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Abstract

Given m,n,q € N such that ¢ is a prime power and m > 3, a € F,
we establish a sufficient condition for the existence of primitive pair
(v, f(a)) in Fgm such that o is normal over Fy and Trg,_,, /r, (a™h) =a,
where f(z) € Fgm(x) is a rational function of degree sum n. Further,
when n = 2 and ¢ = 5* for some k € N, such a pair definitely exists
for all (¢, m) apart from at most 20 choices.
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1 Introduction

Given the positive integers m and ¢ such that ¢ is a prime power, [F, denotes
the finite field of order ¢ and F,m be the extension of IF, of degree m. A gen-
erator of the cyclic multiplicative group Fy.. is known as a primitive element
of Fym. For a rational function f(z) € Fym(z) and a € Fym, we call a pair
(o, f(a)) a primitive pair in Fym if both a and f(«) are primitive elements
of Fym. Further, « is normal over F, if the set {«, a4, af’, .. ,oﬂm*l} forms
a basis of Fym over IF,. Also, the trace of o over F,, denoted by Try,,. /r, ()

m—1

is given by a + a7 + o + -+ - + af
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Primitive normal elements play a vital role in coding theory and cryptog-
raphy [I]. Therefore, study of existence of such elements is an active area of
research. We refer to [12] for the existence of primitive and normal elements
in finite fields. Existence of both primitive and normal elements simultane-
ously was first established by Lenstra and Schoof in [I1]. Later on, by using
sieving techniques, Cohen and Huczynska [7] provided a computer-free proof
of it. In 1985, Cohen studied the existence of primitive pair (o, f(a)) in
[, for the rational function f(z) = z + a,a € F,. Many more researchers
worked in this direction and proved the existence of primitive pair for more
general rational function [8] 2, 14 B]. Additionally, in the fields of even order,
Cohen[5] established the existence of primitive pair (a, f(«)) in Fy» such that

a is normal over F,, where f(x) = % Similar result has been obtained
in [2] for the rational function f(z) = %. Another interesting problem

is to prove the existence of primitive pair with prescribed traces which have
been discussed in [13] 10} [15].

In this article, we consider all the conditions simultaneously and prove
the existence of primitive pair (¢, f(a)) in Fym such that « is normal over
F, and for prescribed a € Fy, Trg . /g, (a™') = a, where f(z) is more general
rational function. To proceed further, we shall use some basic terminology
and conventions used in [§]. To say that a non zero polynomial f(x) € Fym[z]
has degree n > 0 we mean that f(x) = a,2" + - -+ + ag, where a,, # 0 and
write it as deg(f) = n. Next, for a rational function f(z) = fi(x)/f2(x) €
F,m(z), we always assume that f; and f, are coprime and degree sum of
f =deg(f1) + deg(f2). Also, we can divide each of f; and fy by the leading
coefficient of fy; and suppose that f; is monic. Further, we say that a rational
function f € F m(z) is exceptional if f = caig? for some ¢ € Fym,i € Z(set
of integers) and d > 1 divides ¢™ — 1 or f(z) = x* for some i € Z such that
ged(¢™ —1,4) # 1.

Finally, we introduce some sets which have an important role in this
article. For ny,ny € N; S, n(n1,ns) will be used to denote the set of non
exceptional rational functions f = f1/fo € Fym(x) with deg(f;) < ny and
deg(f2) < no, and T, », as the set of pairs (¢,m) € N x N such that for
any given f € S, (n1,n2) and prescribed a € F,, F;m contains a normal
element « with (a, f(a)) a primitive pair and Trg,,./r,(a”") = a. Define
Segm(m) = U Sym(ni,ne) and T, = () Thym,- By M), for m < 2

ni+n2=n ni+na=n

there does not exist any primitive element o such that Trg,,, /e, (™) = 0.
Therefore, we shall assume m > 3 throughout the article.



In this paper, for n € N, we take f(x) € S;.,(n) a general rational
function of degree sum n and a € F,, and prove the existence of normal
element o such that (o, f()) is a primitive pair in Fgm and Trg,,, g, (@7) =
a. To be more precise, in section 3, we obtain a sufficient condition for
the existence of such elements in F,». In section 4, we further improve the
condition by proving a generalization of sieving technique due to Anju and
Cohen[6]. In section 5, we demonstrate the application of the results of
section 3 and section 4 by working with the finite fields of characteristic 5
and n = 2. More precisely, we get a subset of T5.

