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Abstract. Boolean functions have very nice applications in cryptography and

coding theory, which have led to a lot of research focusing on their applications.

The objective of this paper is to construct binary linear codes with few weights

from the defining set, which is defined by some special Boolean functions and

some additional restrictions. First, we provide two general constructions of

binary linear codes with three or four weights from Boolean functions with

at most three Walsh transform values and determine the parameters of their

dual codes. Then many classes of binary linear codes with explicit weight

enumerators are obtained. Some binary linear codes and their duals obtained

are optimal or almost optimal. The binary linear codes obtained in this paper

may have a special interest in secret sharing schemes, association schemes,

strongly regular graphs.
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1 Introduction

Let q be a prime power and n be a positive integer. An [n, k, d] code C over the finite field Fq is a k-dimensional

linear subspace of Fn
q with minimum Hamming distance d. Let Ai denote the number of codewords with

Hamming weight i in C. The weight enumerator of C is defined by 1+A1x+A2x
2+ · · ·+Anx

n and the sequence

(1, A1, A2, · · · , An) is called the weight distribution of C. A code C is said to be a t-weight code if the number of

nonzero Ai in the sequence (1, A1, A2, · · · , An) is equal to t. An [n, k, d] code over Fq is called distance-optimal

if there is no [n, k, d+ 1] code over Fq, and dimension-optimal if there is no [n, k+1, d] code over Fq. A code is

said to be optimal if it is both distance-optimal and dimension-optimal.

Binary error correcting linear codes are widely studied by researchers and employed by engineers since they

have applications in computer and communication systems, data storage devices and consumer electronics. In

particular, due to linear codes with few weights have applications in secret sharing [1, 5, 7, 42], strongly regular

graphs [4], association schemes [3] and authentication codes [13], many researchers focused on constructions

of linear codes with few weights and made a lot of progress on this topic. A non-exhaustive list dealing with

linear codes with few weights is [14–17, 20, 21, 23, 26–28, 30, 35, 37–41, 43, 44]. Almost all known linear codes in

the the previous literature were constructed by trace representations. As far as we know, Ding et al. [14] first

constructed a generic class of linear codes by trace representations as follows:

CD = {(Trm1 (xd1),Tr
m
1 (xd2), · · · ,Tr

m
1 (xdn)) |x ∈ Fpm} ,
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where Trm1 denote the trace function from Fpm to Fp and D = {d1, d2, . . . , dn} ⊂ Fpm . The code CD is a linear

code over Fp with dimension at most m and D is called the defining set of CD. Along this line, Li et al. [26]

considered a class of linear codes with dimension at most 2m of the form

CD =
{

c(a, b) = (Trm1 (ax+ by))(x,y)∈D : a, b ∈ Fpm

}

(1)

and studied CD for the caseD =
{

(x, y) ∈ F2
pm \ {(0, 0)} : Trm1

(

xN1 + yN2
)

= 0
}

, whereN1, N2 ∈
{

1, 2, p
m

2 +1
}

.

Then, this construction was generalized to the other cases of D by Jian et al. [23] and Li [27], and some linear

codes with few weights were obtained. Very recently, Wu et al. [40] studied the p-ary linear code CD for the

case D = {(x, y) ∈ F2
pm \ {(0, 0)} : f(x) + g(y) = 0} for any odd prime p, where f(x) = Trm1 (x) and g(y) is a

weakly regular bent function, or both f(x) and g(y) are weakly regular bent functions.

Inspired by the works in [40], this paper considers binary linear codes of the form (1) by employing some

special Boolean functions and more restrictions on defining sets. Concretely, we first study the linear codes of

the form (1) by selecting the defining set as

Dǫ =
{

(x, y) ∈ F2
2m \ {(0, 0)} : f(x) + g(y) = 0 and Trm1 (x + y) = ǫ

}

, (2)

where ǫ ∈ {0, 1} and f(x) and g(y) are Boolean functions from F2m to F2 with at most three Walsh transform

values. We call the linear codes obtained from the definition set (2) the first class of linear codes. When the

Walsh spectra of f(x) and (y) satisfy some conditions, we determine the weight distribution of CDǫ
and the

parameters of their dual codes for ǫ ∈ {0, 1}. The second contribution of this paper is that we derive new at

most three or four weight linear codes of the form (1) from the following defining set:

Dǫ =
{

(x, y) ∈ F2
2m \ {(0, 0)} : f(x) + g(y) = 0, Trm1 (x) = 0 and Trm1 (y) = ǫ

}

, (3)

where f(x) and g(y) are Boolean functions with at most three Walsh transform values satisfying some additional

conditions. We call the linear codes obtained from the definition set (3) the second class of linear codes. Some

of binary linear codes obtained in this paper are optimal or almost optimal.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries. Section 3

introduces the Walsh transform values of some quadratic Boolean functions. In Section 4, we investigate the

weight distribution of the first class of linear codes and the parameters of their dual codes. Section 5 investigates

the weight distribution of the second class of linear codes and the parameters of their dual codes. Section 6

concludes this paper.

2 Preliminaries

Throughout this paper, we adopt the following notation unless otherwise stated:

• F2m is a finite field with 2m elements.

• Trmℓ (·) is the trace function from F2m to F2ℓ , where ℓ,m are positive integers with ℓ |m.

• v2(·) is the 2-adic order function and set v2(0) = ∞.

• Tℓk
k (x) :=

∑ℓ−1
i=0 x

2ik , where x is a variable.

• Tv
u ◦Tv0

u0
(x) = Tv

u(T
v0
u0
(x)), where u, v, u0 and v0 are positive integers with u | v and u0 | v0.

Lemma 2.1 ( [32]) Follow the notation introduced above. Denote d = gcd(ℓk,m) and let a ∈ F2m . The

equation Tℓk
k (x) = a has a solution in F2m if and only if T

(d,k)
1 ◦T2

1 ◦T
m
d (a) = 0 when ℓk

[d,k] is odd and Tm
d (a) = 0

when ℓk
[d,k] is even, where [d, k] is the lowest common multiple of two positive integers d and k.

For convenience, we introduce a few basic concepts, which will be used in the following sections. Let f(x)

be a Boolean function from F2m to F2. The Walsh transform of f(x) is defined by

f̂(ω) =
∑

x∈F2m

(−1)f(x)+Trm1 (ωx), ω ∈ F2m . (4)
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• If f(x) satisfies f̂(ω) ∈ {±2
m

2 } for all w ∈ F2m , then f(x) is called a bent function. Bent functions were

coined by Rothaus in [33] and exist only for even m.

• If m is odd and f(x) satisfies f̂(ω) ∈ {0,±2
m+1

2 } or m is even and f(x) satisfies f̂(ω) ∈ {0,±2
m+2

2 } for all

w ∈ F2m , then f(x) is called a semibent function [31].

• If f(x) satisfies f̂(ω) ∈ {0,±A} for all w ∈ F2m , then f(x) is called a plateaued function. By Parseval’s

identity, then A = 2
m+d

2 , where d is an integer such that 0 ≤ d ≤ m. Clearly, bent functions and almost

bent functions are the special cases of plateaued functions [6].

To study the parameters of the dual codes of the objective linear codes, we need the Pless power moment

identities on linear codes. Let C be a binary [n, k] code, and denote its dual by C⊥. Let Ai and A⊥
i be the

number of codewords of weight i in C and C⊥, respectively. Then we have the first four Pless power moments

identities ( [29], p. 131) as follows:

n
∑

i=0

Ai = 2k;

n
∑

i=0

iAi = 2k−1(n−A⊥
1 );

n
∑

i=0

i2Ai = 2k−2[n(n+ 1)− 2nA⊥
1 + 2A⊥

2 ];

n
∑

i=0

i3Ai = 2k−3[n2(n+ 3)− (3n2 + 3n− 2)A⊥
1 + 6nA⊥

2 − 6A⊥
3 ].

