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AUTOMORPHISM SUBGROUPS FOR DESIGNS WITH λ = 1

WILLIAM M. KANTOR

Abstract. Given an integer k ≥ 3 and a group G of odd order, if there exists
a 2-(v, k, 1)-design and if v is sufficiently large then there is such a design
whose automorphism group has a subgroup isomorphic to G. Weaker results
are obtained when |G| is even.

1. Introduction

About 40 years ago Babai [Ba, p. 8] proposed the following “subgroup problem”:

PROBLEM 2.7. Prove for every k ≥ 3, that, given a finite groupG, there

is a BIBD of block size k (a 2-(v, k, 1)-design) X such that G ≤̃ AutX.

R.M.Wilson proved this when k is a multiple of |G| [Ba, p. 8]; [LW, Theorem 12.1]
contains this when k−1 is a multiple of |G|. (These results are also in [Wi3, p. 311].)

In this note we will prove other special cases of Babai’s problem:

Theorem 1.1. Given an integer k ≥ 3 and a group G of odd order, if v satisfies

the divisibility conditions for a 2-(v, k, 1)-design and is sufficiently large then there

is a 2-(v, k, 1)-design whose automorphism group has a subgroup isomorphic to G.

When k = 3 stronger results appear in [Ca] and [DK].

Theorem 1.2. Given an odd integer k ≥ 3 and a group G of even order such that

(k, |G|) = 1, there are infinitely many v for which there is a 2-(v, k, 1)-design whose

automorphism group has a subgroup isomorphic to G.

Theorem 1.3. Consider an even integer k ≥ 4 and a group G of even order.

Assume that every prime power dividing |G| either divides k or is relatively prime

to k(k − 1). Then there are infinitely many v for which there is a 2-(v, k, 1)-design
whose automorphism group has a subgroup isomorphic to G.

When k or k − 1 is a prime power, see [Ba, p. 8] or [Ka2] for a stronger type of
result: there are infinitely many 2-(v, k, 1)-designs D for which G ∼= AutD. Babai
[Ba, Conjecture 2.8] asked for such a stronger result for arbitrary k ≥ 3, but this
presently seems out of reach: there appears to be no method for recovering the
classical geometry underlying one of our designs as was done when k or k − 1 is a
prime power. See Remark 2.5 and Section 8 for further comments about proving
this stronger result.

The single idea behind the above three theorems is to place copies of a 2-(p, k, 1)-
design in the lines of an affine space AG(d, p) in a G-invariant manner, for large d
and a suitable prime p; this occurred in [Ka1, Sec. III.C] for a very different purpose.
The 2-(p, k, 1)-designs we use admit suitable automorphism groups (which are cyclic
for Theorems 1.2 and 1.3), and are special cases of lovely results in [Wi1, Wi3, LW].
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2 WILLIAM M. KANTOR

Theorem 1.2 is proved in Section 3, while Theorem 1.3 is in Section 5. The
remainder of this paper is devoted to Theorem 1.1: Section 2 contains a proof that
there are infinitely many designs behaving as in Babai’s problem when |G| is odd,
while Propositions 6.2 and 7.1 (based on Theorem 4.1) contain the background
needed for the proof of Theorem 1.1 at the end of Section 7.

All of our proofs are the same for abelian and nonabelian groups. In all of the
results mentioned above |G| is tiny relative to v. Our theorems do not deal with
the case |G| ≡ 0 (mod 4) and k ≡ 2 (mod 4). The case (|G|, k) 6= 1 6= (|G|, k − 1)
seems especially difficult when |G| is even.

Preliminaries: If G is a group of permutations x 7→ xg of a set X , and L ⊆ X , then
GL := {g ∈ G | Lg = L} is the set-stabilizer of L in G, which induces the subgroup
GL

L of the symmetric group Sym(L).
A permutation group C on a set X is semiregular if xc 6= x whenever x ∈ X and

1 6= c ∈ C; and C is regular if it is transitive and semiregular. If 〈c〉 and 〈c′〉 are
semiregular cyclic groups of permutations of X having the same order then c and
c′ are conjugate in Sym(X).

We will use the same symbol to denote a design and its set of points.

2. Odd order

Theorem 2.1 (Wilson [Wi1, pp. 22-26]). Given k ≥ 3, for all sufficiently large

primes p ≡ 1 (mod k(k − 1)) there is a 2-(p, k, 1)-design E whose set of points is

F := Fp and whose automorphism group contains {x 7→ x+ b | b ∈ F}.
Moreover, if p = 1+ k(k− 1)t with t odd then E can be chosen so that {x 7→ sx |

s ∈ F, st = 1} is also a group of automorphisms of E.

If t = (p−1)/k(k−1) is odd, the subgroup of F ∗ of order 2t factors as S×〈−1〉 for
a subgroup S of order t. Then [Wi1] obtains A ⊂ F such that {sA+b | s ∈ S, b ∈ F}
is the set of blocks of E.

The preceding theorem lets us handle Babai’s problem when |G| is odd:

Theorem 2.2. Given an integer k ≥ 3 and a group G of odd order, there are

infinitely many v for which there is a 2-(v, k, 1)-design whose automorphism group

has a subgroup isomorphic to G.

