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Abstract

As the finite Hall planes are Non-Desarguesian, the Pappus Theorem does not

hold in them. In this paper we state and prove some weaker versions of Pappus’s

Theorem in Hall planes.

1 Introduction

Let P be a set whose elements we will call points, and L be a collection of subsets of P
which we call lines. If a point is an element of a line, we say that it is on the line, or

that the line passes through the point. In this situation, we may also say that the line

is on the point, that the line contains the point, or that the point and line are incident.

A set of points is called collinear if all points from the set are on the same line. A set

of lines is called concurrent if all lines from the set are on the same point. We say that

the pair (P,L) is a partial plane or a configuration, if every two distinct points are on

at most one line, and every line contains at least two points. We say that configuration

(P,L) is isomorphic to a configuration (P ′,L′) if there exists a bijection P → P ′ such

that the induced map L → L′ is also a bijection. We say that a configuration (P,L) is

embedded in a configuration (P ′,L′) if there exists an injective map φ : P → P ′ such that

the image of every line ℓ ∈ L, defined as {φ(P ) : P ∈ ℓ}, is a subset of some line of L′.

When (P,L) is embedded in (P ′,L′), we will also say that (P,L) is in (P ′,L′).
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We find the question whether or not a given configuration is embedded in a finite affine

or a finite projective plane of great interest. Often the question is asked in the case

when a partial plane is an affine or a projective plane itself. Some related results can

be found in Moorhouse and Williford [15], Lazebnik, Mellinger, and Vega [11], Metsch

[13], Galiskan and Petrak [3], Petrak [18, 19], Caliskan and Moorhouse [2], Tait [21], and

numerous references therein.

A celebrated result of Ostrom [16] establishes the existence of the Desargues configu-

ration in every finite projective plane. The short proof in [16] is a beautiful pigeonhole

argument that actually demonstrates the existence of many Desargues configurations in

the following strong form:

In a finite projective plane, let ℓ1, ℓ2, and ℓ3 be three distinct lines through a

point P . Let R and S be any two points not on ℓ1, ℓ2, or ℓ3. Consider the set

of triangles with one vertex each on ℓ1, ℓ2, and ℓ3, one side going through R

and the other side going through S. At least one pair of triangles of this set

satisfies Desargues’s Theorem.

Finiteness of the plane is important: Hall’s “free plane” construction in [5] provides

examples of infinite projective planes that do not contain the Desargues configuration.

•

••

•

•

•
•

•

•

A1

B1

C1

A2 B2 C2

C3 B3
A3

Figure 1: Diagram of the Pappus configuration in a projective plane.

As far as the authors know, the existence of a Pappus configuration (see Figure 1 ) in

every finite projective plane remains unknown. We believe that it does exist, and this

paper grew from our failed attempt to prove this.

When a ternary ring that coordinatizes the projective plane “contains” a finite field, the

Pappus configuration exists. Indeed, restricting coordinates of points Ai, Bi, Ci, i = 1, 2,

to a finite field, leads to a Pappus configuration. The authors are not aware of any
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example of a finite projective plane for which every coordinatization with a ternary ring

“does not contain” a finite field. Even if such a plane exits, it still may contain Pappus

configurations.

Moreover, in all planes we considered, the number of Pappus configurations was actually

large. This was not too surprising, since the collineation group of the plane acts on the

set of its Pappus configurations. Therefore, when the existence of Pappus configurations

in a plane was clear, we tried to find a statement as close as possible to Pappus’s Theorem

in the plane. Here is the motivation for the main result of this paper. It would imply the

existence of Pappus configurations in finite projective planes in a strong way.

Question 1.1 (3 + 2 Question). Is it true that in a finite projective plane the following

holds: For every pair of lines ℓ1, ℓ2 and every three points on ℓ1, and every two points on

ℓ2, one more point on ℓ2 can be found so that the six points define a Pappus configuration?

A question with a weaker condition is the following.

Question 1.2 (3 + 1 Question). Is it true that in a finite projective plane the following

holds: For every pair of lines ℓ1, ℓ2 and every three points on ℓ1, and every one point on ℓ2,

two more points on ℓ2 can be found so that the six points define a Pappus configuration?

The 3 + 1 Question was answered affirmatively for all planes of order less than 25,

and for some of order 25 using the data available on Moorhouse’s database of projective

planes [14] , or using built-in Magma commands and our own code. In particular, it is

answered affirmatively for Hall planes of orders 9, 16, 25; for the Hughes plane of order

25; for Czerwinski & Oakden planes of order 25: a1, a6, b3, b6; and for Rao planes of order

25 : a5, a7. As of yet, we have been unable to answer the 3+1 Question completely even

for Hall planes of orders greater than 25.