The following is a well-known result.

Lemma 2.2 (Sphere Packing Bound) Let C be a binary [n, k, d] code. Then

2n ≥ 2k
⌊ d−1

2 ⌋
∑

i=0

(

n

i

)

,

where ⌊d−1
2 ⌋ is the largest integer less than or equal to d−1

2 .

3 Walsh transform values of some quadratic Boolean functions

Let f(x) be a Boolean function from F2m to F2 and its Walsh transform defined in (4). The Walsh transform

was used to characterize some properties of Boolean functions, such as nonlinearity, balance, etc.. Boolean

functions with few Walsh transform values were extensively studied due to their applications in cryptography,

error correcting codes and signal sequence design. However, as far as we know, there is few research on study of

the relation between two Walsh transform values of Boolean functions. The following lemmas show that there

exist quadratic Boolean functions f(x) such that f̂(ω)f̂(ω + 1) = 0 for any ω ∈ F2m .

Lemma 3.1 Let m, k be positive integers with d = gcd(m, k) and v2(·) denote the 2-adic order function. Let

f(x) = Trm1 (αx2k+1) be a Boolean function from F2m to F2 for some α ∈ F∗
2m . If α ∈ {c2

k+1 | c ∈ F∗
2m}, i.e.,

there exists β ∈ F∗
2m such that α = β2k+1, then

f̂(ω) =















±2
m+d

2 if v2(m) ≤ v2(k) and Trmd (ωβ−1) = 1,

±2
m+2d

2 if v2(m) ≥ v2(k) + 1 and Trm2d(ωβ
−1) = 0,

0 otherwise.

When v2(m) ≤ v2(k), f̂(ω)f̂(ω+1) = 0 for any ω ∈ F2m if and only if Trmd (β−1) 6= 0. When v2(m) ≥ v2(k)+1,

f̂(ω)f̂(ω + 1) = 0 for any ω ∈ F2m if and only if Trm2d(β
−1) 6= 0.

Proof. Note that {x ∈ F2m |x2d+1} = {x ∈ F2m |x2k+1} since d = gcd(k,m), then the possible values of f̂(ω)

can be easily obtained from [9,10]. Now we consider the necessary and sufficient condition of f̂(ω)f̂(ω + 1) = 0

for any ω ∈ F2m .

When v2(m) ≤ v2(k), it is obvious there are some ω such that Trmd (ωβ−1) = 1 for β ∈ F∗
2m . Then

f̂(ω)f̂(ω + 1) = 0 for any ω ∈ F2m if and only if one of Trmd (ωβ−1) and Trmd ((ω + 1)β−1) is equal to 1, i.e.,

Trmd (β−1) 6= 0. When v2(m) ≥ v2(k) + 1, the results can be shown similarly. �
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Remark 3.2 If α /∈ {c2
k+1 | c ∈ F∗

2m}, then f(x) = Trm1 (αx2k+1) is a Gold bent function and f̂(ω) = ±2
m

2 for

any ω ∈ F2m .

Lemma 3.3 Let f(x) = Trm1 (
∑ℓ

i=1 x
2ik+1) be a Boolean function from F2m to F2. Assume that gcd(ℓk,m) =

gcd((ℓ + 1)k,m) = 1, then f̂(ω) · f̂(ω + 1) = 0 for any ω ∈ F2m , and the possible values of f̂(ω) are given as

follows:

f̂(ω) =

{

±2
m+1

2 , if Trm1 (ℓ + ω) = 0,

0, if Trm1 (ℓ + ω) = 1.

Proof. It is clear that

f̂2(ω) =
∑

x0∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 x
2ik+1
0 +ωx0

)

∑

x∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 x2ik+1+ωx
)

=
∑

x,y∈F2m

(−1)
Trm1

(

∑

ℓ

i=1(x+y)2
ik+1+ω(x+y)+

∑

ℓ

i=1 x2ik+1+ωx
)

=
∑

x,y∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 xy2ik+
∑

l

i=1 x2iky+
∑

ℓ

i=1 y2ik+1+ωy
)

=
∑

y∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

∑

x∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 xy2ik+
∑

l

i=1 x2iky
)

=
∑

y∈F2m

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

∑

x∈F2m

(−1)Tr
m

1

((

z+z2(ℓ+1)k
)

x2ℓk
)

= 2m
∑

y∈F2m , z+z2(ℓ+1)k
=0

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

,

(5)

where z = y + y2
k

+ · · · + y2
(ℓ−1)k

. It is easy to see that z + z2
(ℓ+1)k

= 0 if and only if z = 0 or z = 1 since

gcd((ℓ+ 1)k,m) = 1. Hence, we have

f̂2(ω) = 2m
∑

y∈F2m ,z∈F2

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

.

Next, we discuss the values of f̂2(ω) for ω running through F2m .

Case 1: ℓ is odd. As T2
1 ◦T

m
1 (x) = 0 for any x ∈ F2m , by Lemma 2.1, y+ y2

k

+ · · ·+ y2
(ℓ−1)k

= a has solutions

for all a ∈ F2m . It is obvious that for different elements a0, a1 ∈ F2m , the solutions y + y2
k

+ · · ·+ y2
(ℓ−1)k

= a0
and y+ y2

k

+ · · ·+ y2
(ℓ−1)k

= a1 are different. Hence, y+ y2
k

+ · · ·+ y2
(ℓ−1)k

= 0 and y+ y2
k

+ · · ·+ y2
(ℓ−1)k

= 1

have only one solution, respectively. Clearly, y = 0 or y = 1 is the solution of y + y2
k

+ · · · + y2
(ℓ−1)k

= 0 or

y + y2
k

+ · · ·+ y2
(ℓ−1)k

= 1, respectively. Hence,

f̂2(ω) = 2m
∑

y∈F2

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

= 2m
(

1 + (−1)Tr
m

1 (ℓ+ω)
)

.

Case 2: ℓ is even. As gcd(ℓk,m) = 1, then m must be odd. By Lemma 2.1, y + y2
k

+ · · · + y2
(ℓ−1)k

= a

has solutions if and only if Tm
1 (a) = 0. As y + y2

k

+ · · · + y2
(ℓ−1)k

is a linear polynomial and the number of

a ∈ F2m such that Tm
1 (a) = 0 is 2m−1, then the equation y + y2

k

+ · · · + y2
k(ℓ−1)

= 0 has two solutions and

y+y2
k

+· · ·+y2
(ℓ−1)k

= 1 has not solution. Clearly, y = 0 and y = 1 are the solutions of y+y2
k

+· · ·+y2
(ℓ−1)k

= 0.

Hence,

f̂2(ω) = 2m
∑

y∈F2

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

= 2m
(

1 + (−1)Tr
m

1 (ℓ+ω)
)

.

Therefore, no matter ℓ is odd or even, we have f̂2(ω) = 2m(1+(−1)Tr
m

1 (ℓ+ω)). As gcd(ℓk,m) = gcd((ℓ+1)k,m) =

1, then m is odd and f̂(ω) · f̂(ω + 1) = 0 for any ω ∈ F2m , the desired conclusion follows. �

In fact, if we do not put such strong restrictions on the Boolean function f(x) in Lemma 3.3, the Walsh

transform values of f(x) still satisfy f̂(ω) · f̂(ω + 1) = 0 for any ω ∈ F2m .
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Lemma 3.4 Let v2(·) denote the 2-adic order function and f(x) = Trm1 (
∑ℓ

i=1 x
2ik+1) be a Boolean function

from F2m to F2. If v2(m) ≤ v2((ℓ+ 1)k), then f̂(ω) · f̂(ω + 1) = 0 for any ω ∈ F2m .