2 Preliminaries

In this section, we provide some preliminary notations, definitions and results
which are required further in this article. Throughout this article, m > 3 is
an integer, ¢ is an arbitrary prime power and [F, is a finite field of order q.
For each k(> 1) € N, w(k) denotes the number of prime divisors of k£ and
W (k) denotes the number of square free divisors of k. Also for g(x) € F,[z],
Q,(g) and W (g) denote the number of monic irreducible(over FF,) divisors of
g and number of square free divisors of g respectively, i.e., W (k) = 2¢() and

For a finite abelian group G, a homomorphism x from G into the multi-
plicative group S' = {z € C : |z| = 1} is known as a character of G. The set
of all characters of G forms a group under multiplication, which is isomorphic
to G and is denoted by G. Further, the character y, defined as xo(g) = 1
for all g € G is called the trivial character of G. The order of a character y
is the smallest positive integer r such that x" = xo. For a finite field Fm,
the characters of the additive group Fym and the multiplicative group Fy..
are called additive characters and multiplicative characters respectively. A
multiplicative character x € F}. is extended from Fy. to F,m by the rule

1 if x = xo0
elements and finite fields, we refer the reader to [12].
For a divisor u of ¢™ — 1, an element w € F}.. is u-free, if w = v?, where
v € Fgm and d|u implies d = 1. It is easy to observe that an element in I},
is (¢ — 1)-free if and only if it is primitive. A special case of [16, Lemma
10], provides an interesting result.

. For more fundamentals on characters, primitive



Lemma 2.1. Let u be a divisor of ¢ — 1, £ € Fym. Then

M _ ﬁ if € is u-free,

otherwise.

where pu(-) is the Mobius function and ¢(-) is the Fuler function, x4 runs
through all the ¢(d) multiplicative characters over Fy.. with order d.

Therefore, for each divisor u of ¢™ — 1,
wu(d)
ca Ou Z @ ZXd (2.1)

gives a characteristic function for the subset of u-free elements of F}.n,
where 6(u) = @
Also, for each a € F,

o - Z¢ ( Trg e, (@) — a)

wqu

is a characterstic function for the subset of F;» consisting elements with
Trg m/r, (@) = a. From [12, Theorem 5.7] every additive character ¢ of
[F, can be obtained by ¥(a) = ty(ua), where ¢y is the canonical additive
character of F, and u is an element of F, corresponding to . Thus

Z lpo TI'F m/Fq (ua) — ua)

uEFq

=- Z wo ua)o(—ua), (2:2)

uEFq

where 1)y is the additive character of Fgm defined by tig(cr) = 1o Trg, m /r, ()

In particular, wAO is the canonical additive character of Fym
The additive group of Fym is an F,[z]-module under the rule f o a =

Za, " for a € Fym and f(z) = Za:z € F,[z]. For o € Fym, the F -order

of « is the unique monic polynomlal g of least degree such that g o a = 0.
Observe that g is a factor of 2™ — 1. Similarly, by defining the action of
F,[z] over F m by the rule ¢ o f(a) = ¥(f o a), where ¢ € Fym,a € Fym and
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fel,[z] ﬁqm becomes an [F,[z]-module, and the unique monic polynomial ¢
of least degree such that 1) 0 g = xo is called the [F -order of 9. Further there
are ®,(g) characters of F,-order g, where ®,(g) is the analogue of Euler’s
phi-function on F,[z](see [12]).

Similar to above, for g|z™ —1 an element o € Fym is g-free, if a = h o 3,
where € Fym and h|g implies h = 1. It is straightforward that an element
in Fym is (™ — 1)-free if and only if it is normal. Also, for g|z™ — 1 an
expression for the characteristic function for g- free elements is given by

kgt a— O(g) ; (’g;((?) ;wh(a), (2.3)

deg(g)
h and g is the analogue of the Mébius function defined as

where O(g) = q%ﬂ the internal sum runs over all characters v, of IF -order

, (—=1)* if g is a product of s distinct monic irreducible polynomials,
pwig) = .
0 otherwise.

Following results of D. Wang and L. Fu will play a vital role in our next
section.

Lemma 2.2. [9, Theorem 4.5] Let f(xz) € Fp(x) be a rational function.
Write f(x) = H?:l [i(x)", where f;(x) € Fyalx] are irreducible polynomials
and n; are non zero integers. Let x be a multiplicative character of Fa.
Suppose that the rational function Hf;ol f(x7) is not of the form h(z)° )
in Fa(x), where ord(x) is the order of x, then we have

| > X(f(@)] < (d) deg(f;) — 1)qz.

a€Fq, f()#0,f(a)F#oo J=1

Lemma 2.3. [, Theorem 4.6] Let f(x),g(x) € Fym(x) be rational func-
tions.  Write f(x) = H§:1 fi(x)", where fij(x) € Fym[z] are irreducible
polynomials and n; are non zero integers. Let D = Zle deg(f;), let
Dy = maz(deg(g),0), let D3 be the degree of denominator of g(x), and let D,
be the sum of degrees of those irreducible polynomials dividing denominator



of g but distinct from f;j(x)(j =1,2,--- k). Let x be a multiplicative char-
acter of Fgm, and let ¢ be a non trivial additive character of Fym. Suppose
g(z) is not of the form r(z)!" —r(z) in Fyu(z). Then we have the estimate

m
2 .

| > X(f(@)¥(g(e))| < (Dy + Dy + Dy + Dy — 1)g

3 Sufficient condition

Let I1,l2 € N be such that Iy, l5|¢™ — 1. Also, a € F,, f(x) € S;,n(n) and
glz™ — 1, then Ny, (l1,12, g) denote the number of elements a € Fym such
that « is both [;-free and g-free, f(«) is lo-free and Trqu/Fq(a_l) = a.

