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Abstract. FlexAEAD is a block cipher candidate submitted to the NIST
Lightweight Cryptography standardization project, based on repeated
application of an Even-Mansour construction. In order to optimize per-
formance, the designers chose a relatively small number of rounds, using
properties of the mode and bounds on differential and linear characteris-
tics to substantiate their security claims. Due to a forgery attack with
complexity of 246, FlexAEAD was not selected to the second round of
evaluation in the NIST project.

In this paper we present a practical key recovery attack on FlexAEAD,
using clusters of differentials for the internal permutation and the interplay
between different parts of the mode. Our attack, that was fully verified in
practice, allows recovering the secret subkeys of FlexAEAD-64 with time
complexity of less than 231 encryptions (with experimental success rate
of 75%). This is the first practical key recovery attack on a candidate of
the NIST standartization project.

Keywords: Authenticated encryption · NIST LWC · practical key re-
covery · truncated differential

1 Introduction

Background. FlexAEAD [12] is a candidate algorithm in the ongoing NIST
Lightweight Cryptography (LWC) standardization project [14]. The FlexAEAD
family of authenticated encryption algorithms is based on the previously published
authenticated encryption design FlexAE [9,10,11]. Compared to FlexAE, FlexAEAD
was modified to also handle associated data blocks, and the generation of the
ciphertext blocks was amended by an additional call to the internal keyed
permutation to better resist reordering attacks.

? This paper is partially based on [3], presented at the IMACC 2019 workshop. The
main results of the paper, presented in Section 4, are new.



One noteworthy property of the FlexAEAD design is its use of a primitive
with certain non-ideal properties, in particular the possibility to find differential
distinguishers. This primitive, the Even-Mansour keyed permutation PFK , is
essentially used in a triple-encryption construction with different keys K0,K1,K2

to encrypt plaintext blocks into ciphertext blocks, while the intermediate en-
cryption results are accumulated to later derive the tag. For this reason, the
designers argue in [12, Sec. 3] that it is sufficient to ensure that no differential
or linear distinguishers can be found for the combined number of rounds. They
derive corresponding bounds on the maximum probability of differential and
linear characteristics, based on the excellent properties of the underlying AES
S-box and the (weaker) diffusion properties of the (more lightweight) linear layer.

This approach deviates from the classical separation of mode and primitive,
where the security proof of the first relies on well-defined security assumptions
regarding the latter. However, related ideas have enjoyed considerable popularity
in the CAESAR competition for authenticated encryption schemes, since they
allow secure designs with a very lightweight footprint (e.g., [1]) or very high
performance (e.g., [17]). Moreover, such ideas can also be found in several other
NIST LWC submissions. In these examples, unlike FlexAEAD, the reduced primi-
tives typically serve as state update functions where the state size is considerably
larger than the absorbed data block size.

Previous results. Several previous works observed weaknesses of FlexAEAD
and used them to mount forgery attacks. In a note posted on NIST’s LWC
mailing list, Mège [7] presented a trivial padding domain separation attack for
associated data. In [16], Rahman et al. presented truncated differential and
yoyo-game attacks on the keyed internal permutation of FlexAEAD. Furthermore,
they showed that these attacks can be leveraged into a forgery attack on the
entire encryption scheme, with complexity of 250, 260, and 280 for FlexAEAD-64,
FlexAEAD-128, and FlexAEAD-256 (respectively). In [3] (on which this paper is
partially based), Eichlseder et al. presented improved forgery attacks on the cryp-
tosystem, with complexities of 246, 254, and 270 for FlexAEAD-64, FlexAEAD-128,
and FlexAEAD-256 (respectively). Due to these forgery attacks, FlexAEAD was
not selected for the second round of evaluation in the NIST LWC standartization
project [15].

The designers of FlexAEAD have responded to the attacks with a series of
suggested tweaks intended to mitigate them. We briefly discuss these tweaks and
their effect on our results in Section 6.2.

Our contributions. Key recovery attacks on AEAD algorithms are very rare.
Usually, even in lightweight algorithms, the key generation part is strong, and
even when weaknesses are found, they lead to forgery attacks and not to key
recovery. FlexAEAD seems to be no exception in this regard. The secret subkeys
K0,K1,K2,K3 are generated from the master key via triple-encryption using
the internal keyed permutation PFK , and this part of the algorithm seems very
hard to penetrate. Indeed, all previous attacks on FlexAEAD are forgery attacks.
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Table 1: Comparison of our attacks on FlexAEAD with previously known attacks
Variant Attack type Complexity Source

FlexAEAD-64 Forgery 250 [16]
FlexAEAD-64 Forgery 246 [3]
FlexAEAD-64 Key Recovery 231 Sec. 4

FlexAEAD-128 Forgery 260 [16]
FlexAEAD-128 Forgery 254 [3], Sec. 5
FlexAEAD-128 Key Recovery 259 Sec. 4

FlexAEAD-256 Forgery 280 [16]
FlexAEAD-256 Forgery 270 [3], Sec. 5
FlexAEAD-256 Key Recovery 2140 Sec. 4

In this paper we present a practical key recovery attack on FlexAEAD-64.
Like in [3,16], the starting point of our attack is a truncated differential of PFK .
However, the application of PFK in the mode which we target differs from the
application targeted in [3,16]. On the one hand, this makes the construction of
the differential more complex, and its probability lower. On the other hand, this
allows us not only obtaining a forgery attack, but also recovering part of the
secret key. Then, we combine truncated differential attacks on other applications
of PFK with exploitation of weaknesses of the mode to recover the full secret
subkey K0,K1,K2,K3 with overall complexity of less than 231. We have fully
verified the result experimentally, and the attack recovers the full subkey in less
than 3 minutes on a 24-core machine, with a success rate of 75%.

Interestingly, the attack does not apply to FlexAE— the predecessor of Flex-
AEAD, and the best attack we could find on FlexAE-64 has complexity of about
241. Thus, it appears that the insertion of an additional encryption layer in the
transition from FlexAE to FlexAEAD, which was intended to increase the security
level, actually made the cipher more vulnerable.

Our key recovery attack applies also to FlexAEAD-128 and FlexAEAD-256,
but with significantly higher complexities of about 259 and 2140, respectively.
For these variants, the forgery attacks initially presented in [3] have significantly
lower complexities. A comparison of our attacks with previously known attacks
is presented in Table 1.

Outline. We recall the FlexAEAD design in Section 2. The basic truncated
differential of PFK used in our key recovery attack is presented in Section 3.
Our key recovery attack on FlexAEAD-64 is presented in Section 4. For the
sake of completeness, we describe the forgery attacks on FlexAEAD-128 and
FlexAEAD-256 (initially presented in [3]), in Section 5. In Section 6, we discuss
the application of our attacks to FlexAE, and the effect of tweaks proposed by
the designers of FlexAEAD on our attacks. Finally, we conclude in Section 7.
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2 Description of FlexAEAD

In this section, we summarize the construction of FlexAEAD [12].
The main building block of FlexAEAD is a keyed permutation PFK . This

permutation is an Even-Mansour construction with whitening keys KA,KB,
where the master key is K = KA || KB. In FlexAEAD-n, the Even-Mansour
construction operates on n-bit blocks, divided into nibbles {bi}i=0,1,...,n/4−1. The
inner permutation consists of r = log2(n/2) rounds, and we denote it as PF. Each
round consists of two operations: First, a Block Shuffle layer is applied, in which
the nibbles are rearranged in the order b0, bn/8, b1, bn/8+1, . . . , bn/8−1, bn/4−1.
(This layer is reminiscent of Tree-Structured SPNs [6].) Then, a 3-round Feistel
construction whose round function consists of parallel application of n/16 copies
of the 8-bit AES S-Box [2] is applied. The full construction of PFK is given in
Figure 1. For a more detailed description of the building blocks, we refer to the
NIST submission document [12].

