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Abstract
In this document we describe and correct a mistake made in the article [2]. We prove a new
classification theorem.

1 Introduction

In 2019 the authors published the article [2] in which they introduced and investigated
Cameron–Liebler sets of k-spaces in the projective geometry PG(n, q). In [2, Sect. 2] a
characterisation theorem was proved and in [2, Sect. 3] several properties and examples of
Cameron–Liebler sets of k-spaces were presented. Due to the characterisation theorem we
can give several definitions of Cameron–Liebler sets, but for this paper the following is the
most useful.

Definition 1.1 [2, Theorem 2.9 and Definition 2.10] A non-empty set L of k-spaces in
PG(n, q), n ≥ 2k + 1, with characteristic vector χ , is a Cameron–Liebler set of k-spaces
in PG(n, q) with parameter x = |L|[n

k

]−1 if and only if for every k-space π the number of

elements of L disjoint from π is (x − χ(π))
[n−k−1

k

]
qk2+k .
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In the fourth section of [2] a classification result for the Cameron–Liebler classes of

k-spaces in PG(n, q) with n ≥ 3k + 2 and with parameter at most q
n
2 − k2

4 − 3k
4 − 3

2 (q −
1)

k2
4 − k

4+ 1
2
√

q2 + q + 1 was given. It was however pointed out to us by Ferdinand Ihringer
that there is a mistake in the proof of this result, more precisely in the proof of Lemma 4.6:
there the coefficient (1−�x�)x�x�

2 is negative which makes one of the implications false.
In this correction we will present a new proof for a (slightly weaker) classification result.

We classify the Cameron–Liebler sets of k-spaces in the projective space PG(n, q) with

parameter at most 1
8√2

q
n
2 − k2

4 − 3k
4 − 3

2 (q − 1)
k2
4 − k

4+ 1
2
√

q2 + q + 1.

We also mention a related result by Ferdinand Ihringer which was published in the mean-
time and which gives a result similar to our incorrect Lemma 2.6.

Lemma 1.2 [5, Lemma 19] Let Y be a Cameron–Liebler set of k-spaces in PG(n, q), n ≥
2k+2 and q ≥ 7, with parameter x. If x ≤ q(n−2k−r)/3, with 0 ≤ r < k+1 and n+r +1 ≡ 0
(mod k + 1), then Y contains at most x pairwise disjoint k-spaces.

In the same article, Ferdinand Ihringer used this lemma to obtain the following classifi-
cation result.

Theorem 1.3 [5, Theorem 7] Let Y be a Cameron–Liebler set of k-spaces in PG(n, q), n ≥
2k + 1, with parameter x. If 16x ≤ min{q(n−2k−r)/3, q(n−k−l+2)/3}, with 0 ≤ r < k + 1,

n + r + 1 ≡ 0 (mod k + 1) and l is the integer satisfying ql−1−1
q−1 < x ≤ ql−1

q−1 , then x ≤ 2
and Y is trivial.

We note that on the one hand this result is valid for all values of n ≥ 2k + 1, while our
result only applies for n ≥ 3k + 2. On the other hand the bound in our result (Theorem 2.17)
improves the bound from Theorem 1.3.

Another important result for Cameron–Liebler sets of k-spaces in PG(n, q) is the follow-
ing.

Remark 1.4 For q ∈ {2, 3, 4, 5}, a complete classification is known for Cameron–Liebler
sets of k-spaces in PG(n, q), see [3]. There, the authors show that the only Cameron–Liebler
sets in this context are the trivial Cameron–Liebler sets, independent of the values of k and
n.

Throughout the article we use Gaussian binomial coefficients
[a

b

]
q for a, b ∈ N \ {0},

a ≥ b, and prime power q ≥ 2:
[

a

b

]

q
= (qa − 1) · · · (qa−b+1 − 1)

(qb − 1) · · · (q − 1)
.

TheGaussian binomial coefficient
[a

b

]
q is equal to the number (b−1)-spaces in the projective

space PG(a − 1, q).

To simplify notation, we denote q
n
2 − k2

4 − 3k
4 − 3

2 (q −1)
k2
4 − k

4+ 1
2
√

q2 + q + 1 by f (q, n, k).