We now prove one of the sufficient condition as follows.

Theorem 3.1. Let m,n and q € N such that q is a prime power and m > 3.

Suppose that

g2 ' > (n+2)W(g—1)*W (™ —1). (3.1)
Then (q,m) € T,,.
Proof. To prove the result, it is enough to show that Ny, ,(¢™—1,¢™—1, 2™ —
1) > 0 for every f(x) € S, m(n) and prescribed a € F,. Let f(z) € S;.m(n)
be any rational function and a € F,. Let U; be the set of zeros and poles of

f(z) in Fym and U = U; U {0}. Assume Iy, s be divisors of ¢" — 1 and ¢ be
a divisor of 2™ — 1. Then by definition

Nian(lle,9) = Y pu(@)pi(f(@))ra(a)ry(a)

O!E]qu\U

now using (210), (Z2) and (23]),
0(l) h
Nian(li,lz,9) = (1— Z ,u ,u( )) Z Xf.al(di,da, h),

dp ‘ll da ‘lz Xdq>Xdg sWh
hlg

(3.2)
where Xfa(di,do,h) = 3 Wo(—au) S xar (@) Xa (f(0))¥on(@) o (ua™).

u€lF, a€F m\U
Since 1, is an additive character of F,» and )y is canonical additive character
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of Fym, therefore there exists v € Fgn such that 1, (a) = vg(va). Hence

~

Xtaldy,da, h) = 32 to(—au) 37 Xa, (@)xa (f(@))o(vr + ua™).

u€lfy a€Fm\U

At this point, we claim that if (dq,ds, h) # (1,1, 1), where third 1 denotes
the unity of F,[z], then |y ;4(d1,ds, h)| < (n+2)g2 L. To see the claim, first
suppose dy = 1, then xf.(di,d2, h) = z}; Yo(—au) FZ\U X, ()0 (var +

u€l, a€Fym

ua™t). Here, if vz +ux™! # r(x)?" — r(z) for any r(x) € Fym(x) then by
Lemma IXfa(di,do, B)| < 2¢2F1 + (U] — 1)g < (n +2)g=+L. Also, if
ve 4+ uz~t = r(x)?" — r(z) for some r(z) € Fym(x) then following [Comm.
Anju], it is possible when v = v = 0, which implies, |xf.(d1,ds, h)| < |Ulg <
(n+2)gz+t

Now suppose dy > 1. Let d be the least common multiple of d; and
dy. Then [12] suggests that there exists a character x4 of order d such that

Xdy = Xj/dz. Also, there is an integer 0 < k < ¢™ — 1 such that x4, = x*.

Consequently, xfa(di,do, k) = S ho(—au) 52 xa(a f(@)¥% )i (va +
u€lFy (xEqu\U

ua~t). At this moment, first suppose va+uz =t # r(x)?" —r(z) for any r(x) €

Fn(z). Then Lemma 23 implies that |xf.4(dyi, d2, k)| < (n+2)g% 1. Also, if

vr+uzt = r(x)?" —r(z) for some r(x) € Fym(z), then following [15] we get

u = v = 0. Therefore, x;q(di,do,h) = > wo(—au) > xala®f(a)¥e®).

u€lfy a€Fm\U
Here, if 2 f(2)¥% % r(z)? for any 7(z) € Fym(z), then using Lemma 2.2] we
get |Xfa(di,da, h)| < ngz*t < (n+2)g= 1. However, o f(2)¥% = r(x)? for
some 7(x) € Fym(x) gives that f is exceptional(see [§]).
Hence, from the above discussion along with (8:2]), we get

0(11)0(12)O(g)

Nian(ly,l2,9) 2 (q" = U| = ((n+2)g= ) (W (1) W (I) W (9) — 1))

0(11)6(12)O m
> ARBIE (0 41) = (4 2OV W ()W (5) ~ 1)
_ 0(L)0(1)0(9)

N q
Thus, if ¢~ > (n + 2)W (L)W (l)W(g), then Nfo,(l1,lz,g) > 0 for
all f(x) € S,(n) and prescribed @ € F,. The result now follows by taking
lh=1lb=q"—1and g =2 — 1. O

(q" = (n+2)g= "' W (L)W (1) W (9)) (3.3)



4 Sieving Results

Here, we state some results, their proofs have been omitted as they follow
on the lines of the results in [I0] and have been used frequently in [13, 8 10,
145 2].

