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Abstract

Given m,n, q ∈ N such that q is a prime power and m ≥ 3, a ∈ Fq,
we establish a sufficient condition for the existence of primitive pair
(α, f(α)) in Fqm such that α is normal over Fq and TrFqm/Fq

(α−1) = a,
where f(x) ∈ Fqm(x) is a rational function of degree sum n. Further,
when n = 2 and q = 5k for some k ∈ N, such a pair definitely exists
for all (q,m) apart from at most 20 choices.
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1 Introduction

Given the positive integers m and q such that q is a prime power, Fq denotes
the finite field of order q and Fqm be the extension of Fq of degree m. A gen-
erator of the cyclic multiplicative group F∗

qm is known as a primitive element

of Fqm. For a rational function f(x) ∈ Fqm(x) and α ∈ Fqm , we call a pair
(α, f(α)) a primitive pair in Fqm if both α and f(α) are primitive elements
of Fqm . Further, α is normal over Fq if the set {α, αq, αq

2
, · · · , αq

m−1
} forms

a basis of Fqm over Fq. Also, the trace of α over Fq, denoted by TrFqm/Fq
(α)

is given by α + αq + αq
2
+ · · ·+ αq

m−1
.

1emails: hariomsharma638@gmail.com (Hariom), rksharmaiitd@gmail.com (Rajendra)
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Primitive normal elements play a vital role in coding theory and cryptog-
raphy [1]. Therefore, study of existence of such elements is an active area of
research. We refer to [12] for the existence of primitive and normal elements
in finite fields. Existence of both primitive and normal elements simultane-
ously was first established by Lenstra and Schoof in [11]. Later on, by using
sieving techniques, Cohen and Huczynska [7] provided a computer-free proof
of it. In 1985, Cohen studied the existence of primitive pair (α, f(α)) in
Fq for the rational function f(x) = x + a, a ∈ Fq. Many more researchers
worked in this direction and proved the existence of primitive pair for more
general rational function [8, 2, 14, 3]. Additionally, in the fields of even order,
Cohen[5] established the existence of primitive pair (α, f(α)) in Fqn such that

α is normal over Fq, where f(x) = x2+1
x

. Similar result has been obtained

in [2] for the rational function f(x) = ax2+bx+c
dx+e

. Another interesting problem
is to prove the existence of primitive pair with prescribed traces which have
been discussed in [13, 10, 15].

In this article, we consider all the conditions simultaneously and prove
the existence of primitive pair (α, f(α)) in Fqm such that α is normal over
Fq and for prescribed a ∈ Fq, TrFqm/Fq

(α−1) = a, where f(x) is more general
rational function. To proceed further, we shall use some basic terminology
and conventions used in [8]. To say that a non zero polynomial f(x) ∈ Fqm [x]
has degree n ≥ 0 we mean that f(x) = anx

n + · · · + a0, where an 6= 0 and
write it as deg(f) = n. Next, for a rational function f(x) = f1(x)/f2(x) ∈
Fqm(x), we always assume that f1 and f2 are coprime and degree sum of
f = deg(f1) + deg(f2). Also, we can divide each of f1 and f2 by the leading
coefficient of f2 and suppose that f2 is monic. Further, we say that a rational
function f ∈ Fqm(x) is exceptional if f = cxigd for some c ∈ Fqm , i ∈ Z(set
of integers) and d > 1 divides qm − 1 or f(x) = xi for some i ∈ Z such that
gcd(qm − 1, i) 6= 1.

Finally, we introduce some sets which have an important role in this
article. For n1, n2 ∈ N, Sq,m(n1, n2) will be used to denote the set of non
exceptional rational functions f = f1/f2 ∈ Fqm(x) with deg(f1) ≤ n1 and
deg(f2) ≤ n2, and Tn1,n2 as the set of pairs (q,m) ∈ N × N such that for
any given f ∈ Sq,m(n1, n2) and prescribed a ∈ Fq, Fqm contains a normal
element α with (α, f(α)) a primitive pair and TrFqm/Fq

(α−1) = a. Define
Sq,m(n) =

⋃
n1+n2=n

Sq,m(n1, n2) and Tn =
⋂

n1+n2=n

Tn1,n2. By [4], for m ≤ 2,

there does not exist any primitive element α such that TrFqm/Fq
(α−1) = 0.

Therefore, we shall assume m ≥ 3 throughout the article.
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In this paper, for n ∈ N, we take f(x) ∈ Sq,m(n) a general rational
function of degree sum n and a ∈ Fq, and prove the existence of normal
element α such that (α, f(α)) is a primitive pair in Fqm and TrFqm/Fq

(α−1) =
a. To be more precise, in section 3, we obtain a sufficient condition for
the existence of such elements in Fqm. In section 4, we further improve the
condition by proving a generalization of sieving technique due to Anju and
Cohen[6]. In section 5, we demonstrate the application of the results of
section 3 and section 4 by working with the finite fields of characteristic 5
and n = 2. More precisely, we get a subset of T2.

2 Preliminaries

In this section, we provide some preliminary notations, definitions and results
which are required further in this article. Throughout this article, m ≥ 3 is
an integer, q is an arbitrary prime power and Fq is a finite field of order q.
For each k(> 1) ∈ N, ω(k) denotes the number of prime divisors of k and
W (k) denotes the number of square free divisors of k. Also for g(x) ∈ Fq[x],
Ωq(g) and W (g) denote the number of monic irreducible(over Fq) divisors of
g and number of square free divisors of g respectively, i.e., W (k) = 2ω(k) and
W (g) = 2Ωq(g).

