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Abstract
Subterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption,
MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and
has been selected as a candidate in the second round of NIST’s lightweight cryptography
standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-
round permutation in the duplex. It is the simplicity of the round function that makes it an
attractive target of cryptanalysis. In this paper, we examine the single-round permutation in
various phases of Subterranean 2.0 and specify three related attack scenarios that deserve
further investigation: keystream biases in the keyed squeezing phase, state collisions in the
keyed absorbing phase, and one-round differential analysis in the nonce-misuse setting. To
facilitate cryptanalysis in the first two scenarios, we novelly propose a set of size-reduced toy
versions of Subterranean 2.0: Subterranean-m. Thenwemake an observation for the first time
on the resemblance between the non-linear layer in the round function of Subterranean 2.0
and SIMON’s round function. Inspired by the existing work on SIMON, we propose explicit
formulas for computing the exact correlation of linear trails of Subterranean 2.0 and other
ciphers utilizing similar non-linear operations. We then construct our models for searching
trails to be used in the keystream bias evaluation and state collision attacks. Our results show
that most instances of Subterranean-m are secure in the first two attack scenarios but there
exist instances that are not. Further, we find a flaw in the designers’ reasoning of Subterranean
2.0’s linear bias but support the designers’ claim that there is no linear bias measurable from
at most 296 data blocks. Due to the time-consuming search, the security of Subterranean 2.0
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against the state collision attack in keyed modes still remains an open question. Finally, we
observe that one-round differentials allow to recover state bits in the nonce-misuse setting. By
proposing nested one-round differentials, we obtain a sufficient number of state bits, leading
to a practical state recovery with only 20 repetitions of the nonce and 88 blocks of data. It is
noted that our work does not threaten the security of Subterranean 2.0.

Keywords Subterranean 2.0 · Permutation-based crypto · Keystream bias · State collision ·
State recovery

Mathematics Subject Classification 94A60

1 Introduction

The deployment of small computing devices such as RFID tags, microcontrollers, sensor
nodes, and smart cards is becoming more and more common. Alongside this, the need for
lightweight cryptography that aims to provide security solutions tailored for such resource-
constrained devices is increasing. In 2013, theNational Institute of Standards and Technology
(NIST) initiated a public process to solicit, evaluate, and standardize lightweight authenti-
cated encryption and hashing schemes that are suitable for use in constrained environments,
i.e. the so-called LWC competitions [16]. In 2018, a call for submissions was launched and
57 submissions were received in 2019, among which 56 and 32 submissions were selected
in the first and second rounds respectively. At the current stage, public evaluations of the
candidates are strongly encouraged.

Subterranean 2.0 [8,9] is a cipher suite that can be used for hashing, authenticated encryp-
tion, MAC computation, and stream encryption, etc. It was designed by Daemen, Massolino,
Mehrdad, and Rotella and has been selected by NIST as a candidate for the second round
of LWC competition. Subterranean 2.0 shares features with its predecessor Subterranean [6]
which can be seen as a precursor to the Sponge construction [4]. The features of Subterranean
2.0 are summarized below.

Prime-sized state Subterranean 2.0 operates on a state of 257 bits which is small but still
supports both hashing and authenticated encryption. It offers a security strength of 128
bits in keyed modes and 112 bits in unkeyed mode. In authenticated encryption where a
nonce is used, the nonce should not repeat.

Duplex-based construction The duplex [3] plays a core role in Subterranean 2.0. On top
of it, three functions were built, namely, Subterranean-XOF, Subterranean-deck, and
Subterranean-SAE, where the latter two are keyed functions. The duplex absorbs/squeezes
32-bit blocks in keyed modes and 8-bit blocks in unkeyed mode.

Single-round permutation In the duplex, a lightweight single-round permutation is used.
The round function operates at bit level and has algebraic degree 2. It has a minimum of
substructures and ultimate weak alignment which prevents large classes of attacks.

Blank rounds used Between different phases, 8 blank rounds are used to prevent measurable
characteristics between the controllable input and output.

Efficient hardware implementation Subterranean 2.0 is designed for hardware and offers
a good option for environments that require lightweight crypto in hardware with high
throughput requirements. Besides, it is very suitable for protection against differential
power analysis such as masking and threshold implementations.
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Security analysis of Subterranean 2.0 1877

Due to the extremely simple round function, Subterranean 2.0 is an attractive target for
cryptanalysis. In the design specification [8], the designers mainly investigated the security
of state collisions in unkeyed absorbing and differential/linear properties of a multiple-
round permutation. As a complement, Liu et al. [13] conducted cube-based cryptanalysis
of Subterranean-SAE by exploiting the low algebraic degree of the round function. They
showed that when the number of blank rounds is reduced to 4, one can mount a state recov-
ery attack. Moreover, in the nonce-misuse setting the state recovery attack becomes practical
using 213 blocks of data.

With respect to the simple single-round permutation of Subterranean 2.0, there are inter-
esting attacks in different phases. Below, we list three related attacks in keyed modes that
deserve further investigation.

1. Linear bias of output blocks in keyed squeezing phase. It is claimed in the specification [8]
that there is probably no linear bias over four or less output blocks of Subterranean 2.0 and
that there is no bias measurable from 296 data blocks or less. Any analytical results that
approve or disapprove of these claims can help understand the security of Subterranean
2.0.

2. State collisions in keyed absorbing phase. In keyed modes, state collisions may lead to
attacks like forgeries. However, security analysis of Subterranean 2.0 against such attacks
is missing from the literature.

3. One-round differential analysis of Subterranean-SAE in the message processing phase.
In the phase of processing the message, when a duplex call is invoked, an output block
is squeezed and an input block absorbed before and after the single-round permutation,
respectively. In the case where nonce repeats, one-round differentials can be observed
over successive calls of duplex. It is not clear how far an attack can go by exploiting
one-round differentials.

1.1 Our contribution

In this paper, we examine the security of Subterranean 2.0 in the above three attack scenarios
regarding its single-round permutation. In order to investigate the bias of keystreams and
the state collision attack, it requires to find useful linear and differential trails under certain
constraints. When carrying out differential/linear analysis of Subterranean 2.0, we face two
challenges. The first is that the permutation has only one round and thus cannot be scaled
down through the most common way of reducing the number of rounds for facilitating the
differential/linear analysis. The other is the “dependency” issue that cannot be avoided either
in differential analysis or linear analysis. The round function of Subterranean 2.0 exploits
logic AND of neighbouring bits in the non-linear layer. Namely, state bits si−1, si are fed
into one AND operation and si , si+1 into another. These AND operations are dependent as
neighbouring AND operations share an input bit. Consequently, the AND operations cannot
be treated independently in differential/linear analysis. Such dependency makes it difficult to
precisely evaluate the security of Subterranean 2.0 against linear attacks and state collision
attacks.

In this paper, we use the following techniques to tackle these two challenges.

– We novelly propose a set of toy versions of Subterranean 2.0 with reduced state size.
At first glance, Subterranean 2.0 can be weakened by increasing the rate. However, it
cannot be done without changing the extraction function. Therefore, a better way seems
to reduce the state size. Concretely, we choose a smaller prime number 97, adapt other
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parameters accordingly, and let the factor d used in the round function (see Sect. 2.2) be
all possible values. Then we have a set of toy versions: Subterranean-m(d) which have
much smaller state size and key size but share the same design with the original cipher.

– For the first time in the literature, we observe that the non-linear layer of the round
function of Subterranean 2.0 can be represented by a SIMON-like function. SIMON
[2] is a family of lightweight block ciphers and has been extensively analysed since its
publication, such as differential/linear analyses in [12]. Inspired by the existing work
on SIMON, we propose explicit formulas for computing the exact correlation of linear
trails of Subterranean 2.0 and other ciphers utilizing AND operations. We then build our
models for handling the dependency issue, as well as searching optimal differential/linear
trails of Subterranean 2.0.