Proof. By similar computations as in (5), we obtain

f̂(ω)f̂(ω + 1) = 2m
∑

y∈F2m , z+z2(ℓ+1)k
=1

(−1)
Trm1

(

∑

ℓ

i=1 y2ik+1+ωy
)

,

where z = y + y2
k

+ · · · + y2
(ℓ−1)k

. Assume that d = gcd((ℓ + 1)k,m), then Trmd (z + z2
(ℓ+1)k

) = 0, which is

contradict to z + z2
(ℓ+1)k

= 1 since v2(m) ≤ v2((ℓ + 1)k). This means that there does not exist y ∈ F2m such

that z + z2
(ℓ+1)k

= 1. Hence, f̂(ω)f̂(ω + 1) = 0.

Remark 3.5 From Lemmas 3.1, 3.3 and 3.4, we see that there exist some Boolean functions f(x) such that

f̂(ω)f̂(ω + 1) = 0 for any ω ∈ F2m . Such Boolean functions will be used to construct binary linear codes with

few weights in Section 4 and Section 5.

4 The weight distribution of the first class of linear codes

In this section, we investigate the weight distribution of the linear code CDǫ
, where CDǫ

has the form (1) and

Dǫ is defined in (2). Assume that n = |Dǫ| is the length of CDǫ
, then

n =
∑

(x,y)∈F
2
2m

\{(0,0)}

(

1

2

∑

z0∈F2

(−1)z0(f(x)+g(y))

)(

1

2

∑

z1∈F2

(−1)z1(Tr
m

1 (x+y)−ǫ)

)

=
∑

(x,y)∈F
2
2m

(

1

2

∑

z0∈F2

(−1)z0(f(x)+g(y))

)(

1

2

∑

z1∈F2

(−1)z1(Tr
m

1 (x+y)−ǫ)

)

− δ

=
1

4

∑

(x,y)∈F
2
2m

(

(−1)f(x)+g(y) + 1
)(

(−1)Tr
m

1 (x+y)−ǫ + 1
)

− δ

= 22m−2 +
1

4

∑

x∈F2m

∑

y∈F2m

(−1)f(x)+g(y) +
1

4
(−1)ǫ

∑

x∈F2m

∑

y∈F2m

(−1)Tr
m

1 (x+y)

+
1

4
(−1)ǫ

∑

x∈F2m

(−1)f(x)+Trm1 (x)
∑

y∈F2m

(−1)g(y)+Trm1 (y) − δ

= 22m−2 +
1

4
f̂(0)ĝ(0) +

1

4
(−1)ǫf̂(1)ĝ(1)− δ,

(6)

where

δ =
1

2

∑

z1∈F2

(−1)z1ǫ =

{

1, if ǫ = 0,

0, if ǫ = 1.
(7)

For any (a, b) ∈ F2
2m , the Hamming weight of the codeword c(a, b) = (Trm1 (ax+ by))(x,y)∈Dǫ

in CDǫ
is

wtH(c(a, b)) = n−N(a, b), (8)

where n is the length of the linear code CDǫ
and

N(a, b) =
∣

∣

{

(x, y) ∈ F2
2m \ {(0, 0)} : f(x) + g(y) = 0, Trm1 (x+ y) = ǫ and Trm1 (ax+ by) = 0

}∣

∣ .

From the definition of n, it is easy to see that when (a, b) = (1, 1), we have

N(a, b) =

{

n, if ǫ = 0,

0, if ǫ = 1.
(9)

5



If (a, b) 6= (0, 0) and (a, b) 6= (1, 1), then

N(a, b)

=
∑

(x,y)∈F
2
2m

\{(0,0)}

1

2

(

∑

z0∈F2

(−1)z0(f(x)+g(y))

)

1

2

(

∑

z1∈F2

(−1)z1(Tr
m

1 (x+y)−ǫ)

)

1

2

(

∑

z2∈F2

(−1)z2(Tr
m

1 (ax+by))

)

=
1

8

∑

(x,y)∈F
2
2m

(

1 + (−1)f(x)+g(y)
)(

1 + (−1)Tr
m

1 (x+y)−ǫ
)(

1 + (−1)Tr
m

1 (ax+by)
)

− δ

= 22m−3 +
(−1)ǫ

8

∑

x,y∈F2m

(−1)Tr
m

1 (x+y) +
1

8

∑

x,y∈F2m

(−1)Tr
m

1 (ax+by) +
1

8

∑

x,y∈F2m

(−1)f(x)+g(y)

+
(−1)ǫ

8

∑

x∈F2m

(−1)f(x)+Trm1 ((a+1)x)
∑

y∈F2m

(−1)g(y)+Trm1 ((b+1)y) +
(−1)ǫ

8

∑

x∈F2m

(−1)Tr
m

1 ((a+1)x)
∑

y∈F2m

(−1)Tr
m

1 ((b+1)y)

+
(−1)ǫ

8

∑

x∈F2m

(−1)f(x)+Trm1 (x)
∑

y∈F2m

(−1)g(y)+Trm1 (y) +
1

8

∑

x∈F2m

(−1)f(x)+Trm1 (ax)
∑

y∈F2m

(−1)g(y)+Trm1 (by) − δ

= 22m−3 +
1

8
(f̂(0)ĝ(0) + f̂(a)ĝ(b)) +

(−1)ǫ

8
(f̂(1)ĝ(1) + f̂(a+ 1)f̂(b+ 1))− δ

=
n− δ

2
+

f̂(a)ĝ(b)

8
+

(−1)ǫf̂(a+ 1)ĝ(b+ 1)

8
,

(10)

where n and δ are defined in (6) and (7), respectively.

With the above preparations, we have the following results.

Proposition 4.1 Follow the notation introduced above. Assume that (a, b) ∈ F2
2m \ {(0, 0), (1, 1)}. If ǫ = 0,

then CD0 is a binary linear code of length n and its Hamming weights are given by the following multiset

{

n+ 1

2
−

f̂(a)ĝ(b)

8
−

f̂(a+ 1)ĝ(b+ 1)

8

}

⋃

{0} .

If ǫ = 1, then CD1 is a binary linear code of length n and its Hamming weights are given by the following multiset

{

n

2
−

f̂(a)ĝ(b)

8
+

f̂(a+ 1)ĝ(b+ 1)

8

}

⋃

{0, n} .

In the following, we determine the weight distribution of CDǫ
for some special Boolean functions. For

convenience, we write

Φǫ =
1

4

(

f̂(0)ĝ(0) + (−1)ǫf̂(1)ĝ(1)
)

. (11)

Theorem 4.2 Let m be an integer with m ≥ 3 and CDǫ
be a linear code with the defining set Dǫ given in (2).

Let f(x) and g(y) in (2) satisfy one of the following conditions:

(i) f̂(a) ∈
{

0,±2
m+d0

2

}

, f̂(a) · f̂(a+ 1) = 0 and ĝ(b) ∈
{

0,±2
m+d1

2

}

for any a, b ∈ F2m ;

(ii) f̂(a) ∈
{

0,±2
m+d0

2

}

, f̂(a) = ±f̂(a+ 1), ĝ(b) ∈
{

0,±2
m+d1

2

}

and ĝ(b) = ±ĝ(b+ 1) for any a, b ∈ F2m .

Denote t = d0+d1

2 or d0+d1+2
2 if condition (i) or (ii) holds, respectively. Assume that Φǫ 6= 2m+t−2 − 22m−2,

then the following statements hold.