For a finite abelian group G, a homomorphism χ from G into the multi-
plicative group S1 = {z ∈ C : |z| = 1} is known as a character of G. The set
of all characters of G forms a group under multiplication, which is isomorphic
to G and is denoted by Ĝ. Further, the character χ0, defined as χ0(g) = 1
for all g ∈ G is called the trivial character of G. The order of a character χ
is the smallest positive integer r such that χr = χ0. For a finite field Fqm ,
the characters of the additive group Fqm and the multiplicative group F∗

qm

are called additive characters and multiplicative characters respectively. A
multiplicative character χ ∈ F̂∗

qm is extended from F∗
qm to Fqm by the rule

χ(0) =

{
0 if χ 6= χ0

1 if χ = χ0

. For more fundamentals on characters, primitive

elements and finite fields, we refer the reader to [12].
For a divisor u of qm − 1, an element w ∈ F∗

qm is u-free, if w = vd, where
v ∈ Fqm and d|u implies d = 1. It is easy to observe that an element in F∗

qm

is (qm − 1)-free if and only if it is primitive. A special case of [16, Lemma
10], provides an interesting result.
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Lemma 2.1. Let u be a divisor of qm − 1, ξ ∈ F∗
qm. Then

∑

d|u

µ(d)

φ(d)

∑

χd

χd(ξ) =

{
u

φ(u)
if ξ is u-free,

0 otherwise.

where µ(·) is the Möbius function and φ(·) is the Euler function, χd runs

through all the φ(d) multiplicative characters over F∗
qm with order d.

Therefore, for each divisor u of qm − 1,

ρu : α 7→ θ(u)
∑

d|u

µ(d)

φ(d)

∑

χd

χd(α), (2.1)

gives a characteristic function for the subset of u-free elements of F∗
qm ,

where θ(u) = φ(u)
u
.

Also, for each a ∈ Fq,

τa : α 7→
1

q

∑

ψ∈F̂q

ψ( TrFqm/Fq
(α)− a)

is a characterstic function for the subset of Fqm consisting elements with
TrFqm/Fq

(α) = a. From [12, Theorem 5.7] every additive character ψ of
Fq can be obtained by ψ(a) = ψ0(ua), where ψ0 is the canonical additive
character of Fq and u is an element of Fq corresponding to ψ. Thus

τa(α) =
1

q

∑

u∈Fq

ψ0( TrFqm/Fq
(uα)− ua)

=
1

q

∑

u∈Fq

ψ̂0(uα)ψ0(−ua), (2.2)

where ψ̂0 is the additive character of Fqm defined by ψ̂0(α) = ψ0( TrFqm/Fq
(α)).

In particular, ψ̂0 is the canonical additive character of Fqm.
The additive group of Fqm is an Fq[x]-module under the rule f o α =

k∑
i=1

aiα
qi; for α ∈ Fqm and f(x) =

k∑
i=1

aix
i ∈ Fq[x]. For α ∈ Fqm, the Fq-order

of α is the unique monic polynomial g of least degree such that g o α = 0.
Observe that g is a factor of xm − 1. Similarly, by defining the action of
Fq[x] over F̂qm by the rule ψ o f(α) = ψ(f o α), where ψ ∈ F̂qm , α ∈ Fqm and
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f ∈ Fq[x], F̂qm becomes an Fq[x]-module, and the unique monic polynomial g
of least degree such that ψ o g = χ0 is called the Fq-order of ψ. Further there
are Φq(g) characters of Fq-order g, where Φq(g) is the analogue of Euler’s
phi-function on Fq[x](see [12]).

Similar to above, for g|xm−1 an element α ∈ Fqm is g-free, if α = h o β,
where β ∈ Fqm and h|g implies h = 1. It is straightforward that an element
in Fqm is (xm − 1)-free if and only if it is normal. Also, for g|xm − 1 an
expression for the characteristic function for g-free elements is given by

κg : α 7→ Θ(g)
∑

h|g

µ′(d)

Φq(h)

∑

ψh

ψh(α), (2.3)

where Θ(g) = Φq(g)

qdeg(g)
, the internal sum runs over all characters ψh of Fq-order

h and µ′ is the analogue of the Möbius function defined as

µ′(g) =

{
(−1)s if g is a product of s distinct monic irreducible polynomials,

0 otherwise.

Following results of D. Wang and L. Fu will play a vital role in our next
section.

Lemma 2.2. [9, Theorem 4.5] Let f(x) ∈ Fqd(x) be a rational function.

Write f(x) =
∏k

j=1 fj(x)
nj , where fj(x) ∈ Fqd[x] are irreducible polynomials

and nj are non zero integers. Let χ be a multiplicative character of Fqd.

Suppose that the rational function
∏d−1

i=0 f(x
qi) is not of the form h(x)ord(χ)

in Fqd(x), where ord(χ) is the order of χ, then we have

∣∣ ∑

α∈Fq ,f(α)6=0,f(α)6=∞

χ(f(α))
∣∣ ≤ (d

k∑

j=1

deg(fj)− 1)q
1
2 .

Lemma 2.3. [9, Theorem 4.6] Let f(x), g(x) ∈ Fqm(x) be rational func-

tions. Write f(x) =
∏k

j=1 fj(x)
nj , where fj(x) ∈ Fqm [x] are irreducible

polynomials and nj are non zero integers. Let D1 =
∑k

j=1 deg(fj), let

D2 = max(deg(g), 0), let D3 be the degree of denominator of g(x), and let D4

be the sum of degrees of those irreducible polynomials dividing denominator
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of g but distinct from fj(x)(j = 1, 2, · · · , k). Let χ be a multiplicative char-

acter of Fqm, and let ψ be a non trivial additive character of Fqm. Suppose

g(x) is not of the form r(x)q
m

− r(x) in Fqm(x). Then we have the estimate

∣∣ ∑

α∈Fqm ,f(α)6=0,∞g(α)6=∞

χ(f(α))ψ(g(α))
∣∣ ≤ (D1 +D2 +D3 +D4 − 1)q

m
2 .