It is easy to argue that the 3 + 1 Question is affirmed in all affine planes of order n if

and only if it is affirmed in all projective planes of order n.

The 3 + 2 Question was answered negatively for all planes of order 25 and for some

planes of order 49: Hall plane, Hughes plane, and Dickson Near-field plane. Moreover,

we have not found finite nonclassical planes (i.e., the ones that cannot be coordinatized

by a field) where the 3+2 Question is answered affirmatively. Clearly, it takes longer (for

the same plane order) to verify numerically that the 3 + 1 Question has the affirmative

answer than to obtain a negative answer to the 3 + 2 Question. That is why the latter

could be tested for larger planes.
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If one strengthens the condition of the 3 + 2 Question requiring that three arbitrary

points on line ℓ2 are chosen, a similar “3+3 Question” is equivalent to Pappus’s Theorem,

and hence, the answer is affirmative only in classical planes. One can weaken the condition

of the 3 + 1 Question further by not requiring that any arbitrary points on line ℓ2 are

chosen and call it a “3 + 0 Question”.

In order to state our results, we need additional definitions and some preliminary

results. They are collected in Section 2 . In Section 3 , we describe our results for Hall

planes, and their proofs appear in Section 4 . In Section 5 , we make concluding remarks

and mention several open problems.

2 Definitions, notations, and preliminary results.

Our exposition is based on Hall [5, 6], and Leshock [12]. In [12], many proofs that were

not explicit in [5, 6] were checked analytically.

2.1 Hall system

Let F = Fq represent the finite field of prime power order q and H = {(a1, a2) : a1, a2 ∈
F}. We call F the basefield of H. Clearly, |H| = q2. It is convenient to have multiple

notations for elements of H. Let the bold letter a denote the ordered pair, (a1, a2) ∈ H.

We will identify an element b = (b1, 0) of H with the element b1 of F and write, for

simplicity, b ∈ F, and we will write b = (b1, b2) 6∈ F when b2 6= 0.

The Hall system is a two dimensional (right and left) vector space H over F equipped

with a certain multiplication of vectors. The addition in the Hall system {H,+, ·} is the

usual addition in F2. To define multiplication in {H,+, ·}, we use the operations from the

basefield and a quadratic polynomial f(x) = x2−rx−s with r, s ∈ F which is irreducible

over F, and we refer to it as the defining polynomial of the system. More specifically, for

a,b ∈ H,

A. a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

M1. ab = (a1, a2) · (b1, b2) = (a1b1, a2b1), if b ∈ F

M2. ab = (a1, a2) · (b1, b2) = (a1b1 − a2b
−1
2 f(b1), a1b2 − a2b1 + a2r), if b 6∈ F
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For Hall systems over basefields with q > 3, multiplication is neither commutative nor

associative; it is right distributive but not left distributive over addition. Clearly, H is

a group under addition with identity element 0 = (0, 0). It’s also easy to see that the

identity element for multiplication in H (both left and right) is 1 = (1, 0).

2.2 Hall affine plane

Having a Hall system H, we can construct a Hall affine plane AH as follows. The point set

of AH is P = {(x,y) : x,y ∈ H}. For arbitrary fixed m,k ∈ H, the sets {(x,xm+ k) :

x ∈ H}, represent “non-vertical” lines with equations of the form y = xm + k. For

arbitrary fixed k ∈ H, the sets {(x,k) : x ∈ H}, represent “horizontal” lines with

equations of the form y = k. For arbitrary fixed c ∈ H, the sets {(c,y) : y ∈ H},
represent “vertical” lines with equations of the form x = c. All these q4 + q2 lines form

the set L of lines AH. It is easy to verify that AH = (P,L) is an affine plane of order

q2. The non-vertical lines y = xm + k will be referred to as type 1 lines or type 2 lines

depending on the “slope” m; type 1 lines have m ∈ F, and type 2 lines have m 6∈ F.

2.3 Collineation of Hall affine plane

Our exposition here is based on Hughes [8]. Understanding the action of the collineation

group of AH on points, lines, and pairs of lines of AH was crucial for our work on the

3+1 Question, and some facts presented in this section are original. Those proofs which

we omit (many are straightforward) can be found in [8] and [12]. All notions and facts

related to groups and group actions, used in this section, can be found in [7].