(1) If ǫ = 0, then CD0 is an [n, 2m− 1] code with weight distribution in Table 1, where n = 22m−2 +Φ0 − 1. Its

dual code has parameters [n, n− 2m+ 1, 3].

(2) If ǫ = 1, then CD1 is an [n, 2m] code with weight distribution in Table 2, where n = 22m−2 + Φ1. Its dual

code has parameters [n, n− 2m, 4], which is distance-optimal with respect to the Sphere Packing bound.

6



Table 1: The weight distribution of CD0

Weight Multiplicity

0 1
n+1
2 24−2t−2m(n+ 1)2 + 22m−1 − 23−2t · (n+ 1)− 1

n+1
2 + 2m−3+t (n+ 1) · 21−m−t − 2m−t − (23−2m · (n+ 1)2 − 4 · (n+ 1)) · 2−2t

n+1
2 − 2m−3+t 2m−t − (n+ 1) · 21−m−t − (23−2m · (n+ 1)2 − 4 · (n+ 1)) · 2−2t

Table 2: The weight distribution of CD1

Weight Multiplicity

0 1
n
2 (25−2m · n2 − 24 · n) · 2−2t + 22m − 2

n
2 + 2m−3+t (23 · n− 24−2m · n2) · 2−2t

n
2 − 2m−3+t (23 · n− 24−2m · n2) · 2−2t

n 1

Proof. We only prove the weight distribution of CDǫ
for the case (i). The weight distribution of CDǫ

can be

shown similarly if the condition (ii) holds. The proof will be divided into two cases.

Case 1: ǫ = 0. From (8) and (9), we obtain wtH(c(a, b)) = 0 if (a, b) = (0, 0) or (a, b) = (1, 1). This means

that every codeword in CD0 at least repeats 2 times, i.e., CD0 is degenerate and its dimension is less than or

equal to 2m− 1. From (8) and (10), the dimension of CD0 is less than 2m− 1 if and only if there exists a pair

(a, b) ∈ (F2m ,F2m)\{(0, 0), (1, 1)} such that

n+ 1 =
1

4

(

f̂(a)ĝ(b) + f̂(a+ 1)ĝ(b + 1)
)

. (12)

On the other hand, we know

1

4

(

f̂(a)ĝ(b) + f̂(a+ 1)ĝ(b+ 1)
)

∈
{

0,±2m+
d0+d1

2 −2
}

since f̂(a) · f̂(a + 1) = 0, f̂(a) ∈ {0,±2
m+d0

2 } and ĝ(b) ∈ {0,±2
m+d1

2 } for any a, b ∈ F2m . As n is the length

of CD0 , then (12) holds if and only if n + 1 = 2m+
d0+d1

2 −2, which is impossible since n = 22m−2 + Φ0 − 1 and

Φ0 6= 2m+
d0+d1

2 −2 − 22m−2. Hence, in this case, the dimension of CD0 is 2m− 1. In the following, we determine

the weight distribution of CD0 .

As f̂(a)ĝ(b) + f̂(a + 1)ĝ(b + 1) ∈ {0,±2m+
d0+d1

2 } for (a, b) ∈ F2
2m \ {(0, 0), (1, 1)}, then from (6) and

Proposition 4.1, the possible weights of CD0 are
{

0,
n+ 1

2
,
n+ 1

2
± 2m+

d0+d1
2 −3

}

.

Assume that w0 = n+1
2 , w1 = n+1

2 + 2m+
d0+d1

2 −3 and w2 = n+1
2 − 2m+

d0+d1
2 −3. Let Awi

be the number of the

codewords with weight wi in CD0 , where 0 ≤ i ≤ 2. It is clear that the dual code of CD0 has the minimum

weight at least 3, from the first three Pless power moments identities, we have










∑2
i=0 ωi = 22m−1 − 1,

∑2
i=0 ωiAωi

= 22m−2n,
∑2

i=0 ω
2
iAωi

= 22m−3n(n+ 1).

Solving this system of equations, we obtain










Aω0 = 24−d0−d1−2m(n+ 1)2 + 22m−1 − 23−d0−d1 · (n+ 1)− 1,

Aω1 = (n+ 1) · 21−m−
d1+d2

2 − 2m−
d1+d2

2 − (23−2m · (n+ 1)2 − 4 · (n+ 1)) · 2−d0−d1 ,

Aω2 = 2m−
d1+d2

2 − (n+ 1) · 21−m−
d1+d2

2 − (23−2m · (n+ 1)2 − 4 · (n+ 1)) · 2−d0−d1 .
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From the fourth Pless power moments identities, we have the number of the codewords of C⊥
D0

with Hamming

weight 3 is

B3 =
22m+d0+d1−4 + (n+ 1)3 · 21−2m − (n+ 1) · 2d0+d1−3 − 3n− 1

6
. (13)

By the definition of n, it is easy to see

n =











22m−2 − 2m+
d0+d1

2 −2 − 1, if Φ0 = −2m+
d0+d1

2 −2,

22m−2 − 1, if Φ0 = 0,

22m−2 + 2m+
d0+d1

2 −2 − 1, if Φ0 = 2m+
d0+d1

2 −2.

Substituting the value of n into (13), we can check that B3 6= 0 for m ≥ 3. This means that dH(C⊥
D0

) = 3.

Case 2: ǫ = 1. From (8) and (9), we obtain wtH(c(a, b)) = 0 for (a, b) = (0, 0) and wtH(c(a, b)) = n for

(a, b) = (1, 1). By a similar argument as in Case 1, we see that for any (a, b) ∈ F2
2m\{(0, 0), (1, 1)}, the possible

values of wtH(c(a, b)) are
{n

2
,
n

2
± 2m+

d0+d1
2 −3

}

,

which all are nonzero. This means that the dimension of CD1 is 2m.

Assume that w0 = n
2 , w1 = n

2 + 2m+
d0+d1

2 −3 and w2 = n
2 − 2m+

d0+d1
2 −3. We now determine the number

Awi
of codewords with weight wi in CD1 , where 0 ≤ i ≤ 2. It is clear that the dual code C⊥

D1
of CD1 has the

minimum distance at least 3, then the first three Pless power moments identities lead to the following system

of equations:










∑2
i=0 Aωi

= 22m − 2,
∑2

i=0 ωiAωi
+ n = 22m−1n,

∑2
i=0 ω

2
iAωi

+ n2 = 22m−2n(n+ 1).

Solving this system of equations, we obtain







Aω0 = (25−2m · n2 − 24 · n) · 2−d0−d1 + 22m − 2,

Aω1 = (23 · n− 24−2m · n2) · 2−d0−d1 ,

Aω2 = (23 · n− 24−2m · n2) · 2−d0−d1 .

Next, we show that the minimum distance of C⊥
D1

is 4. Assume that C⊥
D1

has a codeword c with Hamming

weight 3. By Proposition 4.1, we know that (1, 1, . . . , 1) is a codeword in CD1 since which is an only codeword

with weight n. So, c · (1, 1, · · · , 1) = 0. This is a contradiction. Hence, dH(C⊥
D1

) ≥ 4. If dH(C⊥
D1

) = 5, from

Sphere Packing bound, we have

2n ≥ 2n−2m
2
∑

i=0

(

n

i

)

, i.e., 22m ≥ 1 + n+
n(n− 1)

2
. (14)

It is easy to check that (14) does not hold for m ≥ 3. This means that dH(C⊥
D1

) = 4. So, C⊥
D1

has parameters

[n, n− 2m, 4] and is distance-optimal with respect to the Sphere Packing bound. �

Remark 4.3 Note that almost all known Boolean functions f(x) and g(x) with the condition (i) or (ii) in

Theorem 4.2 satisfy Φǫ 6= 2m+t−2 − 22m−2, i.e., the dimensions of the codes CD0 and CD1 are 2m− 1 and 2m

respectively, where Φǫ is defined in (11). On the other hand, from Table 1 and Table 2, we see that the Hamming

weights of all codeword in CDǫ
are related to the Walsh transform values of f(x) and g(y). These values can be

obtained explicitly for some Boolean functions f(x) and g(y) in the following corollaries.