Proof. By Dirichlet’s Theorem there is a prime p ≡ 1+k(k − 1)|G| (mod 2k(k − 1)|G|).
If we write p − 1 = k(k − 1)t, it follows that (p − 1)/{k(k − 1)} = t is odd and
divisible by |G|. As above, let F = Fp and let S be the subgroup of F ∗ of order t.

We will prove the theorem by using suitable powers v = pd. Let V = F d, where
d is chosen so that G is (isomorphic to) a group of permutations of a basis of V
and hence is in GL(V ). (For example, any integer d ≥ |G| can be chosen.)

We will use the affine space A := AG(d, p) whose set of points is V . Clearly
G < GL(V ) < AGL(V ). (Here AGL(V ) = {v 7→ vM + c | M ∈ GL(V ), c ∈ V } is
AutA if d > 1.) Let L be a set of representatives of the orbits of G on the lines of
A.

Let L ∈ L. View L as F , so the group AGL(1, p) of p(p−1) affine transformations
x 7→ ax+b for a ∈ F ∗, b ∈ F , corresponds to the affine group AGL(L) on L obtained
from AGL(V ). Then {x 7→ sx + b | s ∈ S, b ∈ F} corresponds to a subgroup S(L)
of AGL(L) of order pt. Each subgroup of AGL(L) of order dividing |S| = t lies in
S(L) (since the quotient group AGL(1, p)/{x 7→ x+ b | b ∈ F} is isomorphic to the
cyclic group F ∗).
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The set-stabilizer GL induces on L a subgroup GL
L of AGL(L). Since |G| divides

t = |S| so does |GL
L|. Then GL

L ≤ S(L) by the preceding paragraph. (In fact, GL
L is

even more restricted since p > |GL
L|, but we will not need this fact.)

Use each L ∈ L as the set of points of a 2-(p, k, 1)-design DL behaving as E does
at the end of Theorem 2.1, so GL

L ≤ S(L) ≤ AutDL. (The end of Theorem 2.1
required that that t and |G| are odd.)

For each L ∈ L let BL be the set of blocks of DL. If g ∈ G let DLg denote the
design (DL)

g whose set of points is Lg and whose set of blocks is (BL)
g.

This well-defined: if Lg = Lg′

for g, g′ ∈ G then (DL)
g = (DL)

g′

. For, if
h = g′g−1 then h ∈ G and Lh = L, so the permutation hL induced by h on L lies
in GL

L ≤ AutDL. Then hL sends DL to itself, so (DL)
g = (DL)

g′

, as required.
Define a design D as follows:

points are the points of A

blocks are the elements of
⋃

L∈L, g∈G

(BL)
g.

It is elementary that D is a 2-(pd, k, 1)-design: any two points lie in a unique line
Lg for L ∈ L and g ∈ G, and then in a unique member of (BL)

g. Since G is in
AGL(V ) and permutes the sets (DL)

g it is a subgroup of AutD. �

Remark 2.3. By the last sentence of Theorem 2.1, the first paragraph of the above
proof contains a solution to Babai’s problem for the cyclic group of order |G|. The
proofs of Theorems 1.2 and 1.3 involve something similar: a cyclic group case of
Babai’s problem is used to deal with much more general groups.

Remark 2.4. Placing designs on the blocks of another design is standard [Wi1,
p. 28]. Preserving the automorphism group is less standard. The above simple
method was used in [Ka1, Sec. III.C] to construct flag-transitive designs; preserving
a group of automorphisms of the larger design was as essential there as it is here.

Remark 2.5. We used A with an arbitrary group G of odd order. Given the
action of G on V , the groups GL and GL

L are known; since p > |G|, the group GL
L

is cyclic.
However, there is flexibility with the designs DL. We only needed to have GL

L ≤
AutDL (for each L ∈ L) in order for the proof to work. Thus, each of the original
designs DL (L ∈ L) can be replaced by (DL)

h(L) for any permutation h(L) of the
points of L that normalizes GL

L.
Suitable changes of this sort might provide a way to obtain a 2-(pd, k, 1)-design

D′ such that G ∼= AutD′. For this purpose it appears to be necessary to recover

the affine space A from some such design D′. However, we have been unable to do
this (cf. Section 8).

Remark 2.6. On the other hand, each design DL admits the group S(L) <
AGL(L) = AGL(V )LL as a group of automorphisms that is regular on blocks:
{sA+ b |s ∈ S, b ∈ F} is the set of |S|p = p(p− 1)/k(k − 1) blocks of each design
constructed in [Wi1, p. 22] starting from a suitable initial block A ⊂ F . Once again
this uses the fact that t and |G| are odd.

Remark 2.7. If B is a block of the design D constructed in the proof of Theorem 2.2
then GB

B = 1. For, B is in a unique line L of A, so L is fixed by GB. Then
GL

B ≤ S(L) as in the above proof. However, as already noted in the preceding re-
mark, S(L) is regular on the blocks of DL, so GL

B ≤ S(L)B = 1 and hence GB
B = 1.
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This will be crucial in Section 7.
Note that G has many fixed points, so there are many lines of A fixed pointwise

by many elements of G.