3 Sufficient condition

Let l1, l2 ∈ N be such that l1, l2|q
m − 1. Also, a ∈ Fq, f(x) ∈ Sq,m(n) and

g|xm − 1, then Nf,a,n(l1, l2, g) denote the number of elements α ∈ Fqm such
that α is both l1-free and g-free, f(α) is l2-free and TrFqm/Fq

(α−1) = a.

We now prove one of the sufficient condition as follows.

Theorem 3.1. Let m,n and q ∈ N such that q is a prime power and m ≥ 3.
Suppose that

q
m
2
−1 > (n+ 2)W (q − 1)2W (xm − 1). (3.1)

Then (q,m) ∈ Tn.

Proof. To prove the result, it is enough to show thatNf,a,n(q
m−1, qm−1, xm−

1) > 0 for every f(x) ∈ Sq,m(n) and prescribed a ∈ Fq. Let f(x) ∈ Sq,m(n)
be any rational function and a ∈ Fq. Let U1 be the set of zeros and poles of
f(x) in Fqm and U = U1 ∪ {0}. Assume l1, l2 be divisors of qm − 1 and g be
a divisor of xm − 1. Then by definition

Nf,a,n(l1, l2, g) =
∑

α∈Fqm\U

ρl1(α)ρl2(f(α))τa(α
−1)κg(α)

now using (2.1), (2.2) and (2.3),

Nf,a,n(l1, l2, g) =
θ(l1)θ(l2)Θ(g)

q

∑

d1|l1,d2|l2
h|g

µ(d1)

φ(d1)

µ(d2)

φ(d2)

µ′(h)

Φq(h)

∑

χd1
,χd2

,ψh

χf,a(d1, d2, h),

(3.2)

where χf,a(d1, d2, h) =
∑
u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χd1(α)χd2(f(α))ψh(α)ψ̂0(uα
−1).

Since ψh is an additive character of Fqm and ψ̂0 is canonical additive character
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of Fqm , therefore there exists v ∈ Fqm such that ψh(α) = ψ̂0(vα). Hence

χf,a(d1, d2, h) =
∑
u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χd1(α)χd2(f(α))ψ̂0(vα+ uα−1).

At this point, we claim that if (d1, d2, h) 6= (1, 1, 1), where third 1 denotes
the unity of Fq[x], then |χf,a(d1, d2, h)| ≤ (n+2)q

m
2
+1. To see the claim, first

suppose d2 = 1, then χf,a(d1, d2, h) =
∑
u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χd1(α)ψ̂0(vα +

uα−1). Here, if vx + ux−1 6= r(x)q
m

− r(x) for any r(x) ∈ Fqm(x) then by
Lemma 2.3 |χf,a(d1, d2, h)| ≤ 2q

m
2
+1 + (|U | − 1)q ≤ (n + 2)q

m
2
+1. Also, if

vx + ux−1 = r(x)q
m

− r(x) for some r(x) ∈ Fqm(x) then following [Comm.
Anju], it is possible when u = v = 0, which implies, |χf,a(d1, d2, h)| ≤ |U |q <
(n+ 2)q

m
2
+1.

Now suppose d2 > 1. Let d be the least common multiple of d1 and
d2. Then [12] suggests that there exists a character χd of order d such that

χd2 = χ
d/d2
d . Also, there is an integer 0 ≤ k < qm − 1 such that χd1 = χkd.

Consequently, χf,a(d1, d2, h) =
∑
u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χd(α
kf(α)d/d2)ψ̂0(vα +

uα−1). At this moment, first suppose vx+ux−1 6= r(x)q
m

−r(x) for any r(x) ∈
Fqm(x). Then Lemma 2.3 implies that |χf,a(d1, d2, h)| ≤ (n+2)q

m
2
+1. Also, if

vx+ux−1 = r(x)q
m

− r(x) for some r(x) ∈ Fqm(x), then following [15] we get
u = v = 0. Therefore, χf,a(d1, d2, h) =

∑
u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χd(α
kf(α)d/d2).

Here, if xkf(x)d/d2 6= r(x)d for any r(x) ∈ Fqm(x), then using Lemma 2.2 we
get |χf,a(d1, d2, h)| ≤ nq

m
2
+1 < (n+2)q

m
2
+1. However, xkf(x)d/d2 = r(x)d for

some r(x) ∈ Fqm(x) gives that f is exceptional(see [8]).
Hence, from the above discussion along with (3.2), we get

Nf,a,n(l1, l2, g) ≥
θ(l1)θ(l2)Θ(g)

q
(qm − |U | − ((n+ 2)q

m
2
+1)(W (l1)W (l2)W (g)− 1))

≥
θ(l1)θ(l2)Θ(g)

q
(qm − (n + 1)− ((n+ 2)q

m
2
+1)(W (l1)W (l2)W (g)− 1))

≥
θ(l1)θ(l2)Θ(g)

q
(qm − (n+ 2)q

m
2
+1W (l1)W (l2)W (g)) (3.3)

Thus, if q
m
2
−1 > (n + 2)W (l1)W (l2)W (g), then Nf,a,n(l1, l2, g) > 0 for

all f(x) ∈ Sq(n) and prescribed a ∈ Fq. The result now follows by taking
l1 = l2 = qm − 1 and g = xm − 1.
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4 Sieving Results

Here, we state some results, their proofs have been omitted as they follow
on the lines of the results in [10] and have been used frequently in [13, 8, 10,
14, 2].