Applying our models to Subterranean 2.0 and Subterranean-m, we obtain the following
results.

– For most values of d , Subterranean-m resists the linear attack and the state collision
attack. However, there exist two instances of Subterranean-m(d) which do not resist the
linear attack and the state collision attack respectively. This means different values of d
are not equally good.

– There does exist linear bias over four or three output blocks for Subterranean 2.0 and
Subterranean-m.Ourwork helps to find a flaw in the designers’ reasoning of Subterranean
2.0’s linear biases.

– Our experiments support the designers’ claim that there is no bias measurable from 296

data blocks or less.

Due to the time-consuming search, the security of Subterranean 2.0 against the state collision
attack in keyed modes still remains an open question.

Finally, we exploit the one-round differentials to recover the state in the nonce-misuse
setting. If the nonce repeats, one-round differentials observed in the message processing
phase of Subterranean-SAE will leak some bits of the state due to the algebraic degree 2 of
the round function. Further, we find out that ordinary one-round differentials can recover 41
bits at most. To enlarge the number of state bits that can be recovered, we propose nested
one-round differentials where an one-round differential is prepended to another in a delicate
way. As a result, a sufficient number of state bits can be recovered, which leads to a full state
recovery and further a key recovery. The attack is practical and takes only 20 repetitions of
the nonce and 88 blocks of data, which is much lower than the data complexity of the attack
in [13] by Liu, Isobe andMeier. Our analysis shows that Subterranean-like constructions with
a quadratic single-round permutation must be used carefully in practice since the security
crashes without nonce uniqueness.

1.2 Organization

The rest of the paper is organized as follows. Basic notations, the design of Subterranean 2.0
and a set of toy versions are introduced in Sect. 2. Section 3 highlights several properties of
Subterranean 2.0 and the relation to three attack scenarios: keystream biases, state collisions,
and state recovery in the nonce-misuse setting. Linear attacks and state collisions in the
keyed modes are investigated in Sect. 4. Section 5 presents a state recovery attack utilizing
one-round differentials in the nonce-misuse setting. Finally, we conclude the paper in Sect. 6.
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Security analysis of Subterranean 2.0 1879

2 Notations and specification of Subterranean 2.0

In this section, we start by giving our notations and then briefly introduce Subterranean 2.0,
including its round function, the duplex object and two keyed members: Subterranean-deck
and Subterranean-SAE. To facilitate cryptanalysis of Subterranean 2.0, we introduce a set of
toy versions: Subterranean-m(d). Formore details of Subterranean 2.0, we refer the interested
reader to the official specification [8].

2.1 Notations

b The size of the state

d The factor used in π of the round function

M The string M padded to 33 bits with 10*

ΔX The difference of X where X may be the state or the input/output block

ΔXt
i The difference of the i-th bit of X at time t

≫ Cyclic right shift

≪ Cyclic left shift

| · | The length in bits

|| Concatenation of bit strings

2.2 Round function

The round function R operates on a b-bit state and consists of four bit-oriented steps: R =
π ◦ θ ◦ ι ◦ χ . Let s denote the state and si the i-th bit of s. Then for all 0 ≤ i < b,

χ : si ← si + (si+1 + 1) · si+2,

ι : s0 ← s0 + 1,

θ : si ← si + si+3 + si+8,

π : si ← sd×i .

Here the addition and multiplication of state bits are in F2 and expressions in the indices are
taken modulo b. In Subterranean 2.0, b = 257, d = 12.

2.3 Duplex object and two keyed functions

2.3.1 Duplex object

The Subterranean 2.0 suite is built upon a duplex object which is displayed in Fig. 1. The
duplex uses a single-round permutation, i.e. R, and has two functions: the duplex call and
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Table 1 Indices used for injection and extraction

i 124i −124i i 124i −124i i 124i −124i i 124i −124i

0 1 256 8 64 193 16 241 16 24 4 253

1 176 81 9 213 44 17 11 246 25 190 67

2 136 121 10 223 34 18 137 120 26 30 227

3 35 222 11 184 73 19 211 46 27 140 117

4 249 8 12 2 255 20 128 129 28 225 32

5 134 123 13 95 162 21 169 88 29 22 235

6 197 60 14 15 242 22 189 68 30 17 240

7 234 23 15 70 187 23 111 146 31 165 92

32 256

Fig. 1 Duplex object

the output extraction, the latter of which is optional. The duplex call applies the round
function R and absorbs a string M of at most 32 bits. Before adding the string to the internal
state, the string is padded to 33 bits with 10*. The 33 bits are then injected into the state
s124i , 0 ≤ i < 33. Namely, the injection rate is 33 bits. Before the duplex call, one may
extract 32 bits from the state, each of which is the sum of two state bits:

Zi = s124i + s−124i ,

for all 0 ≤ i < 32. The details of indices used for injection and extraction are shown in
Table 1.

When the input is an empty string, the combination of the round function and the injection
is denoted as Rε for convenience in the figures.

2.3.2 Subterranean-deck and Subterranean-SAE

The Subterranean 2.0 suite has three functions: Subterranean-XOF, Subterranean-deck and
Subterranean-SAE. Subterranean-XOF is designed to be used for unkeyed hashing, while
Subterranean-deck and Subterranean-SAE are keyed functions. In this paper, we focus on
the latter two.

Subterranean-deck takes as input an arbitrary-length key, typically of 128 bits, and a
sequence of arbitrary-length strings and returns a bit string of arbitrary length, as shown
in Fig. 2. Hence, it can be used as a stream cipher, a MAC function or for key derivation.
Subterranean-SAE, depicted in Fig. 3, is designed for authenticated encryption. Below, a
detailed description of Subterranean-SAE is given.With the description of Subterranean-SAE
in mind, it requires little extra effort to follow the working procedures of Subterranean-deck.
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Fig. 2 Subterranean-deck

Fig. 3 Subterranean-SAE

The input of Subterranean-SAE contains a 128-bit key, a 128-bit nonce N , an associated
data (AD) A which is optional, and a message M. The output is composed of the ciphertext
and a 128-bit tag T .

Processing the key At first, the state is initialized with 0. The 128-bit key is split into four
32-bit blocks K 1, K 2, K 3, K 4 and one empty block ε, as the last block should be strictly
shorter than 32 bits. Each block is padded with 10* and the first four padded blocks are

denoted by K
1
, K

2
, K

3
, and K

4
. The whole five blocks are then absorbed one by one

through the duplex call.
Processing the nonce The nonce is split into 32-bit blocks with the last block being shorter

than 32 bits. Pad each block with 10* and sequentially inject the padded blocks into the
state in a series of duplex calls.

Processing the AD Invoke the duplex eight times, each with an empty message ε absorbed.
Then absorb the AD in the same way as processing the nonce.

Processing the message The message is split into 32-bit blocks with the last block being
shorter than 32 bits. Pad each block with 10*. Process message blocks one after another
by the following steps: extract 32 output bits, invoke the duplex call to absorb a padded
message block and XOR the message block with the extracted output to get the ciphertext
block.

Finalization Invoke the duplex eight times, each with an empty message ε absorbed. Then
invoke the duplex another four times, before each of which a 32-bit output is squeezed.
Concatenate the four 32-bit output blocks to form the 128-bit tag.