Corollary 4.4 Let m, k be positive integers with m ≡ 2 (mod 4) and d = gcd(m, k) being odd. Let CDǫ

be a linear code with the defining set Dǫ given in (2), where f(x) = Trm1 (x2k+1) and g(y) = Trm1 (ye) with

e = 2
m

2 + 2
m+2

4 + 1 or e = 2
m+2

2 + 3. Then the following statements hold.

(1) If ǫ = 0, then CD0 is a [22m−2 − 1, 2m− 1, 22m−3 − 2m+d−2] code with weight enumerator

1+(22m−2d−3+2m−d−2)x22m−3−2m+d−2

+(22m−1−22m−2d−2−1)x22m−3

+(22m−2d−3−2m−d−2)x22m−3+2m+d−2

.
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(2) If ǫ = 1, then CD1 is a [22m−2, 2m, 22m−3 − 2m+d−2] code with weight enumerator

1 + (22m − 22m−2d+1 − 2)x22m−3

+ 22m−2d−2
(

x22m−3−2m+d−2

+ x22m−3+2m+d−2
)

+ x22m−2

.

Proof. From [8], we know that g(y) = Trm1 (ye) is a plateaued function for e = 2
m

2 + 2
m+2

4 + 1 or e = 2
m+2

2 + 3,

and ĝ(ω) ∈ {0,±2
m+2

2 } for any ω ∈ F2m . It is easy to verify that gcd(e, 2m − 1) = 1, and so ĝ(0) = 0. On the

other hand, from Lemma 3.1 we know that f̂(1) = 0 and f̂(ω) ∈ {0,±2
m+2d

2 } for any ω ∈ F2m . By Theorem 4.2,

the length of the code n = 22m−2 − 1 or 22m−2 if ǫ = 0 or 1, respectively. Moreover, f(x) and g(y) satisfy the

condition (i) in Theorem 4.2. Substituting the values of n and t = d + 1 into Table 1 and Table 2, we get the

weight enumerators in (1) and (2), respectively. �

Corollary 4.5 Let m, k be positive integers with m ≡ 2 (mod 4) and d = gcd(m, k) being odd. Let CDǫ
be a

linear code with the defining set Dǫ given by (2) in which f(x) = Trm1 (x2k+1) and g(y) = Trm1 (αye), where α

and e satisfying one of the following conditions:

• e = 2h + 1, where h is a positive integer and α /∈ {xe |x ∈ F2m};

• e = 22h − 2h + 1, where gcd(h,m) = 1 and α /∈ {x3 |x ∈ F2m};

• e = 2h − 1, where h ≥ 2 and α is a zero of the Kloosterman Sum.

Denote µ = 1 if gcd(e, 2
m

2 − 1) = 1 and µ = −1 if gcd(e, 2
m

2 + 1) = 1, then the following statements hold.

(1) If ǫ = 0, then CD0 is a [22m−2−µ2m+d−2− 1, 2m− 1, 22m−3− (1+µ)2m+d−3] code with weight enumerator

1+(22m−2d−1−µ2m−d−1−1)x22m−3

+(22m−1−22m−2d)x22m−3−µ2m+d−3

+(22m−2d−1+µ2m−d−1)x22m−3−µ2m+d−2

.

(2) If ǫ = 1, then CD1 is a [22m−2 − µ2m+d−2, 2m, 22m−3 − (1 + µ)2m+d−3] code with weight enumerator

1 + (22m−2d − 1)
(

x2m−3 + x22m−3−µ2m+d−2
)

+ (22m − 22m−2d+1)x22m−3−µ2m+d−3

+ x22m−2−µ2m+d−2

.

Proof. It is easy to see that gcd(e, 2
m

2 − 1) = 1 or gcd(e, 2
m

2 + 1) = 1 since gcd
(

2
m

2 − 1, 2
m

2 + 1
)

= 1. In the

following, we only consider the case gcd(e, 2
m

2 − 1) = 1 and the other case can be shown similarly.

From [11,12], we know that g(y) = Trm1 (αye) is a bent function for all e listed above, and so ĝ(ω) ∈ {±2
m

2 }.

Since gcd
(

e, 2
m

2 − 1
)

= 1, we have s = gcd(e, 2
m

2 + 1) 6= 1. Let γ be a primitive element of F2m and G = 〈γs〉

be a subgroup of F∗
2m with order (2m − 1)/s. Then

ĝ(0) =
∑

y∈F2m

(−1)Tr
m

1 (ye) = 1 +
∑

y∈F
∗

2m

(−1)Tr
m

1 (ye) = 1 + s
∑

y∈G

(−1)Tr
m

1 (ye) ≡ 1 (mod s).

So, ĝ(0) = −2
m

2 . On the other hand, from Theorem [9, Theorem 5.2], we have f̂(0) = 2
m+2d

2 and from

Lemma 3.1, we obtain that f̂(1) = 0 and f̂(ω) ∈ {0,±2
m+2d

2 } for any ω ∈ F2m . By Theorem 4.2, the length of

the code n = 22m−2 − 2m+d−2 − 1 or 22m−2 − 2m+d−2 if ǫ = 0 or 1, respectively. It is obvious that f(x) and

g(y) satisfy the condition (i) in Theorem 4.2. Substituting the values of n and t = d into Table 1 and Table 2,

we obtain the weight enumerators in (1) and (2), respectively. �

Corollary 4.6 Let m be an odd number with m ≥ 3 and 3 ∤ m. Let k be a positive integer with gcd(m, k) = 1

and CDǫ
be a linear code with the defining set Dǫ given by (2) in which f(x) = Trm1 (x2k+1 + x22k+1) and

g(y) = Trm1 (ye), where e is one of the following number:

• e = 2
m−1

2 + 3, or e = 22h − 2h + 1, or e = 2h + 1 for gcd(m,h) = 1;

• e = 2
m−1

2 + 2
m−1

4 − 1 for m ≡ 1 (mod 4), or e = 2
m−1

2 + 2
3m−1

4 − 1 for m ≡ 3 (mod 4).

Then the following statements hold.

(1) If ǫ = 0, then CD0 is a [22m−2 − 1, 2m− 1, 22m−3 − 2m−2] code with weight enumerator

1 + (22m−3 + 2m−2)x22m−3−2m−2

+ (22m−2 − 1)x22m−3

+ (22m−3 − 2m−2)x22m−3+2m−2

.
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(2) If ǫ = 1, then CD1 is a [22m−2, 2m, 22m−3 − 2m−2] code with weight enumerator

1 + 22m−2x22m−3−2m−2

+ (22m−1 − 2)x22m−3

+ 22m−2x22m−3+2m−2

+ x22m−2

.

Proof. It is easy to verify that gcd(e, 2m−1) = 1, and so ĝ(0) = 0. From [19,22,24] we know that g(y) = Trm1 (ye)

is a semi-bent function for all e listed above, and so ĝ(ω) ∈ {0,±2
m+1

2 } for any ω ∈ F2m . From Lemma 3.3 we

know that f̂(1) = 0. By Theorem 4.2, the length of the code n = 22m−2 − 1 or 22m−2 if ǫ = 0 or 1, respectively.

