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Abstract

We show that extended cyclic codes over Fq with parameters [q + 2, 3, q], q =
2m, determine regular hyperovals. We also show that extended cyclic codes with
parameters [qt − q + t, 3, qt − q], 1 < t < q, q is a power of t, determine (cyclic)
Denniston maximal arcs. Similarly, cyclic codes with parameters [q2 + 1, 4, q2 − q]
are equivalent to ovoid codes obtained from elliptic quadrics in PG(3, q). Finally,
we give simple presentations of Denniston maximal arcs in PG(2, q) and elliptic
quadrics in PG(3, q).
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1 Introduction

In [10, Chapter 12] Ding described a construction of extended cyclic codes Fq with pa-
rameters [q + 2, 3, q], q = 2m. Codes with these parameters are MDS codes and they
determine hyperovals in the projective plane PG(2, q). Ding raised a question to find
out which hyperovals are obtained by such a construction. Furthermore, he also posed a
question which hyperovals can be obtained from arbitrary extended cyclic codes with pa-
rameters [q+2, 3, q]. In the first part of the paper, we answer these questions in Theorem
1.

In our investigation we use the polar presentation [2, 3] of the projective plane PG(2, q).
With this presentation, points of a hyperoval can be chosen to be in an affine plane
AG(2, q). As a result, the connection between mentioned cyclic linear codes and hyper-
ovals are described in a natural way and related reasonings on properties of linear codes
are greatly simplified.

Generalizing the method applied in the proof of Theorem 1, further we study linear
codes C with parameters [qt − q + t, 3, qt − q], 1 < t < q. It is known that if such C
is a projective code or a two-weight code, then it uniquely determines a maximal arc
in PG(2, q) [6]. Moreover, De Winter et al. [9] constructed a maximal arc K that is
invariant under a cyclic group that fixes one point of K and acts regularly on the set of
the remaining points of K (in their construction it is assumed that t − 1 divides q − 1
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and t divides q, or equivalently, q is a power of t). This maximal arc belongs to the class
of arcs constructed by Denniston [7]. Based on the properties of K, De Winter et al. [9]
constructed an extended cyclic code with parameters [qt − q + t, 3, qt − q] and nonzero
weights qt− q and qt− q + t.

In the converse direction of [9], we show that if C is an extended cyclic code with
parameters [qt − q + t, 3, qt− q], q is a power of t, then it determines a (cyclic) Dennis-
ton maximal arc. This result, together with the construction in [9], fully characterizes
extended cyclic codes with parameters [qt− q + t, 3, qt− q], where q is a power of t. We
also show that in terms of polar coordinates the Denniston maximal arcs have very simple
presentations, and in our particular case the corresponding Denniston maximal arcs can
be expressed in a form that clearly shows their cyclicity.

Ding [10] introduced a family of cyclic codes with parameters [q2 + 1, 4, q2 − q] and
stated without proof that they can be obtained from elliptic quadrics in PG(3, q). We
provide a simple proof of this statement. We also introduce a coordinate-free presentation
of elliptic quadrics in PG(3, q).

The content of the paper is organized as follows. In Section 2, we recall some results on
finite geometry and projective linear codes. In Section 3, we consider extended cyclic codes
with parameters [q+2, 3, q] and their connections with hyperovals. Likewise, in Section 4,
we consider maximal arcs and extended cyclic codes with parameters [qt− q+ t, 3, qt− q].
Further in Section 5 we consider cyclic codes with parameters [q2 + 1, 4, q2 − q] and their
connections with elliptic quadrics in PG(3, q).

2 Preliminaries

Let F = F2m be a finite field of order q = 2m. Consider F as a subfield of K = F2n , where
n = 2m, so K is a two dimensional vector space over F .

Let TrM/L(x) and NM/L(x) be the trace and the norm functions with respect to a
finite field extension M/L. The conjugate of x ∈ K over F is

x̄ = xq.

Then the trace and the norm maps from K to F are

T (x) = TrK/F (x) = x+ x̄ = x+ xq,

N(x) = NK/F (x) = xx̄ = x1+q.