2.4 Toy versions

To facilitate cryptanalysis, we scale down Subterranean 2.0 and define size-reduced versions.
Subterranean 2.0 uses a prime-sized state to avoid the existence of exploitable symmetries.
Therefore, the state size b of a toy cipher also needs to be prime but smaller than 257. Besides,
the factor d used in the π step should have a large order in Z

∗
b and the order should be a

multiple of 8 if the same extraction function Zi = sd4i + s−d4i is used. With these in mind,
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Table 2 Subterranean 2.0 and its toy versions

Version State size Key size d Extraction rate Output Zi

Subterranean 2.0 257 128 12 32 s124i + s−124i

Subterranean-m(d) 97 48 d ∈ D 12 sd4i + s−d4i

D =
{5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, 40, 41, 56, 57, 58, 59, 60, 68, 71, 74, 76, 80,
82, 83, 84, 87, 90, 92}

we choose a prime 971 and let d be a generator of Z∗
97. In total, there are 32 generators of

Z
∗
97. In addition, the ratio of the extraction rate to the state size should remain close. As
32
257 × 97 ≈ 12, we set the extraction rate of the toy ciphers to 12. Then we have a set of toy
ciphers: Subterranean-m(d) whose parameters are summarized in Table 2. It turns out that
the algebraic properties of θ step remain with the new size of state, as shown in Appendix A.

3 Properties of Subterranean 2.0 and three attack scenarios

In this section, we highlight several important properties of Subterranean 2.0 and relate them
to three attack scenarios.

Subterranean 2.0 is a duplex-based construction and uses bit-oriented operations that
allow good performance in hardware implementation. Besides, the following properties are
interesting in the attacker’s point of view.

Property 1 Subterranean 2.0 employs an extremely simple permutation in the duplex call.
The permutation has only one round and the round function has algebraic degree only
2. Additionally, the round function operates at bit level and allows a minimum of sub-
structures by using a prime-sized state. That is to say, the round function is of weak
alignment [7].

Property 2 Subterranean 2.0 squeezes output blocks in a way similar to a stream cipher.
Specifically, it outputs 32 bits as the keystream iteratively before each duplex call. Note
that the keystreams can be known in the known-message model.

Property 3 Subterranean-SAE processes the noncewithmultiple duplex calls. Subterranean-
SAE does not load the nonce into its initial state. Because of its small state size,
Subterranean-SAE has to absorb the nonce with multiple duplex calls and the number
of the duplex calls is 5.

3.1 Attack scenario 1: keystream biases

When considering Property 1 and Property 2 together, one may ask: are the keystreams truly
random? One possible way to distinguish keystreams of a cipher from a random sequence is
to utilize linear biases. Recently, exploitable biases using linear combinations of output bits
were found in the authenticated encryption schemes MORUS [1,18] and AEGIS [15]. It is
important to known if this will happen to Subterranean 2.0.

1 One may choose other primes of the form 8k + 1 where k ∈ Z
+ as well.
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Fig. 4 Linear trails for keystream bias evaluation

To investigate the bias of keystreams, it is to find a sequence of linear masks (λ0, . . . , λn)

for the output blocks Zi , as illustrated in Fig. 4, such that

f =
n∑

i=0

λi Z
i

is biased, i.e. the bias

ε = Pr( f = 0) − 1

2
,

or the correlation

Cor( f ) = Pr( f = 0) − Pr( f = 1) = 2ε

is different from zero. To detect a bias with given correlation C , one needs about C−2

data [14]. Therefore, if a sequence of masks can be found such that (Cor( f ))−2 is smaller
than the data limit, then the cipher can be distinguished from a random function. In order
to find a good sequence of masks, the same tools for linear cryptanalysis of block ciphers
can be applied with the beginning and the end being set inactive, i.e. β−1 = 0, αn = 0 as
shown in Fig. 4. In the middle, the propagation of linear masks must be compatible with each
operation. Summing all approximations:

γi s
i + λi Z

i , 0 ≤ i ≤ n,

αi s
i + βi s

i+1, 0 ≤ i ≤ n − 1,

we will have
∑n

i=0 λi Z i . For Subterranean 2.0, the correlation of keystreams
∑n

i=0 λi Z i is
the product of correlations of active ANDs in the involved round functions, as the extraction
function is linear.

The designers kept the above attack in mind while designing Subterranean 2.0 and let the
output Z be extracted from special state bits in order to prevent any bias in four consecutive
output blocks. It is believed that using five or more output blocks eliminates measurable bias
in Z . Any evidence that approves or disapproves of such a belief would be interesting to the
community.

3.2 Attack scenario 2: state collisions

A similar cryptanalysis in the differential case would be state collision attacks. As illustrated
in Fig. 5, the difference of the internal state is introduced by an input differenceΔX0 (through
the nonce, AD or the message), and cancelled out by ΔXn after n rounds. Such an attack
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Fig. 5 Differential trails for state collisions

is called “LOCAL attack” which was proposed by Khovratovich and Rechberger [11] and
independently found by Wu et al. [22] against ALE [5].

The state collisionmay cause forgery attacks. Suppose the internal difference is introduced
by the associated data AD and there exists such a differential trail with high probability p.
Then a forgery attack can be mounted in the following way.

Let N , A0|| · · · ||An and M be the nonce, AD and message to be forged, respectively. The
attacker respects nonces and queries (N , A0 ⊕ ΔX0|| · · · ||An ⊕ ΔXn, M) to the encryption
oracle to get the 128-bit tag T . Then, T is a valid tag for (N , A0|| · · · || An, M)with probability
p. The forgery attack succeeds if it beats the generic one. In the case of Subterranean 2.0, it
means p > 2−128.

As the nonce is processed in multiple duplex calls, it might be possible to find state
collision during the nonce processing phase. If the state collision happens after absorbing
nonce segments N1 and N ′

1 respectively (both are of the same length) and there are more bits
of nonce to be absorbed, say N2, then (N1||N2, A, M) and (N ′

1||N2, A, M) lead to a state
collision and further to the same tag T . As a result, for any A′ and M ′, the attacker can make
forgeries by using a new N2 and keeping the same N1 and N ′

1.
In spite of the importance of the security requirement for resisting state collision attacks,

such a differential analysis is missing, either in the specification of Subterranean 2.02 or in
the literature.

3.3 Attack scenario 3: state recovery in the nonce-misuse setting

Subterranean-SAE takes a nonce as input and strongly relies on nonce uniqueness for security.
Even though no security claim was made in the nonce-misuse setting, it is believed by the
designers in [9] that the state recovery attack is non-trivial.

In nonce-misuse scenario’s or when unwrapping invalid cryptograms returns more
information than a simple error, we make no security claims and an attacker may even
be able to reconstruct the secret state. Nevertheless we believe that this would probably
a non-trivial effort, both in attack complexity as in ingenuity.

Recall Property 1 that Subterranean 2.0 uses the single-round permutation with algebraic
degree 2 in the duplex call. In the setting that a nonce can be used more than once, one

may inject a difference ΔM
i
at si in the message processing phase as shown in Fig. 6, one

will obtain some linear relations of the state difference Δsi+1 through the output difference
ΔZi+2 as each output bit is the sum of two internal bits. More importantly,Δsi+1 is linear in

2 The designers searched differential trails for the permutation with three rounds and provided bounds for
the probability of differential trails with up to eight rounds. Such differential analysis is different from the
differential analysis tailored for state collisions where there is a difference injection before each round.
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Fig. 6 Notations for state
recovery in the nonce-misuse
setting

bits of si due to Fact 1 for quadratic Boolean functions. Therefore, ΔZi+2 will be linear in
si as well, and thus some bits of si will be leaked by observing such one-round differentials.

Fact 1 Let f : Fn
2 → F2 be a Boolean function with algebraic degree 2. Given the input

difference Δx, the derivative of f is Δ f := f (x) + f (x + Δx) can be expressed linearly by
the input bits.

Example 1 Let f : F2
2 → F2 and f (x) = x0 · x1. Suppose the input difference is given as

Δx = (Δx0,Δx1). Then Δ f = f (x) + f (x + Δx) = x0 · x1 + (x0 + Δx0) · (x1 + Δx1) =
Δx1 · x0 + Δx0 · x1 + Δx0 · Δx1.