It is easy to see that f(x) and g(y) satisfy the condition (i) in Theorem 4.2. Substituting the values of n and

t = 1 into Table 1 and Table 2, we obtain the weight enumerators in (1) and (2), respectively. �

Corollary 4.7 Let m be an integer with m ≥ 3 and CDǫ
be a linear code with the defining set Dǫ given in (2).

If f(x) and g(y) in (2) are the same bent functions, then the following statements hold.

(1) If ǫ = 0, then CD0 is a [22m−2 + 2m−1 − 1, 2m− 1, 22m−3] code with weight enumerator

1 + (22m−3 + 2m−2 − 1)x22m−3

+ 22m−2x22m−3+2m−2

+ (22m−3 − 2m−2)x22m−3+2m−1

.

(2) If ǫ = 1, then CD1 is a [22m−2, 2m, 22m−3 − 2m−2] code with weight enumerator

1 + (22m−1 − 2)x22m−3

+ 22m−2x22m−3−2m−2

+ 22m−2x22m−3+2m−2

+ x22m−2

.

Proof. As f(x) and g(y) are the same bent functions, they satisfy the condition (ii) in Theorem 4.2. So, the

length of the code n = 22m−2 + 2m−1 − 1 or 22m−2 if ǫ = 0 or 1, respectively. Substituting the values of n and

t = 1 into Table 1 and Table 2, we obtain the weight enumerators in (1) and (2), respectively. �

The following numerical examples show that many best codes can be obtained from our constructions.

Example 4.8 Let CDǫ
be a linear code with the defining set Dǫ given in (2), where f(x) = Tr31(x

3) and

g(y) = Tr31(y
3) are Boolean functions from F23 to F2. By Lemma 3.1 and Theorem 4.2, then the following

results hold.

(1) The linear code CD0 has parameters [19, 5, 8] and its dual has parameters [19, 14, 3].

(2) The linear code CD1 has parameters [20, 6, 8] and its dual has parameters [20, 14, 4].

These codes and their duals are optimal respect to the tables of best codes known maintained at http://www.codeta-bles.de.

These results are verified by Magma programs.

Example 4.9 Let CDǫ
be a linear code with the defining set Dǫ given in (2), where f(x) = Tr41(αx

3) and

g(y) = Tr41(αy
3) with α being a primitive element of F24 . Then f(x) and g(y) are bent functions. By Theorem 4.2

and Corollary 4.7, the following results hold.

(1) The linear code CD0 has parameters [71, 7, 32] and its dual has parameters [71, 64, 3].

(2) The linear code CD1 has parameters [64, 8, 28] and its dual has parameters [64, 56, 4].

These codes and their duals are optimal or almost optimal respect to the tables of best codes known maintained

at http://www.codetables.de. These results are verified by Magma programs.

5 The weight distribution of the second class of linear codes

In this section, we investigate the weight distribution of the linear code CDǫ
, where CDǫ

has the form (1) and

Dǫ is defined in (3). Assume that n = |Dǫ| is the length of CDǫ
, then

n =
∑

(x,y)∈F
2
2m

\{(0,0)}

(

1

2

∑

z0∈F2

(−1)z0(f(x)+g(y))

)(

1

2

∑

z1∈F2

(−1)z1(Tr
m

1 (x))

)(

1

2

∑

z2∈F2

(−1)z2(Tr
m

1 (y)−ǫ)

)

.
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By a similar argument as in (6) we get

n = 22m−3 +
1

8
f̂(0)ĝ(0) +

1

8
f̂(1)ĝ(0) +

1

8
(−1)ǫf̂(0)ĝ(1) +

1

8
(−1)ǫf̂(1)ĝ(1)− δ, (15)

where δ is given in (7). For any (a, b) ∈ F2
2m , the Hamming weight of a codeword c(a, b) = (Trm1 (ax+ by))(x,y)∈Dǫ

in CDǫ
is

wtH(c(a, b)) = n−N(a, b), (16)

where n is the length of CDǫ
and

N(a, b) =
∣

∣

{

(x, y) ∈ F2
2m \ {(0, 0)} : f(x) + f(y) = 0, Trm1 (x) = 0, Trm1 (y) = ǫ and Trm1 (ax+ by) = 0

}∣

∣ .

From the definition of n, it is easy to see that

N(1, 0) = n and N(1, 1) = N(0, 1) =

{

n, if ǫ = 0,

0, if ǫ = 1.
(17)

If (a, b) ∈ F2
2m \ {(0, 0), (1, 0), (0, 1), (1, 1)}, then

N(a, b) =
∑

(x,y)∈F
2
2m

\{(0,0)}

(

1

2

∑

z0∈F2

(−1)z0(f(x)+f(y))

)(

1

2

∑

z1∈F2

(−1)z1(Tr
m

1 (x))

)

(

1

2

∑

z2∈F2

(−1)z2(Tr
m

1 (y)−ǫ)

)(

1

2

∑

z3∈F2

(−1)z3Tr
m

1 (ax+by)

)

.

By a similar argument as in (10), we obtain

N(a, b) =
n− δ

2
+

1

16
f̂(a)f̂(b) +

1

16
f̂(a+ 1)f̂(b) +

1

16
(−1)ǫf̂(a)f̂(b+ 1)) +

1

16
(−1)ǫf̂(a+ 1)f̂(b+ 1), (18)

where δ is given in (7).

With the above preparations, we have the following results.

Proposition 5.1 Follow the notation introduced above. Assume that (a, b) ∈ F2
2m \ {(0, 0), (0, 1), (1, 0), (1, 1)}.

If ǫ = 0, then CD0 is a binary linear code of length n and its Hamming weights are given by the following multiset

{

n+ 1

2
−

f̂(a)ĝ(b)

16
−

f̂(a+ 1)ĝ(b)

16
−

f̂(a)ĝ(b+ 1)

16
−

f̂(a+ 1)ĝ(b+ 1)

16

}

⋃

{0} .

If ǫ = 1, then CD1 is a binary linear code of length n and its Hamming weights are given by the following multiset

{

n

2
−

f̂(a)ĝ(b)

16
−

f̂(a+ 1)ĝ(b)

16
+

f̂(a)ĝ(b+ 1)

16
+

f̂(a+ 1)ĝ(b+ 1)

16

}

⋃

{0, n} .

We now determine the weight distribution of CDǫ
from some special Boolean functions. For convenience,

we write

Φǫ =
1

8

(

f̂(0)ĝ(0) + f̂(1)ĝ(0) + (−1)ǫf̂(0)ĝ(1) + (−1)ǫf̂(1)ĝ(1)
)

, ǫ ∈ {0, 1}.

Theorem 5.2 Let m be an integer with m ≥ 3 and CDǫ
be a linear code with the defining set Dǫ given in (3).

Let f(x) and g(y) in (3) satisfy one of the following conditions:

(i) f̂(a) ∈
{

0,±2
m+d0

2

}

, f̂(a) · f̂(a+ 1) = 0, ĝ(b) ∈
{

0,±2
m+d1

2

}

and ĝ(b) · ĝ(b + 1) = 0 for any a, b ∈ F2m ;

(ii) f̂(a) ∈
{

0,±2
m+d0

2

}

, f̂(a) · f̂(a+ 1) = 0, ĝ(b) ∈
{

0,±2
m+d1

2

}

and ĝ(b) = ±ĝ(b+ 1) for any a, b ∈ F2m .