2 Corrected classification result

In [2, Lemma 4.1 and Theorem 4.3] we classified the Cameron–Liebler sets of k-spaces
in PG(n, q), n ≥ 3k + 2, with parameter x ∈]0, 2[. We will now show that there are no
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Correction to: Cameron–Liebler sets of k-spaces in PG(n, q) 479

Cameron–Liebler sets of k-spaces in PG(n, q), n ≥ 3k + 2, with parameter 2 ≤ x ≤
1
8√2

q
n
2 − k2

4 − 3k
4 − 3

2 (q − 1)
k2
4 − k

4+ 1
2
√

q2 + q + 1.

We recall Lemmas 2.1, 3.1(4), 3.4, 3.5, 3.6 and Theorem 4.4 from [2].

Lemma 2.1 [6, Sect. 170] The number of j-spaces disjoint from a fixed m-space in PG(n, q)

equals q(m+1)( j+1)
[n−m

j+1

]
.

Lemma 2.2 If L and L′ are two Cameron–Liebler sets of k-spaces in PG(n, q) with param-
eters x and x ′ respectively, and L′ ⊆ L, then L \ L′ is a Cameron–Liebler set of k-spaces
with parameter x − x ′.

Notation 2.3 Let n, k, i be integers, let q be a prime power, let x be a rational number and
let S0 be a k-spread of a (2k + 1)-space. We introduce the following notation.

Wi (q, n, k) =
{

q2k2+k+ 3i2
2 − i

2−3ik
[n−2k−1

k−i

][k+1
i+1

] ∏i
j=0(q

k− j+1 − 1) if i ≥ 0

q2(k+1)2
[n−2k−1

k+1

]
if i = −1

W (q, n, k) =
k∑

i=−1

Wi (q, n, k)

W�(q, n, k) = 1

(qk+1 − 1)2

k∑

i=0

Wi (q, n, k)(qi+1 − 1)

W�̄(q, n, k) = 1

qn+1 − q2k+2

k−1∑

i=−1

Wi (q, n, k)(qk+1 − qi+1)

d2(q, n, k, x,S0) = (W� − W�̄)|S0 ∩ L| − 2W� + xW�̄

s1(q, n, k, x) = x

[
n

k

]
− (x − 1)

[
n − k − 1

k

]
qk2+k

s2(q, n, k, x,S0) = x

[
n

k

]
− 2(x − 1)

[
n − k − 1

k

]
qk2+k + d2(q, n, k, x,S0)

d ′
2(q, n, k, x) = (x − 2)W�

s′
2(q, n, k, x) = x

[
n

k

]
− 2(x − 1)

[
n − k − 1

k

]
qk2+k + d ′

2(q, n, k, x)

Lemma 2.4 Let π and π ′ be two disjoint k-spaces in PG(n, q) with � = 〈π, π ′〉, and let P
be a point in � \ (π ∪π ′) and let P ′ be a point not in �. Then the number of k-spaces disjoint
from π and π ′ equals W (q, n, k), the number of k-spaces disjoint from π and π ′ through P
equals W�(q, n, k) and the number of k-spaces disjoint from π and π ′ through P ′ equals
W�̄(q, n, k).

Lemma 2.5 Let L be a Cameron–Liebler set of k-spaces in PG(n, q) with parameter x.

1. For every π ∈ L, there are s1 elements of L meeting π .
2. For skew π, π ′ ∈ L and a k-spread S0 in � = 〈π, π ′〉, there exist exactly d2 subspaces

in L that are skew to both π and π ′ and there exist s2 subspaces in L that meet both π

and π ′.
3. Define d ′

2(q, n, k, x) = (x −2)W� and s′
2(q, n, k, x) = x

[n
k

]−2(x −1)
[n−k−1

k

]
qk2+k +

d ′
2(q, n, k, x). If n > 3k + 1, then |S0 ∩ L| ≤ x for every k-spread S0 in �. Moreover

we have that d2(q, n, k, x,S0) ≤ d ′
2(q, n, k, x) and s2(q, n, k, x,S0) ≤ s′

2(q, n, k, x).
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480 A. Blokhuis et al.

Lemma 2.6 Let c, n, k be nonnegative integers with n > 3k + 1 and

(c + 1)s1 −
(

c + 1

2

)
s′
2 > x

[
n

k

]
,

then no Cameron–Liebler set of k-spaces in PG(n, q) with parameter x contains c + 1
mutually skew k-spaces.