Even though Subterranean-SAE aims for use cases where nonce uniqueness can be guaran-
teed, it would be interesting to know what the complexity of state recovery would be when
nonce uniqueness is lost.

In the following two sections, the three potential attacks pointed out here will be investi-
gated. Section 4 looks into differential and linear cryptanalysis regarding keystream biases
and state collisions respectively and Sect. 5 examines state recovery attack in the nonce-
misuse setting.

4 Differential and linear analysis tailored for keystream biases and
state collisions

In this section, we first specify the issue of dependency in the χ operation of the round
function of Subterranean 2.0. We then point out the resemblance between the χ operation
and the round function of the SIMON block cipher [2]. Inspired by the existing work on
SIMON [12], we propose explicit formulas for computing the exact correlation of linear
trails of Subterranean 2.0 and other ciphers utilizing similar non-linear operations. Finally,
we construct our models for searching differential/linear trails of Subterranean 2.0 tailored
for keystream biases and state collisions.

4.1 Dependency of AND operations

In the design of Subterranean 2.0, the non-linear layer χ of the round function exploits AND
operations. Specifically, state bits si−1+1, si are fed into one AND operation and si +1, si+1

into another. Unlike S-box based ciphers where the number of active S-boxes determines the
upper bound of differential/linear probability, the number of active AND operations provides
not much information for Subterranean 2.0. The reason is the dependency between AND
operations.
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Table 3 Difference distribution
table (left) and linear
approximation table (right) of the
AND operation

Δx0, Δx1 Δy = 0 Δy = 1 Γ x0, Γ x1 Γ y = 0 Γ y = 1

0, 0 4 0 0, 0 2 1

0, 1 2 2 0, 1 0 1

1, 0 2 2 1, 0 0 1

1, 1 2 2 1, 1 0 −1

Let us explain a bit more with an example of two AND operations: y0 = x0 · x1 and
y1 = x1 · x2. Suppose the differentials of the two AND operations are (1, 0) → 1 and
(0, 1) → 0. According to the difference distribution Table 3, the differential probability
of the two AND operations is 2

4 × 2
4 = 2−2 if the two AND operations are independent.

However, the two AND operations share an input bit x1 and thus not independent. Check that
the solutions for the twodifferentials (1, 0) → 1 and (0, 1) → 0 are (x0, x1) ∈ {(0, 1), (1, 1)}
and (x1, x2) ∈ {(0, 0), (0, 1)}, which means x1 = 1 and x1 = 0 should hold simultaneously.
This is a contradiction. In the case where the differentials for the two AND operations are
(1, 0) → 1 and (0, 1) → 1, there is no such contradiction and the two differentials hold
when x1 = 0, meaning the probability is 2−1 instead of 2−2.

The dependency between AND operations has a similar effect in linear analysis. Suppose
the linearmasks are (0, 1) → 1 and (1, 1) → 1 for the twoANDoperations. Thismeans x0·x1
and x1 · x2 are approximated with x1 and x1 + x2 respectively. Treating them independently,
we get correlation −2−1 × 2−1 = −2−2 for the two AND operations according to the
linear approximation Table 3. While considering together, x0 · x1 + x1 · x2 = x1(x0 + x2)
is approximated with x1 + x2, resulting in a zero correlation. In the case where the linear
masks are (0, 1) → 1 and (1, 0) → 1, x0 · x1 + x1 · x2 = x1(x0 + x2) is approximated with
x1, leading to a correlation 2−1 instead of 2−2. The case of two active AND operations is
summarized in Example 2.

Example 2 Let f (x0, x1, x2) = x0 · x1 + x1 · x2 + L(x0, x1, x2) = x0 · x1 + x1 · x2 + u · x0 +
v · x1 + w · x2 be a Boolean function and u, v, w ∈ F2 are constants. If u + w = 0, then
Cor( f ) = 2−1; otherwise, Cor( f ) = 0.

Besides Subterranean 2.0, chaining AND operations also make up the non-linear layer of
the round function in authenticated encryption schemes likeMORUS [20], TinyJAMBU [21]
and block ciphers like SIMON [2], etc. Handling the dependency among the chaining AND
operations is a challenging task. Taking all the dependency into account usually makes the
search for differential/linear trails inefficient or even infeasible. In the case where there exist
very sparse differential/linear trails such that there is no adjacent active AND operations,
treatingANDoperations independently works well [18,19]. Recently, effort has beenmade to
constructmodels that partially handles the dependency of theANDoperations [17]. However,
the methods which do not fully tackle the dependency are not applicable to Subterranean
2.0 whose differential/linear trails for state collisions or keystream bias of Subterranean
2.0 are relatively dense. This is confirmed by experiments where the trails obtained with
these methods are almost invalid. Moreover, inexact models are unable to provide reliable
bounds of differential/linear probability. Consequently, the dependency must be taken into
consideration for evaluation of Subterranean 2.0 against state collision attacks and keystream
bias.
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4.2 Represent � as a SIMON-like function

Subterranean 2.0 uses bit-wise operations. In particular, in the χ step, for 0 ≤ i < b,

si ← si + si+1 · si+2 + si+2.

We observe that the χ step bears a strong resemblance to SIMON’s round function.
SIMON [2] is a family of lightweight block ciphers and follows the Feistel construction. Its
round function has the following form

(x ≪ α) � (x ≪ β) ⊕ (x ≪ γ ),

where x ≪ i corresponds to a cyclic left shift of word x by i bits, � and ⊕ denote the
bit-wise AND and XOR operations respectively. We notice that χ can be re-written as a
SIMON-like function:

s ← s ⊕ (s ≫ 1) � (s ≫ 2) ⊕ (s ≫ 2).

Therefore, the techniques and tools in [12] for searching differential/linear trails of SIMON
serves as a good starting point for differential and linear cryptanalysis of Subterranean 2.0.

4.3 Linear analysis

In [12], the authors proved that the input mask α and output mask β for the operation
x � (x ≪ 1) should satisfy that α ∈ U⊥

β , where Uβ = {y|β � (y ≪ 1) ⊕ (β � y) ≫ 1}.
Inspired by this, we further propose explicit formulas for calculating the correlation of linear
trails of Subterranean 2.0, which are also applicable to other ciphers that exploit chains of
AND operations.

In linear cryptanalysis of such ciphers, there are blocks of chained active AND operations
where the correlation can be calculated for each block independently. Depending on the
number of active AND operations involved in a block, there are two cases which are covered
by Lemmas 1 and 2. For Subterranean 2.0, k in the two lemmas is 1. When the number n of
active AND operations in a block is odd, i.e. n = 2t − 1, t > 0, any approximation is valid
and the correlation is 2−t . When the number n of active ANDs is even, i.e. n = 2t, t > 0,
the approximation should satisfy a condition cond as stated in Lemma 2. This is a one-bit
condition and if it holds, the correlation is 2−t . In other words, given a random approximation
for an even block, it is valid with probability 1

2 . In search of linear trails, it is the key point
to make sure this condition holds for all even blocks. Without this condition being imposed,
the obtained linear trail will be invalid with high chance when the trail is dense.

Lemma 1 Let f (x) = x0xk + xkx2k + · · · + x(2t−2)k x(2t−1)k + L(x0, xk, · · · , x(2t−1)k) be a
Boolean function where L is linear and t > 0. Then Cor( f ) is 2−t .

Proof The quadratic part of f (x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · · + x(2t−3)k(x(2t−4)k + x(2t−2)k) + x(2t−2)k x(2t−1)k .