Lemma 4.1. Let k and P be co-prime positive integers and g,G € F,[z] be
co-prime polynomials. Also, let {p1,pa, -+ ,pr} be the collection of all prime
divisors of P, and {g1, 92, ,gs} contains all the irreducible factors of G.
Then

Nf,a,n(kpv ka gG) Z ZNf,a,n(kpia kvg) + ZNf,a,n<k7 kplvg)

i=1 i=1

+ Z Nian(k,k,gg)) — (2r + 5 — 1)Nyan(k, k, g).

i=1

Lemma 4.2. Let [,m,q € N, g € F,[x] be such that q is a prime power,
m >3 and l|¢™ — 1, glx™ — 1. Let ¢ be a prime number which divides ¢ — 1
but not [, and e be irreducible polynomial dividing ™ — 1 but not g. Then

m
2

[Nyan(cl,l,9) = 0(c)Nyan(l. 1, g)| < (n +2)0(c)0(1)*O(9)W (1)’ W (g)q =,

m

INtan(lscl,9) = 0(€)Nyan(l 1, 9)| < (n+2)0(c)0(1)*O(9)W (1)*W (g)q =

and
INran(l1,eg) = O(e)Npan(l, 1, 9)| < (n+2)0(1)*O(e)O(9)W (1)*W (9)q
Theorem 4.1. Let l,m,q € N, g € F,[z] be such that q is a prime power,
m > 3 and l|g™ — 1, glz™ — 1. Also, let {p1,p2, - p,} be the collection of
primes which divides ¢™ — 1 but not I, and {g1, go, - gs} be the irreducible
polynomials dividing ™ —1 but not g. Suppose d =1—-23" %—Z qdcgﬁ, 0>
i=1"" =1

0 and A =2ZE=L 4 2 Jf 271 > (n+2)AW(1)*W (9) then (g,m) € T,,.

Now, we present a more effective sieving technique than Theorem [4.1]
which is an extension of the result in [6]. For this, we adopt some notations
and conventions from [6] as described. Let Rad(¢™ — 1) = kPL, where
k is the product of smallest prime divisors of ¢"* — 1, L is the product of
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large prime divisors of ¢" — 1 denoted by L = Iy - ly---1;, and rest of the
prime divisors of ¢™ — 1 lie in P and denoted by pi,ps,--- ,p,. Similarly,
Rad(z™ — 1) = gGH, where g is the product of irreducible factors of 2 — 1
of least degree, and irreducible factors of large degree are factors of H which
are denoted by hq, hs, - - , h, and rest lie in G and denoted by g1, g2, - , gs-

Theorem 4.2. Let m,q € N such that q s a prime power and m > 3. Using
above notations, let Rad(¢™ — 1) = kPL, Rad(z™ — 1) = ¢GH, 6 = 1 —

r s t
2 ;i—z %(gi)?el = ;%a € = Z dcgl(hi) and 59(k)2@(g)_(261+52) > 0.

=11 i=11
Then

27 > (n2)[0(k)2O(9)W (k)*W (9)(2r+5—1428)+(t—e1)+(2/ (n+2)) (u—e3)
+ (n/(n+2)(1/q"P)(t +u—e1 — €)]/[60(k)*O(g) — (2e1 + €2)]  (4.1)

implies (q,m) € T,,.

Proof. Clearly,

Nfan(q"—1,¢"—=1,2™—=1) = Ny on(kPL,kPL,gGH) > Ny ,n(kP, kP, gG)
+ Nfon(L,L,H) — Nfon(1,1,1). (4.2)

Further, by Lemma 1]
Nf,a,n(kp> kP, gG) > 5Nf,a,n(ka k, g)"’Z{Nf,am(kph k, g)_e(pi)Nﬁa,n(ka k,g)}
=1

+Z{Nf,a,n(k7 kpm g>_9(pZ)Nf,a,n(k7 ka g)}+Z(Nf,a,n(k7 ka ggl)_@(gl>Nf,a,n(k7 ka g))

i=1 i=1
Using (3.3 and Lemma (4.2 we get
Nian(kP.kP,gG) > 60(k)*O(g) (¢" " — (n + 2)W (k)*W (9)q )

=(n+2)0(k)*O ()W (k)W (g) (3_20(p) + D_ 6(9)a

m
2

= 0(k)*0(g9)(0¢™ " — (n+2)(2r + s — 1+ 25)W(k)*W(g)q?).  (4.3)



Again, by Lemma 1]

t t
Nf,a,n(L> L> H) - Nf,a,n(]-> 1) ]-) Z ZNf,a,n(lia 1a ]-) + Z Nf,a,n(]-a lia ]-)

1=1 i=1

+ ) Nyan(L 1) = (2t + u)Npan(1,1,1)

i=1

t
= {Npan(li 1,1)=0(1:) Ny an(1,1,1) }+Z{Nfan (1,15, 1)=0(l))Nj4n(1,1,1)}

- Z{Nf,a,n(l, 1, h’) - @(hi)Nﬁa,n(l, 1, 1)} - (261 + 62)Nf7a,n(1> 1, 1) (44)
i=1
By (B2), for a prime divisor [ of ¢" = 1, [Nyan(l; 1,1) = 0()Npan(1,1,1)] =
05l S xeall, 1 1), where

Xrall LD =D to(—au) Y xil@)do(ua™| < g% +ng.