Input

KA K = KA || KB

Block Shuffle Layer

L R

S-Box Layer

S-Box Layer

S-Box Layer

State

KB

Output
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ep
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t
r
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Fig. 1: Keyed permutation PFK [12] with r ∈ {5, 6, 7} for FlexAEAD-{64, 128, 256}.

PFK is used with four different keys in the FlexAEAD construction. These
four keys are derived from a master key K∗ by applying PFK∗ three times to
an initial state of 0n, iterating this process to generate enough bits for the four
subkeys K0,K1,K2,K3. A base counter is generated by applying PFK3 to the
nonce. This base counter is then used to generate the sequence (S0, . . . , Sn+m−1)
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in the following way. First, it is incremented by the step INC32, which treats each
32-bit block as an 32-bit little-endian integer and increases it by one modulo 232.
PFK3

is then again applied to the result of INC32, yielding the block S0. Further
blocks Si are generated by calling INC32 on the base counter i+ 1 times before
finally applying PFK3

, as shown in Figure 2a.

Public Nonce

PFK3

INC32

PFK3

Si

c
a
ll

i+
1
ti
m
e
s

(a) Generation of the sequence S.

Public Nonce

PFK3

INC32

PFK3

S0

INC32

PFK3

S1

∆in

∆out

(b) Differential ∆in → ∆out.

Fig. 2: The generation process of the sequence S and counter-based differentials
in it.

The sequence S0, . . . , Sn−1, Sn, . . . , Sn+m−1 is then used to mask the asso-
ciated data blocks A0, . . . , An−1 and plaintext blocks P0, . . . , Pm−1, as well as
intermediate results of the ciphertext generation process. This construction is
inspired by the Integrity Aware Parallelizable Mode (IAPM) [4,5]. To compute the
tag T , PFK0

is applied to the Xor of the intermediate results after application of
PFK2

to each masked block, plus a constant indicating whether the last plaintext
block was a full or a partial block. The full construction is illustrated in Figure 3.
Note that while the theoretical construction of FlexAEAD allows truncation of
the tag (denoted in the figure by ‘MSB’), in the NIST submission the tag is not
truncated in any of the variants of FlexAEAD.

3 The Truncated Differential of PFK used in Our Attack

In our attack, we target the first part of the generation of the sequence S, namely,
the application of PFK3 to generate the base counter from the publicly known
nonce.

The basic observation. We observe that if for two nonces N,N ′, we have

INC32(PFK3
(N ′)) = PFK3

(N), (1)

then for any i ≥ 0, we have Si+1(N ′) = Si(N). This can be easily detected by an
attacker, by asking for the encryption of the messages (P0, P1) and (P ′0, P

′
1) under
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Fig. 3: The FlexAEAD mode for authenticated encryption (simplified, from [12]).
K0,K1,K2 are derived from the master key, and the Si’s are derived from the
master key and nonce.

the nonces N,N ′, respectively, where P ′1 = P0. By the structure of FlexAEAD-n,
if (1) holds, then the corresponding ciphertexts (C0, C1) and (C ′0, C

′
1) must satisfy

C ′1 = C0. Otherwise, the probability that this equality is satisfied is 2−n.
Note that the relation (1) is actually a convenient output difference of PFK3

(specifically, it consists of an additive difference of 1 in each 32-bit word of the
output). As the corresponding inputs to PFK3 – namely, the nonces N,N ′ – can
be chosen by the attacker, it follows that any differential of PFK3

whose output
difference corresponds to (1) can be used to distinguish FlexAEAD from a random
permutation. As we shall see in Section 4, such differentials can be used to mount
key recovery attacks on the cryptosystem as well.

Comparison with previous works. We note that the previous works [3,16] target
the second part of the generation of the sequence S, namely, the application
of PFK3

to generate the sequence {Si} from the base counter. These works
are based on the observation that two consecutive values of the counter yield
a convenient input difference ∆in to PFK3

, while the corresponding output
difference is ∆out = Si ⊕ Si+1, that can be checked by the attacker by observing
its influence on the tag (see Figure 2b). As a result, the previous works can use
any differential of PFK3

with the convenient input difference ∆in. We have a free
choice of the input difference, but are confined to a somewhat less convenient
output difference. However, the ability of checking the differential directly via
the ciphertext, and not only indirectly via the influence on the tag, gives us extra
power that allows mounting not only forgeries but also key recovery attacks.

The truncated differential. As was observed in [3,16], the Feistel part of the round
function of PFK in FlexAEAD-n can be viewed as n/16 Super S-boxes of 16-to-16
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bits, applied in parallel. The first Super S-box involves nibbles b0, b1, bn/8, bn/8+1,
the second involves nibbles b2, b3, bn/8+2, bn/8+3, etc.

The Block Shuffle Layer transforms nibbles b0, bn/8 to nibbles b0, b1. This gives
rise to an iterative truncated differential of PFK with probability of about 2−8 per
round: Start with a possibly non-zero difference only in nibbles b0, bn/8. After the
Block Shuffle Layer, the difference is possibly non-zero only in nibbles b0, b1, and
hence, only the first Super S-box is active (i.e., has a non-zero input difference).
With probability of about 2−8, the output difference of the Feistel layer is non-
zero only in nibbles b0, bn/8, and the differential can be continued iteratively.
This iterative differential belongs to the family of differentials presented in [3,16].
Alternatively the output difference of the Feistel layer can be non-zero only in
nibbles b1, bn/8+1 with a probability of about 2−8. In this case the next round is
active only in the second Super S-Box; at each round there are two possibilities
to keep a single Super S-Box active.

Our truncated differentials for FlexAEAD-64 are presented in Figure 4. In
particular, Rounds 2,3 coincide with the iterative truncated differential we just
described, with the first truncated differential being only active in the first Super
S-Box, and the three other differential characteristics moving to different Super
S-Boxes while keeping the same input and output differences.

In Round 4, the only active Super S-box is the first one (like above), but we
ask for a specific output difference, that corresponds to Equation (1). Specifically,
we ask that after the XOR with the second whitening subkey KB, the additive
difference will be 01x in nibbles b1, b9 and zero in all other nibbles. This holds
with probability of about 2−16, and almost ensures that Equation (1) holds.
(The only exceptional cases are where the values in one of the nibbles b1, b9 are
00x, FFx; their total probability is about 1/128, and so we can neglect them.)

In Rounds 0,1 we could use the truncated differential described above, but we
prefer to activate more Super S-boxes, in order to reduce the data complexity by
using structures of nonces. Specifically, we start with an input difference that is
possibly non-zero in all even nibbles. After the first Block Shuffle Layer, the active
nibbles are b0, b1, b4, b5, b8, b9, b12, b13, and so, only two Super S-boxes are active.
With probability of about 2−16, the output difference is (possibly) non-zero only
in nibbles b0, b4, b8, b12. After the Block Shuffle Layer of Round 1, the active
nibbles are only b0, b1, b8, b9, and so, in Round 1 only the first Super S-box is
active. With probability of about 2−8, the output difference is (possibly) non-zero
only in nibbles b0, b8, which is the input difference of the iterative truncated
differential we use in Rounds 2,3.