Let A = (P,L) be an affine plane. A bijection φ : P → P which preserves collinearity

of points in A is called a collineation. A collineation φ acts on the set of lines L in an

obvious way: for ℓ ∈ L, φ(ℓ) = {φ(P ) : P ∈ ℓ}. A point P (line ℓ) is fixed under φ if

φ(P ) = P (φ(ℓ) = ℓ). We say that a line ℓ is fixed pointwise when every point on ℓ is

fixed. The parallel class of lines is fixed under a collineation if the collineation permutes

all lines in the class.

A translation of an affine plane A is a collineation of A such that the parallel classes are

fixed and there is a parallel class such that every line from the class is fixed. It is easy to

see that for fixed a,b ∈ H, the map τa,b : P → P given by τa,b ((x,y)) = (x+ a,y+ b)

is a translation.
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Let TR = {τa,b : a,b ∈ H} be the set of all translations τa,b of AH = (P,L). For

arbitrary fixed c,m,k ∈ H, following [8] and Kallaher [10], we will denote the vertical

line {(c,y) : y ∈ H} as [c], and the non-vertical line {(x,xm + k) : x ∈ H} as [m,k].

Then it’s easy to check that τ = τa,b acts on L in the following way:

τ ([c]) = [c+ a]; τ ([m,k]) = [m,k− am+ b].

We summarize the properties of TR below.

Proposition 2.1. TR is a subgroup of the collineation group of AH and it is isomorphic

to the additive group of the vector space H2 over F. It is sharply transitive on P, preserves

the classes of parallel lines and acts transitively on the set of lines in every parallel class.

If the group of translations of an affine plane A is transitive on the points of A, the

plane A is called a translation plane, see [17]. Thus, the Hall affine plane AH is a

translation plane. It is known that translation planes are exactly the planes which can

be coordinatized by quasifields (which we don’t need to define), of which the Hall system

is a particular example.

In 1959, Hughes gave an analytic description of the entire collineation group of Hall

planes, see [8] and his related work [9].

Remark 2.2. Hughes used different conventions than Hall did in his construction of Hall

planes, e.g., multiplication is left not right distributive over addition and the equation

of a non-vertical line is of the form mx + y = k rather than y = xm + k. We express

Hughes’ collineation subgroups using Hall’s conventions.

Hughes presents the collineation group of Hall planes as generated by six subgroups.

Three of those subgroups are relevant to this paper. One of them, TR has been already

presented, and the other two, ATP and LNR, are presented below.

Let S be a 2×2 nonsingular matrix over F. For x ∈ H, let S act on H as xS = (x1, x2)S.

Define a = 1S−1, where 1 = (1, 0) is the multiplicative identity of H. Hence, aS = 1.

Let σS be a map σS : P → P, σS ((x,y)) = (xS,yS). Such a map σS is called an

autotopism of AH, and it is easy to check that it is a collineation of AH. Let ATP =

{σS : S ∈ GL(2,F)} be the set of all autotopisms of AH = (P,L). Then it’s easy to

check that σ = σS acts on L in the following way,

σ ([c]) = [cS]; σ ([m,k]) = [(am)S,kS].

We summarize the properties of autotopisms as follows.
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Proposition 2.3. ATP is a subgroup of the collineation group of AH, and it is iso-

morphic to GL(2,F). It fixes the parallel classes of type 1 lines, acts transitively on

the parallel classes of type 2 lines, and it has two orbits on the set of vertical lines

(one orbit consists of the line [0]).

Finally, we present the third group of collineations of AH that we use. Let a, b ∈ F not

both zero, and define the matrix L =

(

−ar + b as

a b

)

, where r, s are the coefficients of

the defining polynomial f(x) = x2 − rx− s of H. Clearly, L ∈ GL(2,F).

Remark 2.4. Our matrix L is the transpose and has a different sign in position (1, 1) than

the corresponding matrix in [9]. This is due to the adjustment of Hughes’ conventions to

Hall’s conventions, see Remark 2.2 .