uqu aE]qu\U

Hence, |Nfan(l,1,1) —0()N;an(1,1,1)] < 0(1)(g2 + n). Similarly,
XL LDl =13 to(=aw) > alf@)dolua™| < (n+1)g% ™,
uqu aE]qu\U
which further implies |N;,,(1,1,1) — 0(1)Nyon(1,1, 1) < (n+ 1)g=
Also, for an irreducible divisor h of ™ — 1,

(L LR =) to(—au) Y wnla)do(ua|

uqu aE]qu\U
= | Z o(—au) Z Yo(va +ua™t| < 2¢2 ' 4+ ng.
uE]Fq aE]qu\U

Therefore, | Nt qn(1,1,h) — O(h)N;an(1,1,1)] < O(h)(¢? + n). Using these
t

m

bounds in (£4]), we have Ny, (L, L, H) — Nyon(1,1,1) > =3 0(L)(q= +
=1
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t U
n) — S 0(L)(n+1)g2 — > 0(h)(2¢7 +n) — (2t + u)Njan(1,1,1). Now,
i=1 =1
t U
Nian(1,1,1) < g™ ' together with > 6(l;) = (t —€;) and Y, = (u — €)
i=1 =1
implies

m
2

Nﬁa’n(L, L, H) — Nf,a,n(la 1, 1) > —{(n + 2)(t — 61) + 2(u - 62)}(]
—n(t4+u—e —e)— (26 + )™ (4.5)

Now using (4.3) and (43) in (4.2) we get,

Nian(q"=1,¢"=1,2"=1) > {00(k)*O(9)—(2e1+€2) }¢" " —0(k)*O(g)(n+2)

(2r+s—1420)W (k)2W (g9)q? —{(n+2)(t—€1)+2(u—e3) }q? —n(t+u—e —e;)
— % [(30(k°(9)— (2er+e2)) g F 1~ (n+2) {00120 () (2r-+5—1+28)W ()W (9)

—{(t—e)+2/(n+2))(u—e)} = (n/(n+2))(1/q"*)(t +u— &1 — €2)}]
Thus

gz ' > (n+2)[0(k)?0(g)W (k)W (9)(2r+5—14208)+(t—e1)+(2/(n+2)) (u—e2)
+(n/(n+2))(1/q"?)(t +u — e — €)]/[60(k)’O(g) — (261 + &)

implies Nyg,(¢™ —1,¢™ —1,2™ — 1) > 0 ie., (¢,m) € T,,.
0

It is easy to observe that Theorem [4.1]is a special case of Theorem
and can be obtained by setting t = u =€, = €3 = 0.

5 Working Example

However the results discussed above are applicable for arbitrary natural num-
ber n and the finite field F,m of any prime characteristic. Though to demon-
strate the application of above results and make the calculations uncompli-
cated we assume that ¢ = 5* for some k € N and n = 2, and work on the set
T5. Precisely, in this section, we prove the following result.

Theorem 5.1. Let ¢ = 5% for some k € N and m > 3 is an integer. Then
(q,m) € Ty unless one of the following holds:
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1. ¢ =5,5%5% 5% 55 55 5% 510 and m = 3;
2. q=>5,5%5%5% and m = 4;

3. ¢q=>5,5% and m = 5, 6;

4. q=>5and m=17,8,10,12.

We shall divide it in two parts, in first part we shall work on m > 5 and
in second we shall consider m = 3,4. For further calculation work and to
apply the previous results we shall need the following lemma which can also
be developed from [5, Lemma 6.2].

Lemma 5.1. Let M be a positive integer, then W (M) < 4515 x M*/3.

5.1 Part 1.

In this part, we assume m > 5 and write m = m/57, where j > 1 is an
integer and 5 t m/'. Then Q ( m 1) = Q,(z™ — 1) which further implies

W(z™ — 1) = W(z™ — 1). Further, we shall divide the discussion in two
cases.

e m|g—1

e mitqg—1

Case 1. m|q — 1.
Clearly [12, Theorem 2.47] implies that Q,(z™ — 1) = m/. Let | = ¢™ —

1 and ¢ = 1 in Theorem [41] then A = %, where a = q;,l, which

further implies A < ¢2. Hence (¢, m) € Ty if ¢2 =3 > 4W (¢™ — 1)?. However,
by Lemma B.1] it is sufficient if ¢7 3 > 4 - (4515)2, which holds for ¢ > 125
and for all m > 28. In particular, for ¢ > 125 and for all m’ > 28. Next, we
examine all the cases where m’ < 27. For this we set [ = ¢™ — 1 and g = 1
in Theorem F.1] unless mentioned. Then § =1 — m?, and A =2+ (an:i,)q

1. m/ =1. Here m = 5’ for some integer 5 > 1 and A = 2. Then by Theo-
rem @111t is sufficient if g2 ! > 4-2-W(¢™ — 1)2. Again Lemma 5.1l implies
(¢.m) € Ty if ¢7~1 > 8- (4515)% i.e., ¢T~1 > 8 - (4515) which holds for all
choices of (¢, m) except (5, 5), (5,5%), (52,5), (52, 52) ( ,5), (5%,5), -+, (5165)
which are 48 in number. For these, we checked ¢~ > 4-2- W(q 1)? di-
rectly by factoring ¢™—1 and got it verified except the pairs (5, 5), (5%, 5), (53, 5),
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(5%,5) and (5°,5).