As seen in Figure 4, there are four similar truncated differentials with proba-
bility 2−56, with the same input and output differences, activating different Super
S-Boxes at each round. There are also two alternative truncated characteristics
with the same input/output differences and probability 2−56 given in Figure 5.
These additional characteristics have two active Super S-Boxes rather than one
in Round 1, and we do not use them in our key-recovery attack because this
makes recovering the key harder.
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Fig. 5: Alternative truncated differential of PFK , not used in our key recovery
attack. Pairs following those differentials are considered ‘wrong pairs’.
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The probability of the differential. The total probability that a pair follows one
the four differentials we use is 4 · 2−16 · (2−8)3 · 2−16 = 2−54, which is significantly
lower than the probability of the differentials presented in [3,16]. However, as
we shall see below, due to the usage of structures of nonces, the complexity of
an attack based on this differential is much lower than the complexities of the
attacks described in [3,16].

4 Key Recovery Attacks on FlexAEAD

In this section we present key recovery attacks on FlexAEAD. We describe the
practical attack on FlexAEAD-64 and analyze its complexity in Section 4.1. In
Section 4.2 we describe the practical verification of the attack, and in Section 4.3
we briefly describe key-recovery attacks on FlexAEAD-128 and FlexAEAD-256.

4.1 The key recovery attack on FlexAEAD-64

Our key recovery attack consists of six phases:

1. Recovering the first half of K3, using a truncated differential attack on the
generation of the basic counter.

2. Recovering the second half of K3, using a truncated differential attack on
the generation of the sequence {Si} from the basic counter.

3. Recovering the second half of K0, using a truncated differential attack on
the last application of PFK in the ciphertext generation.

4. Recovering the first half of K0, using a property of the mode.
5. Recovering K2, using the previously obtained subkeys and a truncated differ-

ential attack on PFK2
.

6. Recovering K1, using the previously obtained subkeys and a truncated differ-
ential attack on PFK1

.

The six phases are presented below, along with their complexity analysis.

Phase 1: Recovering K3
A, the first half of K3. This phase is divided into

several steps. We describe them in detail, as most of the following phases use
similar steps.

Step 1: Finding several pairs of nonces that satisfy the truncated
differential. We consider a structure of 228 nonces, all whose odd-numbered
nibbles (i.e., nibbles b1, b3, . . . , b15) are equal to zero. We ask for the encryption
of the two-block message (P0, P1) = (0, 0) under each of the nonces. We insert
the corresponding ciphertexts (C0, C1) into a hash table, and find in the table
all pairs (C0, C1), (C ′0, C

′
1), such that C0 = C ′1.

We claim that about 6 such pairs are expected, and about 4 of them (called
‘right pairs’) satisfy the used truncated differentials (2 satisfy the alternative
truncated differentials). Indeed, note that any two of the nonces in the struc-
ture satisfy the input difference of our truncated differential. Each truncated
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differential is satisfied with probability of 2−56, and hence, one pair that satisfy
each differential are expected. (Note that the total number of pairs is close to
(228)2 = 256, since we consider an additive output difference after PFK3

and a
match C0 = C ′1, and so, the pairs we look at are ordered.) As was shown in
Section 3, for each such pair (N,N ′), if the plaintexts encrypted under these
nonces satisfy P0 = P ′1, then the corresponding ciphertexts must satisfy C0 = C ′1.
In our case, all pairs of plaintexts satisfy this relation, and thus, the pair will
be detected. On the other hand, the probability that a ‘random’ pair satisfies
C0 = C ′1 is 2−64, and so, with probability of 1− 256/264 ≈ 1, no ‘random’ pairs
satisfy our condition.

Analysis. The data complexity of this step is 228 two-block messages, or 229 blocks
in total. The memory complexity is 229, and the time complexity is dominated
by encryption of the plaintexts (due to the usage of a hash table). The expected
number of right pairs is 4, and hence, by a standard Poisson approximation, the
probability that at least one pair remains is 98%.

Step 2: Recovering K3
A using a right pair. Consider a pair of nonces (N,N ′)

that satisfies the truncated differential, and examine the differential transition in
Round 0. In this round, two Super S-boxes are active, and in each of them, we
have an 8-bit condition on the output difference. As each of these Super S-boxes
depends on different bits of K3

A (i.e., the first half of K3), we consider them
separately.

The first Super S-box depends on nibbles b0, b4, b8, b12 of K3
A. We can guess

the values of these nibbles, and check whether the output difference of Round 0
is zero either in nibbles b1, b9 or in nibbles b0, b8 (depending on the truncated
differential followed). As this is an 7-bit condition, the expected number of key
guesses that pass this filtering is 216 · 2−7 = 29.

The other active Super S-box depends on nibbles b2, b6, b10, b14 of K3
A. Simi-

larly to the first Super S-box, we can guess these nibbles and check whether the
output difference of Round 0 is zero either in nibbles b5, b13 or in nibbles b4, b12.
Again, we expect 29 keys to pass this filtering. However, the choice of the active
nibbles must match with the choice made in the first Super S-box: we have either
b1, b5, b9, b13, or b0, b4, b8, b12. Therefore, we expect 217 candidates for the even
nibbles of K3

A.
For each of those candidates, we can compute the active Super S-box of

Round 1. If nibbles b0, b4, b8, b12 (respectively b1, b5, b9, b13) are active at the
output of Round 0, the Block Shuffle Layer moves them to nibbles b0, b1, b8, b9
(respectively b2, b3, b10, b11) corresponding to the first (respectively second) Super
S-Box of Round 1. Following the truncated differentials of Figure 4, we expect
that only two nibbles are active after the Super S-Box: either b0, b8 or b1, b9
(respectively either b2, b10 or b3, b11). As this is a 7-bit condition, we expect
217 · 2−7 = 210 candidates remaining for the the even nibbles of K3

A.
Then, we consider Round 2. Given the even nibbles of K3

A we can compute
b0, b1, b2, b3, b8, b9, b10, b11 at the beginning of Round 2, and we know that only
two nibbles are active: either (b0, b8), (b1, b9), (b2, b10), or (b3, b11) (corresponding
to the four truncated differentials). Without loss of generality, we assume that
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b0, b8 is active, corresponding to the first truncated differential (the other cases
are similar).

We now guess the values of nibbles b4, b6, b12, b14. Combined with known
nibbles b0, b2, b8, b10, we have all the even nibbles at the beginning of Round 2,
and we can verify that the truncated differential is followed at Round 2 and 3,
leading to a 16-bit filter. Therefore we expect 210 candidates remaining.

Finally, we guess the values of nibbles b5, b7, b13, b15 at the beginning of
Round 2. This provides the full internal state: we check the last round difference
to obtain a 16-filter, and we compute backwards to get 210 candidates for K3

A.

Analysis. The last guess requires 2 · 210 · 216 3-round encryptions (repeated for 1.5
candidate pairs on average), which is negligible compared to Step 1. With high
probability, the correct value of K3

A is among the 210 candidates, and we can
filter the right value using a few additional queries. Indeed, when K3

A is known
we can easily generate pairs of nonces leading to C0 = C ′1.