Theorem 2.7 [1, Theorem 1.4] Let k ≥ 1 be an integer. If q ≥ 3 and n ≥ 2k + 2, or if
q = 2 and n ≥ 2k + 3, then any family F of pairwise non-trivially intersecting k-spaces of
PG(n, q), with ∩F∈F F = ∅ has size at most

[n
k

] − qk2+k
[n−k−1

k

] + qk+1.

We prove the new theorem in a series of lemmas. Recall that the set of all k-spaces in a

hyperplane in PG(n, q) is a Cameron–Liebler set of k-spaces with parameter x = qn−k−1
qk+1−1

(see [2, Example 3.3]) and note that f (q, n, k) ∈ O(
√

qn−2k) while qn−k−1
qk+1−1

∈ O(qn−2k−1).

Lemma 2.8 For n ≥ 2k + 2, we have
[

n

k

]
>

[
n − k − 1

k

]
qk2+k > W� .

If also k ≥ 2, then
[

n − k − 1

k

]
qk2+k > qnk−k2 + qnk−k2−1 + qnk−k2−2 .

Proof The first inequality follows since
[n

k

]
is the number of k-spaces through a fixed point in

PG(n, q),
[n−k−1

k

]
qk2+k is the number of k-spaces through a fixed point disjoint from a given

k-space not through that point (see Lemma 2.1), and W� is the number of k-spaces through
a fixed point and disjoint from two given k-spaces not through that point (see Lemma 2.4).

The second inequality, for k ≥ 2, n ≥ 2k + 2, follows from

[
n − k − 1

k

]
qk2+k =

(
k−3∏

i=0

(
qn−k−1−i − 1

qk−i − 1

)) (
qn−2k+1 − 1

q − 1

qn−2k − 1

q2 − 1

)
qk2+k

> q(n−2k−1)(k−2)(qn−2k + qn−2k−1 + qn−2k−2)qn−2k−2qk2+k

= qnk−k2 + qnk−k2−1 + qnk−k2−2 .

Lemma 2.9 [4, Lemmas 2.1 and 2.2] Let n > k > 0 be integers. If q ≥ 3, then
(
1 + 1

q

)
qk(n−k) ≤

[
n

k

]
≤ 2qk(n−k) .

Notation 2.10 We denote �(q, n, k) = [n−k−1
k

]
qk2+k and C(q, n, k) = [n

k

] − [n−k−1
k

]
qk2+k

from now on. Then, according to Lemma 2.5 we can write

s1(q, n, k, x) = xC(q, n, k) + �(q, n, k) and

s′
2(q, n, k, x) = xC(q, n, k) + (2 − x)�(q, n, k) + (x − 2)W�.

We denote �(q, n, k) and C(q, n, k) by � and C if q, n and k are clear from the context.
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Before proving a lemmaon� andC ,wegive a result on theGaussian binomial coefficients.
First, we recall the (double) q-analogue of Pascal’s rule:

qb
[

a − 1

b

]

q
+

[
a − 1

b − 1

]

q
=

[
a

b

]

q
=

[
a − 1

b

]

q
+ qa−b

[
a − 1

b − 1

]

q
. (1)

Lemma 2.11 For integers a, b, c with 0 ≤ b, c ≤ a we have that

[
a

b

]

q
=

c∑

i=0

[
a − c

b − i

]

q

[
c

i

]

q
q(b−i)(c−i) .

Here, we consider
[x

y

] = 0 if y < 0 or y > x.

Proof Induction on c. In the induction step we use the left equality in (1).

Lemma 2.12 If n ≥ 2k + 1 and q ≥ 3, then

W� ≤ � − C

2
.

Proof First, using the definition of W� as given in Lemma 2.4, we find

W� = 1

(qk+1 − 1)2

k∑

i=0

(qi+1 − 1)q2k2+k+ 3
2 i2− i

2−3ik
[

n − 2k − 1

k − i

][
k + 1

i + 1

] i∏

j=0

(qk− j+1 − 1)

= q2k2+k
k∑

i=0

q
3
2 i2− i

2−3ik
[

n − 2k − 1

k − i

][
k

i

] i∏

j=1

(qk− j+1 − 1) .

Here, the final product is considered 1 if i = 0 (the ‘empty’ product). Now, using the
definitions of � and C as in Notation 2.10, the inequality in the statement of the lemma can
be written as:

q2k2+k
k∑

i=0

q
3
2 i2− i

2−3ik
[

n − 2k − 1

k − i

][
k

i

] i∏

j=1

(qk− j+1 − 1) ≤ 3

2

[
n − k − 1

k

]
qk2+k − 1

2

[
n

k

]
.