3. Theorem 1.2

When |G| is even we use a consequence of a theorem of Lamken and Wilson
[LW]; but first we need a prime:

Lemma 3.1. Let k ≥ 3, and let h be a multiple of 4 such that (k, h) = 1. Then

there are infinitely many primes p > h satisfying the following conditions for some

integer n:

(i) p = 1 + (k − 1)n,
(ii) n(n− 1) ≡ 0 (mod k),
(iii) n(n− 1) ≡ 0 (mod 4k) if k ≡ 3 (mod 4), and
(iv) (p− 1, h) = (k − 1, h).

Proof. Let w be a positive integer such that kw ≡ 1 (mod h). Then
(
1 + k(k −

1)w, hk(k − 1)
)
=

(
1 + k(k − 1)w,h

)
= (1+(k − 1),h) = 1. By Dirichlet’s Theorem

there are infinitely many integers y such that p := 1 + k(k− 1)w+ {hk(k− 1)}y =
1 + (k − 1)n is prime, where n := kw + hky ≡ 0 (mod k). Then (ii) is clear, and
(iii) holds: n− 1 = (kw − 1) + hky is a multiple of h and hence of 4. Finally, (iv)
holds: (p− 1, h) =

(
k(k− 1)w+ {hk(k− 1)}y, h

)
=

(
kw(k− 1), h

)
= (k− 1, h). �

Theorem 3.2 (Lamken and Wilson [LW, Theorem 12.1]). Given k, for all suffi-

ciently large p satisfying the first three conditions of Lemma 3.1 there is a 2-(p, k, 1)-
design E such that AutE has a cyclic subgroup of order k−1 having one fixed point

and semiregular on the remaining points.

Proof of Theorem 1.2. We imitate the proof of Theorem 2.2. In Lemma 3.1 let
h := |G|, where we increase G if necessary in order to have h divisible by 4.
(Admittedly this is annoying.) Choose a sufficiently large p > |G| so that the
lemma applies. Choose d sufficiently large so that G is (isomorphic to) a subgroup
of the symmetric group Sd and hence also of AGL(d, p). The points of our design
D are the points of A = AG(d, p).

Let L ∈ L, where L is a set of representatives of the orbits of G on the lines of A.
Then GL

L ≤ AGL(L) ∼= AGL(1, p) and p > |G| ≥ |GL
L|, so GL

L is a cyclic group of
order dividing (p− 1, |G|) = (k − 1, |G|) by Lemma 3.1(iv). This cyclic group fixes
a point, and all remaining orbits have length |GL

L|; all permutations of L having
this cycle structure are conjugate in Sym(L). After identifying L with the set of
points of the design in Theorem 3.2 and conjugating by an element of Sym(L), we
may assume that GL

L is contained in the cyclic group of order k − 1 provided by
Theorem 3.2. Thus, L is the set of points of a design DL, isomorphic to the design
E in that theorem, such that GL

L ≤ AutDL.
Now repeat the last three paragraphs of the proof of Theorem 2.2. �

4. Moore and Ray-Chaudhuri

Wilson [Wi1, p. 29] credits Ray-Chaudhuri for the following generalization of a
standard, fundamental result due to Moore [Mo, p. 276]:
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Theorem 4.1. A 2-(w, k, 1)-design W, a transversal design TD(k, y − x) and a

2-(y, k, 1)-design Y with an x-point subdesign X produce a 2-(w(y − x) + x, k, 1)-
design.

Here a transversal design TD(k, n) consists of kn points, n2 subsets of size k
called “blocks”, and a partition of the points into k “groups” of size n, such that
each block meets each group in a single point and any two points in different groups
are in a unique block.

The following proof is based on [Wi1, pp. 29-30], and is included since we need
properties of the constructed design.

Proof. If Z := Y −X as a set of points, then X ∪ (W ×Z) will be the set of points
of our new design. Let A be a block of W , hence of size k. There is a transversal
design TD(k, y− x) on A×Z whose set of groups is {a×Z | a ∈ A} and whose set
of blocks will be denoted BA×Z ; this transversal design, denoted TA×Z , has nothing
to do with the design on Y .

Imitating Moore [Mo, p. 276] produces a new design as follows:
points: elements of X ∪ (W × Z);
blocks are of four sorts:

• the blocks of X ,
• for each a ∈ W and each block B of Y not inside X ,

– a×B if B ∩X = ∅, or
– x ∪

(
a× (B − x)

)
if B ∩X = x, and

•
⋃
{BA×Z | A is a block of W}.

There is no conflict between the blocks in TA×Z for different choices of A: distinct
intersecting sets A×Z and A′×Z intersect in a group a×Z that meets each block
of TA×Z or TA′×Z once.