2. m' = 2. In this case, m = 2 - m/ forsomejZlandA:2+q_L2<4.

Similar to the above case, it is sufficient if q%_l > 16 - (4515)?, which is
true except the 9 pairs (5,10), (5,50), (52, 10), (53,10),- -, (5%,10), and the
verification of ¢ ~' > 4-4-W (g™ — 1)? for these pairs yield the only possible
exceptions as (5,10) and (5%, 10).

Following the similar steps for the rest of the values of m’' < 27 we get
that there is no exception for many values of m’. Values of m’ with possible
exceptional pairs is as below.

3. m = 4. (5,20).
4. m' =6. (5%,6), (5%,6) and (55,6).
5. m = 8. (5%,8).

Furthermore, for the pairs (53, 5), (5%, 5), (5%, 5), (52, 10), (5, 20), (5%, 6), (5%, 6)
and (5%,8) Theorem H.J] holds for some choice of | and g (see Table 1).
Hence, only left possible exceptions in this case are (5,5), (52,5), (5, 10)
and (52,6).

Table 1
IS\TI(;. (gm) |l |r |g s | 0> A< Z;é(ll/‘)/z(@
1 [(5%5) [2 |5 |1 1 1 0.705298 | 16.178405| 518
2 | (5%5) |6 |6 |1 1 | 0.581729| 22.628164 | 2897
3 1(5%5) 16 |9 |1 1 1 0.390631 | 48.079201 | 6155
4 | (5%10)|6 |6 |1 2 1 0.503329 | 27.828038 | 3562
5 [ (5,20) |6 |6 |2*+B8%+p |2 |0.183329| 72.910743 | 18666
6 | (5%,6) |6 [6 |1 6 | 0.476599 | 37.669274 | 4822
7 1(5%6) |6 |9 |1 6 | 0.330094 | 71.677019 | 9175
8 | (5%48) |6 |4 |1 8 10.401942 | 39.318735 | 5033

where [ is a primitive element of 5.

Case 2. m' {q— 1.

Let the order of ¢ mod m' be denoted by b. Then b > 2 and degree of
irreducible factors of ™ — 1 over F, is less than or equal to b. Let M
denotes the number of distinct irreducible factors of 2™ — 1 over [F, of de-
gree less than b. Also let v(q, m) denotes the ratio v(q,m) = % Then,
mv(q,m) =m'v(qg,m).

13



For the further progress, we need the following two results which are the
directly implied by Proposition 5.3 of [7] and Lemma 7.2 of [5] respectively.

Lemma 5.2. Let k,m,q € N be such that ¢ = 5% and m' { ¢ — 1. In the
notations of Theorem[4.1], let | = ¢"™ — 1 and g is the product of irreducible
factors of x™ — 1 of degree less than b, then A < m/’.

Lemma 5.3. Let m' > 4 and my = ged(q — 1,m’). Then following bounds
hold.
1. Form' =2my, v(qg,m’) = 3;

3.
]

2. form/ =4mq,v(q,m’)

/): 13.

3. for m' = 6mq,v(q,m 35

4. otherwise, v(q,m') < 3.

At this point we note that m’ = 1,2 and 4 divide ¢ — 1 for any ¢ = 5* and
have been discussed in above case, whereas m’ = 5 is not possible. Therefore,
in this case we need to discuss m’ = 3 and m’ > 6.

First consider m’ = 3. Then m = 3 -5/ for some integer j > 1. Also,
m’ { ¢— 1 implies if ¢ = 5* then k is odd and 2™ —1 is the product of a linear
factor and a quadratic factor. Thus, W (2™ — 1) = W(z™ — 1) = 22 = 4
and ([B.I) implies (¢,m) € Ty if ¢2~' > 16 - W(¢™ — 1)%. By Lemma [5.T],
it is sufficient if ¢t ~' > 16 - (4515)2, which hold for ¢ = 5 and m > 53,
g =125 and m > 21, ¢ > 5° and m > 14. Thus, only possible exceptions are
(5,15) and (125,15). For these two possible exceptions we checked ¢! >
16 - W (g™ — 1)* directly by factoring ¢™ — 1 and got it verified for (125,15).
Hence only possible exception for m’ = 3 is (5, 15).

Now suppose m’ > 6. At this point, in Theorem 1] let [ = ¢™ — 1
and g be the product of irreducible factors of 2™ — 1 of degree less than
b. Therefore, Lemma [5.2 along With Theorem [A.1] implies (¢, m) € Ty if
= > 4-m W (g™ —1)2-2mvem) | By Lemma (] it is sufficient if

¢t > 4-m - (4515)% . gmviem), (5.1)

Further, we shall discuss it in four cases as follows.
1. m' # 2mq, 4mq, 6m;.
Here, Lemma B3 implies v(¢q,m’) = 1. Using this in (E1) we get (¢, m) € Tp
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if g371 > 4-m-(4515)2-25, which holds for ¢™ > 55, Next, for ¢ < 54,
we verified ¢z ' > 4-m - W (g™ —1)?-2% by factoring ¢"™ — 1 and got a list
of 20 possible exception as follows.

