ds − cs),

we get |a| = r0 − |c| < d + 1. Thus, |a| ≤ d and ta ∈ A. As tcta =
∏s

j=1 t
dj
j , we get

tc ∈ B, a contradiction. This proves the claim. Hence, KA⊥ = K(∆≺(I) \ B). The equality
L⊥ = K(∆≺(I) \ B) follows from Theorem 7.8 because A is weakly divisor-closed. �

If L = S≤d, the evaluation code LX on X , denoted by CX (d), is the Reed–Muller-type

code on X of degree d. The codes CX (d)
⊥ and CX (r0 − d − 1) are equivalent (Corollary 6.15,

[2, Theorem 5.7], [31, Theorem 2.3]), the next result shows that they are equal when X is a
degenerate affine space and char(K) divides ei for all i.

Proposition 7.12. Let K be a field of characteristic of p such that gcd(ei, p) = p, ei = |Bi|,
for all i. Then, CX (d)

⊥ = CX (r0 − d− 1) if d < r0 and CX (d)
⊥ = (0) if d = r0.

Proof. Let ≺ be a graded monomial order. If L = S≤d and I = I(X ), then the standard function

space L̃ of LX is K(S≤d

⋂
∆≺(I)) and L̃X = LX = CX (d) (see Proposition 3.1, Corollary 3.2). If

d < r0, then by Theorem 7.11, we obtain the equality (L̃)⊥ = K(S≤r0−d−1

⋂
∆≺(I)). Therefore,

using Theorem 3.5, one has

CX (d)
⊥ = (L̃X )

⊥ = ((L̃)⊥)X = (K(S≤r0−d−1
⋂

∆≺(I)))X

= (S≤r0−d−1)X = CX (d− r0 − 1).

If d = r0, then CX (d) = Km, m = |X |, and CX (d)
⊥ = (0). �
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8. Examples

This section includes examples illustrating some of our results. In Appendix A we give the
implementations in Macaulay2 [24] that are used in some of the examples. The monomial order
≺ that we use in the following examples is the graded reverse lexicographical order (GRevLex
order) [43, p. 343]. This is the default order in Macaulay2.

Example 8.1. Let K be the finite field F3, let S = K[t1, t2, t3] be a polynomial ring, let ≺ be
the GRevLex order on S, let I = I(X) be the vanishing ideal of the set of evaluation points

X = {(1, 1, 1), (1, 1,−1), (0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0, 1, 1), (0, 1,−1)},

let Pi be the point in X in the i-th position from the left, and let pi be the vanishing ideal of
Pi. The ideal I is generated by

G = {t22 − t2, t1t2 − t1, t
2
1 − t1, t

3
3 − t3, t1t

2
3 − t1}

and this set is a Gröbner basis for I. The Reed–Muller code CX(2) is the standard evaluation
code LX where L is the standard function space of CX(2) spanned by the set of remainders

{1, t3, t2, t1, t
2
3, t2t3, t1t3}

of the monomial basis of S≤2 on division by G (Proposition 3.1). The algebraic dual of CX(2)
is L⊥ = K(t1 + t2 + 1) and the dual of CX(2) is K(0, 0, 1, 1, 1, 1, 1, 1).

The homogenization Ih of the ideal I is not Gorenstein, the rings S/Ih and S/in≺(I) have
symmetric h-vector given by (1, 3, 3, 1), and r0 = reg(Ha

I ) = 3. The Reed–Muller code CX(1) is
the standard evaluation code LX , where L = S≤1. The algebraic dual of CX(1) is

L⊥ = K{t1t3 + t2t3 − t1 − t2 − t3 − 1, t1 + t2 + t3 + 1, t2 + t3 − 1, t3}.