Phase 2: Recovering K3
B, the second half of K3. In this phase we target

the second half of the generation of the sequence {Si}, and more specifically, the
generation of S0 from the basic counter.

Recall that S0 = PFK3(INC32(PFK3(N)), where N is the public nonce. Con-
sider encryption processes under the same secret key and two nonces N,N ′.
Observe that since the first half of K3 (denoted by K3

A) is known, the difference
PFK3

(N)⊕PFK3
(N ′) is known as well. The operation INC32 affects this difference

in a way we cannot fully predict, but as we shall see below, its effect can be
neglected in our case. Hence, we essentially know (and even can ‘almost’ choose)
the input difference to the second function PFK3 . On the other hand, we can
indirectly check its output difference. Indeed, this output difference is equal to
S0 ⊕ S′0 (where S′0 is the value that corresponds to S0 in the encryption with
N ′). For each ∆, we can check whether S0 ⊕ S′0 = ∆ by encrypting single-block
messages P0, P

′
0 such that P0 ⊕ P ′0 = ∆ under N,N ′ (respectively), and checking

whether the tags collide.

This allows us attacking the second application of PFK3
, using essentially the

same basic truncated differential described above. (Note that here we have more
freedom, as we can choose any output difference we wish. However, we did not
find a way to use this to significantly reduce the complexity of this phase, which
is anyway lower than the complexity of Phase 1.) Our attack goes as follows:

1. Take 228.5 distinct values Xi that are equal to zero in all odd nibbles.

2. Find the 228.5 nonces Ni such that Xi = PFK3
(Ni)⊕K3

B . (Note that this can
indeed be done, as the right hand side depends only on K3

A which we already
recovered; the XOR with K3

B undoes the final key whitening of PFK3
.)

3. For each nonce Ni, ask for the encryption of a single-block message P i
0 under

Ni, where all P i
0’s are equal to zero in all bytes except for bytes 0 and 4, and

are distributed evenly in bytes 0 and 4. Insert all resulting tags into a hash
table and find all pairs (Ni, Nj) whose corresponding tags collide.
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4. For each of the colliding pairs, assume that the corresponding pair (Xi, Xj)
is a right pair with respect to the truncated differential described above and
use it to recover the internal state of PFK in the way described in Step 2 of
Phase 1.

5. Each value of the internal state suggests a candidate for K3
B , filter the roughly

210 candidates using a few extra queries.

Why does the algorithm work? For each i, j, the difference Xi ⊕ Xj is zero in
all odd nibbles. The operation INC32 can affect this property only if the least
significant byte in one of the 32-bit words in either Xi or Xj is FFx. This happens
with probability of at most 4/256, and thus, can be neglected (with a small effect
on the overall success probability). Thus, we may assume that each pair (Xi, Xj)
satisfies the input difference of the differential described above.

As was shown above, with probability 6× 2−40, the corresponding difference
after Round 3 is non-zero only in two nibbles (either (0, 8) or (4, 12)), and thus,
only the first Super S-box is active in Round 4. For each non-zero difference α, β
in bytes 0 and 8, the probability that the output difference of Round 4 (in bytes)
is (α, 0, 0, 0, β, 0, 0, 0), is about 2−16. Hence, for each pair (i, j) such that P i

0 6= P j
0

(and almost all the pairs satisfy this condition by our choice of the P i
0’s), we have

Pr[Si
0 ⊕ S

j
i = P i

0 ⊕ P i
j ] ≈ 6× 2−56.

By the structure of FlexAEAD-64, for each such pair (i, j), we obtain a collision
in the tag. As the structure contains approximately (228.5)2/2 = 256 unordered
pairs (Pi, Pj), about 6 collisions that originate from the differentials are expected:
4 ‘right pairs’ corresponding to one of the differentials of Figure 4, and 2 ‘wrong
pairs’ corresponding to one of the differentials of Figure 5. On the other hand, the
probability of a random collision in the tag is 2−64, and so no random collisions
are expected.

Given a right pair, K3
B can be found exactly in the same way as in Step 2 of

Phase 1 (that is, by examining the first round of the differential and using the
fact that K3

A is known). The 210 candidates can be filtered as follows: choose
two arbitrary nonces N and N ′, compute the corresponding S0 and S′0 using
K3 = K3

A || K3
B , and encrypt the message S0 under nonce N and S′0 under nonce

N ′. If the K3 candidate is correct, the two tags collide.

Analysis. The data complexity of this phase is 228.5 single-block messages, the
memory complexity is 228.5, and the time complexity is dominated by encrypting
the plaintexts. At the end of this phase, the entire subkey K3 is known with a
very high probability.

Phase 3: Recovering K0
B, the second half of K0. At this phase, we target

the last application of PFK0
in the ciphertext generation. Note that as we already

know K3, we can compute the sequence {Si}. In the encryption process of the
message block Pi, the value Sn+i is used twice: first it is XORed to Pi as an
initial whitening, and then it is XORed again to the intermediate value before
the last application of PFK0 .
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This allows us to mount a differential attack on PFK0 . First, we choose
a convenient input difference ∆in. Then, we choose two values S0, S

′
0 such

that S0 ⊕ S′0 = ∆in. We then take two nonces N,N ′ that lead to S0, S
′
0, and

encrypt under them single-block plaintexts P0, P
′
0 with difference ∆in, so that

the initial XOR with S0, S
′
0 cancels the plaintext difference. The equality between

intermediate states is preserved until the second XOR with S0, S
′
0, which generates

input difference of ∆in to PFK0 (see Figure 8). As the corresponding outputs of
PFK0

are the ciphertexts C0, C
′
0, this allows mounting a truncated differential

attack on PFK0
, as claimed above.

In the attack, we use variants of the basic truncated differential used in
Phases 1,2. Note that our situation here differs from the situation in the previous
phases in two aspects. On the one hand, we can observe the ciphertext difference
directly, while in Phase 2 we could only view the effect of the output difference
on the tag and in Phase 1 we had to hit a specific output difference. This allows
us to easily detect right pairs, and also reduces the complexity of this step. On
the other hand, while in Phases 1,2 we know the actual input values to PFK , here
we know the output values (which are the ciphertexts) and the input difference.

To find the right pairs efficiently, we take the same input difference like in
Phases 1,2, and observe that we can leave out the last round of the differential
(which affects only the output difference in nibbles b0, b1, b8, b9 of the ciphertext)
and check that the ciphertext difference is zero in the remaining 12 nibbles. This
increases the probability of the differential to 2−40, and thus, reduces the data
complexity significantly.

In the subkey recovery phase, we use the same strategy as previously. Step 2
of Phase 1 recovers candidates for the internal state of PFK using only the known
input difference and output difference, assuming that the first rounds follow one
of the truncated differentials of Figure 4. After recovering the internal state of
PFK , we will deduce candidates for the second half of K0 (namely, K0

B) using
the known ciphertext, while the previous phases generated candidates for the
first half of the key using the known plaintext.

The attack algorithm is the following:

1. Take 220.5 distinct values {Si
0}i that are equal to zero in all odd nibbles.

2. Find the 220.5 nonces Ni such that Si
0 = PFK3

(INC32(PFK3
(Ni))). (Note

that this can indeed be done, as K3 is known.)
3. For each nonce Ni, ask for the encryption of a single-block message P i

0 = Si
0

under Ni. Insert all resulting ciphertexts Ci
0 into a hash table and find all

pairs (Ni, Nj) whose corresponding ciphertexts collide in all nibbles except
for b0, b1, b8, b9.