(2)

For k = 1 it reduces to

q3
[

n − 3

1

]
+ q(q − 1) ≤ 3

2

[
n − 2

1

]
q2 − 1

2

[
n

1

]
⇔ q − 1

2
≥ 0 ,

which is true for all q ≥ 2. So, we will from now on assume that k ≥ 2.
Repeatedly applying the left equality in (1) we find that

[n
k

] = qk2+k
[n−k−1

k

] +
∑k

i=0 qik
[n−i−1

k−1

]
, so inequality (2) can be rewritten as

q2k2+k
k∑

i=0

q
3
2 i2− i

2−3ik
[

n − 2k − 1

k − i

][
k

i

] i∏

j=1

(qk− j+1 − 1) + 1

2

k∑

i=0

qik
[

n − i − 1

k − 1

]

≤
[

n − k − 1

k

]
qk2+k .
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482 A. Blokhuis et al.

We now apply Lemma 2.11 on the right hand side of this inequality and we see that it is
equivalent with

q2k2+k
k∑

i=0

q
3i2
2 − i

2−3ik
[

n − 2k − 1

k − i

][
k

i

] i∏

j=1

(qk− j+1 − 1) + 1

2

k∑

i=0

qik
[

n − i − 1

k − 1

]

≤ qk2+k
k∑

i=0

q(k−i)2
[

n − 2k − 1

k − i

][
k

i

]

⇔ q2k2+k
k∑

i=1

q
3i2
2 − i

2−3ik
[

n − 2k − 1

k − i

][
k

i

] i∏

j=1

(qk− j+1 − 1) + 1

2

k∑

i=0

qik
[

n − i − 1

k − 1

]

≤ qk2+k
k∑

i=1

q(k−i)2
[

n − 2k − 1

k − i

][
k

i

]
. (3)

Now, we note that
∏i

j=1(q
k− j+1 − 1) ≤ q(i−1)(k+1)− i(i−1)

2 (qk−i+1 − 1) for i ≥ 1. So, in
order to prove (3), it is sufficient to show that the following inequality is valid:

1

2

k∑

i=0

qik
[

n − i − 1

k − 1

]

≤ qk2+k
k∑

i=1

(
q(k−i)2 − q(k−i)(k−i−1)−1(qk−i+1 − 1)

) [
n − 2k − 1

k − i

][
k

i

]

= qk2+k
k∑

i=1

q(k−i)(k−i−1)−1
[

n − 2k − 1

k − i

][
k

i

]

= q2k2−2k+1
[

n − 2k − 1

k − 1

][
k

1

]
+ qk2+k

k∑

i=2

q(k−i)(k−i−1)−1
[

n − 2k − 1

k − i

][
k

i

]
. (4)

Applying Lemma 2.9 for q ≥ 3 on the left hand side in (4) we find that

1

2

k∑

i=0

qik
[

n − i − 1

k − 1

]
≤ q(k−1)(n−k)

k∑

i=0

qi = q(k−1)(n−k) qk+1 − 1

q − 1
. (5)

Now applying Lemma 2.9 for q ≥ 3 on the first term of the right hand side in (4) we find that

q2k2−2k+1
[

n − 2k − 1

k − 1

][
k

1

]
≥

(
1 + 1

q

)
q(k−1)(n−k)+1 qk − 1

q − 1
= (q + 1)q(k−1)(n−k) qk − 1

q − 1
.

(6)

From (5) and (6) it follows that in order to prove (4), it is sufficient to show that the following
inequality is valid:

qk+1 − 1 ≤ (q + 1)
(

qk − 1
)

⇔ qk ≥ q.

This statement is clearly true.
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Lemma 2.13 If x ≤ 1
8√2

f (q, n, k) and n ≥ 2k + 2, then �
C >

4
√
2x2.

Proof We want to prove that

[
n − k − 1

k

]
qk2+k >

4
√
2x2

([
n

k

]
−

[
n − k − 1

k

]
qk2+k

)
,

provided that x ≤ 1
8√2

f (q, n, k).We first look at the case k ≥ 2. Given a k-spaceπ in PG(n−
1, q), the number of (k − 1)-spaces meeting π equals

[n
k

] − [n−k−1
k

]
qk2+k by Lemma 2.1.

