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Abstract

All-or-nothing transforms have been defined as bijective mappings on all
s-tuples over a specified finite alphabet. These mappings are required to satisfy
certain “perfect security” conditions specified using entropies of the probability
distribution defined on the input s-tuples. Alternatively, purely combinatorial
definitions of AONTs have been given, which involve certain kinds of “unbiased
arrays”. However, the combinatorial definition makes no reference to probabil-
ity definitions.

In this paper, we examine the security provided by AONTs that satisfy the
combinatorial definition. The security of the AONT can depend on the under-
lying probability distribution of the s-tuples. We show that perfect security
is obtained from an AONT if and only if the input s-tuples are equiprobable.
However, in the case where the input s-tuples are not equiprobable, we still
achieve a weaker security guarantee. We also consider the use of randomized
AONTs to provide perfect security for a smaller number of inputs, even when
those inputs are not equiprobable.

Keywords: all-or-nothing transform, perfect security

1 Introduction

All-or-nothing-transforms (AONTs) were invented in 1997 by Rivest [10]. Several
variations of AONTs have received considerable attention since then. Some early
papers include [1, 2, 3]. In this paper, we focus on unconditionally secure AONTs,
which were introduced by Stinson [11] and later generalized in [5, 8]. Further work
focussing on the existence of unconditionally secure AONTs can be found in [7, 12,
13].

AONTs were originally suggested by Rivest [10] as a mode of operation for
block ciphers that would slow down exhaustive key searches. There have since been
numerous suggested applications of AONTs in security and cryptography. We do
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not survey these applications here; however, a variety of applications are discussed
and reviewed in [6].

We begin with the informal definition of an unconditionally secure all-or-nothing-
transform that was given in [11].

Definition 1.1. Suppose φ : Γs → Γs, where Γ is a finite set of size v (called an
alphabet) and s is a positive integer. Thus φ is a function that maps an input s-tuple
x = (x1, . . . , xs) to output s-tuple y = (y1, . . . , ys). The function φ is an (s, v)-all-
or-nothing transform (or (s, v)-AONT) provided that the following properties are
satisfied:

1. φ is a bijection.

2. If any s − 1 of the s outputs y1, . . . , ys are fixed, then the value of any one
input xi (for 1 ≤ i ≤ s) is completely undetermined.

Definition 1.1 does not place any bound on the computational capabilities of an
adversary. In contrast, Rivest’s original definition from [10] only requires that the
computation of any one input value, given s− 1 output values, is infeasible.

Definition 1.1 was generalized to that of a t-all-or-nothing-transform in [5].

Definition 1.2. Suppose 1 ≤ t ≤ s. A function φ : Γs → Γs is a (t, s, v)-all-
or-nothing transform (or (t, s, v)-AONT) provided that the following properties are
satisfied:

1. φ is a bijection.

2. If any s− t of the s outputs y1, . . . , ys are fixed, then the values of any t inputs
xi (for 1 ≤ i ≤ s) are completely undetermined.

We note that Definition 1.1 is just the special case of Definition 1.2 that arises
by setting t = 1.

Definition 1.2 was “rephrased” in terms of the entropy function in [5], as follows.
(Earlier, an analogous definition was given in [11] for the special case t = 1.) We
will refer to Definition 1.3 as the entropy definition.

Definition 1.3. Let
X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set Σ of size v. These 2s random
variables define a (t, s, v)-AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t, and for all Y ⊆ {Y1, . . . ,Ys} with
|Y| = s− t, it holds that

H(X | Y) = H(X ). (1)
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Suppose we consider X1, . . . ,Xs as inputs and Y1, . . . ,Ys as outputs. Then
properties 1 and 2 ensure that we can define a bijection between the s inputs and
the s outputs. Property 3 is saying that no information about any t inputs can be
derived from any s− t outputs.

Finally, a combinatorial definition of all-or-nothing definitions was proposed in
[11] in the case t = 1 and in [5] for arbitrary t. First, we require some preliminary
definitions. An (N, k, v)-array is an N by k array, say A, whose entries are elements
chosen from an alphabet Γ of order v. Suppose the columns of A are labeled by the
elements in the set C. Let D ⊆ C, and define AD to be the array obtained from A
by deleting all the columns c /∈ D. We say that A is unbiased with respect to D if
the rows of AD contain every |D|-tuple of elements of Γ exactly N/v|D| times.