4. For each of the colliding pairs, assume that the corresponding ciphertext pair
(Ci

0, C
j
0) is a right pair with respect to the truncated differential described

above and use it to recover the internal state of PFK using the algorithm of
Step 2 of Phase 1.

5. Each value of the internal state suggests a candidate for K0
B; filter the 210

candidates using non-colliding pairs, by partially decrypting though PFK0

and checking that the input difference matches the difference between the S0

values.
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Analysis. By the choice of the plaintexts, for each i, j, the difference Si
0 ⊕ S

j
0

cancels the plaintext difference, and hence, the input difference to PFK0 is Si
0⊕S

j
0,

which satisfies the input difference of the basic truncated differential. Hence,
with probability 6× 2−40, the ciphertext difference Ci

0 ⊕ C
j
0 is zero in all nibbles

except for b0, b1, b8, b9. Since the data set contains (220.5)2/2 = 240 unordered
pairs, 6 pairs are expected: 4 ‘right pairs’ following the differentials of Figure 4
and 2 ‘wrong pairs’ following the differentials of Figure 4. The data complexity of
this part is 220.5 single-block messages, the memory complexity is 220.5, but the
time complexity is about 228 3-round encryptions following the previous analysis.
With very high probability, we have at least one ‘right pair’ and K0

B is recovered
successfully.

Phase 4: Recovering K0
A, the first half of K0. Consider the encryption of

an empty message by FlexAEAD-64. By the structure of the scheme, the tag that
corresponds to an empty message is T = PFK0(1010 . . . 10x) (note that there is
no truncation in FlexAEAD-64). Since we already know K0

B, we can ask for the
tag T of an empty message, and partially decrypt it through PF−1K0

, until the
initial key whitening that uses K0

A. This gives us the value K0
A ⊕ 1010 . . . 10x,

and thus, the value K0
A as well.

Analysis. This step requires the encryption of a single message, and its complexity
is negligible.

Phase 5: Recovering K2. Observe that in the encryption of a single-block
message P0, the tag is

T = PFK0
(1010 . . . 10x ⊕ PFK2

(P0 ⊕ S0)).

As we already know K0, we can apply PF−1K0
to both sides of the equation and

obtain the value PFK2
(P0 ⊕ S0), which is the output of PFK2

. Regarding the
corresponding input, P0 ⊕ S0, we not only know it, but can even choose it, by
choosing appropriate values of P0 and the nonce N . This allows us to mount a
truncated differential attack on PFK2 , in which we know the actual input values,
can choose the input difference, and can observe the output values directly.

In particular, we can use the same attack applied in Phase 3, to recover K2
B

with data, memory, and time complexity of 220.5. Once K2
B is recovered, we can

partially decrypt the value PFK2
(P0 ⊕ S0) through PF−1K2

until the initial key
whitening that uses K2

A, and to retrieve K2
A, as P0 ⊕ S0 is known.

Analysis. This step has data, memory, and time complexity of 220.5, and recovers
K2 with an overwhelming probability.

Phase 6: Recovering K1. In the encryption process of a single-block message
P0, we have

PFK1(PFK2(P0 ⊕ S0)) = PF−1K0
(C0)⊕ S0,
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Fig. 6: The generation process of the sequence S.

where C0 is the corresponding ciphertext. Since we already know K0 and K3, we
can compute the right hand side, which is the output of PFK1

. On the other hand,
as we know K2 and K3, we can choose the input to PFK1

, by an appropriate
choice of P0 and the nonce. This allows us mounting a truncated differential
attack on PFK1 , just like in Phase 5.

Analysis. As this phase is essentially identical to Phase 5, it has data, memory,
and time complexity of 220.5, and recovers K1 with an overwhelming probability.

Summary of the attack. The overall complexity of the attack is dominated by
Phases 1,2 whose complexities are 229 and 228.5, respectively. Hence, the attack
recovers the full subkeys K0,K1,K2,K3 with complexity of less than 230.

4.2 Practical verification

We have verified the attack with the reference implementation of FlexAEAD [12].
However, we discovered that this implementation does not match the speci-
fication of FlexAEAD, and differs in the generation of the base counter. As
shown in Figure 6 it is computed by applying PFK2 to the nonce, rather
than PFK3

. In particular, the first element in the S sequence is computed as
S0 = PFK3

(INC32(PFK2
(N)) instead of S0 = PFK3

(INC32(PFK3
(N)).

We adapt our attack to this variant of FlexAEAD as follows:

1. Phase 1 is unchanged but recovers K2
A rather than K3

A.
2. Phase 2 uses the known value of K2

A, and recovers the internal state of PFK3

in PFK3
(INC32(PFK2

(N)). We can deduce the value of K2
B⊕K3

A, using a few
extra queries to compensate the impact of the modular addition in INC32.

3. We modify Phase 3 to start from a set of values Xi equal to zero in all odd
nibbles, and we compute the nonces as

Ni = PF−1
(
PF−1(Xi)⊕K2

B ⊕ 0x0100000001000000⊕K3
A

)
⊕K2

A.
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With probability 1/4, the INC32 function behaves like an XOR, and we have
Si
0 = PFK3

(INC32(PFK2
(Ni)) = Xi ⊕K3

B . We encrypt single block messages
P i
0 = N i

0 with nonces N i
0 and we obtain the properties required for Phase 3.

Even though we do not know the actual values of Si
0, they are constant in all

odd nibbles when the INC32 function behaves linearly.
We have to increase the amount of data by a factor 4 to compensate the
probability 1/4, and we recover K0

B with data complexity 222.5.
4. Phase 4 is unchanged and recovers K0

A.
5. Phase 5 has to be adjusted in the same way as Phase 3, because we do not

control the value of S0, but we control differences in S0, assuming that there
is no carry in INC32.
We recover the internal state of PFK2 with data complexity 222.5, and we
deduce K2

B . Since we already know K2
B ⊕K3

A from Phase 2, we recover K3
A,

and we can now compute exactly the value S0 ⊕K3
B using K2

A, K2
B , and K3

A.
We can also decrypt the value PFK2

(P0 ⊕ S0) suing K2, and recover K3
B .

We have implemented the attack as described above, with all the steps of
the attack to recover the full key K0,K1,K2,K3. We performed 100 simulations
of the attack, with a new random key for each experiment. We found that the
strategy is successful, but the success rate is somewhat lower than expected. In
particular, the Poisson approximation for the number of right pairs in Phase 1
does not hold, probably because the pairs are not independent. Using the amount
of data given above (229 for Phase 1, 228.5 for Phase 2, and 222.5 for Phases 3
and 5), Phase 1 has on average 4.1 collisions with a standard deviation of 3.6.
According to the analysis above, we should detect on average 6 pairs (4 right pairs
and 2 wrong pairs), with a standard deviation of

√
6 ≈ 2.5. Our experiments show

fewer pairs than expected, and more variability, resulting in a smaller success
rate. In particular, we had 17 experiments with 0 collisions, rather than 0.2%
expected with a Poisson distribution with λ = 6, and 32 failures at Phase 1,
rather than 2% expected with a Poisson distribution with λ = 4. The correct
key was recovered 56 times, and 44 experiments had insufficient data to recover
the key (with most failures at Phase 1). The attack usually runs in less than
1.5 minutes on a 24-core (48-thread) machine (with an Intel Xeon Gold 5118
CPU), but there are a few instances when some pairs take longer to examine and
the attack takes up to 3 minutes. We note that about half of the time is spent
encrypting the queries (inside the reference code of FlexAEAD).