The only other part the proof worth a comment concerns a pair (a1, z1), (a2, z2) ∈
W × Z with a1 6= a2. Since a1 6= a2 there is a unique block A of W containing
them, and (a1, z1) and (a2, z2) belong to different groups a1 × Z and a2 × Z of
TA×Z. Then there is a unique block in BA×Z containing them. �

Remark 4.2. The existence of a TD(k, n) is equivalent to the existence of a set
of k − 2 mutually orthogonal Latin squares of order n [Wi2, Lemma 2.1]. If N(n)
denotes the maximum number of mutually orthogonal Latin squares of order n,
then [CES] proves that there is an integer n0 such that N(n) ≥ 1

3n
1/91 if n > n0

(and there are better bounds known [Wi2]). Thus, if n(k) := max(n0, (3k)
91) then

(4.3) If n > n(k) then there is a TD(k, n).

5. Nets and even k

As in Sections 2 and 3 the proof of Theorem 1.3 requires a suitable design on a
prime number of points. Whereas Theorem 1.2 used a 2-(p, k, 1)-design having a
cyclic automorphism group of order k−1 fixing one point and semiregular on the re-
maining points (Theorem 3.2), this time we need a 2-(p, k, 1)-design having a cyclic
automorphism group of order k fixing one point and semiregular on the remaining
points (Theorem 5.4). For this purpose we use Theorem 4.1 and transversal designs.
However, it will be easier to start with nets.
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5.1. Nets. The dual of a transversal design TD(k, n) is a (k, n)-net: a set of n2

points and kn subsets of size n called “lines” such that distinct lines meet at most
once and the points are partitioned into k “parallel classes” each consisting of n
lines. (Parallel classes correspond to groups.) The examples we need arise from
unions of k parallel classes of lines of a desarguesian affine plane AG(2, n); the
translation group of the plane acts as a group of automorphisms of the net. Clearly
these examples exist whenever n is a prime power and k ≤ n+ 1.

Lemma 5.1. Let q and m be powers > 1 of a prime p, and E = Fqm ⊃ F = Fq. Let

σ :x 7→ xq and let T : E → F be the trace map. If a ∈ E−KerT and h : x 7→ xσ+a,
then 〈h〉 has order pm and is semiregular on E.

Proof. By induction, hi :x 7→ xσi+
∑i−1

j=0 aσ
j for all i ≥ 1, so hm :x 7→ xσm+T (a) =

x+ T (a) and h has order pm.

If x ∈ E then T (x) :=
∑m−1

j=0 xσj and T (x(σ−1)) = T (x)σ−T (x) = 0, so Im(σ−

1) ⊆ KerT . If i ≥ 1, d := (m, i) < m and xσi = x, then T (x) = (m/d)
∑d−1

j=0 xσ
j =

0 since m/d is a multiple of p, so Im(σ − 1) + Ker(σi − 1) ⊆ KerT .
For semiregularity, let 0 < i < pm and suppose that hi fixes x. Then x(1− σi) =∑i−1
j=0 aσ

i, so x(1− σi)(σ− 1) = a(σi − 1) and x(σ− 1)+ a ∈ Ker(σi − 1). If i 6= m

then (m, i) < m; we have seen that this implies that KerT contains Im(σ − 1) +
Ker(σi − 1) and hence also a, which is not the case. If i = m then we obtain the

same contradiction: 0 = x(1 − σm) =
∑m−1

j=0 aσj = T (a). �

Lemma 5.2. Let q and m be powers > 1 of a prime p. Let 3 ≤ k < q. Then there

is a (k, qm)-net having a cyclic automorphism group of order m that is semiregular

on both the points and lines and leaves invariant each parallel class.

Proof. We use the notation of the preceding lemma. Consider the affine plane
AG(2, qm) defined using E. Our net will consist of the points of this plane and any
union of k parallel classes of lines of the form y = tx+ b with 1 6= t ∈ F (so tσ = t).

Let g : (x, y) 7→ (xh, yh). By the preceding lemma, 〈g〉 has order pm and is
semiregular on points. Moreover, if i ≥ 1 then gi sends the line {(x, tx+b) | x ∈ F}

to the parallel line {
(
xσi + ai, t(xσ

i) + bσi + ai
)
| x ∈ F}, where ai :=

∑i−1
j=0 aσ

j .

As above, ai(σ − 1) = a(σi − 1).
We still need semiregularity on lines. If 0 < i < pm and gi fixes a line y = tx+ b

of the net, then t(xσi) + bσi + ai = t(xσi + ai) + b, so b(σi − 1) = ai(t − 1).
Then b(σ − 1)(σi − 1) = a(σi − 1)(t − 1), so b(σ − 1)− a(t − 1) ∈ Ker(σi − 1). If
i 6= m then a(t − 1) ∈ Im(σ − 1) + Ker(σi − 1) ⊆ KerT (as seen above), which is
impossible since 0 6= t− 1 ∈ F and a is not in the F -space KerT . Thus, i = m and
0 = b(σm − 1) = am(t− 1) = T (a)(t− 1), which is again impossible since t 6= 1.

This proves that 〈gp〉 behaves as required. �

Lemma 5.3. Let k ≥ 3 be an integer and let p1, . . . , pr be its distinct prime factors.

For each i let mi > k be a power of pi, so k|π :=
∏

imi.