We have already stated that a (t, s, v)-AONT, say φ, is a bijection from Γ to Γ,
where Γ is a v-set. The array representation of φ is a (vs, 2s, v)-array, say A, that
is constructed as follows. For every input s-tuple (x1, . . . , xs) ∈ Γs, there is a row
of A containing the entries x1, . . . , xs, y1, . . . , ys, where φ(x1, . . . , xs) = (y1, . . . , xy).

Definition 1.4 defines (t, s, v)-AONT in terms of arrays that are unbiased with
respect to certain subsets of columns. We refer to this definition as the combinatorial
definition.

Definition 1.4. A (t, s, v)-all-or-nothing transform is a (vs, 2s, v)-array, say A,
with columns labeled 1, . . . , 2s, that is unbiased with respect to the following subsets
of columns:

1. {1, . . . , s},

2. {s + 1, . . . , 2s}, and

3. I ∪ J , for all I ⊆ {1, . . . , s} with |I| = t and all J ⊆ {s + 1, . . . , 2s} with
|J | = s− t.

We interpret the first s columns of A as indexing the s inputs and the last s
columns as indexing the s outputs. Then, as mentioned above, properties 1 and 2
ensure that the array A defines a bijection φ. Property 3 says that knowledge of
any s− t outputs does not rule out any possible values for any t inputs.

1.1 Our Contributions

Our goal in this paper is to better understand the definitions of AONTs given above
and analyze the differences between them. The entropy definition (Definition 1.3)
involves the “security” of an AONT, while the combinatorial definition (Definition
1.4) is just defining a certain mathematical structure. An analysis of the security
properties of AONTs will, in general, depend on the underlying probability distri-
bution on the possible inputs. This dependence has not been discussed in prior
work.

It turns out to be illuminating to also consider a security definition that is not
a stringent as Definition 1.3. We call this weak security (see Definition 2.1), in
contrast to the security afforded in Definition 1.3, which we call perfect security.
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Our two main results are

1. Any AONT satisfying Definition 1.4 (the combinatorial definition) is guaran-
teed to provide weak security.

2. An AONT satisfying Definition 1.4 provides perfect security if and only if the
underlying probability distribution on the input s-tuples is uniform.

We also show that we can obtain perfect security for t inputs, for an arbitrary
probability distribution, by using a randomized AONT.

2 Perfect and Weak Security of AONTs

In the rest of this paper, we assume that every input s-tuple occurs with non-zero
probability. Since an AONT is a bijection, it follows immediately that every output
s-tuple also occurs with non-zero probability.

If Definition 1.3 is satisfied, then the probability that t inputs take on any t
specified values, given the values of any s − t outputs, is the same as the a priori
probability that they take on the same values. We call this perfect security. We will
prove in Theorem 2.3 that Condition 1 of Definition 1.3 can be satisfied if the input
s-tuples all occur with uniform probability.

We also consider a notion that we call weak security, where we require that any t
inputs can take on any t specified values with non-zero probability, given the values
of any s − t outputs. More formally, we have the following entropy definition for a
weakly secure AONT.

Definition 2.1. Let
X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set Σ of size v. These 2s random
variables define a weakly secure (t, s, v)-AONT provided that the following conditions
are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. Given the values of any s− t outputs, any t inputs take on any possible values
with a non-zero probability.

It is immediate that a perfectly secure AONT is also weakly secure. We illustrate
the concepts of perfect and weak security in the following examples.

Example 2.1. Table 1 presents the array representation of a (1, 2, 2)-AONT, over
the alphabet Γ = {a, b, c}. In the rows of this array, we are just listing the outputs
y1 and y2 corresponding to all possible values of the input elements x1 and x2.
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Table 1: A (1, 2, 2)-AONT over the alphabet {a, b, c}

x1 x2 y1 y2
a a a a
a b c b
a c b c
b a b b
b b a c
b c c a
c a c c
c b b a
c c a b

Suppose that all nine input pairs are equally probable, and suppose an adversary
learns that y2 = a. Then each possible value of x1 occurs with the same probability.
That is,

Pr[X1 = a | Y2 = a] = Pr[X1 = b | Y2 = a] = Pr[X1 = c | Y2 = a] =
1

3
.

Since

Pr[X1 = a] = Pr[X1 = b] = Pr[X1 = c] =
1

3
,

we have
Pr[X1 = a | Y2 = a] = Pr[X1 = a],

etc. Using similar calculations, it can be verified that this AONT provides perfect
security for an equiprobable input distribution. �

Example 2.2. Now we consider a nonuniform input distribution for the AONT
presented in Table 1. Suppose that the inputs x1 and x2 are independent, and they
occur with the following probabilities:

Pr[X1 = a] = 1/3 Pr[X1 = b] = 1/3 Pr[X1 = c] = 1/3
Pr[X2 = a] = 1/2 Pr[X2 = b] = 1/4 Pr[X2 = c] = 1/4.