We know that this number is smaller than the product of the number of points Q ∈ π and
the number of (k − 1)-spaces through Q. This implies that

[
n

k

]
−

[
n − k − 1

k

]
qk2+k ≤

[
k + 1

1

][
n − 1

k − 1

]

= qk+1 − 1

q − 1
· (qn−1 − 1) · · · (qn−k+1 − 1)

(qk−1 − 1) · · · (q − 1)

<
qnk− k2

2 −n+ 3k
2 +1

(q − 1)
k2
2 − k

2+1
.

From this computation and the assumption on x it follows that

4√2x2
([

n

k

]
−

[
n − k − 1

k

]
qk2+k

)
< ( f (q, n, k))2

qnk− k2
2 −n+ 3k

2 +1

(q − 1)
k2
2 − k

2+1
=qnk−k2−2(q2+q+1)

≤
[

n − k − 1

k

]
qk2+k ,

where the final inequality is given by Lemma 2.8 (which we can apply since k ≥ 2).
Now we look at the case k = 1. We have to prove that

[
n − 2

1

]
q2 >

4
√
2x2

([
n

1

]
−

[
n − 2

1

]
q2

)
⇔ qn−2 − 1

q2 − 1
q2 >

4
√
2x2 .

By the assumption on x it is sufficient to prove that

qn−2 − 1

q2 − 1
q2 > f (q, n, 1)2 = qn−5(q3 − 1) ⇔ qn−2 + qn−3 − qn−5 − q2 > 0 ,

which is clearly true since n ≥ 4.

Lemma 2.14 Let L be a Cameron–Liebler set of k-spaces in PG(n, q), n ≥ 3k + 2, with
parameter 2 ≤ x ≤ 1

8√2
f (q, n, k), then L cannot contain

⌊ 3
2 x

⌋
mutually disjoint k-spaces.

Proof We apply Lemma 2.6 with c + 1 = ⌊ 3
2 x

⌋
and have to show that

⌊
3

2
x

⌋
s1 −

(⌊ 3
2 x

⌋

2

)
s′
2 > x

[
n

k

]
.
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484 A. Blokhuis et al.

Using Notation 2.10 and Lemma 2.12 we see that it is sufficient to prove that
⌊
3

2
x

⌋
(xC + �) − x(� + C)

− 1

2

⌊
3

2
x

⌋ (⌊
3

2
x

⌋
− 1

)(
xC − (x − 2)� + (x − 2)

(
� − C

2

))
> 0

⇔ �

(⌊
3

2
x

⌋
− x

)
> C

(
x −

⌊
3

2
x

⌋
x + 1

2

⌊
3

2
x

⌋(⌊
3

2
x

⌋
− 1

)( x

2
+ 1

))
.

From Lemma 2.13, we know that �
C >

4
√
2x2. Hence it is sufficient to prove that

(⌊
3

2
x

⌋
− x

)
4
√
2x2 > x −

⌊
3

2
x

⌋
x + 1

2

⌊
3

2
x

⌋ (⌊
3

2
x

⌋
− 1

) ( x

2
+ 1

)
(7)

for all admissible x . We denote 3
2 x − ⌊ 3

2 x
⌋
by ε. Then, 0 ≤ ε < 1. We rewrite (7) as

(
3

2
x − ε − x

)
4
√
2x2 > x −

(
3

2
x − ε

)
x + 1

2

(
3

2
x − ε

)(
3

2
x − ε − 1

) ( x

2
+ 1

)

⇔ −
(

x + 2

4

)
ε2 +

(
(3 − 4 4

√
2)x2 + x − 2

4

)

ε + (8 4
√
2 − 9)x3 + 12x2 − 4x

16
> 0 .

(8)

The nontrivial zero of the quadratic function g(ε) = − ( x+2
4

)
ε2 +

(
(3−4 4√2)x2+x−2

4

)
ε is

smaller than 1 for any x , so g(ε) > g(1) for any ε ∈ [0, 1[ regardless of x . So, to prove (8),
it is sufficient to prove

(
1

2
4
√
2 − 9

16

)
x3 +

(
3

2
− 4

√
2

)
x2 − 1

4
x − 1 ≥ 0

⇔ (x − 2)
(
(8 4

√
2 − 9)x2 + 6x + 8

)
≥ 0 ,

which is clearly true for x ≥ 2.