Apply the following transformation:

y(2 j−1)k = x(2 j−1)k, 1 ≤ j ≤ t

y(2 j)k = x(2 j)k + x2( j+1)k, 0 ≤ j ≤ t − 2

y(2t−2)k = x(2t−2)k,
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which is equivalent to the transformation x = A y:

x(2 j−1)k = y(2 j−1)k, 1 ≤ j ≤ t

x(2 j)k =
t∑

i= j

y(2i)k, 0 ≤ j ≤ t − 1

Then one can obtain

g( y) = f (A y) = y0yk + y2k y3k + . . . + y2(t−1)k y(2t−1)k + L ′(y0, yk, . . . , y(2t−1)k).

Since the quadratic terms of g contains all y jk, 0 ≤ j ≤ 2t − 1, Cor(g) = 2−t . Therefore,
Cor( f ) = 2−t , as

Cor(g) = 1

22t
∑

y∈F2t2
(−1)g( y) = 1

22t
∑

y∈F2t2
(−1) f (A y) = 1

22t
∑

y∈F2t2
(−1) f ( y) = Cor( f ).


�
Lemma 2 Let f (x) = x0xk + xkx2k + · · · + x(2t−2)k x(2t−1)k + x(2t−1)k x2tk + L0(x0, x2k

· · · , x2tk)+ L1(xk, x3k, · · · , x(2t−1)k) be a Boolean function where L0, L1 are linear and
t > 0. Let cond be: L0 contains a even number of terms. Then Cor( f ) is 2−t if cond holds
and 0 otherwise.

Proof The quadratic part of f (x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · · + x(2t−1)k(x(2t−2)k + x(2t)k)

Apply the following transformation:

y(2 j−1)k = x(2 j−1)k, 1 ≤ j ≤ t

y(2 j)k = x(2 j)k + x2( j+1)k, 0 ≤ j ≤ t − 1

y(2t)k = x(2t)k,

which is equivalent to the transformation x = A y:

x(2 j−1)k = y(2 j−1)k, 1 ≤ j ≤ t − 1 (1)

x(2 j)k =
t∑

i= j

y(2i)k, 0 ≤ j ≤ t (2)

Then one can obtain

g( y) = f (A y) = y0yk + y2k y3k + · · · + y2(t−1)k y(2t−1)k + L(y0, yk, . . . , y(2t)k).

Obviously,Cor(g) = 0 if L(y0, yk, · · · , y(2t)k) contains the term y(2t)k , otherwiseCor(g) =
2−t . And L(y0, yk, · · · , y(2t)k) has the term y(2t)k if and only if L0(x0, x2k, . . . , x(2t)k)

contains an odd number of terms according to Eq. (2). 
�
Technically, for an even block with 2t, t > 0 chained active AND operations, it requires

t+1 iterations to check the condition cond. Hence, the longer an even block is, themore time-
consuming for the checking. As the state size of Subterranean 2.0 is 257 which is relatively
large when compared to block ciphers like SIMON, the length of even block can reach 256
theoretically. In order to speed up the search for linear trails of Subterranean 2.0, it would be
useful to identify a tighter upper bound of block length 
 for each round. This can be done
as follows when the range of correlation or the target correlation is given.
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1. For round r , set the target correlation C, time limit D and set the block length as state
size, i.e. 
 = b

(a) For all possible positions for a block with 
 chained ANDs:
i. Set the 
 ANDs active. If a solution is found or the searching time exceeds D,

exit.
(b) 
 = 
 − 1 and go to (a).

We then propose two models:

1. Set 
 to a reasonable value for all rounds, e.g. 
 = 6. This model is used for searching
linear trails with good correlations.

2. For each round, set 
 to the upper bound found by the above procedure. This model is
used for providing tighter lower bounds of correlation of linear trails.

We apply these two models to Subterranean 2.0 and Subterranean 2.0-m(d). The results in
Table 4 are obtained. Note that, the search space of linear trails over n blocks covers the
search space of linear trails over less blocks.

– For Subterranean-m(d)

– The correlations of linear trails become stable when four blocks are involved, as
shown in Fig. 7.

– When d = 58, there exists a linear trail over three output blockswith correlation 2−23,
as shown in Table 9. This means d = 58 is not a safe parameter for Subterranean-m.

– For Subterranean 2.0

– There does not exist any linear trail over four blocks with correlation higher or equal
to 2−49.

When d = 58, the curve in Fig. 7 goes significantly low. We conjecture that it may come
from the interplay between operations π and extraction/injection which depend on d , and
other operations, i.e. χ , ι, and θ . The indices used in χ , ι, and θ are computed through
additions in Z. Conversely, the indices used in π and extraction/injection are computed
through multiplications in Z

∗ (except 0). When d varies, we have different combinations of
these two parts and each combination is unique. It may be possible that there are good linear
trails for certain combination. A similar conjecture could be made for the differential case
that will be discussed subsequently.

4.4 Differential analysis

In differential cryptanalysis of Subterranean 2.0, we adapt Theorem 1 from [12] and then
apply it to Subterranean 2.0.

Theorem 1 ([12]) Let f (x) = (x ≪ 1) � x be a Boolean function on F
n
2 . The probability

that difference α goes to difference β through f is

Pr(α
f−→ β) =

⎧
⎪⎨

⎪⎩

2−n+1 α = 1 and wt(β) ≡ 0 mod 2,

2−wt(vb+db) α �= 1 and β � vb = 0 and ((β ≪ 1) ⊕ β) � db = 0,

0 otherwise,

where vb = (α ≪ 1) ∨ α, db = α � (α ≪ 1) � (α ≪ 2) and wt(x) is the Hamming
weight of x.
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Table 4 Correlation of keystreams

Version (|s|, |K |) |Zi | #Zi min− log2(Cor)

Subterranean-SAE (257, 128) 32 ≤ 4 (49, 90]
Subterranean-m (97, 48) 12 ≤ 5 23 ∼ 34

Table 5 Result of searching differential trails for state collisions

Version (|s|, |K |) |ΔM
i | #ΔM

i
min− log2(p)

Subterranean-SAE (257,128) 32+1 ≤ 4 (108, 180]
Subterranean-m (97,48) 12+1 ≤ 6 47 ∼ 64

The original Theorem 1 considers bit vector x of an even number of bits. When the
state size is odd, the condition for the first case should be adapted to wt(β) ≡ 1. Based on
Theorem 1, the results in Table 5 are obtained. Also, the search space of differential trails
using n blocks covers the search space of differential trails using less blocks.

– For Subterranean-m(d)

– The probabilities of differential trails become stable when five blocks are involved,
as shown in Fig. 8.

– When d = 41, there exists a differential trail using four input blocks with proba-
bility 2−47, as shown in Table 8. This means d = 41 is not a safe parameter for
Subterranean-m.

– For Subterranean 2.0

– There does not exist any differential trail over four blocks with probability higher or
equal to 2−108.

4.5 Impact on Subterranean-deck and Subterranean-SAE

As between extractions or injections, there is only one round, there is little clustering effect
in the differential/linear analysis of Subterranean 2.0.3 Thus the security of Subterranean 2.0
against the linear attack and the state collision attack can be almost deduced from optimal
differential/linear trails.

4.5.1 Bias of keystreams

For both Subterranean-deck and Subterranean-SAE, the security is claimed against attackers
that are limited to 296 data blocks. Thus a useful linear trail should have correlation higher
than 2−48. In the specification of Subterranean 2.0 [8], there is a statement below.

3 If there are inactive output (resp. input) blocks in between, there is also clustering effect in linear (resp.
differential) analysis. For example, in the linear trail in Table 9, there are active bits in Z0 and Z2 but Z1.
In this case, two solutions form a linear hull. However, the involved input or output blocks are continuously
active in most cases.
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This provides evidence that there is probably no bias for masks Z of less than 5 blocks
and we believe there is no bias in Z measurable from output sequences of 296 blocks
or less.