When doubling the amount of data, the attack takes 3 minutes and has
a success rate of roughly 75%; Phase 1 has on average 13.8 collisions with a
standard deviation of 9.5 (out of 100 trials). The correct key was recovered 75
times out of 100, and 25 experiments had insufficient data to recover the key (in
22 cases the recovery failed at Phase 1).

4.3 Key recovery attacks on FlexAEAD-128 and FlexAEAD-256

The attack on FlexAEAD-64 described above can be applied also to FlexAEAD-128
and FlexAEAD-256, at the expense of a significant increase in the complexity.
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Specifically, it is easy to see that all phases of the attack except Phase 1 apply
essentially without change to FlexAEAD-128 and FlexAEAD-256. The complexity
increase comes from Phase 1, which dominates the complexity of other phases.

Recall that in Phase 1 of the attack, we target the application of PFK3
that

generates the base counter from the nonce. We consider truncated differentials of
this function, whose output difference is cancelled by the INC32 operation, and
thus, is non-zero only in nibbles b1, b9.

In the case of FlexAEAD-128, an output difference of PFK3
can be cancelled

by the INC32 operation only if it non-zero in nibbles b1, b9, b17, b25, and thus,
we must choose a truncated differential that activates two Super S-boxes in
the last round (instead of a single Super S-box in the case of FlexAEAD-64).
Moreover, the probability of the last round is reduced to 2−32, since we ask
for a specific output difference in two Super S-boxes. The best differential we
could find under these restrictions has overall complexity of 2−88 (composed of
2−16, 2−8, 20, 2−16, 2−16, 2−32 in Rounds 0,1,2,3,4,5, respectively). The differential
shares Rounds 0,1,2 with the basic differential described above, and activates
bytes (0, 1), (0, 2), and (0, 4) in Rounds 3,4,5, respectively. As in the FlexAEAD-64
attack, there are four possible truncated differentials with probability 2−88, but
we do not expect any wrong pair from truncated differentials similar to Figure 5.
Therefore, using 224 structures of 232 nonces we expect to have at least one pair
following the differential with complexity 257. As explained below, we have to
repeat this step 4 times, so that the total complexity of the attack is 259.

In the case of FlexAEAD-256, an output difference of PFK3
can be cancelled by

the INC32 operation only if it non-zero in nibbles b1, b9, b17, b25, b33, b41, b49, b57,
and thus, we must choose a truncated differential that activates four Super S-boxes
in the last round (instead of a single Super S-box in the case of FlexAEAD-64).
Moreover, the probability of the last round is reduced to 2−64, since we ask
for a specific output difference in four Super S-boxes. The best differential we
could find under these restrictions has overall complexity of 2−168 (composed
of 2−16, 2−8, 20, 2−16, 2−32, 2−32, 2−64 in Rounds 0,1,2,3,4,5,6, respectively). The
differential shares Rounds 0,1,2 with the basic differential described above, and
activates bytes (0, 1), (0, 1, 2, 3), (0, 2, 4, 6), and (0, 4, 8, 12) in Rounds 3,4,5,6,
respectively. By using 2104 structures of 232 nonces we obtain an overall complexity
of 8× 2137 = 2140 for Phase 1, and consequently, for the entire attack.

Finally, we need to tweak Step 2 of Phase 1. This procedure recovers candi-
dates for the internal state of PF (or equivalently, the key) using the known input
and output differences, with two parts. First it recovers 210 candidates (out of
232) for the even nibbles of the input state using conditions in the first two rounds.
Then it guesses values to build a full internal state and verifies the remaining
rounds to filter the guesses. In FlexAEAD-128 and FlexAEAD-256, guessing a full
state is too expensive, therefore we only use the first part, recovering 210 candi-
dates out of 232 for a partial key (b0, b4, b8, b12, b16, b20, b24, b28 in FlexAEAD-128,
b0, b8, b16, b24, b32, b40, b48, b56 in FlexAEAD-256). Then we collect another data
set using an alternative truncated differential whose first round affects other
nibbles of the key, and recover 210 candidates for the corresponding partial key.
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In FlexAEAD-128, we require 4 repetitions and obtain 240 candidates for the full
key. In FlexAEAD-256, we require 8 repetitions and obtain 280 candidates for
the full key. We can then filter those candidates using additional queries as in
the FlexAEAD-64 attack. The complexity is dominated by the filtering of key
candidates, with complexity 240 for FlexAEAD-128 and 280 for FlexAEAD-256.
The complexity of this procedure can be reduced using several right pairs to
extract more information of each partial key, but since it is not the bottleneck of
our attack we omit this improvement.

In the following section we present forgery attacks with a much lower com-
plexity on FlexAEAD-128 and FlexAEAD-256.

5 Forgery Attacks on FlexAEAD

In this section, we first propose several additional truncated differential char-
acteristics for PFK3

. Then, we show how to apply the resulting counter differ-
ential to obtain several forgery attacks on FlexAEAD-64, FlexAEAD-128, and
FlexAEAD-256.

5.1 Differential Characteristics for the Counter Sequence

Recall the generation of the sequence S, as shown in Figure 2a. The intermediate
state is updated by calling INC32, incrementing each 32-bit block of the state.
Consider the difference between two states Si and Si+1: The only difference
between the inputs to the final call to PFK3 is one additional call to INC32. A
little-endian addition by 1 behaves like an Xor operation with probability 1

2
(exactly when the least significant bit of the state is zero). Therefore, the call
INC32 behaves like an Xor with a probability of 2−2 (2−4, 2−8) for FlexAEAD-64
(FlexAEAD-128, FlexAEAD-256). This process is shown in Figure 2b.

Consider the input difference ∆in = 01000000 01000000 for FlexAEAD-64
(repeated twice for FlexAEAD-128 and four times for FlexAEAD-256). The best
truncated differential characteristics for PF starting with this input difference we
were able to find are depicted in Figure 7. An explanation on the tool we used to
find the differentials – a combined Mixed-Integer Linear Programming (MILP)
[8,18] and Constraint Programming (CP) / Satisfiability (SAT) model, as well
as the best exact differential characteristics we were able to find, can be found
in [3].

5.2 Forgery Attacks for FlexAEAD Using the Counter Difference

We can now use these differentials ∆in → ∆out in the counter sequence to mount
forgery attacks on the full FlexAEAD-64, FlexAEAD-128, and FlexAEAD-256
schemes. In the following, we describe several different approaches.
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(b) FlexAEAD-128: 2−54
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Fig. 7: Truncated differential characteristics for full-round PFK in FlexAEAD
variants.
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Changing Associated Data. We query a tag for some plaintext P with associated
data A = A0 || A1, where A0 ⊕ A1 = ∆out. With a probability of about 2−46

(FlexAEAD-64), 2−54 (FlexAEAD-128), or 2−70 (FlexAEAD-256), the sequence
blocks S0 and S1 follow the cluster of differential characteristics, and therefore
also fulfill S0 ⊕ S1 = ∆out. Then, A0 ⊕A1 ⊕ S0 ⊕ S1 = 0, so S0 ⊕A0 = S1 ⊕A1,
resulting in a contribution of the two associated data blocks to the checksum of
PFK2(S0 ⊕A0)⊕ PFK2(S1 ⊕A1) = 0.