Again, suppose an adversary learns that y2 = a. We compute the conditional
probability distribution on x1, given that y2 = a. First we note that

Pr[Y2 = a] = Pr[X1 = a,X2 = a] + Pr[X1 = b,X2 = c] + Pr[X1 = c,X2 = b]

=
1

3
×

1

2
+

1

3
×

1

4
+

1

3
×

1

4

=
1

6
+

1

12
+

1

12

=
1

3
.
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Now, we have

Pr[X1 = a | Y2 = a] =
Pr[X1 = a,Y2 = a]

Pr[Y2 = a]

=
Pr[X1 = a,X2 = a]

Pr[Y2 = a]

=
1/6

1/3

=
1

2
.

Similar calculations yield

Pr[X1 = b | Y2 = a] =
1

4

and

Pr[X1 = c | Y2 = a] =
1

4
.

Thus, when y2 = a, the a posteriori distribution on x1 is different from the a priori
distribution on x1. This is sufficient to show that the AONT does not provide
perfect security.

It is interesting to repeat these calculations, considering the distributions on x2
instead of x1. We obtain

Pr[X2 = a | Y2 = a] =
1

2

Pr[X2 = b | Y2 = a] =
1

4

Pr[X2 = c | Y2 = a] =
1

4
.

Thus, when y2 = a, the a posteriori distribution on x2 is identical to the a priori
distribution on x1. A similar result holds when y2 = a, and when y1 = b or y1 = a.
�

Theorem 2.1. A weakly secure (t, s, v)-AONT is equivalent to a (vs, 2s, v)-array
that is unbiased with respect to the following subsets of columns:

1. {1, . . . , s},

2. {s + 1, . . . , 2s}, and

3. I ∪ J , for all I ⊆ {1, . . . , s} with |I| = t and all J ⊆ {s + 1, . . . , 2s} with
|J | = s− t.
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Proof. Let A be the hypothesized (vs, 2s, v)-array on alphabet Γ, |Γ| = v. We
construct φ : Γs → Γs as follows: for each row (x1, . . . , x2s) of A, define

φ(x1, . . . , xs) = (xs+1, . . . , x2s).

Being unbiased with respect to the first two subsets of columns indicates that φ
is a bijection, and being unbiased with respect to the third subset of columns is
equivalent to condition 3 of Theorem 2.1. Hence, the function φ is a weakly secure
(t, s, v)-AONT.

Conversely, suppose φ is a weakly secure (t, s, v)-AONT. Let A be the array
representation of the AONT. Then A is the desired (vs, 2s, v)-array.

Now we analyze perfect security. We make use of the following well-known fact.

Theorem 2.2. Let X and Y be random variables. Then H(X | Y) = H(X ) if and
only if X and Y are independent.

SupposeA is the array representation of a (t, s, v)-AONT, where 1 ≤ t < s. From
Theorem 2.2, we have perfect security if and only if any t inputs are independent
of any s − t outputs. For an input s-tuple x and for any I ⊆ {1, . . . , s}, let xI =
(xi : i ∈ I). Thus, xI is formed by taking the row in A corresponding to the input
x, restricted to the columns in I. Similarly, for an output s-tuple y and for any
J ⊆ {1, . . . , s}, let yJ = (yj : j ∈ J). Therefore, yJ is obtained by taking the row
in A corresponding to the output y, restricted to the columns in J .

We let X be a random variable that denotes an input s-tuple, and Y is a random
variable that denotes an output s-tuple. XI and YJ are the random variables
induced by specified subsets of the s (respective) co-ordinates.

Then the perfect security condition can be written as follows:

Pr[XI = u,YJ = v] = Pr[XI = u] Pr[YJ = v] (2)

for all |I| = t and |J | = s− t, and for all t-tuples u and all (s− t)-tuples v.

Theorem 2.3. Suppose a (t, s, v)-AONT has an array representation, say A, that
satisfies Definition 1.4, and suppose that all the input s-tuples are equally probable.
Then the AONT is perfectly secure.

Proof. We prove this theorem by showing that values of any t inputs are independent
of any s− t outputs.