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K | N(u) = 1} = {u ∈ K | uq+1 = 1}.

Therefore, S is the multiplicative group of (q+1)th roots of unity in K. Note that ū = u−1

for u ∈ S. Since F ∩ S = {1}, each non-zero element of K has a unique polar coordinate
representation

x = λu
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with λ ∈ F ∗ and u ∈ S. For any x ∈ K∗ we have λ =
√
xx̄, u =

√

x/x̄.
Consider points of the projective plane PG(2, q) in homogeneous coordinates as triples

(x, y, z), where x, y, z ∈ F , (x, y, z) 6= (0, 0, 0), and we identify (x, y, z) with (λx, λy, λz),
λ ∈ F ∗. We shall call points of the form (x, y, 0) the points at infinity. So z = 0 indicates
the line at infinity (it consists of all points at infinity). We define an affine plane AG(2, q)
which is obtained by removing all points at infinity from PG(2, q), so points of this affine
plane AG(2, q) are

{(x, y, 1) | x, y ∈ F}.
Associating (x, y, 1) with (x, y) we can identify points of the affine plane AG(2, q) with
elements of the vector space

V (2, q) = {(x, y) | x, y ∈ F}.

We introduce now another representation of PG(2, q) using the field K. Consider pairs
(x, z), where x ∈ K, z ∈ F , x 6= 0 or z 6= 0, and we identify (x, z) with (λx, λz), λ ∈ F ∗.
Then points of PG(2, q) are

{(x, 1) | x ∈ K} ∪ {(u, 0) | u ∈ S}.

The elements from {(u, 0) | u ∈ S}, will be referred to as the points at infinity. An affine
plane AG(2, q) is obtained by removing all points at infinity from PG(2, q), so the points
of this affine plane AG(2, q) are

{(x, 1) | x ∈ K}.

Associating (x, 1) with x ∈ K we can identify the points of the affine plane AG(2, q) with
the elements of the field K.

Let ξ ∈ K \ F . Then {1, ξ} is a basis of K over F. If for w ∈ K we have w = x+ yξ,
x, y ∈ F , then point (w, 1) can be written as (x, y, 1) in traditional coordinates.

An oval in PG(2, q) is a set of q + 1 points, no three of which are collinear. Any line
of the plane meets the oval O at either 0, 1 or 2 points and is called an exterior, tangent
or secant, respectively. All the tangent lines to the oval O concur [11] at the same point
N , called the nucleus of O. The set H = O ∪ {N} becomes a hyperoval, that is a set of
q + 2 points, no three of which are collinear. Conversely, by removing any point from a
hyperoval one gets an oval.

The set S∪{0} is a regular hyperoval (hyperconic) in K, considered as an affine plane
over F (see [3]).

Let C be a linear [n, 3]-code with a generator matrixG. Let G contain no zero columns.
Consider columns Pj of the matrix G as generators of points in PG(2, q). Then the multi-
set P = {{P1, P2, . . . , Pn}} contains n points from PG(2, q) (some of them may be equal).
The following lemma will be very useful in our investigations ([10, Theorem 2.36] or [4,
Lemma 4.15]).

Lemma 1. The multi-set P of columns of a generator matrix G of a [n, 3, n−t]-code over

F is a multi-set of points of PG(2, q) in which every line of PG(2, q) contains at most t
points of P, and some line of PG(2, q) contains exactly t points of P.
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A linear code [n, 3]-code C is called projective if the columns of its generator matrix
generate different points in PG(2, q). It means that the dual code C⊥ does not contain
words of weight 2. The assumption that no column of G is 0 means the absence of weight
1 words in C⊥. A code C is projective if and only if its dual code C⊥ has minimum
distance d⊥ ≥ 3.

We say that two codes are equivalent if one can be obtained from the other by a
permutation of the coordinates.

3 Extended cyclic codes and hyperovals

Let S = 〈β〉. Let C be a cyclic code over K of length q+1 with the generator polynomial
x − β. Then C is a [q + 1, q, 2] MDS code over K. The subfield subcode CF over F is
generated by the polynomial (x − β)(x− β̄) = x2 + T (β)x+ 1, so β and β̄ are zeroes of
the cyclic code CF . Define 1× (q + 1) matrix

L =
(

1 β β2 . . . βq
)

.