Lemma 2.15 If 2 ≤ x ≤ 1
8√2

f (q, n, k) and n ≥ 2k + 2 and q ≥ 3, then

x − 1
3
2 x − 2

[
n − k − 1

k

]
qk2+k −

(
3

2
x − 3

)
s′
2 > x

[
n

k

]
− x

[
n − k − 1

k

]
qk2+k and

x − 1
3
2 x − 2

[
n − k − 1

k

]
qk2+k −

(
3

2
x − 3

)
s′
2 >

[
n

k

]
−

[
n − k − 1

k

]
qk2+k + qk+1 .

Proof To prove the first inequality we rewrite it using Notation 2.10:

x − 1
3
2 x − 2

� −
(
3

2
x − 3

)
(xC + (2 − x)� + (x − 2)W�) > xC .

Using Lemma 2.12 we see that it is sufficient to prove

x − 1
3
2 x − 2

� > C

(
3

4
x2 + x − 3

)
.
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From Lemma 2.13, we know that �
C >

4
√
2x2. Hence it is sufficient to prove that

x − 1
3
2 x − 2

4
√
2x2 >

(
3

4
x2 + x − 3

)
⇔

(
4
√
2 − 9

8

)
x3 − 4

√
2x2 + 13

2
x − 6 > 0 .

Using a computer algebra packet, we find that the last inequality is valid for all x ≥ 2.
To prove the second inequality for k ≥ 2 it is sufficient to prove that

x

[
n

k

]
− x

[
n − k − 1

k

]
qk2+k >

[
n

k

]
−

[
n − k − 1

k

]
qk2+k + qk+1

⇔ qk+1 < (x − 1)

([
n

k

]
−

[
n − k − 1

k

]
qk2+k

)
= (x − 1)

k∑

i=0

qik
[

n − i − 1

k − 1

]
,

whereby we applied repeatedly the left equality in (1). We immediately see that

(x − 1)
k∑

i=0

qik
[

n − i − 1

k − 1

]
> qk2

[
n − k − 1

k − 1

]
> q(n−k)(k−1)+k > q2k+2 > qk+1 .

For k = 1 we prove the second inequality directly. Note that s′
2 = x + 2q . The inequality

reduces to

x − 1
3
2 x − 2

· qn−2 − 1

q − 1
q2 −

(
3

2
x − 3

)
(x + 2q) > q2 + q + 1

⇔ x − 1
3
2 x − 2

· qn−2 − 1

q − 1
q2 >

3

2
x2 + 3(q − 1)x + q2 − 5q + 1 . (9)

Recall that 2 ≤ x ≤ 1
8√2

f (q, n, 1) = 1
8√2

q
n−5
2

√
q3 − 1 < q

n−2
2 . We look at the left hand

side of (9) and find

x − 1
3
2 x − 2

· qn−2 − 1

q − 1
q2 =

(
2

3
+ 2

3(3x − 4)

)
qn−2 − 1

q − 1
q2 >

(
2

3
+ 2

9(x − 1)

)
qn−2 − 1

q − 1
q2

>
2

3

qn−2 − 1

q − 1
q2 + 2

9
(

q
n−2
2 − 1

)
qn−2 − 1

q − 1
(q2 − 1)

= 2

3

qn−2 − 1

q − 1
q2 + 2

9

(
q

n−2
2 + 1

)
(q + 1) .

For the right hand side of (9) we find that

3

2
x2 + 3(q − 1)x + q2 − 5q + 1 <

3

2 4
√
2

qn−5 (
q3 − 1

) + 3(q − 1)q
n−2
2 + q2 − 5q + 1

<
3

2
qn−5 (

q3 − 1
) + 3(q − 1)q

n−2
2 + q2 − 5q + 1 .

So, to prove (9) it is sufficient to prove that

2

3

qn−2 − 1

q − 1
q2+ 2

9

(
q

n−2
2 + 1

)
(q + 1)≥ 3

2
qn−5 (

q3−1
)+3(q−1)q

n−2
2 + q2 − 5q + 1

⇔ 2

3
qn−1 − 5

6
qn−2 + 2

3

qn−4 − 1

q − 1
q2 + 3

2
qn−5 − q

n−2
2

(
25

9
q − 29

9

)
−q2+ 47

9
q− 7

9
≥ 0 .