Lemma 4.1. Let k and P be co-prime positive integers and g,G ∈ Fq[x] be
co-prime polynomials. Also, let {p1, p2, · · · , pr} be the collection of all prime

divisors of P , and {g1, g2, · · · , gs} contains all the irreducible factors of G.
Then

Nf,a,n(kP, kP, gG) ≥

r∑

i=1

Nf,a,n(kpi, k, g) +

r∑

i=1

Nf,a,n(k, kpi, g)

+

s∑

i=1

Nf,a,n(k, k, ggi)− (2r + s− 1)Nf,a,n(k, k, g).

Lemma 4.2. Let l, m, q ∈ N, g ∈ Fq[x] be such that q is a prime power,

m ≥ 3 and l|qm− 1, g|xm− 1. Let c be a prime number which divides qm− 1
but not l, and e be irreducible polynomial dividing xm − 1 but not g. Then

|Nf,a,n(cl, l, g)− θ(c)Nf,a,n(l, l, g)| ≤ (n+ 2)θ(c)θ(l)2Θ(g)W (l)2W (g)q
m
2 ,

|Nf,a,n(l, cl, g)− θ(c)Nf,a,n(l, l, g)| ≤ (n + 2)θ(c)θ(l)2Θ(g)W (l)2W (g)q
m
2

and

|Nf,a,n(l, l, eg)−Θ(e)Nf,a,n(l, l, g)| ≤ (n + 2)θ(l)2Θ(e)Θ(g)W (l)2W (g)q
m
2 .

Theorem 4.1. Let l, m, q ∈ N, g ∈ Fq[x] be such that q is a prime power,

m ≥ 3 and l|qm − 1, g|xm − 1. Also, let {p1, p2, · · · pr} be the collection of

primes which divides qm − 1 but not l, and {g1, g2, · · · gs} be the irreducible

polynomials dividing xm−1 but not g. Suppose δ = 1−2
r∑
i=1

1
pi
−

s∑
i=1

1
qdeg(gi)

, δ >

0 and ∆ = 2r+s−1
δ

+ 2. If q
m
2
−1 > (n+ 2)∆W (l)2W (g) then (q,m) ∈ Tn.

Now, we present a more effective sieving technique than Theorem 4.1,
which is an extension of the result in [6]. For this, we adopt some notations
and conventions from [6] as described. Let Rad(qm − 1) = kPL, where
k is the product of smallest prime divisors of qm − 1, L is the product of
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large prime divisors of qm − 1 denoted by L = l1 · l2 · · · lt, and rest of the
prime divisors of qm − 1 lie in P and denoted by p1, p2, · · · , pr. Similarly,
Rad(xm − 1) = gGH , where g is the product of irreducible factors of xm − 1
of least degree, and irreducible factors of large degree are factors of H which
are denoted by h1, h2, · · · , hu and rest lie in G and denoted by g1, g2, · · · , gs.

Theorem 4.2. Let m, q ∈ N such that q is a prime power and m ≥ 3. Using
above notations, let Rad(qm − 1) = kPL, Rad(xm − 1) = gGH, δ = 1 −

2
r∑
i=1

1
pi
−

s∑
i=1

1
qdeg(gi)

, ǫ1 =
t∑
i=1

1
li
, ǫ2 =

u∑
i=1

1
qdeg(hi)

and δθ(k)2Θ(g)−(2ǫ1+ǫ2) > 0.

Then

q
m
2
−1 > (n+2)[θ(k)2Θ(g)W (k)2W (g)(2r+s−1+2δ)+(t−ǫ1)+(2/(n+2))(u−ǫ2)

+ (n/(n+ 2))(1/qm/2)(t + u− ǫ1 − ǫ2)]/[δθ(k)
2Θ(g)− (2ǫ1 + ǫ2)] (4.1)

implies (q,m) ∈ Tn.

Proof. Clearly,

Nf,a,n(q
m−1, qm−1, xm−1) = Nf,a,n(kPL, kPL, gGH) ≥ Nf,a,n(kP, kP, gG)

+Nf,a,n(L, L,H)−Nf,a,n(1, 1, 1). (4.2)

Further, by Lemma 4.1

Nf,a,n(kP, kP, gG) ≥ δNf,a,n(k, k, g)+

r∑

i=1

{Nf,a,n(kpi, k, g)−θ(pi)Nf,a,n(k, k, g)}

+
r∑

i=1

{Nf,a,n(k, kpi, g)−θ(pi)Nf,a,n(k, k, g)}+
s∑

i=1

(Nf,a,n(k, k, ggi)−Θ(gi)Nf,a,n(k, k, g))

.
Using (3.3) and Lemma 4.2, we get

Nf,a,n(kP, kP, gG) ≥ δθ(k)2Θ(g)
(
qm−1 − (n+ 2)W (k)2W (g)q

m
2

)

−(n + 2)θ(k)2Θ(g)W (k)2W (g)
( r∑

i=1

2θ(pi) +
s∑

i=1

Θ(gi)
)
q

m
2

= θ(k)2Θ(g)
(
δqm−1 − (n+ 2)(2r + s− 1 + 2δ)W (k)2W (g)q

m
2

)
. (4.3)
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Again, by Lemma 4.1

Nf,a,n(L, L,H)−Nf,a,n(1, 1, 1) ≥

t∑

i=1

Nf,a,n(li, 1, 1) +

t∑

i=1

Nf,a,n(1, li, 1)