Then by [12, Theorem 4.4.3] we have

CF = {c ∈ F q+1 | LcT = 0}.

Let ξ ∈ K \ F . Then {1, ξ} is a basis of K over F and let βi = xi + yiξ, xi, yi ∈ F .
Theorems 12.25-12.26 in [10] presented a sequence of codes, we reproduce this sequence

using polar coordinate representation of hyperovals.
1) Theorem 12.25 in [10] states that CF is a [q+1, q−1, 3] MDS code. Its parity-check

matrix is
(

x0 x1 . . . xq

y0 y1 . . . yq

)

;

2) Theorem 12.26 in [10] states that the extended code CF is a [q + 2, q − 1, 4] MDS
code. Its parity-check matrix is

A =





x0 x1 . . . xq 0
y0 y1 . . . yq 0
1 1 . . . 1 1



 ,

where the set
{(x0, y0, 1), (x1, y1, 1), . . . , (xq, yq, 1), (0, 0, 1)}

is a regular hyperoval [3], corresponding to S ∪ {0};
3) Theorem 12.26 in [10] also states that the dual code (CF )

⊥ is a [q + 2, 3, q] MDS
code. Clearly its generator matrix is A.

In Problem 12.1 in [10] it was posed as a question whether the hyperoval defined by
the code (CF )

⊥ is equivalent to a known hyperoval. We see that the mentioned hyperoval
is equivalent to the regular hyperoval S ∪ {0} (hyperconic).
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In Problem 12.3 in [10] it was asked to characterize all extended cyclic codes over F
with parameters [q + 2, 3, q]. The next theorem shows that all these codes are equivalent
to MDS codes obtained from the regular hyperovals.

Theorem 1. An extended cyclic code over Fq with parameters [q+2, 3, q] is equivalent to
an MDS code obtained from a regular hyperoval.

Proof. Let C be an extended cyclic [q + 2, 3, q]-code. The parameters of the code show
that C is a MDS code. Then C⊥ is a MDS [q + 2, q − 1, 4]-code [12]. Let C ′ denote the
code obtained by puncturing the extended coordinate in C. Then C ′ is the original cyclic
[q + 1, 3] code. We will show that C ′ has parity-check polynomial (x − γ)(x − γ̄)(x − 1)
for some γ ∈ S, γ 6= 1. Indeed, the factorization of xq+1 − 1 over K is given by

xq+1 − 1 =
∏

u∈S

(x− u) =

q
∏

i=0

(x− βi),

where β ∈ K is a primitive (q + 1)-th root of unity and S = 〈β〉. Note that (x− βi)(x−
β−i) = x2 − T (βi)x+ 1 ∈ F [x] is irreducible over F for all i with 1 ≤ i ≤ q/2, as βi ∈ S.
Then the corresponding factorization of xq+1 − 1 over F is given by

xq+1 − 1 = (x− 1)

q/2
∏

i=1

(x2 − T (βi)x+ 1).

Consequently, every polynomial of degree 3 over F dividing xq+1 − 1 must be of the form
(x− γ)(x− γ̄)(x− 1) with γ ∈ S \ {1}.

Therefore, (C ′)⊥ is a cyclic [q + 1, q − 2]-code with generator polynomial (x− γ)(x−
γ̄)(x− 1). Define the following 2× (q + 1) matrix over K:

L =

(

1 γ γ2 . . . γq

1 1 1 . . . 1

)

.

Then by [12, Theorem 4.4.3] we have

(C ′)⊥ = {c ∈ F q+1 | LcT = 0}.

Let ξ ∈ K \ F and γi = xi + yiξ, where xi and yi are from F . Then (C ′)⊥ is a cyclic
code with a parity-check matrix

B =





x0 x1 . . . xq

y0 y1 . . . yq
1 1 . . . 1



 .

