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Abstract

It is proved that a code L(q) which is monomially equivalent to the
Pless symmetry code C(q) of length 2q+2 contains the (0,1)-incidence
matrix of a Hadamard 3-(2q + 2, q + 1, (q − 1)/2) design D(q) associ-
ated with a Paley-Hadamard matrix of type II. Similarly, any ternary
extended quadratic residue code contains the incidence matrix of a
Hadamard 3-design associated with a Paley-Hadamard matrix of type
I. If q = 5, 11, 17, 23, then the full permutation automorphism group
of L(q) coincides with the full automorphism group of D(q), and a
similar result holds for the ternary extended quadratic residue codes
of lengths 24 and 48. All Hadamard matrices of order 36 formed
by codewords of the Pless symmetry code C(17) are enumerated and
classified up to equivalence. There are two equivalence classes of such
matrices: the Paley-Hadamard matrixH of type I with a full automor-
phism group of order 19584, and a second regular Hadamard matrix
H ′ such that the symmetric 2-(36, 15, 6) design D associated with H ′

has trivial full automorphism group, and the incidence matrix of D
spans a ternary code equivalent to C(17).

Keywords: Pless symmetry code, Hadamard matrix, Hadamard
3-design, Hadamard 2-design, Paley-Hadamard matrix.

1 Introduction

We assume familiarity with the basic facts and notions from error-correcting
codes and combinatorial designs and Hadamard matrices [2], [4], [7], [11].
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All codes in this paper are ternary. A monomial matrix with entries from
GF (3) is a square matrix such that every row and every column contains
exactly one nonzero entry. By an automorphism group of a ternary code
we mean monomial automorphism group, unless specified otherwise. The
permutation automorphism group of a code is the subgroup of its monomial
automorphism group that consists of coordinate permutations only.

A Hadamard matrix of order n is an n×n matrix H of 1’s and −1’s such
that HHT = nI, where I is the identity matrix. It follows that n = 1, 2,
or n = 4t for some integer t ≥ 1. An automorphism of a Hadamard matrix
H is a pair of {0, 1,−1}-monomial matrices L, R such that LHR = H .
Two Hadamard matrices H1, H2 of the same order are equivalent if there are
monomial matrices L, R such that LH1R = H2. A Hadamard matrix H is
normalized with respect to its ith row and jth column if all entries in row i
and column j are equal to 1. If H is a Hadamard matrix of order n = 4t that
is normalized with respect to row i and column j, deleting the ith row and
the jth column and replacing all −1’s with zeros gives the (0, 1)-incidence
matrix of a symmetric 2-(4t− 1, 2t − 1, t − 1) design D called a Hadamard
2-design, while deleting the jth column of H and the jth column of −H
from the matrix (H,−H) gives the point-by-block (±1)-incidence matrix of
a 3-(4t, 2t, t − 1) design D∗, called a Hadamard 3-design obtained from H
with respect to column j. The design D is the derived design of D∗ with
respect to its ith point. A Hadamard matrix H of order n = 4t is regular
if all rows of H contain the same number k of −1’s. It follows that t = m2

for some integer m, k = 2m2 ± m, and replacing all −1’s with zeros gives
the (0, 1)-incidence matrix of a symmetric 2-(4m2, 2m2 ± t,m2 ±m) design.
For more on Hadamard matrices and related designs, see, for example, [2,
Chapter 7], [7, Chapter 14], [11, Sec. 8.9].

Let q be an odd prime power such that q ≡ −1 (mod 3). The Pless
symmetry code C(q) [22], [23] of length n = 2q+2 is a ternary self-dual code
with a generator matrix

G = (Iq+1, Sq), (1)

where Iq+1 is the identity matrix of order q+1, and Sq = (si,j) is a (q+1)×
(q+1) matrix defined as follows. The rows and columns of Sq are labeled by
∞ and the q elements of the finite field GF (q) of order q, where s∞,∞ = 0,
sa,a = 0, s∞,a = 1 for a ∈ GF (q), sa,∞ = 1 if −1 is a square in GF (q), and
sa,∞ = −1 if −1 is not a square in GF (q) for a ∈ GF (q), and sa,b = 1 for
a, b ∈ GF (q) such that a 6= b and a− b is a square in GF (q), and sa,b = −1
for a, b ∈ GF (q) such that a 6= b and a − b is not a square in GF (q). For
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example, if q = 5, the rows and columns of S5 are labeled by ∞, 0, 1, 2, 3, 4,
and

S5 =

















0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0

















.