In equation (2), we compute Pr[XI = u,YJ = v], Pr[XI = u] and Pr[YJ = v]
as follows. Suppose we fix I, J , u and v, where |I| = t, |J | = s − t, u is a t-tuple
and v is an (s− t)-tuple. There is exactly one input s-tuple, say z, such that zI = u
and φ(z)J = v. Then

Pr[XI = u,YJ = v] = Pr[z].

We also have
Pr[XI = u] =

∑

{x:xI=u}

Pr[x]
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and
Pr[YJ = v] =

∑

{x:φ(x)J=v}

Pr[x].

For a fixed I, and given any t-tuple u, there are vs−t rows of A such that xI = u.
Since all vs rows of A equiprobable, the probability of any input t-tuple taking value
u can be calculated as follows:

Pr[XI = u] =
vs−t

vs
= v−t.

Similarly, for a fixed J , and given any (s − t)-tuple v, there are vt rows of A such
that yJ = v. Hence, the probability of any specified output (s − t)-tuple is

Pr[YJ = v] =
vt

vs
= vt−s.

We also know that any input t-tuple and output (s − t)-tuple appear together in
exactly one row of A. Thus,

Pr[XI = u,YJ = v] =
1

vs
.

Hence, for any given input t-tuple and any given output (s − t)-tuple, we have

Pr[XI = u,YJ = v] = v−s = v−tvt−s = Pr[XI = u] Pr[YJ = v].

Therefore, any specified t inputs and any specified s−t outputs are independent.

We have proved that A provides perfect security if the probability distribution
defined on the input s-tuples is equiprobable. Now we prove the converse. Assume
we have perfect security. Suppose we fix an input s-tuple x and we also fix I such
that |I| = t. Denote y = φ(x) and xI = u. For any J with |J | = s − t, from
equation (2), we have

Pr[x] = Pr[XI = u] Pr[YJ = yJ ].

Since t > 0, we can choose a J ′ 6= J such that |J ′| = s− t. Then

Pr[x] = Pr[XI = u] Pr[YJ′ = yJ ′ ].

Since x, I and u are fixed and since Pr[XI = u] 6= 0, the two previous equations
imply that

Pr[YJ = yJ ] = Pr[YJ′ = yJ ′ ] (3)

for all J, J ′ with J 6= J ′ and |J | = |J ′| = s− t.
Suppose that v and w are (s − t)-tuples and J and J ′ are fixed, where J 6= J ′.

We say that the pair (v,w) is (J, J ′)-compatible if there is an s-tuple y such that
yJ = v and yJ ′ = w. Equivalently, v and w are (J, J ′)-compatible if they agree on
all co-ordinates in J ∩ J ′. The following lemma is a consequence of (3).
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Lemma 2.4. Suppose that v and w are (s− t)-tuples and J and J ′ are fixed, where
J 6= J ′. If (v,w) is (J, J ′)-compatible, then

Pr[YJ = v] = Pr[YJ′ = w].

Suppose that (v,w) and (v′,w) are both (J, J ′)-compatible. From Lemma 2.4,
it follows that

Pr[YJ = v] = Pr[YJ′ = w]

and
Pr[YJ = v′] = Pr[YJ′ = w],

so
Pr[YJ = v] = Pr[YJ = v′]. (4)

Let d(·, ·) denote the hamming distance between any two vectors of the same
length. We have the following lemma.

Lemma 2.5. Suppose that that |J | = s− t, and suppose that v and v′ are (s − t)-
tuples such that d(v,v′) = 1. Then

Pr[YJ = v] = Pr[YJ = v′].

Proof. Choose J ′ such that |J ∩ J ′| = s − t − 1, and (v,w) and (v′,w) are both
(J, J ′)-compatible. That is J ′ contains the s − t − 1 co-ordinates where v and v′

agree, along with one additional co-ordinate not in J , and w agrees with v and v′

on the s− t− 1 common co-ordinates. Then the desired result follows from (4).

Lemma 2.6. For all J such that |J | = s− t, and for any two distinct (s− t)-tuples
v and v′, it holds that

Pr[YJ = v] = Pr[YJ = v′].

Proof. We prove the result by induction on d(v,v′), where 1 ≤ d(v,v′) ≤ s − t.
Lemma 2.5 establishes the base case, where d(v,v′) = 1. Suppose the result holds
when d(v,v′) ≤ d, where 1 ≤ d ≤ s − t − 1. It is easy to find v′′ such that
d(v,v′′) = d− 1 and d(v′′,v′) = 1. By induction, we have

Pr[YJ = v] = Pr[YJ = v′′]

and
Pr[YJ = v′′] = Pr[YJ = v′],

so it follows immediately that

Pr[YJ = v] = Pr[YJ = v′].