This means that C ′ is a cyclic code over F with generator matrix B. Since

0 =

q
∑

i=0

γi =

q
∑

i=0

xi + ξ

q
∑

i=0

yi,
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we have
q

∑

i=0

xi =

q
∑

i=0

yi = 0.

Since C is an extended code of C ′, C has the following generator matrix

A =





x0 x1 . . . xq 0
y0 y1 . . . yq 0
1 1 . . . 1 1



 .

Since C⊥ is an MDS [q + 2, q − 1, 4]-code with parity-check matrix A, all elements γi,
0 ≤ i ≤ q, must be distinct (otherwise two columns of A will be identical, and C⊥ would
have a codeword of weight 2), so S = 〈γ〉. Hence the columns of A define a regular
hyperoval.

Moreover, in Problem 12.2 in [10] it was posed as a question whether every MDS
code over F with parameters [q + 2, 3, q] is an extended cyclic code. We see that the
answer to this question is negative, since there are hyperovals not equivalent to the regular
hyperovals.

4 Extended cyclic codes and maximal arcs

In this section we show that results from Section 3 can be extended to maximal arcs.
A {k; t}-arc in PG(2, q) is a set K of k points such that t is the maximum number of

points in K that are collinear. It is known that k ≤ (q + 1)(t − 1) + 1. A {k; t}-arc in
PG(2, q) with k = (q + 1)(t− 1) + 1 is called a maximal arc. If K is a maximal {k; t}-arc
in PG(2, q) and 1 < t < q then q is even, t is a divisor of q, and every line in PG(2, q)
intersects K in 0 or t points. The {q + 2; 2}-arcs in PG(2, q) are hyperovals.

We recall a construction of maximal arcs proposed by Denniston [7]. Choose δ ∈ F
such that the polynomial X2 + δX +1 is irreducible over F . For each λ ∈ F consider the
quadratic curve Dλ in AG(2, q) defined by the equation X2 + δXY + Y 2 = λ. If λ 6= 0
then Dλ is a conic and its nucleus is the point (0, 0). If λ = 0 then Dλ consists of the
single point (0, 0). Let ∆ ⊆ F . Then the set

D =
⋃

λ∈∆

Dλ (1)

is a maximal arc in AG(2, q) (and therefore in PG(2, q)) if and only if ∆ is a subgroup of
the additive group of F [1, 7]. In this case D is a maximal {qt− q+ t; t}-arc with t = |∆|.

The next theorem shows that in terms of polar coordinates the Denniston maximal
arcs can be expressed in a very simple way.

Theorem 2. The Denniston maximal arcs (1) can be expressed as

D =
⋃

λ∈Λ

λS ⊂ K, (2)

where Λ is a subgroup of the additive group of the field F and S is the unit circle of K.
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Proof. Let the polynomial X2+δX+1 be irreducible over F . It has two distinct conjugate
roots u and ū in K, where uū = 1 and u+ ū = δ. Therefore, uq+1 = uū = 1 and u ∈ S,
u 6= 1. Any element z ∈ K can be written as z = x+ yu, where x, y ∈ F . Then

N(z) = N(x+ yu) = (x+ yu)(x+ yū) = x2 + (u+ ū)xy + y2 = x2 + δxy + y2.

Then the set λS = {z ∈ K | N(z) = λ2} corresponds to the set Dλ2 and ∆ = {λ2 | λ ∈
Λ}.

Clearly D is a union of |Λ| − 1 circles λS and the element 0.
Let t − 1 divide q − 1. De Winter et al. [9, Theorem 1] considered a Denniston

{qt − q + t; t}-arc D that is invariant under a cyclic group G that fixes one point of D
and acts regularly on the set of the remaining points of D. Since t = 2r for some r,
condition (t − 1)|(q − 1) means that q is a power of t. Let Ft be the unique subfield of
order t of F . Choose ∆ as the additive subgroup of the field Ft. Cyclic group G is given
as G = G1 ×G2, where

G1 =

{(

a+ δb b
b a

)

: a, b ∈ F, a2 + δab+ b2 = 1

}

,

G2 =

{(

c 0
0 c

)

: c ∈ F
∗
t

}

.