The main property of Sq is that SqS
T
q = qIq+1, which implies SqS

T
q ≡ −Iq+1

(mod 3); hence C(q) is self-dual. The symmetry codes C(5)1 , C(11), C(17),
C(23) and C(29) are extremal self-dual codes of length n divisible by 12 and
minimum distance dmeeting the Mallows-Sloane upper bound d ≤ 3[n/12]+3
[16]; hence these codes support 5-designs by the Assmus-Mattson Theorem
[3].

Pless [23] proved that in addition to the trivial monomial automorphism
of order 2 corresponding to the negation of all code coordinates, the mono-
mial automorphism group of C(q) contains a subgroup of order q(q2 − 1)
isomorphic to PGL2(q). In addition, it was proved in [23, Theorem 4.2] that
the symmetry code C(q) contains a set of 2q + 2 codewords of weight 2q + 2
that form a Hadamard matrix of order 2q + 2. Specifically, if q ≡ 1 (mod 4)
the Hadamard matrix formed by codewords of weight 2q + 2 is

H1(q) =

(

I + Sq −I + Sq

−I + Sq −I − Sq

)

, (2)

while if q ≡ −3 (mod 4) the Hadamard matrix is

H3(q) =

(

I + Sq I + Sq

I − Sq −I + Sq

)

, (3)

where I is the identity matrix of order q + 1.
The Hadamard matrices (2), (3) are known in the combinatorial literature

as Paley-Hadamard matrices of type II [7, 14.1], [13], [21]. If q ≡ 3 (mod 4),
the (q+1)× (q+1) matrix obtained by bordering the matrix Sq−I with one
all-one row and one all-one column is a Hadamard matrix of order q+1, known
as a Paley-Hadamard matrix, or a Paley-Hadamard matrix of type I [7, 14.1],
[13], [21]. The unique (up to equivalence) Hadamard matrix of order 12 is
both a Paley-Hadamard matrix of type I for q = 11 and a Paley-Hadamard
matrix of type II for q = 5, and its full automorphism group modulo its center

1The symmetry code for q = 5 is equivalent to the extended ternary Golay code.
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of order 2 is the Mathieu group M12 (Hall [8]). The full automorphism group
of a Paley-Hadamard matrix of type I for q > 11 was determined by Kantor
[12] and is of order q(q2 − 1), while the full automorphism group of a Paley-
Hadamard matrix of type II for q > 5 was determined by de Launey and
Stafford [13], and is of order 4fq(q2 − 1) if q = pf , where p is prime.

If q = 5, 11, or 23, the number of all codewords of full weight 2q+2 in the
symmetry code C(q) is exactly 4q + 4 [23]. These codewords span the code
and consist of the rows of the Hadamard matrix H1(q) from (2) (resp. H3(q)
from (3)) and its negative, or 2H1(q) (resp. 2H2(q)); hence the full monomial
automorphism group of C(q) coincides with the full automorphism group of
H1(q) (resp. H3(q)) [23].

The symmetry code C(17) of length 36 contains 888 codewords of weight
36; hence it is not clear whether the automorphism group of the Hadamard
matrix H1(17) (2) is the full automorphism group of C(17). In Section 2,
we prove that the full automorphism group of C(17) coincides with the full
automorphism group of H1(17), the latter being a Paley-Hadamard matrix of
type II; hence its order is 4 · 17(172− 1) = 19584. In addition, we classify all
Hadamard matrices of order 36 having as rows codewords of C(17) of weight
36, and show that up to equivalence, there are exactly two such matrices:
H1(17), and a second Hadamard matrix H ′ having the property that all
Hadamard 3-(36, 18, 8) designs associated with H ′ are isomorphic and have
trivial full automorphism group of order 1. The full automorphism group of
H ′ is of order 72 and is transitive on the set of 72 rows (as well as the set of 72
columns) of H ′ and −H ′. The 3-rank of H ′ is 18; thus C(17) is the row space
of H ′. The Hadamard matrix H ′ is regular, and the symmetric 2-(36, 15, 6)
design with ±1-incidence matrix H ′ has trivial full automorphism group.

In Section 3 we discuss Paley-Hadamard matrices of Type I and Hadamard
3-designs arising from extended ternary quadratic residue codes.