Corollary 2.7. Pr[YJ = v] = 1/vs−t for all (s− t)-tuples v.
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Proof. There are vs−t choices for v, and Pr[YJ = v] is independent of v from
Lemma 2.6.

By similar arguments, we can obtain the following.

Lemma 2.8.
Pr[XI = u] = Pr[XI = u′]

for all I such that |I| = t, and for any two distinct t-tuples u and u′.

Corollary 2.9. Pr[XI = u] = 1/vt for all t-tuples u.

Theorem 2.10. If a (t, s, v)-AONT provides perfect security, then Pr[X = x] =
1/vs for all s-tuples x.

Proof. Choose any s-tuple x and any I and J with |I| = t and |J | = s − t. Let
y = φ(x). Denote xI = u and yJ = v. From (2), we have

Pr[X = x] = Pr[XI = u,YJ = v] = Pr[XI = u] Pr[YJ = v].

Now, from Corollaries 2.7 and 2.9, we have

Pr[XI = u] =
1

vt

and

Pr[YJ = v] =
1

vs−t
.

Therefore,

Pr[x] =
1

vt
×

1

vs−t
=

1

vs
.

3 Randomized AONTs

Randomized AONTs were proposed by Rivest [10] and they have since been con-
sidered by several authors. In this section, we show how a randomized AONT can
provide perfect security when the inputs are drawn from an arbitrary probability
distribution. Suppose we have a weakly secure (t, s, v)-AONT, say φ : Γs → Γs. We
use it to construct a randomized AONT that transforms t inputs into s outputs, as
described in Figure 1.

We will prove that the perfect security condition is satisfied for the t designated
inputs. But first, we observe that Example 2.2 provides an illustration. We can
view Example 2.2 as a randomized AONT, where x2 is the designated input and x1
is as random input. We noted already that this example yields perfect security for
the input x2.

Here is the statement and proof of the security of randomized AONT in general.

10



Figure 1: A Randomized AONT

input A (t, s, v)-AONT, say φ, and t inputs.
step 1 Assign the t given inputs to any t of the xi’s (we call these inputs designated

inputs).
step 2 Choose the remaining s−t of the xi’s independently and uniformly at random

from Γ (we call these inputs random inputs).
step 3 Output (y1, . . . , ys) = φ(x1, . . . , xs).

Theorem 3.1. Suppose we use a weakly secure (t, s, v)-AONT as a randomized
AONT, as described in Figure 1. Let X denote the t designated inputs. Then, for
all Y ⊆ {Y1, . . . ,Ys} with |Y| = s− t, it holds that

H(X | Y) = H(X ).

Proof. We assume an arbitrary probability distribution on X , subject to the condi-
tion that Pr[X = u] > 0 for all u. Let R denote the s − t inputs that are chosen
randomly; thus Pr[R = r] = 1/vs−t for all (s− t)-tuples r.

We show that X is independent of Y. That is, we prove that the following
equation holds:

Pr[X = u,YJ = v] = Pr[X = u] Pr[YJ = v] (5)

for all |J | = s− t, and for all t-tuples u and all (s− t)-tuples v.
We first compute the probability distribution on YJ. Fix an (s − t)-tuple v.

Then, for any t-tuple u, there is a unique (s − t)-tuple r such that φ(u, r)J = v.
This is easily seen from the fact that the array representation of φ is unbiased with
respect to the columns corresponding to the t designated inputs and J . Thus we
have

Pr[YJ = v] =
∑

u

(

Pr[X = u]×
1

vs−t

)

=
1

vs−t

∑

u

Pr[X = u]

=
1

vs−t
. (6)

Now, we compute the joint probability distribution on X ×YJ. As noted above, u
and v uniquely determine r. Therefore it is immediate that

Pr[X = u,YJ = v] = Pr[X = u]×
1

vs−t
. (7)

Finally, from (6) and (7), we see that (5) holds.

11



4 Summary

We have proven that the combinatorial definition of an AONT provides perfect
security only for an equiprobable distribution of the input s-tuples. In the case
where we do not have an equiprobable input distribution, we could instead consider
the mutual information I(X ;Y) = H(X ) − H(X | Y) for all relevant X and Y. It
would be of interest to prove an upper bound on I(X ;Y), which would presumably
depend on H(X ).
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