Then for each integer s > n(k) there is a (k, s
∏

im
mi

i )-net having a cyclic

automorphism group of order π that is semiregular on both points and lines while

leaving invariant each parallel class.

Remark 4.2 contains the definition of n(k). We emphasize that s and the mi are
not related.
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Proof. For each i, by using Lemma 5.2 with q = m = mi we obtain a (k,mmi

i )-net
Ni having a cyclic automorphism group Ci of order mi that is semiregular on both
points and lines and leaves invariant each parallel class.

By Remark 4.2, if s > n(k) then there is a (k, s)-net N∞. The net required in
the lemma is a product N = N1 · · ·NrN∞, which we now define.

Let Xi be the set of points of Ni and Li1, . . . ,Lik the parallel classes of Ni, so⋃
j Lij is the set of lines ofNi. ThenN is defined as follows: X := X1×· · ·×Xr×X∞

is its set of points, while its parallel classes are Lj := L1j×· · ·×Lrj×L∞j , 1 ≤ j ≤ k,
and

⋃
j Lj is its set of lines.

In general, the groups AutNi are not involved in AutN since we used an arbi-
trary ordering of the parallel classes of each Ni. However, for our purposes this is
not a problem since Ci leaves invariant each parallel class of Ni and we will use the
identity on N∞: there is a cyclic automorphism group C ∼=

∏
i Ci of N of order

π =
∏

imi, consisting of all (x1, . . . , xr, x∞) 7→ (xc1
1 , . . . , xcr

r , x∞) for ci ∈ Ci. (This
is an automorphism of N : ci permutes the lines in each Lij , so if (x1, . . . , xr, x∞) ∈
(L1j, . . . , Lrj, L∞j) ∈ Lj then (xc1

1 , . . . , xcr
r , x∞) ∈ (Lc1

1j , . . . , L
cr
rj, L∞j) ∈ Lj .)

The only way a point (or line) of N can be fixed by the preceding element of C
is for a point (or line) of every component to be fixed, and then each ci = 1 by the
semiregularity of each Ci. �

5.2. Theorem 1.3. Following the models in Sections 2 and 3 we need a prime p
and a 2-(p, k, 1)-design admitting a suitable automorphism group.

Proposition 5.4. Given integers k ≥ 3 and h ≥ 1 such that (k − 1, h) = 1, there
are infinitely many primes p such that (p−1, h) divides some power of k and there is

a 2-(p, k, 1)-design having a cyclic automorphism group of order k fixing one point

and semiregular on the remaining points.

Proof. We will use a design in Theorem 4.1 whose set of points is U := X∪
(
W×Z

)
,

Z := Y − X, where X is a subset of size 1 of the design Y [BS, Corollary 2C.1].
For this we need three ingredients involving one choice of a suitable prime q > h, a
suitable choice in Lemma 5.3 of the mi such that π =

∏
i mi is divisible by k, and

infinitely many s:

(1) a 2-(qk, k, 1)-design W having a cyclic automorphism group C of order k
that is semiregular on points and whose q point-orbits are blocks of W
[Wi3, Theorem 1.2 and p. 308],

(2) a transversal design T = TD(k, (k − 1)hπs) having a cyclic automorphism
group of order k that is semiregular on both points and lines (T exists for
all sufficiently large s by Lemma 5.3), and

(3) a 2-(y, k, 1)-design Y with y := 1 + k(k − 1)(π/k)s, and an arbitrary point
X of Y (Y exists for all sufficiently large s [Wi1, Theorem 1.1]). (Note
that we do not have any information concerning automorphisms of Y .)

Moreover, we require that

(4) p = 1 + qk · (k − 1)πs = 1 + |W |(y − 1) is prime, and
(5) (p− 1, h) divides some power of k (a condition in the proposition).

We will proceed in four steps.

(I) Number Theory : π, p and s. Write h = h0h
′, where (k, h′) = 1 and all primes

dividing h0 also divide k. Then (k(k − 1), h′) = 1 since (k − 1, h) = 1, so that h′ is
odd. We may assume that h0 divides the product π of the mi used in Lemma 5.3.
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We have a prime q > h in (1), so (qk(k−1)π, h′) = 1 since (k, h′) = 1 = (k−1, h).
Let t be a positive integer such that qk(k − 1)πt ≡ 1 (mod h′). Then (t, h′) = 1
and

(
1 + qk(k − 1)πt, qk(k − 1)πh′

)
=

(
1 + qk(k − 1)πt, h′

)
= (1 + 1, h′) = 1 since

h′ is odd. By Dirichlet’s Theorem there are infinitely many integers f such that

p := 1 + qk(k − 1)πt+ qk(k − 1)πh′f

is a prime.
Choose s := t+h′f with f so large that the designs in (2) and (3) exist. Clearly

(4) holds.
Moreover, (p − 1, h) divides

(
q(k − 1)(t+ h′f), h′

)
kπh0 =

(
(k − 1)t, h′

)
kπh0 =

kπh0, which divides some power of k, as required in (5).

Now that we have W, T and Y we need to turn the set U = X ∪
(
W ×Z

)
of size

p into a design.