If d = 1, the linear code CX(d) is not monomially equivalent to CX(r0 − d − 1)⊥ because
their minimum distances are δ(CX (1)) = 2 and δ(CX(1)⊥) = 3, respectively. Hence, the duality
criterion of Theorem 6.5 fails if we replace condition (b) by Ha

I (d) +Ha
I (r0 − d − 1) = |X| for

−1 ≤ d ≤ r0. Condition (b) of Theorem 6.5 is not satisfied because the unique list, up to
multiplication by scalars from K∗, of standard indicator function for X is:

f1 = t1t3 + t1, f2 = t1t3 − t1, f3 = t2t
2
3 − t23 − t2 + 1, f4 = t2t

2
3 + t2t3 − t23 − t3,

f5 = t2t
2
3 − t2t3 − t23 + t3, f6 = t2t

2
3 − t2, f7 = t2t

2
3 − t1t3 + t2t3 − t1,

f8 = t2t
2
3 + t1t3 − t2t3 − t1,

and vpi(I) = deg(fi) for all i (Proposition 4.6(a)). In particular one has vp1(I) = 2, vp3(I) = 3,
v(I) = 2 and, by Proposition 6.2, the index of regularity reg(δX) of δX is 2. This example
corresponds to Procedure A.1.

Example 8.2. Let K be the finite field F3, let S = K[t1, t2, t3] be a polynomial ring, let ≺ be
the GRevLex order on S, let I = I(X) be the vanishing ideal of the set of evaluation points

X = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), (2, 2, 2)},

let Pi be the point in X in the i-th position from the left, and let pi be the vanishing ideal of
Pi. Adapting Procedure A.1, we obtain the following data. The ideal I is generated by

G ={t2t3 + t23 − t3, t1t3 + t23 − t3, t
2
2 − t23 − t2 + t3,

t1t2 + t23 − t3, t
2
1 − t23 − t1 + t3, t

3
3 − t3},

and this set is a Gröbner basis for I. Then, Gh = {gh | g ∈ G} is a Gröbner basis for Ih,
the homogenization of I with respect to u [43, Proposition 3.4.2]. The ideal Ih is Gorenstein



THE DUAL OF AN EVALUATION CODE 29

because Ih is a Cohen–Macaulay ideal of height 3 and the minimal resolution of S[u]/Ih by free
R-modules, R = S[u], is given by

0 −→ R(−5) −→ R(−3)5 −→ R(−2)5 −→ R −→ R/Ih −→ 0,

see [43, Corollary 5.3.5]. It is seen that I is not a complete intersection, that is, I cannot be
generated by 3 elements. The graded rings S/Ih and S/in≺(I) have symmetric h-vector given
by (1, 3, 1) and r0 = reg(Ha

I ) = 2. The sorted list of standard monomials of S/I is

∆≺(I) = {1, t3, t2, t1, t
2
3},

and the unique set F = {fi}
5
i=1 of standard indicator functions for X with fi(Pi) = 1 for all i is

f1 = t3 + t1 − t23, f2 = t3 + t2 − t23, f3 = −t3 − t23,

f4 = 1 + t3 − t2 − t1 + t23, f5 = t3 − t23.

Setting g = −f1 − f2 − f3 + f4 − f5, one has g(Pi) = −1 for i 6= 4 and g(P4) = 1. By
Theorem 6.5 we obtain

CX(1)⊥ = (g(P1), . . . , g(P5)) · CX(0) = K(−1,−1,−1, 1,−1).

Example 8.3. Let K be the finite field F3, let S = K[t1, t2, t3] be a polynomial ring, let ≺ be
the GRevLex order on S, let I = I(X) be the vanishing ideal of the set of evaluation points

X = {(1, 1,−1), (0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0, 1, 1), (0, 1,−1)},

let Pi be the point in X in the i-th position from the left, and let pi be the vanishing ideal of
Pi. Adapting Procedure A.1, we obtain the following data. The Reed–Muller code CX(1) is the
standard evaluation code LX , where L = S≤1. The algebraic dual of CX(1) is

L⊥ = K{t2t3 − t1 − t2 + t3 + 1, t1 + t2 + 1, t2 − 1},

the minimum distances of CX(1) and its dual CX(1)⊥ are δ(CX (1)) = 1 and δ(CX (1)⊥) = 3,
and r0 = reg(Ha

I ) = 3. If d = 1, then

Ha
I (d) +Ha

I (r0 − d− 1) = Ha
I (1) +Ha

I (1) = 8 > 7 = |X|.