Now, if we swap A0 and A1, with the same reasoning, the contribution to the
checksum will again be 0, so the original tag is valid for the modified associated
data with swapped blocks.

Although the example above assumes a distance of 1 between associated
data blocks, we can generalize this property and also find similar differential
characteristics for higher distances j. Distances with lower hamming weight and
with several suitable Xor differences following the same truncated difference
generally result in a better probability. In practical experiments on round-reduced
FlexAEAD, we observed an even higher success probability than expected when
swapping associated data blocks, such as examples with a non-zero, but constant
contribution to the checksum.

Truncating Ciphertext. In a similar fashion to the previous attack, we can also
use this strategy to create a forgery targeting the plaintext.

Again, consider the generation of the sequence S, using the same strategy and
differential characteristics as in Section 5.1. Now query a tag with a plaintext P =
P0 || · · · || Pm−2 || Pm−1, where Pm−2 ⊕ Pm−1 = ∆out. With the same reasoning
and success probability as before, the combined contribution to the checksum of
Pm−2 and Pm−1 is 0, since, like in the previous attack, Pm−2⊕Sn+m−2 = Pm−1⊕
Sn+m−1, and therefore PFK2

(Sn+m−2 ⊕ Pm−2)⊕ PFK2
(Sn+m−1 ⊕ Pm−1) = 0.

We can now produce a forgery by truncating the last two ciphertext blocks,
since the contribution of the corresponding plaintext blocks to the checksum and
therefore the tag is 0, and the number of blocks does not influence the tag.

Reordering Ciphertext. For their submission to the NIST Lightweight Cryptog-
raphy standardization project, the designers of FlexAEAD updated their design
from the previous version FlexAE in order to include associated data and prevent
trivial reordering attacks. We show a forgery based on reordering ciphertexts of
a chosen-plaintext query. Again, this attack is based on the same property of the
sequence S as the two previous attacks.

Consider a chosen plaintext P = P0 || P1, where P0 ⊕ P1 = ∆out, and the
corresponding ciphertext C = C0 || C1 and tag T . As before, this difference of 1
in the block index results in the differential characteristics depicted in Figure 7.
In FlexAEAD, the sequence values S0 and S1 are added at two points during the
encryption process, so that the internal difference ∆out propagates as shown in
Figure 8. By now swapping the ciphertext blocks C0 and C1, we have a valid
forgery using the original tag T . If the sequence generation followed the chosen
characteristic, the two swapped ciphertext blocks will again have a checksum
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contribution of 0 during the decryption process. However, the resulting plaintext
blocks are unpredictable.

P0

S0

PFK2

st0

PFK1

S0

PFK0

C0

P1

S1

PFK2

st1

PFK1

S1

PFK0

C1

const.

PFK0

MSB

T

∆out

0

0

0

∆out

∆fin

Fig. 8: Propagation of differences in the FlexAEAD encryption function, assuming
S0 ⊕ S1 = ∆out.

6 Applicability to FlexAE and Variants of FlexAEAD

In this section we discuss the applicability of our attacks to FlexAE (the predecessor
of FlexAEAD), and the effect of the tweaks proposed by the designers of FlexAEAD
on our results.

6.1 Applicability to FlexAE

FlexAE, published at IEEE ICC 2017 [10], is the predecessor design of FlexAEAD.
It features a slightly simpler mode that omits the step PFK1

(·) ⊕ Sj in the
computation of ciphertext block Cj and does not support associated data A (see
Figure 9). The primitive also shows minor differences, such as 3 slightly different
S-boxes, which have no significant impact on the security analysis. In addition,
the ordering of the subkeys used in FlexAEAD and FlexAE are different. Since this
does not impact the security, we use notations that are similar to FlexAEAD in
our analysis. The additional steps in FlexAEAD were added by the designers to fix
problems in FlexAE; in particular, the ciphertext reordering attack of Section 5.2
works with probability 1 for FlexAE.

Forgery attacks. All forgery attacks on FlexAEAD described in Section 5 apply
without change to FlexAE, since the part of the algorithm they target remains
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Fig. 9: The FlexAE mode for authenticated encryption (simplified, from [10]). For
consistency with FlexAEAD, we denote the subkeys as K0, K2 and K3 rather
than K0, K1 and K2.

unchanged. Furthermore, FlexAE permits forgeries with zero encryption queries,
as illustrated in Figure 10. The following is a forgery with probability about
2−54 for FlexAE-64-128 (or, with similar characteristics, 2−86 for FlexAE-128-256,
2−150 for FlexAE-256-512, or 2−278 for FlexAE-512-1024): Take an arbitrary nonce
N and a single-block ciphertext C, and select T = C ⊕ ∆out with ∆out =
xx000000 zz000000, where xx is an arbitrary nonzero difference and zz is the
high-probability S-box output difference with P[xx → zz] = 2−6. This works
(i.e., the pair (C, T ) is valid) based on the differential with input difference
∆in = 10101010 10101010 for PFK0

due to the constant addition between the
computation of a tag T and a single-block ciphertext C. The actual success
probability is likely higher; there are several similar clusters contributing to the
same differential (see Figure 10), and the alternative padding constant (01)∗

instead of (10)∗ gives an alternative compatible ∆in to double the probability.
In this aspect, the transition from FlexAE to FlexAEAD indeed strengthened

the design.

Key-recovery attacks. Interestingly, it appears that the key recovery attacks
described in Section 4 do not directly apply to FlexAE. Specifically, the first two
phases of the attacks work without change and allow recovering the full subkey
K3 and the sequence {Si}. However, the third phase of the attack (which is
intended to recover the second half of K0) exploits the fact that in FlexAEAD, the
value Si is interleaved with the data again before the last application of PFK0

.
This allows an adversary to induce difference into the input of PFK0

(as is shown
in Figure 8) and observe the corresponding output difference in the ciphertext.
In FlexAE, the value Si is interleaved with the data only once, and there is no
direct way to observe both the input and the output of a single PFK function.
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However, we found an alternative attack, with a higher complexity, but still
practical. The idea is to consider two-block messages, and to study the differential
propagation in PFK2

between the two blocks of a given message, instead of
studying pairs of messages. We start with a large set of messages, for which the
corresponding inputs of PFK2

constitute a pair with a convenient input difference
P0 ⊕ S1 ⊕ P1 ⊕ S2. We observe that the tag value is computed directly from the
output difference of PFK2 (that is to say, PFK2(P0 ⊕ S1)⊕ PFK2(P1 ⊕ S2)). In
particular, if there exist high probability differential characteristics, we can detect
when two different messages follow the same trail, because the corresponding
tags collide.
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Fig. 10: Zero-query forgery for full FlexAE-64-128 with clusters of probability
2−54.
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Starting from a difference in a single Super S-box, we know that at each round
there is a probability of 2−7 to stay with a single active Super S-box (either the
same one or a different one). If we do not constrain the last round, we obtain one
of 218 output differences with four active nibbles (in two different Super S-boxes)
with probability 2−28.