(II) The cyclic group C̄. We need a group C̄ ∼= C of permutations of U . Extend
each c ∈ C (cf. (1)) to a permutation c̄ of U that fixes the point in X and sends
(a, z) 7→ (ac, z) for a ∈ W, z ∈ Z. Then C̄ = {c̄ | c ∈ C} is a group of k
permutations of U fixing X and semiregular on the remaining points. This is not
yet a group of automorphisms of anything.

We will construct the design in Theorem 4.1 by placing (in (III)) copies of the
transversal design T in the sets B ×Z of size k(y− 1) arising from blocks B of W ,
and (in (IV)) copies of Y in the sets Ya := X ∪

(
a× Z

)
of size y for a ∈ W .

(III) Copies of T . We will use copies of the transversal design T in (2) as the
transversal designs occurring in the proof of Theorem 4.1. (Recall that y − 1 =
k(k − 1)hπs.)

In view of the point-orbits in (1), the stabilizer in C of a block of W is either 1
or C.

Let B be a set of orbit representatives of C on the blocks of W . If B ∈ B
let TB×Z

∼= T have B × Z as its set of points and {b × Z | b ∈ B} as its set of
groups. If the stabilizer of B in C is 1, TB×Z is placed in B × Z arbitrarily. If
B is a C-orbit we have to be more careful. Initially, place TB×Z arbitrarily. We
then have two semiregular cyclic permutation groups of order k on B × Z: one is
the restriction C̄B×Z of C̄ to B × Z, and the other is the cyclic automorphism
group of TB×Z provided by (2). These cyclic groups of order k are conjugate by
an element of Sym

(
B × Z

)
; conjugate by such an element in order to assume that

TB×Z has been placed in B × Z so that the cyclic groups coincide, and hence so
that C̄B×Z ≤ AutTB×Z .

For B ∈ B and c ∈ C let TBc×Z denote the transversal design (TB×Z)
c̄ having

(B × Z)c̄ = Bc×Z as its set of points. This is well-defined: if Bc = Bc′ then c̄′c̄−1

induces the permutation (c̄′c̄−1)B×Z of B×Z, which is an automorphism of TB×Z

by the preceding paragraph, so that (TB×Z)
c̄ = (TB×Z)

c̄′ .

(IV) Copies of Y . Next we place copies of the design Y into the sets Ya =
X ∪

(
a × Z

)
, a ∈ W, in the same manner. Namely, let W be a set of orbit

representatives of C on the points of W . For a ∈ W place a copy of the design Y
in Ya using the bijection X 7→ X , z 7→ (a, z) with z ∈ Z; then let Yac := (Ya)

c̄

for c ∈ C. As usual, this is well-defined since ac = ac
′

implies that c = c′ by
semiregularity (cf. (2)).
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Using the construction in the proof of Theorem 4.1 we obtain a 2-(p, k, 1)-design
U having C̄ as a group of k automorphisms that fixes the point X and is semiregular
on the remaining points. �

Proof of Theorem 1.3. Let h = |G| and p > h be as in the preceding proposition. We
imitate the proof of Theorem 2.2, regarding G as a group of automorphisms of A =
AG(d, p) for any sufficiently large d. Let L ∈ L, where L is a set of representatives
of the orbits of G on the lines of A. Then GL

L has order dividing
(
p(p− 1), |G|

)
=

(p− 1, |G|); by the proposition, this divides some power of k, and hence divides k
by an hypothesis of the theorem.

The cyclic group GL
L fixes a point and is semiregular on the remaining points.

After identifying L with the set of points of the design U in Proposition 5.4 and
conjugating by an element of Sym(L), we may assume that GL

L is contained in the
cyclic group of order k provided by the proposition. Thus, L is the set of points of
a design DL, isomorphic to U , such that GL

L ≤ AutDL.
Now complete the proof by repeating the last three paragraphs of the proof of

Theorem 2.2. �

6. Large designs

The Doyen-Wilson Theorem [DW] states that, whenever y ≥ 2x + 1 and there
are Steiner triple systems on y and x points, there is a Steiner triple system on y
points having a subsystem on x points. The following is a significant generalization
of that result [DLL]:

Theorem 6.1. If k ≥ 3 then there is an integer x0(k) > k such that, if x > x0(k),
y > xk, x− 1 ≡ y− 1 ≡ 0 (mod k− 1) and x(x− 1) ≡ y(y− 1) ≡ 0 (mod k(k− 1)),
then there is a 2-(y, k, 1)-design having an x-point subdesign.

We use this for a result concerning large designs (n(k) appears in Remark 4.2):

Proposition 6.2. Let S be a set of 2-(u, k, 1)-designs, let S̄ be the set of all such

u that occur for S, and let w ∈ S̄. Assume that, if x and y are as in Theorem 6.1
with y − x > n(k), then x+ w(y − x) ∈ S̄.

Then S̄ contains all sufficiently large u satisfying the divisibility conditions for

a 2-(u, k, 1)-design.

Our argument imitates [Ca]. Note that the hypothesis involves only the initial
existence of one w ∈ S̄.