For (x,y) ∈ H2, let L act on H2 as (x,y)L = ((−ar + b)x + ay, asx + by). Let

λ = λL = λa,b be a map λ : P → P given by λ ((x,y)) = (x,y)L. Then it’s easy to check

that λ acts on L in the following way:

λ ([c]) =







[bc], if a = 0
[

(

b
a
, 0
)

,− b2−abr−a2s
a

c
]

, if a 6= 0

If m ∈ F,

λ ([m,k]) =



















[m, bk], if a = 0

[ak], if a 6= 0 and m1 = r − b
a

[(

as+m1b
am1−ar+b

, 0
)

, b
2−abr−a2s
am1−ar+b

k
]

, if a 6= 0 and m1 6= r − b
a

If m 6∈ F,

λ ([m,k]) = [m,−akm + bk]

Such a map λ is called a linear map of AH. Let LNR = {λa,b : a, b ∈ F, (a, b) 6= (0, 0)}
be the set of all linear maps of AH = (P,L).

We will denote the set of lines that are of type 1 or vertical as BF (slope is from

basefield or ∞), and the set of lines that are of type 2 as NBF (slope is not from the

basefield). There are fewer BF lines than NBF lines: q3 + q2 of the former and q4 − q3

of the latter.

Proposition 2.5. LNR is a subgroup of the collineation group of AH, and it is iso-

morphic to the multiplicative group of the quadratic extension field F[α] = Fq[α] where
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α2 = −rα + s, and so to F×

q2
. LNR fixes the parallel classes of lines in NBF and is

transitive on the set of all parallel classes of lines in BF .

We conclude this subsection with several statements describing the action of the groups

TR, ATP and LNR on lines of AH.

Proposition 2.6. (i) The group generated by TR and ATP acts transitively on all type

2 lines and on all vertical lines.

(ii) The group generated by TR and LNR acts transitively on all BF lines.

Proof. (i) By Proposition 2.3 , ATP acts transitively on the parallel classes of type 2

lines and has two orbits on the set of vertical lines, one of which is [0]. By Proposition

2.1 , TR acts transitively on the lines in every parallel class.

(ii) By Proposition 2.5 , LNR acts transitively on the parallel classes of lines in BF .

By Proposition 2.1 , TR acts transitively on the lines in every parallel class.

Based on the above propositions, it is clear that there are at most two orbits of lines

in AH. The sets BF and NBF partition L and are precisely these orbits. This was

implicitly shown in [8].

The next proposition describes the action of certain collineations in the stabilizer of

the origin on lines through the origin.

Proposition 2.7. [12] For any line through the origin, there exists a group of collineations

that fixes the line, fixes the origin, and acts transitively on the other points of the line.

Proof. We consider the following three cases: (i) x = 0, (ii) y = xm with m ∈ F, and

(iii) y = xm with m 6∈ F.

(i) Take ℓ : x = 0. The line ℓ is on the origin. Every point of ℓ is of the form (0,y) for

some y ∈ H. If y 6= (0, 0), then for every nonzero z ∈ H, there exists S ∈ GL(2,F) such

that yS = z. Hence, ATP acts transitively on points of the ℓ : x = 0 distinct from the

origin.

(ii) Take ℓ : y = xm, with m ∈ F. The line ℓ is on the origin. Every point of the

line ℓ is of the form (x,xm) for x ∈ H. If (x,xm) and (z, zm) are two nonzero points

of ℓ, then the same S as we used in the proof of part (i), will fix ℓ and map (x,xm) to

(z, zm). Hence, ATP acts transitively on points of the ℓ distinct from the origin.
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(iii) Take ℓ : y = xm, with m 6∈ F. The line ℓ is on the origin. By Proposition 2.5 ,

the action of LNR fixes the parallel class of line ℓ. Clearly, LNR fixes the origin. Hence,

it fixes the line ℓ.

Let (v,vm) and (w,wm) be two distinct nonzero points of ℓ. Let us show that there

exists a, b ∈ F with (a, b) 6= (0, 0) such that λ = λa,b ∈ LNR maps (v,vm) to (w,wm).

This is equivalent to solving the equation (−ar + b)v + avm = w for a, b.

Since H is a two dimensional vector space over F, and v and vm are linearly indepen-

dent over F because m 6∈ F, there exist c1, c2 ∈ F such that c1v + c2vm = w. Setting

−ar+ b = c1 and a = c2, we get b = c1+ c2r. Clearly, (a, b) 6= (0, 0) as otherwise, w = 0.

Hence, the transitivity statement is proven.

Corollary 2.8. [12] (i) Any pair of intersecting lines can be mapped by a translation of

AH to a pair of lines {ℓ′1, ℓ′2} meeting at the origin. Furthermore, if ℓ′1 is in BF , then

there exists a collineation which maps it to ℓ1 : x = 0. Otherwise, ℓ′1 is in NBF , and

there exists a collineation which maps it to ℓ1 : y = x(0, 1). Let ℓ2 be the image of the

second line under either of these two maps. There exists a subgroup of the collineation

group of the plane which fixes the origin, fixes lines ℓ1 and ℓ2, and acts transitively on

the points distinct from the origin of ℓ1, or acts transitively on the points distinct from

the origin of ℓ2.