G1 is a cyclic group of order q + 1 and G2 is a cyclic group of order t− 1. Since gcd(q +
1, t− 1) = 1, G is a cyclic group of order (q + 1)(t− 1).

Now we consider this Denniston arc in terms of polar coordinates. Let N = (q +
1)(t − 1), and let S ′ be the group of N -th roots of unity in K. If θ is a primitive
element of the field K then S ′ = 〈α〉, where α = θ(q−1)/(t−1). We denote also β = θq−1,
thus S = 〈β〉. In polar coordinates we have α = µv, where µ ∈ F and v ∈ S. Since
1 = α(q+1)(t−1) = (µv)(q+1)(t−1) = µ(q+1)(t−1) = µ2(t−1), one has µt−1 = 1 and µ ∈ Ft.
Therefore, µ is a primitive element of Ft and 〈α〉 = 〈µ〉〈v〉.

Let Λ = F
+
t and define

D =
⋃

λ∈Λ

λS ⊂ K.

Then

D = {0} ∪ S ∪ αS ∪ · · · ∪ αt−2S

= {0, 1, α, α2, . . . , αN−1},

since µiS = αiS and S = 〈αt−1〉. This maximal arc D corresponds to the Denniston arc
considered in [9]. In this form we immediately see the cyclicity of D, and we call such an
arc as cyclic Denniston maximal arc. Note that instead of α one can take any generator
of S ′.
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Let αi = xi + yiξ, xi, yi ∈ F . De Winter et al. [9] considered an extended cyclic code
which, in fact, is equivalent to a code C with generator matrix

A =





x0 x1 . . . xN−1 0
y0 y1 . . . yN−1 0
1 1 . . . 1 1

.





They showed that C is a code with parameters [N + 1, 3, N + 1− t] and nonzero weights
N + 1 − t and N + 1 (it can be also deduced using Lemma 1). Furthermore, the dual
minimum distance d⊥ of the code C is 3 when t > 2 and 4 when t = 2 (hyperoval case).

We consider now the reverse process.

Theorem 3. An extended cyclic code over Fq with parameters [qt − q + t, 3, qt − q],
1 < t < q, q is a power of t, is equivalent to a code obtained from a cyclic Denniston

maximal arc.

Proof. First of all, we note that the case t = 2 is a hyperoval case and it was considered in
Theorem 1, so we can assume that t ≥ 4. Let C be an extended cyclic [N+1, 3, N+1−t]-
code. Let C ′ denote the code obtained by puncturing the extended coordinate in C. Then
C ′ is a cyclic [N, 3]-code.

Recall that S ′ = 〈α〉 and S = 〈β〉, where α = θ(q−1)/(t−1), β = θq−1 and θ is a
primitive element of the field K. Furthermore, α = µv for a primitive element µ of Ft and
〈v〉 = S. Considering the set S ′ with respect to the action of conjugation, we can write
S ′ = S0 ∪ S1 ∪ S2, where S0 = {u ∈ S ′ | u = ū} = S ′ ∩ F , S1 ∩ F = ∅, S2 = {ū | u ∈ S1},
S1 ∩ S2 = ∅. Then

xN − 1 =
∏

u∈S0

(x− u)
∏

u∈S1

(x− u)(x− ū).

Note that (x − u)(x − ū) = x2 − T (u)x + 1 ∈ F [x] is irreducible over F for all u ∈ S1.
Consequently, every polynomial of degree 3 over F dividing xN − 1 must be of the form
(x − a)(x− b)(x − c) with distinct a, b, c from F

∗
t , or (x − γ)(x− γ̄)(x− a) with γ ∈ S1,

a ∈ F
∗
t . We consider these two cases.

1) Let (C ′)⊥ be a cyclic [N,N−3]-code with generator polynomial (x−a)(x−b)(x−c)
with distinct a, b, c from F

∗
t . Then by [12, Theorem 4.4.3] we have that (C ′)⊥ is a cyclic

code with a parity-check matrix

B =





1 a a2 . . . aN−1

1 b b2 . . . bN−1

1 c c2 . . . cN−1



 .