Proof. For x0(k) in Theorem 6.1, let x1 > x0(k) > k be any representative for a
congruence class (mod k(k − 1)) of integers such that there exists a 2-(x1, k, 1)-
design. Consider any integer a ≥ wx1n(k) ≥ wx1. Choose y − x = x1k(k − 1)a >
a > n(k), so y − x > n(k), and then choose x = x1 + k(k − 1)t with 0 ≤ t < a, so
x ≥ x1 > x0(k). Then x and y = x1 + x1k(k − 1)a+ k(k− 1)t satisfy y > kx. (For,
since t < a and x1 > k, we have y− kx = (k − 1)

(
− x1 + x1ka− k(k− 1)t

)
, where

x1(ka− 1)− k(k − 1)t > k(ka− 1)− k(k − 1)a > 0.)
Since x and y satisfy the divisibility conditions and the requirements x > x0(k)

and y > kx in Theorem 6.1, there is a 2-(y, k, 1)-design having an x-point subdesign.
Theorem 4.1 also needs a TD(k, y− x), which exists since y − x > n(k) (cf. (4.3)).
By hypothesis, Theorem 4.1 produces a 2-(u, k, 1)-design such that

(6.3) u := x+ w(y − x) ∈ S̄, with u = x1 + wx1k(k − 1)a+ k(k − 1)t.
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Here u − 1 ≡ 0 (mod k − 1) and u(u − 1) ≡ 0 (mod k(k − 1)). We will show that
the set of all u obtained in (6.3) contains the set of all sufficiently large u ≡ x1

(mod k(k − 1)) satisfying these divisibility conditions.

Given a, we have y − x = x1k(k − 1)a and x = x1 + k(k − 1)t. By choosing
t = 0, . . . , a− 1, we realize

u = x1 + wx1k(k − 1)a, . . . , x1 + wx1k(k − 1)a+ k(k − 1)(a− 1).

For y − x = x1k(k − 1)(a+ 1), we realize

u = x1 + wx1k(k − 1)(a+ 1), . . . , x1 + wx1k(k − 1)(a+ 1) + k(k − 1)a.

In order not to leave any gaps, we require that these intervals abut or overlap. This
occurs as long as x1 + wx1k(k − 1)a+ k(k − 1)a ≥ x1 + wx1k(k − 1)(a + 1), that
is, a ≥ wx1, which is a condition already satisfied by a. So we can achieve all
sufficiently large x ≡ x1 (mod k(k − 1)).

Now let x1 > x0(k) run through a set of representatives for the congruence classes
mod k(k − 1) that satisfy the divisibility conditions for a 2-(x1, k, 1)-design. �

7. Theorem 1.1

We call an automorphism group of a design 1-blocked if the set-stabilizer of any
block is the identity on the block; our basic example was in Remark 2.7. This
notion is preserved by the construction in Section 4:

Proposition 7.1. Let k ≥ 3 and let G be a 1-blocked automorphism group of a

2-(w, k, 1)-design W . Then a 2-(y, k, 1)-design Y with a subdesign X on x points,
together with a transversal design TD(k, y − x), produce a 2-(w(y − x) + x, k, 1)-
design U such that G is isomorphic to a 1-blocked subgroup of Aut U .

Proof. We use the construction and notation in the proof of Theorem 4.1. Each
g ∈ G induces on U the permutation ḡ sending b 7→ b and (a, z) 7→ (ag, z) for b ∈ X,
a ∈ W, z ∈ Z. Clearly G ∼= Ḡ := {ḡ | g ∈ G}.

For each orbit-representative A of G on the blocks of W we have a transversal
design TDA×Z whose set of points is A × Z and whose set of groups is {a × Z |
a ∈ A}. If g ∈ G then (A × Z)ḡ = Ag × Z for a block Ag of W ; let TDAg×Z :=

(TDA×Z)
ḡ. As in the proof of Theorem 2.2 this is well-defined: if Ag×Z = Ag′

×Z

with g, g′ ∈ G then Ag = Ag′

, so g′g−1 = 1 on A since G is 1-blocked, and hence
(TDA×Z)

ḡ = (TDA×Z)
ḡ′

since ḡ′ḡ−1 = 1 on A× Z.
By the construction in Section 4, each ḡ permutes the designs TDA′×Z with A′

a block of W , and is the identity on any other block of U (i. e., a block of X , or
else a×B or b ∪

(
a× (B − b)

)
if a ∈ W and if B ∩X = b). Thus, Ḡ ≤ Aut U .

We need to verify that Ḡ is 1-blocked. Consider a block E of U fixed by ḡ ∈ Ḡ.
By Section 4, either E is contained in X ∪ (a × B) for a ∈ W and a block B of
Y , or E is a block of some TDA×Z . In the former case it is clear that ḡ = 1 on
E, so we are left with E in TDA×Z . In view of the construction in Section 4, A
is uniquely determined by E and hence is fixed by g. Since G is 1-blocked on W ,
it follows that g = 1 on A. Then ḡ = 1 on A × Z and hence on E. Thus, Ḡ is a
1-blocked subgroup of Aut U . �

Remark 7.2. An automorphism group of even order cannot be 1-blocked. For, an
involution interchanges two points, hence fixes the block containing them and acts
nontrivially on that block.
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Proof of Theorem 1.1. Apply Proposition 6.2 to the set S of 2-(v, k, 1)-designs whose
automorphism group has a 1-blocked subgroup isomorphic to G. By Theorem 2.2
and Remark 2.7, S contains some 2-(v, k, 1)-design.