Using a set of 238 messages, we expect that 210 of them follow one of the
differentials, and we expect on average two collisions between the tags due to the

differentials (there are
(
210

2

)
≈ 219 pairs of right messages, and the two messages

follow the same differential with probability 2−18). In addition, there should be

about
(
238

2

)
· 2−64 ≈ 211 random collisions (wrong pairs).

In order to recover the key, we use the same procedure as in Step 2 of Phase 1.
This procedure recovers candidates for the internal state of PF using only the
known input difference and output difference. Here, we do not know exactly the
output difference, but we have a list of 218 candidates. Since we have a single
active Super S-box in the first round, we also have a smaller filter than in the
previous attacks. We expect the procedure of Step 2 of Phase 1 to return a
list of 236 state candidates on average, with a time complexity of 236 partial
encryptions.

In order to reduce the complexity, we fix the input difference to be the same
for all messages, so that we only run the procedure once, and we deduce a list of
247 candidates for the key, from the list of 236 internal state candidates and the
list of 211 collisions detected. Wrong key candidates can be filtered by checking
whether the other message in the collision also follows the differential (requiring
two evaluations of PFK2

).

Finally, this algorithm recovers the key K2
A with high probability, with a data

complexity of 238 two-block messages, and a time complexity dominated by 248

evaluations of PFK2 .

After K2
A is recovered, we can control the input differences to PFK0

and use
the same strategy as in Phase 3 of the attack of Section 4 to recover K0

B . Then,
K0

A can be found instantly using the tag generation of an empty message (like
in Phase 4 of the attack in Section 4), and the second half of K2 can be found
instantly, as the value before its insertion is known from the plaintext side and
the value after its insertion is known from the ciphertext side.

Practical verification. We have implemented Phases 1 and 2, and the variant of
Phase 3 of the FlexAE-64 attack. We used the reference code of FlexAEAD-64,
because there is no reference code available for FlexAE, but these phases use
parts of the design that are identical in FlexAEAD and FlexAE. However, since
the reference implementation of FlexAEAD does not match the specification (as
explained in Section 4.2), Phase 1 recovers K2

A rather than K3
A, Phase 2 recovers

K2
B ⊕K3

A rather than K3
B , and the new Phase 3 recovers K2

A ⊕K3
B rather than

K2
A. We also have to deal with carries in the INC32 operation in Phase 3, but

this can be done without increasing the complexity (when attacking the variant
corresponding to the reference code, the keys recovered at that point are not
sufficient to compute exactly the Si’s).
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The attack succeeds as expected, with less than three days of computation
on a 24-core (48-thread) machine. Due to the long running time, we only ran the
attack once, but this is sufficient to verify that the strategy is successful. Due
to memory limitations, the new Phase 3 was run with a set of 237.9 messages,
and 1793 collisions were detected, matching the analysis. We note that we find
around 233.5 state candidates rather than 236, so that the total complexity is
actually around 245.5 rather than 248.

Time-data tradeoff. It is also possible to reduce the time complexity at the cost of
an increased data complexity using three-way collisions. Starting with a set of 241

messages, we expect to have 2 three-way collisions in the tags due to messages
following the differential, while three-way collisions should not happen by chance
with those parameters. This results in an attack with a data complexity of 241

two-block messages and time complexity dominated by the encryption of the
messages (the key-recovery part requires only 237 partial encryptions).

This complexity is higher than the corresponding complexity for FlexAEAD-64.
Hence, in this aspect, the transition from FlexAE to FlexAEAD weakened the
cipher, making it more vulnerable to a practical attack recovering the full subkey.

Forgery attack against FlexAE-128 and FlexAE-256. The forgery attack can also
be adapted to larger variants of FlexAE. Since Phase 1 has a significantly higher
complexity for larger variants, it dominates the modified Phase 3, and the
complexity of the attack against FlexAE and FlexAEAD is the same.

More precisely, we use the time-data trade-off as above in order to avoid
dealing with wrong pairs. For FlexAE-128, we obtain one of 218 output differences
with four active nibbles (in two different Super S-boxes) with probability 2−35.
Starting from a set of 248 messages, we have 213 messages reaching one of the high
probability output differences, and we expect a three-way collision. Starting from
the collision, we extract 210 candidates for a 32-bit partial key. After repeating
the procedure 4 times, we obtain 240 candidates for K2

A that we filter with
some additional queries. For FlexAE-256 the procedure is similar. The overall
complexity of this attack is 259 for FlexAE-128 and 2140 for FlexAE-256.

6.2 Tweaks Suggested by FlexAEAD’s Designers

In response to observations by several authors (see Section 1), the designers of
FlexAEAD have informally proposed a number of tweaks to mitigate the issues
[13]. Proposed tweaks include, in chronological order:

1. Changing the increment in INC32 from 0x00000001 to 0x11111111 in order
to preclude low-weight Xor-distances between close blocks;

2. Reducing data limits to at most 232 blocks per encryption (message plus
associated data) with additional, stricter, limits on associated data length
(228 blocks for FlexAEAD-128, 223 blocks for FlexAEAD-256);

3. Modifying the associated data padding to 10 . . . 0 and executing PFK2
twice

for the last block unless the original length was exactly a multiple of the
block length, in which case the padding is omitted;
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4. Significantly strengthening the linear layer with an additional diffusion step;
5. Including a function of the final counter after associated data processing,

PFK2
(PFK2

(Sn)), in the checksum computation.

Changes (2), (3) and (5) appear to mitigate the issues related to the mode raised
in [3,7], but do not affect the attacks presented in this paper (since we never use
long messages in our attacks). Change (1) increases the complexity of our attacks,
due to the need to wait for many blocks until the counter increment leads to
a convenient difference. However, it does not prevent the attacks completely,
even together with Change (2). For example, consider associated data blocks
A0 and Aj with j = 228 = 0x10000000 for FlexAEAD-64. The corresponding
counter increment between these blocks is j · 0x11111111 ≡ j (mod 232), which
corresponds to an input Xor difference of ∆in = 000000*0 000000*0 with very
high probability. This leads to an attack with the same success probability as
the one in Section 5 using a truncated characteristic closely related to the one in
Figure 7a (with mirrored truncated difference patterns at the input to each round).
The key recovery attack described in Section 4 works with similar changes.

Unless more significant changes such as (4) are considered, it is necessary
to apply smaller data limits (a) for all variants and (b) for both associated
data and plaintext. In addition, a more detailed analysis of potential tradeoffs
with a slightly higher number of active nibbles in ∆in with a lower success
probability, but also a sufficiently low distance between the swapped data blocks,
is recommended.

We have not analyzed the impact of the most significant change (4) in detail,
but it appears to significantly improve resistance against differential cryptanalysis
and thus against all attacks presented in this paper.

7 Conclusion

In this paper we presented a fully verified practical key recovery attack on
FlexAEAD-64, as well as forgery and key recovery attacks on FlexAEAD-128,
FlexAEAD-256, and FlexAE. Our attacks are based on a strong clustering effect
which leads to a powerful truncated differential attack on the internal keyed
permutation PFK , together with interplay between various parts of the mode.
The result – practical key recovery – is rather rare in modern designs, and
demonstrates the fragility of authenticated encryption schemes whose internal
permutation has non-optimal properties. Interestingly, our most powerful key-
recovery attack does not apply to FlexAE– the predecessor of FlexAEAD. It
appears that the insertion of an additional encryption layer in the transition to
FlexAEAD, which was intended to increase the security level, actually made the
cipher more vulnerable.
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