Hence, the inequality of Proposition 6.8(a) does not hold in general. The local v-numbers are
vp1(I) = 1 and vpi(I) = 3 for i ≥ 2. In particular v(I) = 1 and, by Proposition 6.2, the index of
regularity reg(δX ) of δX is 1. If d = 2, then

Ha
I (d) +Ha

I (r0 − d− 1) = Ha
I (2) +Ha

I (0) = 6 + 1 = |X|,

the algebraic dual of CX(2) is K{t1 + t2 +1}, and δ(CX(2)⊥) = 6. The algebraic dual of CX(0)
is equal to ker(ϕ)

⋂
K∆≺(I) and is given by

K{t2t
2
3 − t2t3 − t23 − t1 − t2 − t3 − 1, t2t3 + t23 + t1 + t2 + t3 + 1,

t23 + t1 + t2 + t3, t1 + t2 + t3 − 1, t2 + t3, t3 + 1},

δ(CX (0)⊥) = 2 and δ(CX(2)) = 1. For d = 0, CX(d)⊥ is not equivalent to CX(r0 − d − 1).
This example proves that in Theorem 6.5(b) and Corollary 6.6 the assumption “r0 = vp(I) for
p ∈ Ass(I)” is essential.

Example 8.4. Let X = {P1, . . . , Pm} be a subset of K = Fq, m ≥ 2, let S = K[t1] be
a polynomial ring in one variable, and let F = {f1, . . . , fm} be the unique set of standard
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indicator functions for X such that fi(Pi) = 1 for all i. Then the vanishing ideal I = I(X) is a
principal ideal generated by

∏m
i=1(t1 − Pi), r0 = reg(Ha

I ) = m− 1,

fi =
∏

j 6=i

(t1 − Pj)

/∏

j 6=i

(Pi − Pj),

and lc(fi) =
[∏

j 6=i(Pi − Pj)
]−1

for i = 1, . . . ,m. By Theorem 6.5 we obtain

CX(r0 − d− 1)⊥ = (g(P1), . . . , g(Pm)) · CX(d) for −1 ≤ d ≤ r0,

where g = lc(f1)f1 + · · ·+ lc(fm)fm and g(Pi) = lc(fi) for all i. If X = K, then

K∗ = {Pi − P1, . . . , Pi − Pi−1, Pi − Pi+1, . . . , Pi − Pm},

lc(fi) = lc(fm) for i = 1, . . . ,m, and CX(r0 − d− 1)⊥ = CX(d) for −1 ≤ d ≤ r0.

Example 8.5. Let S = K[t1] be a polynomial ring in one variable over the field K = F7, let
β be a generator of K∗, and let X be the set of points = {β6, β, β4, β5} = {1, 3, 4, 5}. The
vanishing ideal I of X is generated by (t1 − β6)(t1 − β)(t1 − β4)(t1 − β5) and r0 = reg(Ha

I ) = 3.
Let ≺ be the GRevLex order. The set of standard monomials of S/I is

∆≺(I) = {1, t1, t
2
1, t

3
1}.

If L = K{1, t1, t
2
1}, then LX = CX(2). Adapting Procedure A.1, we obtain that the algebraic

dual L⊥ of L is Kg, where g is the polynomial t31 − t21 − 2t1. Evaluating g at each point of X
gives the vector (−2,−2,−2,−1) and

CX(2)⊥ = K(2, 2, 2, 1).