We defined n(k) in Remark 4.2 and x0(k) in Theorem 6.1. Let x > max(n(k), x0(k))
and y > kx be integers such that there are 2-(x, k, 1)- and 2-(y, k, 1)-designs.
By Theorem 6.1 there is a 2-(y, k, 1)-design having an x-point subdesign. Since
y − x > kx− x > n(k) there is a TD(k, y − x) by (4.3). Then x+ v(y − x) ∈ S̄ by
Proposition 7.1. Now use Proposition 6.2. �

8. Conjectures

Our theorems are significantly weaker than the corresponding results in [Ba,
Ka2, DK], where G is isomorphic to the full automorphism group of the constructed
design. We conclude with a conjecture concerning affine spaces that would produce
designs with this stronger property.

Conjecture 8.1. Given an integer s ≥ 14, a prime p ≡ 1 (mod s), and an affine

space A′ having the same set of points as the original affine space A = AG(d, p),
such that

for any subspaces X of A and Y ′ of A′,
either X ∩ Y ′ = ∅ or |X ∩ Y ′| ≡ 1 (mod s).

Conjecture: A = A′.

Note that it is essential here that p is prime. For suppose that p = pe0 > p0 for a
prime p0 ≡ 1 (mod s). Let A0 = AG(ed, p0), let A be the set of affine Fp-subspaces
of A0. If g ∈ AGL(dn, p0) − AGL(d, p) then A′ := Ag provides a counterexample
to the conclusion in the preceding conjecture.

The condition s ≥ 14 reflects the fact that 14 is the smallest integer s = k−1 ≥ 2
such that neither s nor s+ 1 is a prime power: when one of these is a prime power
the desired result is already known [Ba, Ka2].

Theorem 8.2. Assume that the preceding conjecture is correct. Under the hypothe-

ses in any of Theorems 1.1–1.3, for infinitely many v there is a 2-(v, k, 1)-design
D such that G ∼= AutD.

Proof. By [Ba, Ka2] we may assume that neither k nor k−1 is a prime power, so that
p > s := k − 1 ≥ 14. Each theorem in Section 1 uses 2-(p, k, 1)-designs constructed
in Theorems 2.1 or 3.2, or Proposition 5.4. In view of those constructions, in the
situation of any of the theorems in Section 1, there are 2-(p, k, 1)-designs E1, E2, E3

with AG(1, p) as their set of points such that there is no isomorphism between any
two of these designs that lies in AGL(1, p). (Namely, start with a design E1, and
for i = 2, 3 apply an i-cycle of points to the blocks of E1 in order to obtain the
blocks of Ei.)

Let d > 4 be as in the proofs, so we are using A = AG(d, p) based on a d-space
V . Let {v1, . . . , vd} be a basis of V . There is a connected graph Γ with vertex set
{v1, . . . , vd} such that G ∼= Aut Γ.

Let c :=
∑d

1 vt. Place E1 in each affine 1-space 〈vi〉, place E2 in each affine
1-space 〈vi + vj〉+ c such that {vi, vj} is an edge of Γ, and place E3 in every other
affine 1-space of A. (Note that, since d > 4, if 〈vi + vj〉 + c=〈vi′ + vj′ 〉 + c then
{i, j} = {i′, j′}.)
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This produces a 2-(pd, k, 1)-design D with G (isomorphic to) a subgroup of
AutD. (Compare [Ka2].)

Let h ∈ AutD and consider the affine space A′ = Ah. If X and Y ′ are subspaces
of A and A′, respectively, and if X ∩ Y ′ 6= ∅, then X ∩ Y ′ is the intersection of
subdesigns and so is a subdesign. Then |X ∩ Y ′| ≡ 1 (mod s). Thus, Ah = A by
our hypothesis concerning Conjecture 8.1, so h is an automorphism of A, and hence
permutes the lines of A. Then h also permutes the designs we have placed inside
these lines, so h permutes the lines 〈vi〉. The intersection of these lines is 0, so h is
a linear transformation. By construction, h also permutes the lines 〈vi + vj〉+ c, so
it induces an automorphism of Γ, and hence agrees with some g ∈ G = Aut Γ in its
action on the lines 〈vi〉. Now h′ := hg−1 fixes each line 〈vi〉, and hence is a diagonal

transformation: vh
′

t = atvt for some ai ∈ K∗ and all t. Since h′ fixes each vertex of Γ

it fixes each edge: 〈vi+vj〉+c = (〈vi+vj〉+c)h
′

= 〈aivi+ajvj〉+
∑d

1 atvt. It follows
that all at = 1 for t 6= i, j, so h′ = 1 since Γ is connected, and then h ∈ G. �

Remark 8.3. The fact thatX∩Y ′ is a subdesign imposes arithmetic and structural
conditions that can be included in the hypotheses of the above conjecture.
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