2 Hadamard matrices and designs arising from

symmetry codes

The sum (over GF (3)) of all rows of the generator matrix (1) of the symmetry
code C(q) is a vector v of full Hamming weight 2q + 2, with all components
equal to 1 if −1 is not a square in GF (q), (that is, v is the constant all-one
vector 1̄ = (1, . . . , 1)), and v has 2q + 1 components equal to 1, and the
position labeled by ∞ is equal to −1 whenever −1 is a square in GF (q).

Next, we consider a code which is monomially equivalent to the Pless
symmetry code C(q), and always contains the all-one vector, namely the
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code L(q) with a generator matrix G′ given by

G′ = (Iq+1, Uq), (4)

where Uq is a (q + 1) × (q + 1) matrix obtained from Sq by replacing every
nonzero entry in the column labeled by ∞ with −1. Clearly, the generator
matrix G′ (4) is identical with the generator matrix G (1) if −1 is not a
square in GF (q), and is obtained by negating one column of G if −1 is
a square in GF (q). Thus, the matrices (1) and (4) generate monomially
equivalent ternary codes.

Using (4), we obtain a parity check P matrix of L(q) given by

P = (−UT
q , Iq+1). (5)

Note that since L(q) is self-dual, the rows of P are codewords of L(q). It is
easy to check that the matrix H given by

H =

(

G′ + P
G′ − P

)

=

(

Iq+1 − UT
q Uq + Iq+1

Iq+1 + UT
q Uq − Iq+1

)

(6)

is a Hadamard matrix of order 2q + 2, with rows being codewords of L(q).

Theorem 2.1 The code L(q) contains a set of 4q + 2 (0,1)-codewords of
weight q + 1 that form the block-by-point incidence matrix of a Hadamard
3-(2q + 2, q + 1, (q − 1)/2) design D(q) associated with a Paley-Hadamard
matrix of type II.

Proof. All entries in the first row of the Hadamard matrix H (6) are equal to
1; that is, H is normalized with respect to its first row, and consequently, all
entries in the first row of −H are equal to −1. Adding the constant codeword
2̄ = (2, . . . , 2) with all entries equal to 2 to every row of the matrix

(

H
−H

)

gives a (0, 1)-matrix M with all-zero first row, and all-one row labeled by
the first row of −H . Deleting the all-zero row and the all-one row from M
gives a (4q+2)× (2q+2) (0, 1)-matrix A, being the block-by-point incidence
matrix of a Hadamard 3-(2q + 2, q + 1, (q − 1)/2) design associated with the
first row of H . Clearly, H is equivalent to the corresponding matrix (2) or
(3); hence H is equivalent to a Paley-Hadamard matrix of type II. ✷
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Theorem 2.2 If q = 5, 11, 17, 23, the code L(q) contains exactly 4q+2 (0,1)-
codewords of weight q + 1, and every such codeword is the incidence vector
of a block of the Hadamard 3-design D(q) from Theorem 2.1.

Proof. Let m denote the total number of (0,1)-codewords of weight q+1 in
L(q). By Theorem 2.1, m ≥ 4q+2. If v ∈ L(q) is a (0,1)-codeword of weight
q+1 then v+ 1̄ is a codeword of full weight 2q+2, having q+1 components
equal to 1, and q + 1 components equal to 2. Adding the codewords 1̄ and
2̄ = 2 · 1̄ gives m+2 ≥ 4q+4 codewords of weight 2q+2. Since C(q) contains
exactly 4q+4 codewords of weight 2q+2 for q = 5, 11, 23 [23], the statement
is true in these cases.

The case q = 17 needs additional analysis because the symmetry code
C(17) , as well as its equivalent code L(17), contains 888 codewords of weight
36 [23]. The set of all codewords of weight 36 is easily computed with Magma
[6]. This set comprises of the following codewords:

• the 36 rows of the Hadamard matrix H (6), one of the rows being 1̄,
and 35 rows with 18 components equal to 1, and 18 components equal
to −1 (note that −1 ≡ 2 (mod 3));

• the 36 rows of 2H that include 2̄ and 35 rows with 18 components equal
to 1, and 18 components equal to 2;

• a set T of 408 codewords having 15 components equal to 1 and 21
components equal to 2;

• a set 2T of 408 codewords obtained by multiplying every codeword
from T by 2.