Hence C ′ has generator matrix B. Since C is an extended code of C ′, C has a generator
matrix of the following form:

A =





1 a a2 . . . aN−1 ∗
1 b b2 . . . bN−1 ∗
1 c c2 . . . cN−1 ∗



 .
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Since at−1 = bt−1 = ct−1 = 1, every column (ai, bi, ci)T in the matrix A is repeated at least
q + 1 > t times, but it is not possible by Lemma 1, since the minimum distance of C is
N + 1− t.

2) Let (C ′)⊥ be a cyclic [N,N−3]-code with generator polynomial (x−γ)(x−γ̄)(x−a)
with γ ∈ S1, a ∈ F

∗
t . Define the following 2× (q + 1) matrix over K:

L =

(

1 γ γ2 . . . γN−1

1 a a2 . . . aN−1

)

.

Then by [12, Theorem 4.4.3] we have

(C ′)⊥ = {c ∈ FN | LcT = 0}.

Let ξ ∈ K \ F and γi = xi + yiξ, where xi and yi are from F . Then (C ′)⊥ is a cyclic
code with a parity-check matrix

B =





x0 x1 . . . xN−1

y0 y1 . . . yN−1

1 a . . . aN−1



 .

This means that C ′ is a cyclic code over F with generator matrix B.
We claim that a = 1. Indeed, assume that a 6= 1. Then

∑t−2
i=0 a

i = 0, and consequently
∑N−1

i=0 ai = 0. In addition,
∑N−1

i=0 γi = 0. Hence the extended code C has the following
generator matrix

A =





x0 x1 . . . xN−1 0
y0 y1 . . . yN−1 0
1 a . . . aN−1 0



 .

The nonzero columns of the matrix A represent points (xi, yi, a
i) in the projective plane

PG(2, q). Equivalently, in other representation, they are the points (γi, ai) ∈ PG(2, q),
or ((γ/a)i, 1) ∈ PG(2, q). Let r be the smallest positive integer such that (γ/a)r = 1.
Then in the sequence of the points (γ/a)i, 0 ≤ i ≤ N − 1, there are r distinct points,
repeated N/r times. Therefore, the columns of the matrix A represent distinct r points
in PG(2, q), repeated N/r times, and one zero column more. Denote by T the set of these
distinct r points in PG(2, q).

Assume that any line in PG(2, q) intersects the set T in maximum s points. Then T
is an {r; s}-arc, and the standard bound for this arc gives

r ≤ (q + 1)(s− 1) + 1. (3)

On the other hand, the codewords of the code C can be written as (a′, b′, c′)A, where
a′, b′, c′ ∈ F . Let a projective line a′x + b′y + c′z = 0 intersect T in s points. Then the
codeword (a′, b′, c′)A has s · N

r
+ 1 zero coordinates (the extra one comes from the zero

column of A). Since the minimum distance of C is N + 1− t, we have

s · N
r
+ 1 ≤ t,

9



which implies

s · N

t− 1
≤ r,

s · (q + 1) ≤ r.

But the last inequality contradicts inequality (3).
Therefore, a = 1 and C has the following generator matrix

A =





x0 x1 . . . xN−1 0
y0 y1 . . . yN−1 0
1 1 . . . 1 1



 .

Now we will show that the columns of the matrix A are distinct, which means that the
elements γi, 0 ≤ i ≤ N − 1, are distinct. Indeed, assume that they are not distinct, and
let r be the smallest positive integer such that γr = 1. Then r < N and in the sequence
of the elements γi, 0 ≤ i ≤ N − 1, there are r distinct elements, repeated N/r times.
Therefore, the columns of the matrix A represent distinct r points in PG(2, q), repeated
N/r ≥ 2 times, and one extra point (0, 0, 1)T . Denote by T the set of these distinct r
points in PG(2, q).

Assume that any line in PG(2, q) intersects the set T in maximum s points. Then T
is an {r; s}-arc, and the standard bound for this arc gives

r ≤ (q + 1)(s− 1) + 1.