(5,6), (5,7), (5,9), (5, 11), (5,12), (5, 13), (5, 14), (5, 17), (5, 18), (5, 19), (5, 21),
(5,22), (5,27), (5, 30), (5,36), (5% 7), (5%,9), (5%, 11), (53,6), (5%, 6).

2. m' =2m,.

In this case, v(q,m) = % Therefore, (5.1) implies (¢, m) € Ty if ¢7~1 >
4-m - (4515)? - 2%, which holds for ¢ = 5 and m > 466 while for ¢ > 25
it is sufficient that m > 56. Here, for ¢ = 5, we have m’ = 8 only. Thus
possible exception for ¢ = 5 are (5,8),(5,40) and (5,200). On the other
hand, for ¢ > 25 and ¢™ < 25% along with above three possible excep-
tions we checked g2~ > 4-m - W (g™ — 1)?- 2% and got it verified except
(5,8), (5,40) and (5% 8).

3. m' = 4m1.

Here, v(g,m) = 2. Again, (5.0)) gives (¢, m) € T if g7~ > 4-m-(4515)2-2%",
which is true for ¢ > 5'7. On the other side, verification of g2~ >
4-m-W(g™—1)%*- 2% for g™ < 5'7 provides only possible exception as
(5, 16).

4. m' = 6m,.
Similar to the above case, we have v(g,m) = 2 and g1 ' > 4-m-(4515)2-2 56"
13m

holds for ¢™ > 5'%4. Also, for ¢™ < 5%, ¢2~' > 4.m-W(g™ —1)?- 275
holds for all (¢, m) except (5,24).

Table 2
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ir(;‘ (gom) |1l |r |g s | 0> A< %&A)@@
1 | (5,11) |2 |1 |1 3 1 0.799359 | 7.004009 | 225

2 [ (5,13) |2 |1 |1 4 10.795199 | 8.287731 | 266

3 [(5,14) |2 |4 |z+1 3 | 0.059683 | 169.55170 | 5426

4 1 (5,17) |2 |2 |1 2 1 0.795110 | 8.288442 | 266

5 [(5,18) |6 |5 |1 6 | 0.061578 | 245.59029 | 31436
6 |(5,19) |2 |3 |1 3 | 0.789208 | 12.136745 | 389

7 1(5,21) |2 |4 |1 5 | 0.689908 | 19.393614 | 621

8 1(5,22) |2 |5 |xz+1 5 | 0.014867 | 943.67119 | 30198
9 | (5,27) |2 |7 |1 4 1 0.561470 | 32.277659 | 1033
10](5,30) |6 |9 |z+1 3 | 0.110695 | 182.67531 | 23383
11| (5,36) |6 |9 |2*—1 8 | 0.170222 | 148.86660 | 152440
121 (5%,7) [2 |4 |1 3 | 0.219683 | 47.520125 | 1521
131(5%,9) |6 |5 |1 5 | 0.421578 | 35.208505 | 4507
141 (551112 |5 |1 3 1 0.176146 | 70.124930 | 2244
151 (5%6) |6 |5 |1 4 | 0.525578 | 26.734639 | 3423
16 (5°,6) |6 |9 |10 4 1 0.390055 | 55.838482 | 7148
171 (5,15) |2 |5 |1 2 | 0.473298 | 25.241167 | 808

181 (5,40) |6 |9 | 2?+p%z+8 |4 | 0.088640 | 238.91192 | 61162
19 (%8 |6 |6 |1 6 | 0.454072 | 39.438940 | 5049
20| (5,16) |6 |4 |xz+1 7 | 0.038742 | 363.35624 | 46510
21((5,24) |6 |6 |z'—1 10 | 0.086200 | 245.61740 | 251513

Next, we refer to Table 2 to note that Theorem .1l holds for the palrs (5,11
(5, 13), (5,14), (5,15), (5,16), (5,17), (5,18), (5,19), (5,21), (5,22), (5,24
(5,27), (5,30), (5,36), (5,40), (5%,7), (5%,9), (5% 11), (5%,6), (5*,8), (5°,6
Thus, only left possible exceptions in the case m’' { ¢ — 1 are ( ,6),(5,7
(5,8), (5,9), and (5,12).

) )

)
),
)-
)

Y

5.2 Part 2.

In this part we shall consider m = 3, 4. Following result will be required for
further calculation, which follows on the lines of [6, Lemma 51].