+
u∑

i=1

Nf,a,n(1, 1, hi)− (2t+ u)Nf,a,n(1, 1, 1)

=
t∑

i=1

{Nf,a,n(li, 1, 1)−θ(li)Nf,a,n(1, 1, 1)}+
t∑

i=1

{Nf,a,n(1, li, 1)−θ(li)Nf,a,n(1, 1, 1)}

+

u∑

i=1

{Nf,a,n(1, 1, hi)−Θ(hi)Nf,a,n(1, 1, 1)} − (2ǫ1 + ǫ2)Nf,a,n(1, 1, 1) (4.4)

By (3.2), for a prime divisor l of qm− 1, |Nf,a,n(l, 1, 1)− θ(l)Nf,a,n(1, 1, 1)| =
θ(l)
φ(l)q

|
∑
χl

χf,a(l, 1, 1)|, where

|χf,a(l, 1, 1)| = |
∑

u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χl(α)ψ̂0(uα
−1| ≤ q

m
2
+1 + nq.

Hence, |Nf,a,n(l, 1, 1)− θ(l)Nf,a,n(1, 1, 1)| ≤ θ(l)(q
m
2 + n). Similarly,

|χf,a(1, l, 1)| = |
∑

u∈Fq

ψ0(−au)
∑

α∈Fqm\U

χl(f(α))ψ̂0(uα
−1| ≤ (n+ 1)q

m
2
+1,

which further implies |Nf,a,n(1, l, 1)− θ(l)Nf,a,n(1, 1, 1)| ≤ (n+ 1)q
m
2 .

Also, for an irreducible divisor h of xm − 1,

|χf,a(1, 1, h)| = |
∑

u∈Fq

ψ0(−au)
∑

α∈Fqm\U

ψh(α)ψ̂0(uα
−1|

= |
∑

u∈Fq

ψ0(−au)
∑

α∈Fqm\U

ψ̂0(vα + uα−1| ≤ 2q
m
2
+1 + nq.

Therefore, |Nf,a,n(1, 1, h)−Θ(h)Nf,a,n(1, 1, 1)| ≤ Θ(h)(q
m
2 + n). Using these

bounds in (4.4), we have Nf,a,n(L, L,H) − Nf,a,n(1, 1, 1) ≥ −
t∑
i=1

θ(li)(q
m
2 +

10



n) −
t∑
i=1

θ(li)(n + 1)q
m
2 −

u∑
i=1

Θ(hi)(2q
m
2 + n) − (2t + u)Nf,a,n(1, 1, 1). Now,

Nf,a,n(1, 1, 1) ≤ qm−1 together with
t∑
i=1

θ(li) = (t − ǫ1) and
u∑
i=1

= (u − ǫ2)

implies

Nf,a,n(L, L,H)−Nf,a,n(1, 1, 1) ≥ −{(n+ 2)(t− ǫ1) + 2(u− ǫ2)}q
m
2

− n(t + u− ǫ1 − ǫ2)− (2ǫ1 + ǫ2)q
m−1. (4.5)

Now using (4.3) and (4.5) in (4.2) we get,

Nf,a,n(q
m−1, qm−1, xm−1) ≥ {δθ(k)2Θ(g)−(2ǫ1+ǫ2)}q

m−1−θ(k)2Θ(g)(n+2)

(2r+s−1+2δ)W (k)2W (g)q
m
2 −{(n+2)(t−ǫ1)+2(u−ǫ2)}q

m
2 −n(t+u−ǫ1−ǫ2)

= q
m
2

[(
δθ(k)2Θ(g)−(2ǫ1+ǫ2)

)
q

m
2
−1−(n+2){θ(k)2Θ(g)(2r+s−1+2δ)W (k)2W (g)

− {(t− ǫ1) + (2/(n+ 2))(u− ǫ2)} − (n/(n+ 2))(1/qm/2)(t+ u− ǫ1 − ǫ2)}
]

Thus

q
m
2
−1 > (n+2)[θ(k)2Θ(g)W (k)2W (g)(2r+s−1+2δ)+(t−ǫ1)+(2/(n+2))(u−ǫ2)

+ (n/(n+ 2))(1/qm/2)(t+ u− ǫ1 − ǫ2)]/[δθ(k)
2Θ(g)− (2ǫ1 + ǫ2)]

implies Nf,a,n(q
m − 1, qm − 1, xm − 1) > 0 i.e., (q,m) ∈ Tn.

It is easy to observe that Theorem 4.1 is a special case of Theorem 4.2
and can be obtained by setting t = u = ǫ1 = ǫ2 = 0.

5 Working Example

However the results discussed above are applicable for arbitrary natural num-
ber n and the finite field Fqm of any prime characteristic. Though to demon-
strate the application of above results and make the calculations uncompli-
cated we assume that q = 5k for some k ∈ N and n = 2, and work on the set
T2. Precisely, in this section, we prove the following result.

Theorem 5.1. Let q = 5k for some k ∈ N and m ≥ 3 is an integer. Then

(q,m) ∈ T2 unless one of the following holds:

11



1. q = 5, 52, 53, 54, 55, 56, 58, 510 and m = 3;

2. q = 5, 52, 53, 54 and m = 4;

3. q = 5, 52 and m = 5, 6;

4. q = 5 and m = 7, 8, 10, 12.

We shall divide it in two parts, in first part we shall work on m ≥ 5 and
in second we shall consider m = 3, 4. For further calculation work and to
apply the previous results we shall need the following lemma which can also
be developed from [5, Lemma 6.2].

Lemma 5.1. Let M be a positive integer, then W (M) < 4515×M1/8.