(ii) Any pair of parallel lines can be mapped by a translation of AH to a pair of lines

{ℓ′1, ℓ′2} with ℓ′1 on the origin. Furthermore, if ℓ′1 is in BF , then there exists a collineation

which maps it to ℓ1 : y = 0. Otherwise, ℓ′1 is in NBF , and there exists a collineation

which maps it to ℓ1 : y = x(0, 1). Let ℓ2 be the image of the second line under either

of these two maps. There exists a subgroup of the collineation group of the plane which

fixes the origin, fixes line ℓ1, fixes the parallel class of line ℓ2, and acts transitively on the

points distinct from the origin of ℓ1, or acts transitively on the points of ℓ2.

Proof. (i) The first statement follows directly from Proposition 2.1 . Since ℓ′1 and ℓ′2

intersect at the origin, any collineation that fixes the origin and the parallel class of each

line, fixes both lines.

Case 1 : If ℓ′1, ℓ
′

2 ∈ BF , since LNR fixes the origin, ℓ′1 can be mapped to ℓ1 : x = 0 by

Proposition 2.5 . Then the image of ℓ′2 is ℓ2 : y = xm for some m ∈ F under this

mapping. Following part (i) of the proof of Proposition 2.7 , we conclude that there

exists a map in ATP that acts transitively on the points of ℓ1 different from the
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origin. By Proposition 2.3 , and the fact that elements of ATP fix the origin and the

pair of lines intersect at the origin, it maps ℓ2 to itself. Alternatively, following part

(ii) of the proof of Proposition 2.7 , we conclude that there exists a map in ATP

that acts transitively on the points of ℓ2 different from the origin. By Proposition

2.3 , and the fact that elements of ATP fix the origin and the pair of lines intersect

at the origin, it maps ℓ1 to itself.

Case 2 : If ℓ′1, ℓ
′

2 ∈ NBF , we first use a collineation from ATP to map ℓ′1 to ℓ1 : y = x(0, 1).

Such exists by Proposition 2.3 . Let ℓ′2 be mapped to a line ℓ2 by this map. Then

ℓ1 and ℓ2 intersect at the origin and are in NBF . By part (iii) of the proof of

Proposition 2.7 , LNR acts transitively on points of ℓ1 distinct from the origin,

fixes the origin and the slope of any line in NBF . Hence, it fixes ℓ2. Alternatively,

we can show that there exists a collineation in LNR that acts transitively on points

of ℓ2 distinct from the origin, fixes the origin and the slope of any line in NBF .

Hence, it fixes ℓ1.

Case 3 : If ℓ′1 ∈ BF and ℓ′2 ∈ NBF , then we can use a collineation of LNR to map ℓ′1 to

ℓ1 : x = 0, by Proposition 2.5 . Next, by Proposition 2.3 , we can use a collineation

of ATP to map ℓ′2 to ℓ2 : y = x(0, 1). Note that this collineation necessarily fixes

ℓ1.

Now, we show that for every two nonzero points on ℓ1, (0,y) and (0, z), where

y = (y1, y2) and z = (z1, z2), there exists a nonsingular 2× 2 matrix S over F such

that yS = z and ((1S−1) (0, 1))S = (0, 1). This will ensure that there is a subgroup

of ATP that fixes both lines, fixes the origin, and acts transitively on the points

of ℓ1 distinct from the origin. Searching for S with four undetermined entries, we

obtain that

S =





y1z1+ry2z1−sy2z2
y2
1
+ry1y2−sy22

−y2z1+y1z2
y2
1
+ry1y2−sy22

s(−y2z1+y1z2)

y2
1
+ry1y2−sy22

y1z1+ry1z2−sy2z2
y2
1
+ry1y2−sy22



 .

The denominators of fractions of entries of S are nonzero, due to points y, z being

nonzero, and the irreducibility of the defining polynomial f(x) = x2 − rx− s of H
over F.

Similarly, we can show that there exists a subgroup of ATP which fixes both lines,

fixes the origin, and acts transitively on the points of ℓ2 distinct from the origin.