Note that adding 2̄ to any (0, 1)-codeword of weight 18 gives a codeword
of weight 36 with 18 1’s and 18 2’s; hence the code L(17) contains exactly
70 (0, 1)-codewords of weight 18 obtained by adding the codeword 2̄ to the
rows of H and 2H , and these 70 (0, 1)-codewords form the incidence matrix
of the 3-design D(17) from Theorem 2.1. ✷

Note 1 The code L(29) contains 19606 (0,1)-codewords of weight 30. It
is an open question whether this set contains the incidence matrices of any
Hadamard 3-(60, 30, 14) designs that are not isomorphic to D(29). The num-
ber of codewords of weight 60 in L(29) is 41184. It seems likely that there
may be Hadamard matrices of order 60 formed by codewords of weight 60
that are not equivalent to the Paley-Hadamard matrix of type II.
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Corollary 2.3 If q = 5, 11, 17, 23, the full permutation automorphism group
of L(q) coincides with the full automorphism group of the Hadamard 3-design
D(q) from Theorem 2.1.

Proof. The results of De Launey and Stafford [13] and Norman [20] imply
that the full automorphism group of D(q) has order q(q−1) if q > 5 is prime.
The full automorphism group of D(5) has order 7920.

Any derived design with respect to a point of a Hadamard 3-(2q + 2, q +
1, (q−1)/2) design D is a symmetric Hadamard 2-(2q+1, q, (q−1)/2) design
D′ of order q − (q − 1)/2 = (q + 1)/2. Since q ≡ −1 (mod 3), 3 divides
(q+1)/2. If 9 does not divide the order (q+1)/2 (which is true if q = 5, 11,
or 23), the rank of the incidence matrix if D′ over GF (3) (or the 3-rank of
D′) is equal to q + 1 (see, for example, Assmus and Key [1], [2]), hence the
3-rank of D is q + 1 and the code L(q) is spanned by the incidence matrix
of D. If q = 17, a direct computation shows that the 3-rank of D(17) is 18,
hence D(17) spans the code L(17).

✷

Theorem 2.4 (i) The code L(17) contains two equivalence classes of Hadamard
matrices of order 36 having as rows codewords of weight 36, with representa-
tives the Hadamard matrix H (6), which is equivalent to a Paley-Hadamard
matrix of type II and has full automorphism group of order 19584, and a
second Hadamard matrix H ′, being a regular Hadamard matrix such that the
symmetric 2-(36, 15, 6) design D′ with (0, 1)-incidence matrix (H ′ + J)/2,
where J is the 36× 36 all-one matrix, has a trivial automorphism group.
(ii) The row span of the incidence matrix of the 2-(36, 15, 6) design D′ is an
extremal ternary [36, 18, 12] code equivalent to the symmetry code C(17).
(iii) The full automorphism group of the code L(17) coincides with the full
automorphism group H.

Proof. (i) In the context of Hadamard matrices, we consider the element 2
of GF (3) as −1. Using the notation from the proof of Theorem 2.2, we define
a graph Γ having as vertices the 408 codewords from T , where two codewords
u, v ∈ T are adjacent in Γ if and only if the Hamming distance between u and
v is 18, or equivalently, the intersection of the supports of the (0,1)-vectors
2̄ − u and 2̄ − v is of size 6. Replacing all entries equal to 2 by zero in
every vector from T gives a set T (0, 1) of (0,1)-vectors of weight 15. Using
the restricted Johnson bound, it is easy to verify that the maximum number
codewords in a binary constant weight code of length 36 with codewords of
weight 15 and minimum distance 18, is 36. Every set K of 36 vectors from
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T (0, 1) that meets the Johnson bound corresponds to a clique of size 36 in
Γ, and the 36×36 matrix having as rows the vectors from K is the incidence
matrix N of a symmetric 2-(36, 15, 6) design (see [29, Theorem 2.4.12, page
99] or [31, Sec. 3]). Replacing all zeros in N with −1’s gives a regular
Hadamard matrix of order 36. Using the clique finding algorithm Cliquer
[19], a quick computer search shows that the graph Γ contains exactly 272
cliques of size 36, or in other words, there are 272 collections of 36 codewords
from T that form a Hadamard matrix of order 36. Further analysis with
Magma shows that all 272 Hadamard matrices are equivalent to a matrix H ′

with a full monomial automorphism group of order 72 that acts transitively
on the set of size 72 being the union of the rows of H ′ and the rows of −H ′.

The incidence matrix of the symmetric 2-(36, 15, 6) design D′ obtained
by replacing all −1-entries of H ′ with zeros is listed in the Appendix. The
design D′ has a trivial full automorphism group of order 1.