Our linear analysis is twofold: we find that the first half of the statement is not a reasonable
conjecture and we support the second half of the statement with detailed experiments. Our
results show that there exist linear trails over three or four blocks for both Subterranean 2.0
and Subterranean-m. Within four keystream blocks, linear trails with correlation higher than
2−48 do not exist for Subterranean 2.0. The experiments on the toy cipher Subterranean-m
show that there are no better linear trails when we increase the number of keystream blocks to
five, which gives some confidence that there is no better linear trails as well for Subterranean
2.0 over more output blocks. In short, our results support the designers’ claim on the security
against linear cryptanalysis.

The designers’ conclusion that there is probably no bias over less than five blocks lies in
an analysis considering a single active output bit. Recall that the expression of the output
block

Zt+1
i = st+1

124i
+ st+1

−124i

and the round function

st+1
j = sti + sti+3 + sti+8 + (sti+1 + 1) · sti+2 + (sti+4 + 1) · sti+5 + (sti+9 + 1) · sti+10

where i = 12 j . It can then be obtained that Zt+1
i = st

124i+1 + st−124i+1 + q(st ). Note that if
there is an isolated term of degree 1 in the approximation, the correlation will be zero. As
124i+1 and −124i+1 are not elements of the subgroup

〈
124

〉
, they cannot be cancelled out

by Zt
j . Based on this, the designers reached the conclusion about the length of linear trails

of Subterranean 2.0. Nevertheless, state bits outside
〈
124

〉
, like st

124i+1 and st−124i+1 , may be
cancelled out when there are multiple active bits in the output block. Let us take the 3-block
linear trail of Subterranean-m(58) (see Table 9) as an example. In this linear trail, both Z2

0
and Z2

1 , i.e. the first and the second bits of the third output block, are active. According to
the expressions below, we can see that s1−58 is cancelled out.

Z2
0 = s2584·0 + s2−584·0

= s158 + s160 + s161 + s163 + s166 + s168 + s1−58 + s141 + s142 + s144 + s147 + s149 + q1(s
1),

Z2
1 = s2584·1 + s2−584·1

s1585 + s162 + s163 + s165 + s168 + s170 + s1−585 + s1−58 + s140 + s142 + s145 + s147 + q2(s
1).

The full expression of the approximation can be found in Table 10. Consequently, treating the
active bits globally, the invoked active bits located outside the group

〈
124

〉
maybe cancelled

out by each other. Thus, it does not necessarily take four rounds to make them fall back into〈
124

〉
. More importantly, concrete linear trails with three or four blocks are found for both

Subterranean 2.04 and Subterranean-m.

4 As the obtained linear trails of Subterranean 2.0 have a very low correlation, the details of the linear trails
are not included in the paper
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4.5.2 State collisions

State collisions can be used for probabilistic forgeries as long as the differential probability
p > 2−|K | when the tag length is the same as the key length. That is, the forgery attack is
not constrained by the data limit. Searching differential trails for Subterranean 2.0 is hard
due to the large internal state. The experiments on the toy cipher Subterranean-m show that
there is only one value for the parameter d such that the state collision attack is possible.
When the injection rate of Subterranean-m is reduced to a smaller value, say 8, all values
of d allow resistance against the state collision attack. It is very likely that these results of
Subterranean-m reflect the security of Subterranean 2.0 against the state collision attack due
to similar designs.

5 Key recovery of Subterranean-SAE in the nonce-misuse setting

In this section, it is shown that a practical state recovery attack can be mounted with only 88
32-bit blocks and 20 repetitions of nonce by one-round differential analysis.

5.1 One-round differential analysis

In the duplex call of Subterranean 2.0, a single-round permutation is used. As the round
function has algebraic degree only 2, the output difference of the round function will be
linear in the input. So is the difference of the following keystream block. Let us explain the
idea with an example as follows.

Example 3 Suppose one bit difference is injected at position 1 of si (see Fig. 6). After one
round, the bits at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] of si+1 have difference
[si2, si2, si2, si0 + 1, 1, si0 + 1, si0 + 1, 1, 1] and there is no difference at other positions. From
the extraction, we have ΔZi+2

8 = Δsi+1
64 + Δsi+1

193 = si2. Thus obtain one state bit si2 by
observing ΔZi+2.

This means, in the message processing phase, if a difference is injected at si , some state
bits of si can be recovered by observing the output difference after one round. We call this
one-round differential of Subterranean 2.0. As can be seen that the recovered bits are among
the neighbouring bits of the injected difference. For Subterranean-SAE, the number of bit
positions for injection is 32. Further analysis shows that only 41 neighbouring bits can be
recovered by one-round differentials.

5.2 Nested one-round differential analysis

To enlarge the number of state bits that can be recovered, we propose a nested one-round
differential analysiswhich exploits the output difference in two consecutive rounds. The core
idea is that injecting difference at si will lead to differences of si+1 at positions that may fall
outside the set of 32 injection positions. Therefore, besides injecting difference through the
input block, we can also utilize the difference generated by the previous round by treating
the previous round as a difference injector.

It is known that the difference after two rounds is not linear in the input bits anymore.
However, by our nested one-round differential analysis, some bits of the internal state can
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still be recovered as long as the input difference to the second round is sparse. Next, we
illustrate the nested one-round differential by Example 4.

Example 4 Suppose one bit difference is injected at position 1 of si (see Fig. 6). Treat the
second round independently with input difference [si2, si2, si2, si0 + 1, 1, si0 + 1, si0 + 1, 1, 1]
at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] based on Example 3. By observing the
difference of the output block after the second roundΔZi+3, retrieve relations between si+1,
si0, s

i
2 through ΔZi+3, and select the linear ones which are:

ΔZi+3
1 = s02 ,

ΔZi+3
3 = s00 + 1,

ΔZi+3
8 = s02 ,

ΔZi+3
12 = s1234 + 1,

ΔZi+3
13 = s1149 + 1,

ΔZi+3
14 = s02 ,

ΔZi+3
16 = s00 + 1,

ΔZi+3
22 = s1213 + 1,

ΔZi+3
23 = s1215.

Therefore, 6 bits: s00 , s
0
2 , s

1
149, s

1
213, s

1
215, s

1
234 can be recovered.

5.3 Key recovery

In our attack, we utilize 9 types of difference injections No. 1 ∼ 9 as listed in Table 6,
each of which recovers a set of bits in si . Using 19 injections of difference in total, 131 bits
information of s1 and 128 bits information of s2 can be known, as illustrated in Table 7. With
this information, the full state s1 can be recovered as follows.

Guess another 26 bits of s1, as listed in the last row of Table 7. Then all bits of s2 can be
expressed in 257−131−26 = 100 unknowns and there remain 26 quadratic terms composed
of these unknowns. When the 26 quadratic terms are treated as independent unknowns, there
will be 100 + 26 unknown. As 128 bits of s2 are known, a system of 128 linear equations
in 126 unknowns can be constructed and solved easily. There may be multiple solutions for
s1, most of which are not the actual one and can be discarded by exploiting unused output
bits (without increasing the data complexity). The time complexity of recovering the full
s1 is dominated by solving 226 systems, each of which has 128 linear equations and 126
unknowns.