Lemma 5.4. Let k € N such that w(k) > 2828. Then W (k) < k1.
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Also, W (2™—1) < 16. Now, first assume w(g™—1) > 2828, then (3.1]) and
Lemma 5.4 together implies (¢, m) € Ty if g2 > 64-¢® ic., ¢% ! > 64 or
¢" > 64m-35 | sufficient if ¢™ > 647, which is true for w(g™—1) > 2828. To
make further progress we follow [13]. Next, assume 88 < w(¢™ — 1) < 2827.
In Theorem [4.1] let g = ™ — 1 and [ to be the product of least 88 primes
dividing ¢™—1 i.e., W () = 2. Then r < 2739 and § will be at least its value
when {p1,ps, - ,parse} = {461,463, --,25667}. This gives § > 0.0041806
and A < 1.3101 x 10°, hence 4AW (g)W (1)? < 8.0309 x 10%° = R (say). By
Theorem Bl (¢, m) € Ty if ¢27!' > R or ¢™ > Rw'z. But m > 3 implies
2m < 6. Therefore, if ¢™ > RS or ¢™ > 2.6828 x 10°% then (q,m) € Tb.
Hence, w(q™—1) > 152 gives (¢, m) € Ty. Repeating this process of Theorem
E.T for the values in Table 3 implies (¢, m) € Ty if g2~ > 889903387. Thus,
for m = 3 it is sufficient if ¢ > (889903387)% and for m = 4 we need ¢ >
889903387. Hence, only possible exceptions are (5, 3), (5%,3),- -+, (5%, 3) and
(5,4), (5%,4),---, (5, 4). However, Table 4 implies that Theorem [Z.] holds
for (5%, 3), (51, 3), (512,3), (5'3,3), -+, (5**,3) and (5%,4), (57,4), - - - , (52, 4).
Thus, only possible exceptions here are (5, 3), (5%,3),- -+, (5%, 3) and (5'°, 3),
and (5,4), (5%,4),---, (55, 4).

Table 3

St < wlgm—1) <b | W) 5> A< ‘éﬁ%@
1 a=17, b=151 217 10.0347407 7687.5008 8.4526 x 101°
2 a=9, b=51 29 0.0550187 1510.5788 2.5344 x 1010
5 la=7 b=37 |27 |0.0064402 |9163.1796 | 9608289244
4 la=7 b=36 |27 |0.0191790 |2073.9903 | 3118453847
5

6

a=7 b=34 27 0.0458469 | 1158.0218 1214272852
a=7 b=33 27 0.0602354 | 848.6790 889903387

Table 4
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18\11"0" (g,m) |1 r g s o> A< ;;é(?)g(i)
1 (5%,3) |2 7 1 2 0.801533 | 20.714128 | 663

2 (5M,3) | 2 4 1 2 0.925433 | 11.725177 | 376

3 (5'2)3) | 6 9 1 3 0.330478 | 62.518314 | 8003
1 [(3%.3) 2 |4 |1 |2 |0010167 | 11.888295 | 331

5 (53) | 6 10 |1 3 0.508443 | 45.269297 | 5795
6 (51°)3) | 2 10 |1 2 0.603902 | 36.773815 | 1177
7 (51.3) |6 9 1 3 0.368379 | 56.291827 | 7206
8 (517,3) | 2 6 1 2 0.930565 | 15.970005 | 512

9 (58.3) | 6 12 |1 3 0.499055 | 54.098369 | 6925
10 | (5'9,3) |2 5 1 2 0.924693 | 13.895837 | 445
11 | (5%.3) | 6 15 |1 3 0.183646 | 176.24807 | 22560
12 | (5%.,3) |2 9 1 2 0.822416 | 25.102645 | 804
13 | (5%%,3) | 6 10 |1 3 0.522529 | 44.102865 | 5646
14 | (5%,3) |2 7 1 2 0.920550 | 18.294603 | 586
15 | (5°4,3) | 6 14 |1 3 0.296682 | 103.11815 | 13200
16 | (5%,3) |2 14 |1 2 0.666688 | 45.498589 | 1456
17 | (5%4) |6 6 1 4 0.485944 | 32.867712 | 4208
18 | (57,4) |2 6 1 4 0.105913 | 143.62473 | 4596
19 | (5%,4) |2 7 1 4 0.054494 | 313.95724 | 10047
20 | (5%,4) |6 9 1 4 0.330476 | 65.544620 | 8390
21 | (5'0,4) | 6 9 1 4 0.568640 | 38.930216 | 4984
22 | (5'1,4) | 2 8 1 4 0.039829 | 479.03888 | 15330
23 | (5'2,4) | 6 9 1 4 0.368379 | 59.006421 | 7553

Further, for all the left possible exceptions we checked Theorem [4.2] and
got it verified in case of (57, 3), (5°,4) and (5,9) for the values in Table 5.

Table 5
Sr. ,
Nol (ggm)| k | P L f G H R <
1 (5,9 |2 |589 829 r—1 | 2> +x+1 | 25+234+1 | 269
2 | (57,3)] 2 |229469719| 519499| z—1 | 1 *+r+1 | 262
3 1 (5%,4)| 6 | 216878233| 9161 | x+1 | 2*+2+3% | 2 + 3 2788

Where, R’ represent the right hand side value of (A.1]). Hence, all the results
from part 1 and part 2 collectively implies Theorem [B.11
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