(10)
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For n = 4, 5 we can check this to be true for all q ≥ 3 using computer algebra software. For
n ≥ 6 we rewrite (10) as follows:

5

18
(q − 3)qn−2 + q

n
2

18

(
7q

n−2
2 − 50

)
+ 2

3

qn−4 − 1

q − 1
q2 +

(
29

9
q

n−2
2 − q2

)

+ 47

9
q +

(
3

2
qn−5 − 7

9

)
≥ 0 .

Here each of the terms in the left hand side is positive for q ≥ 3 since n ≥ 6, which proves
the second inequality in the statement for k = 1.

Lemma 2.16 If L is a Cameron–Liebler set of k-spaces in PG(n, q), n ≥ 3k + 2 and q ≥ 3,
with parameter 2 ≤ x ≤ 1

8√2
f (q, n, k), then L contains a point-pencil.

Proof Let π be a k-space in L and let c be the maximum number of elements of L that are
pairwise disjoint. By Definition 1.1, there are (x − 1)

[n−k−1
k

]
qk2+k k-spaces in L disjoint

from π . Within this collection of k-spaces, we find at most c−1 spaces σ1, σ2, . . . , σc−1 that
are pairwise disjoint. By Lemma 2.14, c − 1 ≤ ⌊ 3

2 x
⌋ − 2. By the pigeonhole principle, we

find an index i so that σi meets at least x−1
c−1

[n−k−1
k

]
qk2+k ≥ x−1⌊

3
2 x

⌋
−2

[n−k−1
k

]
qk2+k elements

of L that are skew to π . We denote this collection of k-spaces disjoint from π and meeting
σi in at least a point by Fi .

Nowwewant to show thatFi contains a family of pairwise intersecting subspaces. For any
σ j with j �= i , we find at most s′

2 elements that meet σi and σ j . In this way, we find that there

are at least x−1⌊
3
2 x

⌋
−2

[n−k−1
k

]
qk2+k − (c − 2)s′

2 ≥ x−1
3
2 x−2

[n−k−1
k

]
qk2+k − ( 3

2 x − 3
)

s′
2 elements

of L that meet σi , are disjoint from π and that are disjoint from σ j for all j �= i . We denote
this subset of Fi ⊆ L by F ′

i . This collection F ′
i of k-spaces is a set of pairwise intersecting

k-spaces: if two elements α, β inF ′
i would be disjoint, then ({σ1, . . . , σc−1}\{σi })∪{α, β, π}

would be a collection of c + 1 pairwise disjoint elements of L, which is impossible since we
supposed that c is size of the maximal set of pairwise disjoint k-space in L. By Lemma 2.15
we have x−1

3
2 x−2

[n−k−1
k

]
qk2+k − ( 3

2 x − 3
)

s′
2 >

[n
k

] − [n−k−1
k

]
qk2+k + qk+1 since 2 ≤ x ≤

1
8√2

f (q, n, k). This implies that ∩F∈F ′
i
F is not empty by Theorem 2.7; let P be a point

contained in ∩F∈F ′
i
F . We conclude that F ′

i is a part of the point-pencil through P .
We conclude by showing that L contains the whole point-pencil through P . If γ /∈ L

is a k-space through P , then γ meets at least x−1
3
2 x−2

[n−k−1
k

]
qk2+k − ( 32 x − 3)s′

2 > x
[n

k

] −
x
[n−k−1

k

]
qk2+k elements of F ′

i ⊆ L, where the inequality follows from Lemma 2.15. This
contradicts Definition 1.1.

Theorem 2.17 There are no Cameron–Liebler sets of k-spaces in PG(n, q), n ≥ 3k + 2 and

q ≥ 3, with parameter 2 ≤ x ≤ 1
8√2

q
n
2 − k2

4 − 3k
4 − 3

2 (q − 1)
k2
4 − k

4+ 1
2
√

q2 + q + 1.

Proof We prove this result using induction on x . By Lemma 2.16 we know that L contains
the point-pencil [P]k through a point P . By Lemma 2.2, L \ [P]k is a Cameron–Liebler set
of k-spaces with parameter x − 1, which by the induction hypothesis (in case x − 1 ≥ 2) or
by [2, Lemma 4.1] (in case 1 < x − 1 < 2) does not exist, or which is a point-pencil (in case
x − 1 = 1) by [2, Theorem 4.3]. In the former case there is an immediate contradiction; in
the latter case L contains two disjoint point-pencils of k-spaces, a contradiction.
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