(ii) The 3-rank of the incidence matrix of D′ is 18, and its row span over
GF (3) is a ternary [36, 18, 12] code equivalent to the Pless symmetry code.

Parts (iii) was verified by computer using Magma. The full automorphism
group of L(17) partitions the set of the 888 codewords of weight 36 into two
orbits, of length 72 and 816 respectively, the orbit of length 72 comprised of
the rows of H (6) and −H . Thus, the full automorphism group of the code
L(17) coincides with the full automorphism group of H , and is of order2

19584 = 27 · 32 · 17. ✷

Note 2 Up to equivalence, there are exactly 11 Hadamard matrices of order
36 with automorphism groups of order divisible by 17 (Tonchev [28]). Each
of these matrices spans a ternary self-dual code of length 36, but only the
symmetry code C(17) spanned the Paley-Hadamard matrix of type II is
extremal, that is, has minimum distance 12, and supports 5-designs. A
stronger characterization of the Pless symmetry code C(17) was proved by
Huffman [10], namely that up to equivalence, C(17) is the only extremal
ternary self-dual code of length 36 that admits a monomial automorphism of
order 17.

Note 3 Hadamard matrices and designs are used for the construction of self-
orthogonal and self-dual codes over other finite fields. A classical example is
the extended binary Golay code generated by a bordered incidence matrix of a
symmetric Hadamard 2-(23, 11, 5) design associated with a Paley-Hadamard
matrix of type I. Hadamard matrices of order 28 with an automorphism of

2This is the order of the Paley-Hadamard matrix of Type II for q = 17 [13].
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order 7 [27] were used by Pless and Tonchev [24] for the classification of self-
orthogonal codes over GF (7). The Paley-Hadamard matrix of type II of order
28 is the only Hadamard matrix of this order that admits an automorphism
of order 13 and yields an extremal binary self-dual code of length 56 [26],
[30]. More extremal binary self-dual codes derived from Hadamard matrices
of order 28 were found in [5].

3 Hadamard matrices and designs arising from

ternary QR codes

The symmetry codes C(11), C(23), and C(29) have siblings with the same pa-
rameters and weight distribution, being ternary extended quadratic-residue
codes that support 5-designs by the Assmus-Mattson theorem. If q ≡ 3
(mod 4) is a prime power, a quadratic residue (QR) code of length q is a
code spanned by the (0,1)-incidence matrix A of a symmetric Hadamard 2-
(q, (q− 1)/2, (q− 3)/4) design obtained from the Paley-Hadamard matrix of
type I, and its extended code is spanned by a matrix obtained by adding one
all-one column to A. If, in addition, q ≡ −1 (mod 3), that is, q is of the
form q = 12s + 11 for some integer s ≥ 0, the ternary extended QR code is
self-dual.

Theorem 3.1 Let q = 12s+11 be a prime power, and let QRq be the ternary
extended QR code of length q + 1.
(i) QRq contains a Paley-Hadamard matrix of type I having as rows code-
words of weight q + 1.
(ii) QRq contains a set of 2q (0,1)-codewords of weight (q + 1)/2 that form
the incidence matrix of a Hadamard 3-(q + 1, (q + 1)/2, (q − 3)/4) design
associated with the Paley-Hadamard matrix of type I of order q + 1.
(iii) If q = 11, 23 or 47, QRq contains exactly 2q (0,1)-codewords of weight
(q+1)/2, and the permutation automorphism group of the code coincides with
the full automorphism group of the Hadamard 3-(q + 1, (q + 1)/2, (q − 3)/4)
design from part (ii).

Proof. (i) The statement (i) is implicit in [3]. The column sum of the
(0,1)-incidence A of the Hadamard 2-(q, (q−1)/2, (q−3)/4) design obtained
from the Paley-Hadamard matrix of type I is

(q − 1)/2 = (12s+ 10)/2 ≡ −1 (mod 3),

and the sum of all q entries of the all-one column is q ≡ −1 (mod 3), hence
the sum over GF (3) of all rows of the q × (q + 1)-matrix B obtained by
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bordering A with one all-one column, is equal to the constant vector 2̄. Since
QRq is the row span of B, the constant vectors 1̄ and 2̄ belong to the code.
Let E be the (q + 1)× (q + 1) matrix obtained from B by adding one extra
all-one row. The matrix Hq+1 = 2J − E, where J is the (q + 1) × (q + 1)
all-one matrix, is a Paley-Hadamard matrix of type I. Every row of Hq+1 is
the difference of the codeword 2̄ and a row of B, hence the rows of Hq+1

belong to the code QRq.
(ii) Adding the codeword 2̄ to every row of

(

Hq+1

−Hq+1

)