The unique set, up to multiplication by scalars from K∗, of standard indicator functions for
the points β6, β, β4, β5 are

f1 = t31 + 2t21 − 2t1 + 3, f2 = t31 − 3t21 + t1 + 1, f3 = t31 − 2t21 + 2t1 − 1,

f4 = t31 − t21 − 2t1 + 2,

respectively, and they generate K∆≺(I) (Proposition 4.6(a)). The v-number of I at each point
of X is 3, v(I) = 3, and CX(r0−d−1)⊥ is equivalent to CX(d) for −1 ≤ d ≤ r0 (Corollary 6.15).

Example 8.6. Let S = K[t1, t2] be a polynomial ring over the field K = F3, let X be the set

X = {(0, 0), (1, 0), (0, 1), (1, 1), (0,−1)},

let I = I(X) be the vanishing ideal of X, and let ≺ be the GRevLex order on S. Adapting
Procedure A.1, we obtain the following data. The ideal I is generated by

G = {t21 − t1, t
3
2 − t2, t1t

2
2 − t1t2},

and this set is a Gröbner basis of I. Let L be the monomial space K{1, t1, t2} of S. Then one
has L ≃ CX(1), LX = CX(1),

L⊥ = K{t1t2 − t1 + t2, t1 − 1}, CX(1)⊥ = K{(1, 0, 1, 0, 1), (0, 1,−1,−1, 1)},

δ(CX (1)) = 2, δ(CX (1)⊥) = 3, vp(I) = 2 for p ∈ Ass(I), Ha
I (1) = dimK(CX(1)) = 3, Ha

I (2) =
dimK(CX(2)) = 5, and r0 = reg(Ha

I ) = 2. The unique set, up to multiplication by scalars from
K∗, of standard indicator functions for the points of X of Proposition 4.6(a) are given by

f1 = t1t2 − t22 − t1 + 1, f2 = t1t2 − t1, f3 = t1t2 + t22 + t2, f4 = t1t2, f5 = t22 − t2,

and 4 = Ha
I (d) +Ha

I (r0 − d− 1) < |X| = 5 for d = 1.
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Example 8.7. Let S = K[t1, t2] be a polynomial ring over the field K = F7, let β be a generator
of the cyclic group K∗, and let Ai, i = 1, 2, be the cyclic groups A1 = (β2), A2 = (β3). The
orders of β2 and β3 are d1 = 3 and d1 = 2, respectively. Let L be the linear space generated
by B = {1, t1, t2, t1t2} and let LT be the monomial standard evaluation code on T = A1 × A2

relative to the GRevLex order ≺. The vanishing ideal I = I(T ) of T is generated by t31 − 1 and
t22 − 1, the index of regularity of Ha

I is 3, and the set of standard monomials of S/I is

∆≺(I) = {1, t1, t2, t
2
1, t1t2, t

2
1t2}.

According to Proposition 7.2 and Corollary 7.3, the algebraic dual L⊥ is given by

L⊥ = K(∆≺(I) \ B) = K{t1, t1t2}, where B = {1, t21, t2, t
2
1t2},

and (LT )
⊥ = (L⊥)T . The minimum distance δ(LT ) of LT is 2 and δ((LT )

⊥) = 3.

Example 8.8. Let S = K[t1, t2] be a polynomial ring over the field K = F4. We set X = K2,
d1 = d2 = 3, e1 = e2 = 4, and

ta1 = 1, ta2 = t1, t
a3 = t2, t

a4 = t22, t
a5 = t32, t

a6 = t1t
2
2.

Let L be the linear subspace of S generated by A = {ta1 , . . . , ta6} and let LX be the monomial
standard evaluation code on X relative the GRevLex order ≺. The vanishing ideal I = I(X )
of X is generated by te11 − t1 and te22 − t2, the index of regularity of Ha