5.1 Part 1.

In this part, we assume m ≥ 5 and write m = m′5j, where j ≥ 1 is an
integer and 5 ∤ m′. Then Ωq(x

m − 1) = Ωq(x
m′

− 1) which further implies
W (xm − 1) = W (xm

′

− 1). Further, we shall divide the discussion in two
cases.
• m′|q − 1
• m′ ∤ q − 1

Case 1. m|q − 1.
Clearly [12, Theorem 2.47] implies that Ωq(x

m′

− 1) = m′. Let l = qm −

1 and g = 1 in Theorem 4.1 then ∆ = q2+(a−3)q+2
(a−1)q+1

, where a = q−1
m′
, which

further implies ∆ < q2. Hence (q,m) ∈ T2 if q
m
2
−3 > 4W (qm− 1)2. However,

by Lemma 5.1, it is sufficient if q
m
4
−3 > 4 · (4515)2, which holds for q ≥ 125

and for all m ≥ 28. In particular, for q ≥ 125 and for all m′ ≥ 28. Next, we
examine all the cases where m′ ≤ 27. For this we set l = qm − 1 and g = 1
in Theorem 4.1 unless mentioned. Then δ = 1− m′

q
and ∆ = 2 + (m′−1)q

q−m′

1. m′ = 1. Here m = 5j for some integer j ≥ 1 and ∆ = 2. Then by Theo-
rem 4.1 it is sufficient if q

m
2
−1 > 4 · 2 ·W (qm− 1)2. Again Lemma 5.1 implies

(q,m) ∈ T2 if q
m
4
−1 > 8 · (4515)2 i.e., q

5j

4
−1 > 8 · (4515)2, which holds for all

choices of (q,m) except (5, 5), (5, 52), (52, 5), (52, 52), (53, 5), (54, 5), · · · , (546, 5)
which are 48 in number. For these, we checked q

m
2
−1 > 4 · 2 ·W (qm− 1)2 di-

rectly by factoring qm−1 and got it verified except the pairs (5, 5), (52, 5), (53, 5),

12



(54, 5) and (56, 5).

2. m′ = 2. In this case, m = 2 ·mj for some j ≥ 1 and ∆ = 2 + q
q−2

< 4.

Similar to the above case, it is sufficient if q
2·5j

4
−1 > 16 · (4515)2, which is

true except the 9 pairs (5, 10), (5, 50), (52, 10), (53, 10), · · · , (58, 10), and the
verification of q

m
2
−1 > 4 ·4 ·W (qm−1)2 for these pairs yield the only possible

exceptions as (5, 10) and (52, 10).
Following the similar steps for the rest of the values of m′ ≤ 27 we get

that there is no exception for many values of m′. Values of m′ with possible
exceptional pairs is as below.
3. m′ = 4. (5, 20).
4. m′ = 6. (52, 6), (54, 6) and (56, 6).
5. m′ = 8. (52, 8).

Furthermore, for the pairs (53, 5), (54, 5), (56, 5), (52, 10), (5, 20), (54, 6), (56, 6)
and (52, 8) Theorem 4.1 holds for some choice of l and g (see Table 1).
Hence, only left possible exceptions in this case are (5, 5), (52, 5), (5, 10)
and (52, 6).

Table 1
Sr.
No.

(q,m) l r g s δ > ∆ <
4∆W (g)
W (l)2 <

1 (53, 5) 2 5 1 1 0.705298 16.178405 518
2 (54, 5) 6 6 1 1 0.581729 22.628164 2897
3 (56, 5) 6 9 1 1 0.390631 48.079201 6155
4 (52, 10) 6 6 1 2 0.503329 27.828038 3562
5 (5, 20) 6 6 x2+β3x+β 2 0.183329 72.910743 18666
6 (54, 6) 6 6 1 6 0.476599 37.669274 4822
7 (56, 6) 6 9 1 6 0.330094 71.677019 9175
8 (52, 8) 6 4 1 8 0.401942 39.318735 5033

where β is a primitive element of F5.

Case 2. m′ ∤ q − 1.
Let the order of q mod m′ be denoted by b. Then b ≥ 2 and degree of
irreducible factors of xm

′

− 1 over Fq is less than or equal to b. Let M
denotes the number of distinct irreducible factors of xm − 1 over Fq of de-
gree less than b. Also let ν(q,m) denotes the ratio ν(q,m) = M

m
. Then,

mν(q,m) = m′ν(q,m′).

13



For the further progress, we need the following two results which are the
directly implied by Proposition 5.3 of [7] and Lemma 7.2 of [5] respectively.

Lemma 5.2. Let k,m, q ∈ N be such that q = 5k and m′ ∤ q − 1. In the

notations of Theorem 4.1, let l = qm − 1 and g is the product of irreducible

factors of xm − 1 of degree less than b, then ∆ < m′.

Lemma 5.3. Let m′ > 4 and m1 = gcd(q − 1, m′). Then following bounds

hold.

1. For m′ = 2m1, ν(q,m
′) = 1

2
;

2. for m′ = 4m1, ν(q,m
′) = 3

8
;

3. for m′ = 6m1, ν(q,m
′) = 13

36
;

4. otherwise, ν(q,m′) ≤ 1
3
.

At this point we note that m′ = 1, 2 and 4 divide q−1 for any q = 5k and
have been discussed in above case, whereas m′ = 5 is not possible. Therefore,
in this case we need to discuss m′ = 3 and m′ ≥ 6.