(7)

gives a (2q+2)×(q+1) matrix with one all-zero row, one all-one row, and 2q
(0,1)-rows of weight (q+1)/2 that form the incidence matrix of a Hadamard
3-(q + 1, (q + 1)/2, (q − 3)/4) design associated with Hq+1.

(iii) The proof is similar to that of Corollary 2.3. ✷

Note 4 The number of codewords of weight 60 in QR59 is 41184. It seems
likely that there may be Hadamard matrices of order 60 formed by codewords
of weight 60 that are not equivalent to the Paley-Hadamard matrux of type
I from Theorem 3.1.

4 Concluding remarks

The extended ternary Golay code of length 12, the Pless symmetry codes
C(q) (q = 11, 17, 23 and 29), of lengths 24, 36, 48 and 60, the extended
ternary QR codes of lengths 24, 48 and 60, and an extremal code of length
60 discovered by Nebe and Villard [18] as an analogue of the Pless symmetry
code C(29), are the only known extremal ternary self-dual codes of length
divisible by 12 that support 5-designs. It is known that the symmetry code
of length 84 (q = 41), as well as the extended QR code of this length are
not extremal. Extremal ternary self-dual codes of length n divisible by 12
do not exist for n = 72, 96, 120, and all n ≥ 144, because then the extremal
Hamming weight enumerator contains a negative coefficient [25].

All ternary self-dual codes of length 24 have been classified up to equiv-
alence (Harada and Munemasa [9]), and the symmetry code C(11) and the
extended QR code are the only extremal codes of this length. Nine of the
self-dual ternary codes of length 24 are spanned by Hadamard matrices of
order 24 [14], [15], but only two codes, QR23 and C(11), that are spanned by
the Paley-Hadamard matrices of type I and II respectively, are extremal.
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It is an interesting open question whether the Pless symmetry codes of
length 36, 48, and 60, the extended QR codes of lengths 48 and 60, and
the extremal code of length 60 found by Nebe and Villard [18] are the only
extremal self-dual codes of these lengths. The results from Section 2 show
that the symmetry code of length 36 can be obtained from a Hadamard
matrix that is not a Paley-Hadamard matrix of type II, and a natural question
that arises is whether any other extremal codes of length 36, 48, or 60 can
be obtained form Hadamard matrices that are not of Paley type.

The extremal ternary self-dual codes of lengths n ≥ 36 have not been
classified up to equivalence. A partial classification of such codes of length
n ≤ 40 admitting automorphisms of prime order p ≥ 5 was given by Huffman
[10]. In addition, it was proved by Nebe [17] that, up to equivalence, the only
extremal ternary self-dual codes of length 48 that admit an automorphism
of a prime order p ≥ 5, are the Pless symmetry code and the extended QR
code.
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5 Appendix

110110001101001100001010100000110001
000010101000001100100111001011001101
011000100010001100011001110011010010
010010000000010011110100110010110101
001011110100100010011111100000000001
011111000110011000000110000110000110
000000001111110000110110100001011010
000010010111101001000000111111000001
010001000101111110010001001001100100
100011000110000110111000001110011000
000111111000000000010000101101110110
000111101011110000101001010010100000
010100110010101110100100100100101000
100101000000101001011100000011101011
101001001001001010101100110101000100
001001100011001011100010001000110011
010001111100011001001100011000011000
100100010010011001111011101000000100
100010101000111111010010010100000010
000100010001100110001110011010010110
111110001010100011000101001001010000
001010000001010101001101101100101010
111001011000110100100000101010000011
110100100101000000110101011100000011
000101001110000111000001110000001111
101000111111000101010100000010100100
010000011100000011101011000111100010
001100100100110101101000000101010101
001100011001011010010001000110011001
011000001010100000011010011100101101
100001010010010100000111010101110001
101010010100101000100001010000111110
011111010001000101110010010001001000
101100100100010010000010111011101000
110010110011010010001000000001001111
110001100001100001000011100110011100

A 2-(36, 15, 6) design associated with the Pless symmetry code of length 36
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