5.3.1 Recover the key

Once the unique state s1 is identified, the 128-bit key can be recovered by a guess-and-
determine procedure as in [13]. First, with s1, the state after injecting K 4 can be computed.
As K 4 is unknown, only 225 bits of the state before the injection are known. Then, guess
32 bits of K 1 and 3 bits of K 2 at positions [2, 136, 189] so that the state after injecting
K 3 are linear in the remaining 29 bits of K 2 and the full 32 bits of K 3. Hence, the 225
known bits before injecting K 4 are quadratic in these 61 key bits. A detailed analysis shows
that the expressions of the 225 known bits contain at most 128 quadratic terms. Again if
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Table 6 Difference injection and state recovery

No. Pos. of si with
difference

Recovered bits #Recovered
bits

1 15, 213, 223, 211,
134, 128, 35,
234, 70, 190,
184, 111, 165,
169, 11, 4, 22

si5, s
i
12, s

i
16, s

i
21, s

i
34, s

i
69, s

i
71, s

i
110, s

i
112, s

i
133, s

i
129,

si135, s
i
164, s

i
166, s

i
168, s

i
185, s

i
189, s

i
191, s

i
210, s

i
212,

si214, s
i
224, s

i
233, s

i
235, s

i
3 + si10, and 5 extra bits

si241, s
i
223, s

i
128, s

i
68, s

i
22

30 bits of si

2 137, 140, 30, 225,
197, 189, 95, 2,
256, 249

si1, s
i
3, s

i
29, s

i
94, s

i
96, s

i
136, s

i
139, s

i
190, s

i
198, s

i
196, s

i
226,

si250, s
i
255, s

i+1
169 + si+1

172 and 4 extra bits si256, s
i
121,

si67, s
i
2

17 bits of si , 1
bit of si+1

3 136, 176, 1 si177, s
i
2, s

i
137, s

i
0, s

i
175, s

i+1
234 , si+1

181 , si+1
215 , si+1

213 , si+1
160 ,

si+1
162 , si+1

13 + si+1
249 and 3 extra bits si+1

23 , si+1
44 , si+1

95

5 bits of si , 10
bits of si+1

4 137, 64 si63, s
i
138, s

i+1
246 , si+1

92 , si+1
76 , si+1

248 , si+1
154 , si+1

74 , si+1
55 ,

si+1
156 and 2 extra bits si+1

11 , si+1
165

2 bits of si , 10
bits of si+1

5 4,22 si23, s
i+1
172 , si+1

170 , si+1
24 , si+1

149 , si+1
87 , si+1

217 , si+1
85 , and 1

extra bit si234

2 bits of si , 7
bits of si+1

6 11, 140, 241 si242, s
i
240, s

i+1
171 , si+1

192 , si+1
107 , si+1

194 , si+1
254 , si+1

182 and 2

extra bits si15, s
i
17

4 bits of si , 6
bits of si+1

7 17,70,35,165 si36, s
i+1
66 , si+1

109 , si+1
238 , si+1

79 , si+1
141 , si+1

143 , si+1
47 + si+1

221 ,

si+1
49 + si+1

219

1 bit of si , 8
bits of si+1

8 211, 95, 169 si170, s
i+1
201 , si+1

116 , si+1
40 , si+1

229 , si+1
163 , si+1

114 , si+1
104 , si+1

123
and 1 extra bit si+1

134

1 bit of si , 9
bits of si+1

9 256,189, 223 si222, s
i+1
103 , si+1

193 , si+1
108 , si+1

106 , si+1
105 , si+1

81 , si0·si+1
43 +si+1

39
and 3 extra bits si35, s

i+1
64 , si+1

176

2 bits of si , 9
bits of si+1

we treat these 128 quadratic terms as independent unknowns, then there will be a system of
61+128 unknowns and 225 linear equations. The solution of the system provides information
of (K 1, K 2, K 3). When (K 1, K 2, K 3) is obtained, recovering K 4 is trivial. As a result,
recovering the key from s1 requires to solve 235 systems, each of which has 225 linear
equations in 189 unknowns. In summary, the key can be recovered practically if the same
nonce repeats 20 times.

5.3.2 Relation to the extraction function

In the squeezing phase, Subterranean 2.0 outputs a block of 32 bits, each of which is the sum
of two state bits: Zi = s124i + s−124i , for 0 ≤ i < 32. Instead of outputting state bits directly,
this extraction function is meant to frustrate state recovery attacks [10] in the nonce respected
setting. In our one-round differential analysis, this extraction function allows more state bits
involved in the output block and thus more state bits can be recovered. For example, if we set
Zi = s124i , for 0 ≤ i < 32, type 1 injection of difference will lead to a recovery of 17 bits
versus 30 bits under the original extraction and 20 state bits can be recovered with ordinary
one-round differential analysis versus 41 state bits under the original extraction. Note that
our one-round differential analysis requires a nonce-misuse setting.
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5.3.3 Comparison to the work by Liu, Isobe andMeier

In [13], Liu, Isobe and Meier presented a practical state-recovery attack in the nonce-misuse
setting with 213 32-bit blocks based on conditional cube analysis. It was exploited that when
the condition holds, the sum of over a set of outputs will be zero. They mainly utilized a
2-dimensional set to recover one bit, which means 4 repetitions of nonce are required for
retrieving 1 state bit. On the contrary, as many as 30 state bits can be recovered with 2
repetitions of nonce by a one-round differential. Therefore, the data complexity is much
lower in our one-round differential analysis.

6 Concluding remarks

In this paper, we investigated the “single-round permutation” in various phases of Subter-
ranean2.0 and identified three related attack scenarios that deserve further analysis: keystream
biases in the keyed squeezing phase, state collisions in the keyed absorbing phase, and one-
round differentials in the message processing phase when a nonce is reused.

To carry out a study on the security in the first two attack scenarios, it is necessary
to search for differential/linear trails under special constraints. First, we proposed a set of
toy versions of Subterranean 2.0: Subterranean-m(d) to understand Subterranean 2.0 with
easier effort. Besides, we observed a resemblance between the non-linear layer of the round
function of Subterranean 2.0 and SIMON’s round function. Such resemblance offers a good
starting point for differential/linear analysis of Subterranean 2.0. Inspired by the existing
work on SIMON, we proposed explicit formulas for computing the correlation of linear trails
of ciphers that exploit chaining AND operations like Subterranean 2.0, and built our own
models for Subterranean 2.0. The experiments on Subterranean-m(d) show that for most
choices of d , Subterranean-m is secure against linear attacks and state collision attacks, but
Subterranean-m(58) (resp. Subterranean-m(41)) is vulnerable to linear attacks (resp. state
collision attacks). It is very likely that these results of Subterranean-m reflect the security of
Subterranean 2.0 due to similar designs. We also found a flaw in the designers’ reasoning
of Subterranean 2.0’s linear bias but supported the designers’ claim that there is no bias
measurable from 296 data blocks or less. Due to the time-consuming search for differential
trails of Subterranean 2.0, its security against the state collision attack in keyed modes still
remains an open question.

Finally, we observed that one-round differentials allow to recover state bits in the nonce-
misuse setting. In order to recover a sufficient number of state bits, we further proposed
nested one-round differentials where a one-round differential is prepended to another, acting
as a difference injector. As a result, a practical state recovery attack can be achieved with only
20 repetitions of the nonce and 88 blocks of data. Our analysis shows that Subterranean-like
constructions with quadratic single-round permutation must be used carefully in practice as
the security crashes when nonce uniqueness is lost.
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Appendix A: Algebraic properties of �

For studying the algebraic properties of θ , we treat the state s as a binary polynomial
∑

i si X
i ,

following the way in [8]. Then the θ operation becomes a modular multiplication

θ(s(X)) = s(X)(1 + X3 + X8) mod (1 + Xb).

In particular, we consider b = 97. The modulus 1 + X97 is the product of X + 1 and two
irreducible polynomials of degree 48.

X48 + X43 + X41 + X40 + X38 + X36 + X32 + X29 + X24 + X19 + X16 + X12 + X10 + X8 + X7 + X5 + 1,

X48 + X47 + X46 + X45 + X44 + X41 + X36 + X35 + X33 + X32 + X30 + X29 + X25 + X24 + X23 + X19+

X18 + X16 + X15 + X13 + X12 + X7 + X4 + X3 + X2 + X + 1.