(ii) As lines are parallel, then both are either in BF or in NBF . The proof follows the

same ideas as the one of part (i) and is shorter. Because of this, we omit it.
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Now, we consider the action of the collineation group of AH on the set of all ordered

pairs of distinct lines which we refer to as just pairs of lines. As the collineation group

acts on Pappus configurations, our proofs of the main results can be restricted to Pappus

configurations on special pairs of lines. Since we have two orbits of lines, BF and NBF ,

we consider three cases corresponding to choosing two lines from BF , or from NBF ,

or one line from each orbit. Propositions 2.9 , 2.10 , and 2.11 below follow easily from

Corollary 2.8 and will be instrumental for the proofs of the main results in Section 4 .

Proposition 2.9 (BF/BF ). (i) Any pair of intersecting lines from the BF orbit can

be mapped by a collineation of AH to a pair of lines (ℓ1, ℓ2) where ℓ1 : y = xµ for some

µ ∈ F and ℓ2 : x = 0. Moreover, for any point on ℓ1 : A1((α, β), (µ1α, µ1β)), such a map

can be found so that A1 is mapped to ((0, 1), (0, µ1)).

(ii) Any pair of parallel lines from the BF orbit can be mapped by a collineation of AH

to a pair of horizontal lines (ℓ1, ℓ2) where ℓ1 : y = κ and ℓ2 : y = 0 for some κ ∈ H.

Moreover, for any point on ℓ1 : A1((α, β), (κ1, κ2)), such a map can be found so that A1

is mapped to ((0, 1), (κ1, κ2)).

Proposition 2.10 (NBF/NBF ). (i) Any pair of intersecting lines from the NBF or-

bit can be mapped by a collineation of AH to a pair of lines (ℓ1, ℓ2) where ℓ1 : y =

x(µ, ψ) for some µ, ψ ∈ F and ℓ2 : y = x(0, 1). Moreover, for any point on ℓ1 :

A1

(

(α, β) ,
(

αµ− β(−s−rµ+µ2)
ψ

, rβ − βµ+ αψ
))

, such a map can be found so that A1 is

mapped to
(

(0, 1) ,
(

−s−rµ+µ2

ψ
, r − µ

))

.

(ii) Any pair of parallel lines from the NBF orbit can be mapped by a collineation of

AH to a pair of lines (ℓ1, ℓ2) where ℓ1 : y = x(0, 1) + κ and ℓ2 : y = x(0, 1) for some

κ ∈ H. Moreover, for any point on ℓ1 : A1((α, β), (κ1 + sβ, κ2 + α + rβ)), such a map

can be found so that A1 is mapped to ((0, 1), (κ1 + s, κ2 + r)).

Due to the asymmetry in the versions of Pappus’s theorem that we will establish, the

role of lines ℓ1, ℓ2 in the ordered pair (ℓ1, ℓ2) is not symmetric either. Therefore, we need

to consider two cases: line ℓ1 from NBF and line ℓ2 from BF , and line ℓ1 from BF and

line ℓ2 from NBF . Also, note that if one line in a pair comes from BF and another from

NBF , they cannot be parallel.

Proposition 2.11 (NBF/BF & BF/NBF ). (i) Any pair of intersecting lines with

the first from NBF and the second from BF can be mapped by a collineation of AH to

ℓ1 : y = x(0, 1), ℓ2 : x = 0. Moreover, for any point on ℓ1 : A1((α, β), (sβ, α+ rβ)), such

a map can be found so that A1 is mapped to ((0, 1), (s, r)).
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(ii) Any pair of intersecting lines with the first from BF and the second from NBF can

be mapped by a collineation of AH to ℓ1 : x = 0, ℓ2 : y = x(0, 1). Moreover, for any point

on ℓ1 : A1((0, 0), (α, β)), such a map can be found so that A1 is mapped to ((0, 0), (0, 1)).

3 Results

In Section 1 we mentioned the 3 + 0 Question which motivates our results. We also

presented the 3 + 1 Question together with some comments. Here we wish to mention

several partial results concerning the 3 + 1 Question.

Recall that in the Hall affine plane of order q2, the point set consists of ordered pairs of

elements of a Hall system, and that each element of the Hall system may be represented

as an ordered pair of elements of the basefield Fq, where q is a prime power. We call

each basefield element of a point a component. If a line is fixed, and we want to choose

a point on it, it is sufficient to choose either the x-coordinate or the y-coordinate (in the

case of a vertical line) of the point. It is clear that for fixed lines ℓ1 and ℓ2, the number of

ways of choosing an ordered triple of points on ℓ1 and one point on ℓ2 is ∼ (q2)
3
q2 = q8,

q → ∞. When we can answer the 3 + 1 Question affirmatively for all but O(q7) choices

of the four points, we say the 3 + 1 Question is affirmed asymptotically.