Denote t = d0+d1

2 or d0+d1+2
2 if the condition (i) or (ii) holds, respectively. Assume that Φǫ 6= 2m+t−3 − 22m−3,

then the following statements holds.
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Table 3: The weight distribution of CD0

Weight Multiplicity

0 1
n+1
2 ((n+ 1)226−2m − 24n− 24) · 2−2t + 22m−2 − 1

n+1
2 + 2m−4+t (n+ 1)22−m−t + (1− 22−2m(n+ 1)2 + n) · 23−2t − 2m−t

n+1
2 − 2m−4+t 2m−t − (n+ 1)22−m−t + (1− 22−2m(n+ 1)2 + n) · 23−2t

Table 4: The weight distribution of CD1

Weight Multiplicity

0 1

n/2 (27−2m · n2 − 25 · n) · 2−2t + 22m−1 − 2

n/2 + 2m−4+t (24n− n2 · 26−2m) · 2−2t

n/2− 2m−4+t (24n− n2 · 26−2m) · 2−2t

n 1

(1) If ǫ = 0, then CD0 is an [n, 2m− 2] code with weight distribution in Table 3, where n = 22m−3 + Φ0 − 1.

Its dual code has parameters [n, n− 2m+ 2, 3].

(2) If ǫ = 1, then CD1 is an [n, 2m− 1] code with weight distribution in Table 4, where n = 22m−3 + Φ1. Its

dual code has parameters [n, n− 2m+1, 4], which is distance-optimal with respect to the Sphere Packing

bound.

Proof. We only prove the weight distribution of CDǫ
for the case (i). The weight distribution of CDǫ

in the

case (ii) can be derived similarly. The proof falls into two cases.

Case 1: ǫ = 0. From (16) and (17), we know that wtH(c(a, b)) = 0 if (a, b) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. So,

each codeword in CD0 at least repeats 4 times, i.e., CD0 is degenerate and its dimension is less than or equal to

2m− 2. From (16) and (18), we know that the dimension of CD0 is less than 2m− 2 if and only if there exists

a pair (a, b) ∈ F2m \ {(0, 0), (1, 0), (0, 1), (1, 1)} such that

n+ 1 =
1

8

(

f̂(a)ĝ(b) + f̂(a+ 1)ĝ(b) + f̂(a)ĝ(b + 1) + f̂(a+ 1)ĝ(b+ 1)
)

. (19)

As f̂(a) · f̂(a + 1) = 0 and ĝ(b) · ĝ(b + 1) = 0 for any a, b ∈ F2m , there is at most one nonzero term among

f̂(a)f̂(b), f̂(a+ 1)f̂(b), f̂(a)f̂(b+ 1) and f̂(a+ 1)f̂(b+ 1). So,

f̂(a)f̂(b) + f̂(a+ 1)f̂(b) + f̂(a)f̂(b+ 1) + f̂(a+ 1)f̂(b+ 1) ∈
{

0,±2m+
d0+d1

2

}

(20)

since f̂(a) ∈ {0,±2
m+d0

2 } and ĝ(b) ∈ {0,±2
m+d1

2 } for any a, b ∈ F2m . This means that (19) holds if and only if

n+ 1 = 2m+
d0+d1

2 −3, which is impossible since n = 22m−3 + Φ0 − 1 and Φ0 6= 2m+
d0+d1

2 −3 − 22m−3. Hence, in

this case, the dimension of CD0 is 2m− 2. In the following, we determine the weight distribution of CD0 .

By Proposition 5.1 and (20), the set of possible Hamming weights of CD0 is
{

0,
n+ 1

2
,
n+ 1

2
± 2m+

d0+d1
2 −4

}

.

Let w0 = n+1
2 , w1 = n+1

2 + 2m+
d0+d1

2 −4 and w2 = n+1
2 − 2m+

d0+d1
2 −4. Assume that Awi

is the number of the

codewords with weight wi in CD0 , where 0 ≤ i ≤ 2. It is easy to see that the minimum weight of the dual code

of CD0 is at least 3. From the first three Pless power moments identities, we have










∑2
i=0 Aωi

= 22m−2 − 1,
∑2

i=0 ωiAωi
= 22m−3n,

∑2
i=0 ω

2
iAωi

= 22m−4n(n+ 1).

12



Solving this system of equations, we obtain











Aω0 = (25−2m · n2 − 24 · n) · 2−d0−d1 + 22m−1 − 2,

Aω1 = (n+ 1)22−m−
d0+d1

2 + (1 − 22−2m(n+ 1)2 + n) · 23−(d0+d1) − 2m−
d0+d1

2 ,

Aω2 = 2m−
d0+d1

2 − (n+ 1)22−m−
d0+d1

2 + (1− 22−2m(n+ 1)2 + n) · 23−(d0+d1).

From the fourth Pless power moments, the number of the codewords of C⊥
D0

with Hamming weight 3 is

B3 =
(n+ 1)322−2m − (22(n+ 1)− 22m) · 2d0+d1−6 − 3n− 1

6
. (21)

By the definition of n and (20), we have

n =











22m−3 − 2m+
d0+d1

2 −3 − 1, if Φ0 = −2m+
d0+d1

2 −3,

22m−3 − 1, if Φ0 = 0,

22m−3 + 2m+
d0+d1

2 −3 − 1, if Φ0 = 2m+
d0+d1

2 −3.

Substituting the values of n into (21), we can check that B3 6= 0 for m ≥ 3. Hence, dH(C⊥
D0

) = 3.

Case 2: ǫ = 1. By a similar analysis as in Case 1, we have that the dimension of CD1 is 2m− 1 and the set of

the possible nonzero weight in CD1 is {n
2 ,

n
2 ± 2m+

d0+d1
2 −4, n}.

Assume that w0 = n
2 , w1 = n

2 + 2m+
d0+d1

2 −4, w2 = n
2 − 2m+

d0+d1
2 −4 and w3 = n. Let Awi

denote the

number of the codewords with weight wi in CD1 , where 0 ≤ i ≤ 3. It is clear that Aw3 = 1 and the dual code of

CD1 has the minimum weight at least 3. From the first three Pless power moments identities, we have











∑2
i=0 Aωi

= 22m−1 − 2,
∑2

i=0 ωiAωi
+ n = 22m−2n,

∑2
i=0 ω

2
iAωi

+ n2 = 22m−3n(n+ 1).

Solving this system of equations, we obtain







Aω0 = (27−2m · n2 − 25 · n) · 2−d0−d1 + 22m − 2,

Aω1 = (24n− n2 · 26−2m) · 2−d0−d1 ,

Aω2 = (24n− n2 · 26−2m) · 2−d0−d1 .

From Proposition 5.1, we know that n is a Hamming weight of a codeword in CD1 . By a similar discussion

as Case 2 in Theorem 4.2, we have that dH(C⊥
D1

) = 4. It is easy to see that the code with parameters

[n, n− 2m+ 1, 4] is distance-optimal with respect to the Sphere Packing bound. �

In fact, some Hamming weights occur zero time in Table 3 and Table 4 for some special Boolean functions.

We presents two-weight or three-weight linear code CDǫ
from some special Boolean functions f(x) and g(y).

The following Corollary 5.3 can be derived directly from Lemma 3.3 and Theorem 5.2.

Corollary 5.3 Let m, k and ℓ be positive integers with m ≥ 3 and gcd(kℓ,m) = gcd(k(ℓ + 1),m) = 1. Let

CDǫ
be the linear code with the defining set Dǫ given in (3), where f(x) = Trm1 (

∑ℓ

i=1 x
2ik+1) and g(y) =

Trm1 (
∑ℓ

i=1 y
2ik+1). Then the following statements hold.

(1) If ǫ = 0, then CD0 is a [22m−3 + 2m−2 − 1, 2m− 2, 22m−4] code with weight enumerator

1 + (22m−3 + 2m−2 − 1)x22m−4

+ (22m−3 − 2m−2)x22m−4+2m−2

.