First consider m′ = 3. Then m = 3 · 5j for some integer j ≥ 1. Also,
m′ ∤ q−1 implies if q = 5k then k is odd and xm

′

−1 is the product of a linear
factor and a quadratic factor. Thus, W (xm − 1) = W (xm

′

− 1) = 22 = 4
and (3.1) implies (q,m) ∈ T2 if q

m
2
−1 > 16 · W (qm − 1)2. By Lemma 5.1,

it is sufficient if q
m
4
−1 > 16 · (4515)2, which hold for q = 5 and m ≥ 53,

q = 125 and m ≥ 21, q ≥ 55 and m ≥ 14. Thus, only possible exceptions are
(5, 15) and (125, 15). For these two possible exceptions we checked q

m
4
−1 >

16 ·W (qm − 1)2 directly by factoring qm − 1 and got it verified for (125, 15).
Hence only possible exception for m′ = 3 is (5, 15).

Now suppose m′ ≥ 6. At this point, in Theorem 4.1 let l = qm − 1
and g be the product of irreducible factors of xm − 1 of degree less than
b. Therefore, Lemma 5.2 along with Theorem 4.1 implies (q,m) ∈ T2 if
q

m
2
−1 > 4 ·m′ ·W (qm − 1)2 · 2m

′ν(q,m′). By Lemma 5.1, it is sufficient if

q
m
4
−1 > 4 ·m · (4515)2 · 2mν(q,m

′). (5.1)

Further, we shall discuss it in four cases as follows.
1. m′ 6= 2m1, 4m1, 6m1.

Here, Lemma 5.3 implies ν(q,m′) = 1
3
. Using this in (5.1) we get (q,m) ∈ T2

14



if q
m
4
−1 > 4 ·m · (4515)2 · 2

m
3 , which holds for qm ≥ 5145. Next, for qm ≤ 5144,

we verified q
m
2
−1 > 4 ·m ·W (qm− 1)2 · 2

m
3 by factoring qm − 1 and got a list

of 20 possible exception as follows.
(5, 6), (5, 7), (5, 9), (5, 11), (5, 12), (5, 13), (5, 14), (5, 17), (5, 18), (5, 19), (5, 21),
(5, 22), (5, 27), (5, 30), (5, 36), (52, 7), (52, 9), (52, 11), (53, 6), (55, 6).

2. m′ = 2m1.
In this case, ν(q,m) = 1

2
. Therefore, (5.1) implies (q,m) ∈ T2 if q

m
4
−1 >

4 · m · (4515)2 · 2
m
2 , which holds for q = 5 and m ≥ 466 while for q ≥ 25

it is sufficient that m ≥ 56. Here, for q = 5, we have m′ = 8 only. Thus
possible exception for q = 5 are (5, 8), (5, 40) and (5, 200). On the other
hand, for q ≥ 25 and qm < 2556 along with above three possible excep-
tions we checked q

m
2
−1 > 4 ·m ·W (qm − 1)2 · 2

m
2 and got it verified except

(5, 8), (5, 40) and (53, 8).

3. m′ = 4m1.

Here, ν(q,m) = 3
8
. Again, (5.1) gives (q,m) ∈ T2 if q

m
4
−1 > 4·m·(4515)2 ·2

3m
8 ,

which is true for qm ≥ 5176. On the other side, verification of q
m
2
−1 >

4 · m ·W (qm − 1)2 · 2
3m
8 for qm < 5176 provides only possible exception as

(5, 16).

4. m′ = 6m1.

Similar to the above case, we have ν(q,m) = 13
36

and q
m
4
−1 > 4·m·(4515)2·2

13m
36

holds for qm ≥ 5164. Also, for qm < 5164, q
m
2
−1 > 4 ·m ·W (qm − 1)2 · 2

13m
36

holds for all (q,m) except (5, 24).

Table 2
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Sr.
No.

(q,m) l r g s δ > ∆ <
4∆W (g)
W (l)2 <

1 (5, 11) 2 1 1 3 0.799359 7.004009 225
2 (5, 13) 2 1 1 4 0.795199 8.287731 266
3 (5, 14) 2 4 x+ 1 3 0.059683 169.55170 5426
4 (5, 17) 2 2 1 2 0.795110 8.288442 266
5 (5, 18) 6 5 1 6 0.061578 245.59029 31436
6 (5, 19) 2 3 1 3 0.789208 12.136745 389
7 (5, 21) 2 4 1 5 0.689908 19.393614 621
8 (5, 22) 2 5 x+ 1 5 0.014867 943.67119 30198
9 (5, 27) 2 7 1 4 0.561470 32.277659 1033
10 (5, 30) 6 9 x+ 1 3 0.110695 182.67531 23383
11 (5, 36) 6 9 x4 − 1 8 0.170222 148.86660 152440
12 (52, 7) 2 4 1 3 0.219683 47.520125 1521
13 (52, 9) 6 5 1 5 0.421578 35.208505 4507
14 (52, 11) 2 5 1 3 0.176146 70.124930 2244
15 (53, 6) 6 5 1 4 0.525578 26.734639 3423
16 (55, 6) 6 9 10 4 0.390055 55.838482 7148
17 (5, 15) 2 5 1 2 0.473298 25.241167 808
18 (5, 40) 6 9 x2+β3x+β 4 0.088640 238.91192 61162
19 (53, 8) 6 6 1 6 0.454072 39.438940 5049
20 (5, 16) 6 4 x+ 1 7 0.038742 363.35624 46510
21 (5, 24) 6 6 x4 − 1 10 0.086200 245.61740 251513

Next, we refer to Table 2 to note that Theorem 4.1 holds for the pairs (5, 11),
(5, 13), (5, 14), (5, 15), (5, 16), (5, 17), (5, 18), (5, 19), (5, 21), (5, 22), (5, 24),
(5, 27), (5, 30), (5, 36), (5, 40), (52, 7), (52, 9), (52, 11), (53, 6), (53, 8), (55, 6).
Thus, only left possible exceptions in the case m′ ∤ q − 1 are (5, 6),(5, 7),
(5, 8), (5, 9), and (5, 12).