On the other hand, the codewords of the code C can be written as (a′, b′, c′)A, where
a′, b′, c′ ∈ F . Let a projective line a′x + b′y + c′z = 0 intersect T in s points. Then the
codeword (a′, b′, c′)A has s · N

r
or s · N

r
+ 1 zero coordinates. Since the minimum distance

of C is N + 1− t, we have

s · N
r

≤ t,

which implies
2s ≤ t.

Futhermore,

s · N
t

≤ r ≤ (q + 1)(s− 1) + 1,

s · (q + 1)(t− 1)

t
≤ (q + 1)(s− 1) + 1,

s(q + 1)(1− 1

t
) ≤ (q + 1)s− (q + 1) + 1,

−s(q + 1)
1

t
≤ −q,

s(q + 1) ≥ qt ≥ 2qs,

a contradiction.
Therefore, the elements γi, 0 ≤ i ≤ N − 1, are distinct, the order of γ is equal to N , γ

generates S ′ and the set {0, 1, γ1, · · · , γN−1} is a cyclic Denniston maximal arc.
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5 Cyclic codes and ovoids

In this section we show that the results from previous sections can be extended to ovoids.
In PG(n, q), n ≥ 3, a set K of k points no three of which are collinear is called a

k-cap. For any k-cap K in PG(3, q) with q 6= 2, the cardinality k satifies k ≤ q2 + 1. A
(q2 + 1)-cap of PG(3, q), q 6= 2, is called an ovoid. Any plane of PG(3, q) meets an ovoid
in 1 or q + 1 points [11].

A linear [q2 + 1, 4]-code is called an ovoid code if the columns of its generator matrix
G constitute an ovoid in PG(3, q).

Let V be a finite dimensional vector space over a field F of characteristic 2. A quadratic

form on V is a mapping Q : V → F such that

1. Q(λx) = λ2Q(x) for all λ ∈ F , x ∈ V , and

2. B(x, y) = Q(x+ y) +Q(x) +Q(y) is a bilinear from.

A quadratic form is non-degenerate if the property B(x, y) = Q(x) = 0 for all y ∈ V
implies x = 0. A vector x ∈ V is singular if Q(x) = 0. The set of singular points of Q
defines a quadric in the projective space P (V ) (P (V ) is a projective space obtained from
V \ {0} by identifying nonzero vectors v ∈ V with λv for all λ ∈ F ).

Let Q be a non-degenerate quadratic form on 4-dimensional vector space V over F .
The coordinate frame can be chosen so that Q is equivalent to one of the following two
expressions:

1. x0x1 + x2x3, or

2. x2
0 + ax0x1 + x2

1 + x2x3, where a ∈ F and the polynomial ξ2 + aξ + 1 is irreducible
over F .

In the former case the quadratic form Q defines a hyperbolic quadric in PG(3, q), and in
the latter case Q defines an elliptic quadric. The hyperbolic quadric in PG(3, q) contains
(q+1)2 points, and the elliptic quadric in PG(3, q) contains q2+1 points [5]. The elliptic
quadric in PG(3, q) is an ovoid.

The next theorem provides a coordinate-free presentation of the elliptic quadric in
PG(3, q).

Theorem 4. Let E ⊃ K ⊃ F be a chain of finite fields, |E| = q4, |K| = q2, |F | = q,
q = 2m. Then

Q(x) = TrK/F (NE/K(x))

is a non-degenerate quadratic form on 4-dimensional vector space E over F . Moreover,

the set

O = {u ∈ E | NE/K(u) = 1} = {u ∈ E | uq2+1 = 1}
determines an elliptic quadric in PG(3, q).
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Proof. We have
NE/K(x) = x · xq2 = xq2+1,

Q(λx) = TrK/F (NE/K(λx)) = λ2TrK/F (NE/K(x)) = λ2Q(x) for all λ ∈ F,

NE/K(x+ y) = (x+ y)(x+ y)q
2

= xxq2 + xyq
2

+ xq2y + yyq
2

,

Q(x+ y) +Q(x) + Q(y) = TrK/F (NE/K(x+ y) +NE/K(x) +NE/K(y))

= TrK/F (xy
q2 + xq2y).