I is r0 = 6, the set of
standard monomials of S/I is

∆≺(I) = {1, t1, t2, t
2
2, t1t2, t

2
1, t

3
2, t1t

2
2, t

2
1t2, t

3
1, t1t

3
2, t

2
1t

2
2, t

3
1t2, t

3
1t

3
2, t

2
1t

3
2, t

3
1t

2
2},

and A is weakly divisor-closed. Setting tb1 = t31t
3
2, t

b2 = t21t
3
2, t

b3 = t31t
2
2, t

b4 = t31t2, t
b5 = t31,

tb6 = t21t2, according to Theorem 7.8, the algebraic dual L⊥ is given by

L⊥ = K(∆≺(I) \ B) = K{1, t1, t2, t
2
2, t1t2, t

2
1, t

3
2, t1t

2
2, t1t

3
2, t

2
1t

2
2},

where B = {tb1 , . . . , tb6}, and (LX )
⊥ = (L⊥)X . The minimum distance δ(LX ) of LX is 4. Other

examples of sets that are weakly divisor-closed are A∪ {t31t
3
2, t

3
1} and A ∪ {t31t

3
2, t

3
1, t

2
1t

3
2, t

2
1}.

Appendix A. Procedures for Macaulay2

In this appendix we give a procedure for Macaulay2 [24] that is used in some of the examples
presented in Section 8. We use the package NAGtypes, written by Anton Leykin, that defines
types used by the package NumericalAlgebraicGeometry as well as other numerical algebraic
geometry packages.

Procedure A.1. Let LX be an evaluation code and let ≺ be the graded reverse lexicographical
order (GRevLex order) [43, p. 343], which is the default order in Macaulay2 [24]. This procedure

computes the standard function space L̃ and the minimum distance of LX . It determines whether
or not the algebraic dual L⊥ of LX is generated by monomials. If not, it computes a generating
set for L⊥ and then, using the algorithm of Theorem 3.11, it computes a K-basis for L⊥. This
procedure also computes the vanishing ideal I = I(X), the regularity index r0 of the affine
Hilbert function Ha

I , the unique set, up to multiplication by scalars from K∗, of the standard
indicator functions for X (Remark 4.7), and the v-numbers associated to I. This procedure
can be used to check the condition “Ha

I (r0 − d − 1) +Ha
I (d) = |X| for 0 ≤ d ≤ r0” using the

h-vector of the homogenization of I (Proposition 2.8), and to determine whether or not the
homogenization Ih of the ideal I is Gorenstein. This procedure corresponds to Example 8.1.
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load "NAGtypes.m2"

q=3, Fq=GF(q,Variable=>a), S=Fq[t1,t2,t3]

--Evaluation points of the code:

X={{1,1,1},{1,1,-1},{0,0,0},{0,0,1},{0,0,-1}, {0,1,0},

{0,1,1},{0,1,-1}}

--Vanishing ideals of the points:

I1=ideal(t1-1,t2-1,t3-1),I2=ideal(t1-1,t2-1,t3+1),

I3=ideal(t1,t2,t3),I4=ideal(t1,t2,t3-1),I5=ideal(t1,t2,t3+1),

I6=ideal(t1,t2-1,t3),I7=ideal(t1,t2-1,t3-1),I8=ideal(t1,t2-1,t3+1)

I=intersect(I1,I2,I3,I4,I5,I6,I7,I8)--Vanishing ideal

L={I1,I2,I3,I4,I5,I6,I7,I8}--List of ideals

G=gb I, M=coker gens G

r0=regularity I-1 --Regularity of H_I^a

--Computes the remainder of x on division by G:

div=(x)->x % G

--Monomials that define the evaluation code:

Basis=matrix{{1,t1,t2,t3}}

--The list of remainders of Basis after division by G

--gives the standard function space:

cL=toList set apply(flatten entries Basis,div)

(d,r)=(1,1)

--This is the set of all elements of the ground field Fq:

field=set(apply(1..q-1,n->a^n))+set{0}

--Var1 to Var6 are used to compute the minimum distance of L_X:

Var1=(field)^**(#cL)-(set{0})^**(#cL)

Var2=apply(toList (Var1)/deepSplice,toList)

Var3=apply(Var2,x->matrix{cL}*vector x)

Var4=set(apply(apply(Var3,entries),n->n#0))

Var5=subsets(toList set apply(toList Var4,

m->(leadCoefficient(m))^(-1)*m),r)