5.2 Part 2.

In this part we shall consider m = 3, 4. Following result will be required for
further calculation, which follows on the lines of [6, Lemma 51].

Lemma 5.4. Let k ∈ N such that ω(k) ≥ 2828. Then W (k) < k
1
13 .
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Also,W (xm−1) ≤ 16. Now, first assume ω(qm−1) ≥ 2828, then (3.1) and

Lemma 5.4 together implies (q,m) ∈ T2 if q
m
2
−1 > 64 · q

2m
13 i.e., q

9m
26

−1 > 64 or

qm > 64
26m

9m−26 , sufficient if qm > 6478, which is true for ω(qm− 1) ≥ 2828. To
make further progress we follow [13]. Next, assume 88 ≤ ω(qm − 1) ≤ 2827.
In Theorem 4.1, let g = xm − 1 and l to be the product of least 88 primes
dividing qm−1 i.e.,W (l) = 288. Then r ≤ 2739 and δ will be at least its value
when {p1, p2, · · · , p2739} = {461, 463, · · · , 25667}. This gives δ > 0.0041806
and ∆ < 1.3101× 106, hence 4∆W (g)W (l)2 < 8.0309× 1060 = R (say). By

Theorem 4.1 (q,m) ∈ T2 if q
m
2
−1 > R or qm > R

2m
m−2 . But m ≥ 3 implies

2m
m−2

≤ 6. Therefore, if qm > R6 or qm > 2.6828 × 10365 then (q,m) ∈ T2.
Hence, ω(qm−1) ≥ 152 gives (q,m) ∈ T2. Repeating this process of Theorem
4.1 for the values in Table 3 implies (q,m) ∈ T2 if q

m
2
−1 > 889903387. Thus,

for m = 3 it is sufficient if q > (889903387)2 and for m = 4 we need q >
889903387. Hence, only possible exceptions are (5, 3), (52, 3), · · · , (525, 3) and
(5, 4), (52, 4), · · · , (512, 4). However, Table 4 implies that Theorem 4.1 holds
for (59, 3), (511, 3), (512, 3), (513, 3), · · · , (525, 3) and (56, 4), (57, 4), · · · , (512, 4).
Thus, only possible exceptions here are (5, 3), (52, 3), · · · , (58, 3) and (510, 3),
and (5, 4), (52, 4), · · · , (55, 4).

Table 3

Sr.
No.

a ≤ ω(qm−1) ≤ b W (l) δ > ∆ <
4∆W (g)
W (l)2 <

1 a = 17, b = 151 217 0.0347407 7687.5008 8.4526×1015

2 a = 9, b = 51 29 0.0550187 1510.5788 2.5344×1010

3 a = 7, b = 37 27 0.0064402 9163.1796 9608289244
4 a = 7, b = 36 27 0.0191790 2973.9903 3118453847
5 a = 7, b = 34 27 0.0458469 1158.0218 1214272852
6 a = 7, b = 33 27 0.0602354 848.6790 889903387

Table 4
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Sr.
No.

(q,m) l r g s δ > ∆ <
4∆W (g)
W (l)2 <

1 (59, 3) 2 7 1 2 0.801533 20.714128 663
2 (511, 3) 2 4 1 2 0.925433 11.725177 376
3 (512, 3) 6 9 1 3 0.330478 62.518314 8003
4 (513, 3) 2 4 1 2 0.910167 11.888295 381
5 (514, 3) 6 10 1 3 0.508443 45.269297 5795
6 (515, 3) 2 10 1 2 0.603902 36.773815 1177
7 (516, 3) 6 9 1 3 0.368379 56.291827 7206
8 (517, 3) 2 6 1 2 0.930565 15.970005 512
9 (518, 3) 6 12 1 3 0.499055 54.098369 6925
10 (519, 3) 2 5 1 2 0.924693 13.895837 445
11 (520, 3) 6 15 1 3 0.183646 176.24807 22560
12 (521, 3) 2 9 1 2 0.822416 25.102645 804
13 (522, 3) 6 10 1 3 0.522529 44.102865 5646
14 (523, 3) 2 7 1 2 0.920550 18.294603 586
15 (524, 3) 6 14 1 3 0.296682 103.11815 13200
16 (525, 3) 2 14 1 2 0.666688 45.498589 1456
17 (56, 4) 6 6 1 4 0.485944 32.867712 4208
18 (57, 4) 2 6 1 4 0.105913 143.62473 4596
19 (58, 4) 2 7 1 4 0.054494 313.95724 10047
20 (59, 4) 6 9 1 4 0.330476 65.544620 8390
21 (510, 4) 6 9 1 4 0.568640 38.930216 4984
22 (511, 4) 2 8 1 4 0.039829 479.03888 15330
23 (512, 4) 6 9 1 4 0.368379 59.006421 7553

Further, for all the left possible exceptions we checked Theorem 4.2 and
got it verified in case of (57, 3), (55, 4) and (5, 9) for the values in Table 5.

Table 5
Sr.
No.

(q,m) k P L f G H R′ <

1 (5, 9) 2 589 829 x−1 x2 + x+1 x6+x3+1 269
2 (57, 3) 2 229469719 519499 x−1 1 x2+x+1 262
3 (59, 4) 6 216878233 9161 x+1 x2+x+β3 x+ β3 2788

Where, R′ represent the right hand side value of (4.1). Hence, all the results
from part 1 and part 2 collectively implies Theorem 5.1.
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