Let P(X) = 1 + X3 + X8. As P(X) is coprime with 1 + X97, the inverse of P(X) is

X92 + X91 + X87 + X86 + X84 + X83 + X82 + X81 + X77 + X75 + X74 + X73 + X72 + X70 + X68 + X66+
X64 + X63 + X62 + X61 + X60 + X59 + X57 + X53 + X51 + X49 + X48 + X46 + X45 + X44 + X39 + X38+
X37 + X36 + X34 + X33 + X32 + X30 + X27 + X26 + X24 + X21 + X18 + X10 + X5 + X2 + 1,

where there are 47 terms (versus 127 for b = 257). Hence, the high diffusion in the backward
direction still remains for b = 97.

Also, the order of P(X) is sufficiently large. The order of 2 in (Z/97Z∗,×) is 48. There-
fore,

P248(X) mod (1 + X97) = P(X248 mod 97) = P(X).

This means the order of P(X) divides 248 − 1 = 32 · 5 · 7 · 13 · 17 · 97 · 241 · 257 · 673.
Through a computation on Sage, it shows that the order of P(X) is 248 − 1 (versus 216 − 1
for b = 257).

Whenb is set to another primesof the form8k+1 < 257, for k = 2, 5, 9, 11, 12, 14, 17, 24, 29,
30, a similar analysis can be done for studying algebraic properties of θ . It shows that in all
cases θ is reversible and its inverse is dense.
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Appendix B: Differential/linear trails

This section presents two exact differential/linear trails of Subterranean-m in Tables 8 and
9, based on which state collisions or linear bias can be detected. The approximation derived
from the linear trail in Table 9 can be found in Table 10 and its correlation can be verified
using Lemmas 1 and 2. When d varies, the correlations (resp. probabilities) of linear (resp.
differential) trails of Subterranean-m regarding keystream bias (resp. state collisions) are
displayed in Fig. 7 (resp. Fig. 8).

Table 8 Differential trail of Subterranean-m(41) using 4 blocks with probability 2−47 for state collisions

Round i Difference − log2(pi )

0 ΔZ 0x0000000000000000200000010 4

α 0x0000000000000000200000010

β 0x0000000000000000200000010

π ◦ θ(β) 0x0240000800000000020008080

1 ΔZ 0x0010000000000000000400052 19

α 0x02500008000000000204080D2

β 0x125C00080000000002040C0DB

π ◦ θ(β) 0x0D1215A000040801200404EAC

2 ΔZ 0x0010000000040801200400042 24

α 0x0D0215A000000000000004EEE

β 0x1BC2908000000000000004965

π ◦ θ(β) 0x0000000000000800001000010

3 ΔZ 0x0000000000000800001000010

α 0x0000000000000000000000000

Table 9 Linear trail of Subterranean-m(58) using 3 blocks with correlation 2−23

Round i Difference − log2(|Cor |)
0 Z 0x1090000000000000000000242 11

α 0x1090000000000000000000242

β 0x109000000000000000015FF40

π ◦ θ(β) 0x0000000080200A02000000000

1 Z 0x0000000000000000000000000 12

α 0x0000000080200A02000000000

β 0x00000001EEE01EEE000000000

π ◦ θ(β) 0x1290000000000000000000252

2 Z 0x1290000000000000000000252

α 0x0000000000000000000000000
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Table 10 Detailed approximation and the final approximation derived from Table 9

Z0
0 = s01 + s096,

Z0
10 = s091 + s06 ,

w0
8 = s08 + s09 ∗ s010 + s010,

w0
10 = s010 + s011 ∗ s012 + s012,

w0
12 = s012 + s013 ∗ s014 + s014,

w0
14 = s014 + s015 ∗ s016 + s016,

w0
16 = s016 + s017 ∗ s018 + s018,

w0
20 = s020 + s021 ∗ s022 + s022,

w0
91 = s091 + s092 ∗ s093 + s093,

s167 = w0
6 + w0

9 + w0
14,

s147 = w0
10 + w0

13 + w0
18,

s145 = w0
88 + w0

91 + w0
96,

w1
38 = s138 + s139 ∗ s140 + s140,

w1
41 = s141 + s142 ∗ s143 + s143,

w1
43 = s143 + s144 ∗ s145 + s145,

w1
46 = s146 + s147 ∗ s148 + s148,

w1
48 = s148 + s149 ∗ s150 + s150,

w1
58 = s158 + s159 ∗ s160 + s160,

w1
61 = s161 + s162 ∗ s163 + s163,

w1
63 = s163 + s164 ∗ s165 + s165,

w1
66 = s166 + s167 ∗ s168 + s168,

w1
68 = s168 + s169 ∗ s170 + s170,

s24 = w1
38 + w1

41 + w1
46,

s291 = w1
40 + w1

43 + w1
48,

s21 = w1
58 + w1

61 + w1
66,

s288 = w1
60 + w1

63 + w1
68,

Z2
1 = s288 + s29 ,

Z2
10 = s291 + s26 .

Z0
1 = s088 + s09 ,

w0
6 = s06 + s07 ∗ s08 + s08 ,

w0
9 = s09 + s010 ∗ s011 + s011,

w0
11 = s011 + s012 ∗ s013 + s013,

w0
13 = s013 + s014 ∗ s015 + s015,

w0
15 = s015 + s016 ∗ s017 + s017,

w0
18 = s018 + s019 ∗ s020 + s020,
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Table 10 continued

w0
88 = s088 + s089 ∗ s090 + s090,

w0
96 = s096 + s00 ∗ s01 + s01 ,

s157 = w0
8 + w0

11 + w0
16,

s137 = w0
12 + w0

15 + w0
20,

w1
37 = s137 + s138 ∗ s139 + s139,

w1
39 = s139 + s140 ∗ s141 + s141,

w1
42 = s142 + s143 ∗ s144 + s144,

w1
45 = s145 + s146 ∗ s147 + s147,

w1
47 = s147 + s148 ∗ s149 + s149,

w1
57 = s157 + s158 ∗ s159 + s159,

w1
59 = s159 + s160 ∗ s161 + s161,

w1
62 = s162 + s163 ∗ s164 + s164,

w1
65 = s165 + s166 ∗ s167 + s167,

w1
67 = s167 + s168 ∗ s169 + s169,

s29 = w1
37 + w1

40 + w1
45,

s296 = w1
39 + w1

42 + w1
47,

s26 = w1
57 + w1

60 + w1
65,

s293 = w1
59 + w1

62 + w1
67,

Z2
0 = s21 + s296,

Z2
7 = s24 + s293,

Z0
0 + Z0

1 + Z0
10 + Z2

0 + Z2
1 + Z2

7 + Z2
10 =

s00 ∗ s01 + s07 ∗ s08 + s09 ∗ s010 + s010 ∗ s011 + s011 ∗ s012 + s012 ∗ s013 + s013 ∗ s014+
s014 ∗ s015 + s015 ∗ s016 + s016 ∗ s017 + s017 ∗ s018 + s019 ∗ s020 + s021 ∗ s022 + s089 ∗ s090+
s092 ∗ s093 + s138 ∗ s139 + s139 ∗ s140 + s140 ∗ s141 + s142 ∗ s143 + s143 ∗ s144 + s144 ∗ s145+
s146 ∗ s147 + s147 ∗ s148 + s148 ∗ s149 + s149 ∗ s150 + s158 ∗ s159 + s159 ∗ s160 + s160 ∗ s161+
s162 ∗ s163 + s163 ∗ s164 + s164 ∗ s165 + s166 ∗ s167 + s167 ∗ s168 + s168 ∗ s169 + s169 ∗ s170+
s017 + s022 + s090 + s093 + s138 + s140 + s142 + s144 + s145 + s146 + s147 + s149 + s150+
s158 + s160 + s162 + s164 + s166 + s167 + s169 + s170
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