We succeeded affirming the 3 + 1 Question asymptotically in some cases, but not in

all.

Theorem 3.1. The 3+1 Question is affirmed asymptotically in AH when two lines ℓ1, ℓ2

are both from BF or are both from NBF .

We succeeded affirming the 3 + 0 Question in more cases.

Theorem 3.2. The 3+0 Question is affirmed in AH when two lines ℓ1, ℓ2 are both from

BF or are both from NBF and when line ℓ1 is from NBF and line ℓ2 is from BF .

How can one compare an asymptotic 3+ 1 result to a complete 3+ 0 result on a given

pair of lines? We don’t see an obvious way to compare them, and we think that is a

matter of taste of a reader.

Our most general result is an understatement of what we believe to be true. Here is

our main result.

12



Theorem 3.3 (2 + 0 Theorem). In a Hall plane the following holds: For every pair of

lines ℓ1, ℓ2 and every two points on ℓ1, a third point on ℓ1 and three points on ℓ2 can be

found so that the six points define a Pappus configuration.

4 Proofs of Theorems

Let us describe the ideas used in the proofs of our results. As we study Hall planes

analytically, our technique is “just” analytic geometry over Hall systems. The proofs of

existence of Pappus configurations follow from showing that certain systems of equations

have solutions. In general, finding all solutions is not feasible. Therefore, we try to find

at least one particular solution that will correspond to finding a Pappus configuration.

Let us call the components of given points and the coefficients in the equations of lines

ℓ1 and ℓ2 parameters, and the components of points whose existence we wish to establish

unknowns. In all those cases, our approach is to specialize some unknowns and determine

others. In all cases, we try to minimize the number of parameters by using the properties

of the collineation group of AH. The details are stated in Propositions 2.9 , 2.10 , and

2.11 . For example, to prove the 2+0 Question is affirmative, we would assume that points

A1 and B1 are given and points C1, A2, B2, and C2 are to be found. See Figure 2 . To

make it easier to distinguish between parameters and unknowns, we denote parameters

by Greek letters and unknowns by Latin letters, except for r and s, which will always

denote the coefficients of the defining polynomial f(x) = x2 − rx− s of H.

In Figure 2 , the components of the given points A1 and B1 on line ℓ1 correspond to

the sequence of parameters (α, β, γ, δ). The elements of the Hall system representing the

coefficients of the lines are (κ,µ,ρ,ψ). The components of point C1 on line ℓ1 and points

A2, B2, and C2 on line ℓ2, the existence of which we are trying to prove, correspond to

the sequence of unknowns (e, j, g, h, t, v, w, z) as illustrated in Figure 2 .

We use the coordinates of the points on lines ℓ1 and ℓ2 to find equations of lines

A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1. This created the first difficulties, as the co-

efficients in the equations of these lines depended heavily on whether the corresponding

parameters or unknowns were assumed to be in the basefield of the Hall system or not.

Therefore we had to keep track of several possible equations for each of the six lines

together with the assumptions on the nature of parameters and unknowns that were

involved in finding each particular equation.
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ℓ2 : [ψ,ρ]

ℓ1 : [µ,κ]

ℓ3

•

•

•

• • • •

•
•

•

A2((g, h), (g, h)ψ + ρ)

B2((t, v), (. . . ))

C2((w, z), (. . . ))

A1((α, β), (α, β)µ+ κ)B1((γ, δ), (. . . )) C1((e, j), (. . . ))

O

C3
B3 A3

Figure 2: Diagram of Pappus configuration with labels for the 2 + 0 Question, no line is

vertical.

Then, using our choice of particular equations for each of the six lines, we found the

coordinates of points A3, B3 and C3 (if the corresponding pairs of lines intersected) or we

showed that lines A1B2, A2B1, and A1C2, A2C1, and B1C2, B2C1 occur in parallel pairs.

While doing this, we again had to make assumptions on the coefficients of equations of

lines being in or out of the basefield of the Hall system. When the points A3, B3 and

C3 exist, to check that there is indeed a Pappus configuration, we equated slopes of

lines A3B3 and A3C3 or required that both slopes did not exist. This led to a system

of equations with respect to the unknowns, and our goal was to prove that a solution

exists. The number of various equations to solve grew extremely fast (it was in tens of

thousands). As each line came with conditions on the parameters and unknowns that

led to it, we tried to determined for each pair of lines whether these conditions were

contradictory, and this allowed us to reduce the number of cases substantially (to about

five thousand).