Var6=apply(apply(Var5,ideal), x-> if #(set flatten entries

leadTerm gens x)==r then degree(I+x) else 0)

md=degree M-max Var6--Minimum distance

ps=(n)->polySystem(n*cL)

--We are redefining d to be r0 to compute the

--algebraic dual

(d,r)=(r0, 1)

--These are the points of X in the right format:

B=apply(X,x->point{toList x})

--The number of elements of P1 is the length of the code

P1=apply(flatten entries basis(0,r0,M),div)

b1=apply(P1,ps)

funct1=(n)->apply(B,x->evaluate(b1#n,x))

MatA=matrix{apply(0..#P1-1,n->{a^(q-1)})}

MatB=matrix{apply(0..#cL-1,n->{a^(q-1)-1})}

funct2=(x)-> if (matrix{funct1(x)}*(MatA)==MatB) then P1#x else 0

--This is the list of standard monomials in the dual code

--If this list has |X|-dim_K(L_X) elements, then
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--the dual of L_X is monomial

dualevaluation1= set apply(0..#P1-1,funct2)-set{0}

--Now we compute the dual when the dual is not monomial

Var7=(field)^**(#flatten entries basis(0,d,M))

Var8=(set{0})^**(#flatten entries basis(0,d,M))

Var9=apply(toList (Var7-Var8)/deepSplice,toList)

Var10=apply(apply(Var9,x->basis(0,d,M)*vector x),entries)

Var11=apply(toList set(apply(Var10,n->n#0)),

m->(leadCoefficient(m))^(-1)*m)

P=rsort(toList set Var11,MonomialOrder=>GRevLex)

b=apply(P,ps)

funct3=(n)->apply(B,x->evaluate(b#n,x))

MatC=matrix{apply(0..#B-1,n->{a^(q-1)})}

MatD=matrix{apply(0..#cL-1,n->{a^(q-1)-1})}

funct4=(x)-> if (matrix{funct3(x)}*(MatC)==MatD) then P#x else 0

--This is a list of generators of the algebraic dual:

dualevaluation= set apply(0..#P-1,funct4)-set{0}

--Next we compute a K-basis for the algebraic dual

--This computes the list of polynomials of a set

--with maximum leading monomial

split=(a) -> set apply(0..#a-1, i-> if leadMonomial(a#i)==

leadMonomial(max(a)) then a#i else 0)-set{0}

--Iterating this function and taking max will give the K-basis

--for the algebraic dual

hhh=(a)->toList((set(apply(toList split(a),x->max(a)-

(leadCoefficient(max a)/leadCoefficient(x))*x))-set{0*t1})+

(set(a)-split(a)))

--Algorithm to compute a basis for a linear subspace

--of K[t1,...,ts] of finite dimension.

--This is a K-basis for the algebraic dual:

DDD=(A=toList dualevaluation; while #A>0 list

max(A)/leadCoefficient(max(A)) do A=hhh(A))

--Next we compute the v-numbers and indicator functions for X

f=(n)->flatten flatten degrees mingens(quotient(I,L#n)/I)

p=(n)->gens gb ideal(flatten mingens(quotient(I,L#n)/I))

minA=monomialIdeal(apply(0..#L-1,p))

vnumber0=min flatten degrees minA

g=(a)->toList(set a-set{0})

N=apply(apply(0..#L-1,f),g)

--This is the list of indicator functions for X:

toList apply(0..#L-1,n->p(n))

--Checking whether or not the homogenization I^h is Gorenstein

R=Fq[t1,t2,t3,u,MonomialOrder=>GRevLex]

J=sub(I,R)

L=ideal(homogenize(gens gb J,u))

HS=hilbertSeries(L)

--This gives the h-vector of the homogenization I^h of I

reduceHilbert(HS)
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--This computes the minimal graded resolution of S/I^h

--that is used to determine whether or not

--the homogenization I^h is Gorenstein

res(coker gens gb L)
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