(2) If ǫ = 1, then CD1 is a [22m−3 + (−1)ℓ2m−2, 2m− 1, 22m−4 + (−1)ℓ2m−2] code with weight enumerator

1 + (22m−2 − 1)x22m−4+(−1)ℓ2m−2

+ (22m−2 − 1)x22m−4

+ x22m−4+(−1)ℓ2m−2

.

Corollary 5.4 Let m, k be positive integer with m ≡ 2 (mod 4) and d = gcd(m, k) being odd. Let CDǫ
be the

linear code with the defining set Dǫ given by (3) in which f(x) = Trm1 (x2k+1) and g(y) = Trm1 (αy2
m

2
+1

), where

α = 1
γ2m−1+1

+ 1

γ2
3m
2 −2

m

2 +1
and γ is a primitive element of F22m . Then the following statements hold.
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(1) If ǫ = 0, then CD0 is a [22m−3 − 1, 2m− 2, 22m−4 − 2m+d−3] code with weight enumerator

1+(22m−2−2m−2d−2−1)x22m−4

+(22m−2d−3−2m−d−2)x22m−4+2m+d−3

+(22m−2d+3+2m−d−2)x22m−4−2m+d−3

.

(2) If ǫ = 1, then CD1 is a [22m−3 − 2m+d−2, 2m− 1, 22m−4 − 2m+d−2] code with weight enumerator

1 + (22m−2d−2 − 1)
(

x2m−4 + x22m−4−2m+d−2
)

+ (22m − 22m−2d−1)x22m−3−2m+d−3

+ x22m−3−2m+d−2

.

Proof. It is easy to see that

α2m =
1

γ1−2m + 1
+

1

γ2
m

2 −2
3m
2 + 1

=
γ2m−1 + γ2

3m
2 −2

m

2

(γ2m−1 + 1)(γ2
3m
2 −2

m

2 + 1)
= α.

This means that α ∈ F2m . Similarly, we can prove that α2
m

2 + α = 1. It is clear that

ĝ(0)ĝ(1) =
∑

z∈F2m

(−1)
Trm1

(

αz2
m

2 +1

)

∑

x∈F2m

(−1)
Trm1

(

αx2
m

2 +1+x

)

=
∑

x,y∈F2m

(−1)
Trm1

(

α(x+y)2
m

2 +1+αx2
m

2 +1+x

)

=
∑

x,y∈F2m

(−1)
Trm1

(

αy2
m

2 +1+αx2
m

2
y+αxy2

m

2
+x

)

=
∑

y∈F2m

(−1)
Trm1

(

αy2
m

2 +1

)

∑

x∈F2m

(−1)
Trm1

((

αy+α2
m

2
y+1

)

x2
m

2

)

= (−1)Tr
m

1 (α)2m = −2m.

(22)

The last equality is derived from the fact that m ≡ 2 (mod 4) and α2
m

2 +α = 1. From the proof of Corollary 4.5,

it is easy for us to get ĝ(0) = −2
m

2 . Then, we have ĝ(1) = 2
m

2 . By similar computations as in (22), we obtain

that ĝ2(ω) = 2m for any ω ∈ F2m . Hence, we know that g(y) is a bent function.

On the other hand, from Theorem [9, Theorem 5.2], we have f̂(0) = 2
m+2d

2 and from Lemma 3.1, we obtain

that f̂(1) = 0 and f̂(ω) ∈ {0,±2
m+2d

2 } for any ω ∈ F2m . Then n = 22m−3 − 1 if ǫ = 0 and n = 22m−3 − 2m+d−2

if ǫ = 1, where n is defined in (15). It is obvious that f(x) and g(y) satisfy the condition (ii) in Theorem 5.2.

Substitute the value of n and t = d+ 1 into Table 3 and Table 4, the desired conclusion then follows. �

In the following, we give two examples for f(x) and g(y) satisfying condition (i) or condition (ii) in Theo-

rem 5.2, respectively.

Example 5.5 Let CDǫ
be a binary linear code with the defining set Dǫ given in (3), where f(x) = Tr51(

∑ℓ

i=1 x
2i+1)

and g(y) = Tr51(
∑ℓ

i=1 y
2i+1) are Boolean functions from F25 to F2. By Corollary 5.3 and Theorem 5.2, the fol-

lowing results hold.

(1) Let ǫ = 0 and ℓ = 2, then CD0 has parameters [135, 8, 64] and its dual has parameters [135, 127, 3].

(2) Let ǫ = 1 and ℓ = 2, then CD1 has parameters [136, 9, 64] and its dual has parameters [136, 127, 4].

(3) Let ǫ = 0 and ℓ = 1, then CD0 has parameters [120, 9, 56] and its dual has parameters [120, 111, 4].

These codes and their duals are optimal or almost optimal respect to the tables of best codes known maintained

at http://www.codetables.de. These results are verified by Magma programs.

Example 5.6 Let γ be a primitive element of F212 and α = 1
γ63+1 + 1

γ504+1 . Let CDǫ
be a binary linear code

with the defining set Dǫ given in (3), where f(x) = Tr61(x
3) and g(y) = Tr61(αy

9) are Boolean functions from

F26 to F2. By Corollary 5.4 and Theorem 5.2, the following results hold.

(1) Let ǫ = 0, then CD0 has parameters [511, 10, 240] and its dual has parameters [511, 501, 3].

(2) Let ǫ = 1, then CD1 has parameters [480, 11, 224] and its dual has parameters [480, 469, 4].
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6 Concluding remarks

In this paper we constructed many classes of binary linear codes with few weights from some Boolean functions

with at most three Walsh transform values. In order to improve the rate of the objective linear codes, we gave

more restrictions on the defining set. The linear codes constructed in this paper seem new since the Hamming

weights occur in the obtained linear codes are new. Specifically, the main results are summarized as follows:

• We provided two general constructions of binary linear codes with few weights from Boolean functions with

at most three Walsh transform values (see Theorem 4.2 and Theorem 5.2).

• We presented the weight distribution of CDǫ
explicitly for many special Boolean functions f(x) and g(y) (see

Corollary 4.4, Corollary 4.5, Corollary 4.6, Corollary 4.7, Corollary 5.3 and Corollary 5.4).

• According to Codetable, we obtained some optimal and almost optimal linear codes (see Example 4.8,

Example 4.9 and Example 5.5).

• A binary linear code is called self-complementary if it contains all-one vector. The code CD1 is self-

complementary code and the dual C⊥
D1

is distance-optimal with respect to Sphere Packing bound in

Section 4 and Section 5.

A linear code C is said to be projective if any two of its coordinates are linearly independent, or in other

words, if the minimum distance of C⊥ is at least 3. Binary projective linear codes are very interesting due

to their applications in many areas. All linear codes constructed in this paper are projective codes and may

be used to construct association schemes [3] and strongly regular graphs [4]. Moreover, projective two-weight

codes given in Corollary 5.3 may be related to other combinatorial objects, such as caps in projective spaces

and combinatorial designs [2].

Some binary linear codes obtained in this paper can be used to construct secret sharing schemes with

interesting access structures. Let wmin and wmax denote the minimum and maximum nonzero weights of a

linear code C, respectively. Ding and Ding [18] showed that if the linear code C with wmin/wmax > 1
2 , then

the secret sharing scheme based on the dual code C⊥ has the nice access structure. When ǫ = 0, the linear

codes constructed in Theorem 4.2 and Theorem 5.2 satisfy wmin/wmax > 1
2 if m > t + 2. It then follows that

the dual codes of CD0 in Theorem 4.2 and Theorem 5.2 can be employed to obtain secret sharing schemes with

interesting access structures.
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