It is clear that B(x, y) = TrK/F (xy
q2 + xq2y) is a bilinear non-degenerate form.

Now we show that

{x ∈ E | Q(x) = 0} = {λu ∈ E | λ ∈ F, uq2+1 = 1}.

Since [K : F ] = 2, Q(x) = TrK/F (NE/K(x)) = 0 if and only if NE/K(x) ∈ F . Further,

any element x ∈ E can be written as x = λu, where λ ∈ K, u ∈ E, uq2+1 = 1 (polar
presentation of elements of E over K). Then λ2 = NE/K(x) ∈ F . Hence λ ∈ F .

Therefore, up to multiplication by elements from F , all solutions of Q(x) = 0 are
elements of O. Since |O| = q2 + 1, O determines an elliptic quadric in PG(3, q).

Note that a more general version of the previous quadratic form is given in [13], but
in our particular case our presentation looks simpler and it is very suitable for our next
investigations.

Ding [10, Section 13.3] introduced a family of cyclic codes with parameters [q2 +
1, 4, q2 − q] and stated without proof that they can be obtained from elliptic quadrics.
The next theorem proves this statement and shows a very natural connection between
these cyclic codes and elliptic quadrics.

Theorem 5. A cyclic code over Fq with parameters [q2 + 1, 4, q2 − q] is equivalent to an

ovoid code obtained from an elliptic quadric in PG(3, q).

Proof. Let E ⊃ K ⊃ F be a chain of finite fields, |E| = q4, |K| = q2, |F | = q, q = 2m.
Consider the set

O = {u ∈ E | NE/K(u) = 1} = {u ∈ E | uq2+1 = 1}.

The factorization of xq2+1 − 1 over E is given by

xq2+1 − 1 =
∏

u∈O

(x− u) = (x− 1)
∏

u∈O,u 6=1

(x− u).

Let f(x) ∈ F [x] be an irreducible divisor of xq2+1 − 1 which has a root γ ∈ O, γ 6= 1.
Then σ(γ) is also a root of f(x) for all σ ∈ Gal(E/F ). Therefore, γq, γq2 and γq3 are
roots of f(x). We claim that elements γ, γq, γq2 , γq3 are distinct. Indeed, if they are
not distinct, then γ = γq2. Therefore, γ ∈ K and γ belongs to the unit circle in polar
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presentation of E over K. Hence γ = 1, a contradiction. Consequently, every polynomial
of degree 4 over F dividing xq+1− 1 must be of the form (x− γ)(x− γq)(x− γq2)(x− γq3)
with γ ∈ O \ {1}.

Let C be a cyclic [q2 + 1, 4, q2 − q]-code. Then the parity-check polynomial of C is
(x−γ)(x−γq)(x−γq2)(x−γq3) for some γ ∈ O\{1}. Then C⊥ is a cyclic [q+1, q−2]-code
with generator polynomial (x−γ−1)(x−γ−q)(x−γ−q2)(x−γ−q3). Define the 1× (q2+1)
matrix

L =
(

1 γ−1 γ−2 . . . γ−q2
)

.

Then by [12, Theorem 4.4.3] we have

C⊥ = {c ∈ F q2+1 | LcT = 0}.

Let {1, ξ ζ, η} be a basis ofK over F . Let γ−i = xi+yiξ+ziζ+wiη, where xi, yi, zi, wi ∈
F . Then C⊥ is a cyclic code with the parity-check matrix

A =









x0 x1 . . . xq2

y0 y1 . . . yq2
z0 z1 . . . zq2
w0 w1 . . . wq2









.

Hence C is a cyclic code with generator matrix A.
Any linear code over Fq with parameters [q2 + 1, 4, q2 − q] is a projective two-weight

code ([5, p. 192] and [8]). Hence, C is an ovoid code [6]. Therefore, the columns of the
matrix A are distinct, and γ is a multiplicative generator of O. Then Theorem 4 implies
that C is an ovoid code obtained from the elliptic quadric O.
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