All this was done by using symbolic features of the software Mathematica [23] since the

expressions for the coordinates of points A3, B3 and C3 were unmanageable otherwise.

As the symbolic power of Mathematica over finite fields is much weaker than it is over

Q (the default in Mathematica [23]), we attempted to solve the systems of equations

symbolically assuming that all constants in our systems come from Q. In those cases,

where Mathematica produced results over Q, it was generally easy to interpret them as

outputs from symbolic computations over a finite field F = Fq for some prime power q.
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Some of the basic subroutines are listed in [12]. Often Mathematica could not find results

over Q, and we had to specialize some unknowns in a certain way to enable the program

to find the remaining unknowns. Sometimes we could find this needed specialization of

some unknowns and sometimes we could not. In the latter, we tried to argue that a

solution existed.

In what follows, we present proof of the 2+0 Theorem. For proof of Theorem 3.1 that

is largely similar to the one of the 2 + 0 Theorem, we refer the reader to [12]. Due to a

limitation of space, we provide proof only for the cases for which the 2 + 0 Theorem is

not established in [12]. Specifically, the proofs of the cases that use Propositions 2.10 ,

and 2.11 (ii) are new. We present them below with the first case in greater detail.

4.1 Case: NBF/NBF (i): Intersecting Lines

For this case, we consider any pair of intersecting lines from NBF .

Proof. We analytically construct a Pappus configuration to prove the 2 + 0 Theorem.

(This is also a proof that the 3+0 Question is affirmative in this case.) Using Proposition

2.10 without loss of generality, we can assume that ℓ1 : y = x(µ, ψ) and ℓ2 : y = x(0, 1)

for some µ, ψ ∈ F, ψ 6= 0. We can determine the coordinates of points A1, B1, C1 and

A2, B2, C2. Next, we build a type 2 line B1C2 then use it to determine the equations of

the remaining lines A1B2, A2B1, A1C2, A2C1 and B2C1. Each of the six type 2 lines comes

with constraints to ensure that the denominators and the second component of slope are

nonzero. Then, we compute the the intersection point of lines B1C2 and B2C1, point A3

and determine the conditions for its existence which we use to determine the conditions

for the existence of and the coordinates of points B3 and C3. (Note: Our choice of which

line or point to build first is arbitrary.)

In order for Mathematica to complete the computation that verifies that the slope of the

line A3B3 equals the slope of the line A3C3 and therefore the Pappus line exists, we must

carefully choose specializations of some unknowns that allow for a Pappus configuration

to exist. This also serves to simplify the computation. Besides requiring that we have

confirmation that the Pappus configuration exists, we must verify that each step in the

computation is valid in the sense that we have not violated any laws of algebra or our

own assumptions in any of the steps.

We begin with the previously created general formulas for the points A1, B1, C1 and
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A2, B2, C2. Using Proposition 2.10 , without loss of generality, we can fix the point A1

by setting α = 0 and β = 1. We provide a solution to this case by using specializations

for the unknowns: g = t = z = 0. The resulting equations of lines ℓ1 and ℓ2 and the

coordinates of the points used in the Pappus configuration are listed below. Recall that

f(x) = x2 − rx− s is the defining polynomial of H.

ℓ1 : (y1, y2) = (x1, x2)(µ, ψ) ℓ2 : (y1, y2) = (x1, x2)(0, 1)

A1 : ((0, 1), (−f(µ)/ψ, r− µ)) A2 : ((0, h), (sh, rh))

B1 : ((γ, δ), (γµ− f(µ)δ/ψ, δ(r− µ) + γψ)) B2 : ((0, v), (sv, rv))

C1 : ((e, j), (eµ− f(µ)j/ψ, j(r− µ) + eψ)) C2 : ((w, 0), (0, w))

Note that the denominator in some of the components of the points above is ψ which

is nonzero based on our assumption that ℓ1 is a type 2 line. As a sample of the output in

this case, the slope m and y-intercept k of line A1B2 is provided below since it has the

most compact formulas for any of the six lines A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1

that we can display in this case.

m1 = µ/(1− v)

m2 = (s(−1 + v)2 − µ(r(−1 + v) + µ))ψ/((−1 + v)(µ(−r + µ) + s(−1 + vψ)))

k1 = v(s+ (r − µ)µ− sψ)/((−1 + v)ψ)

k2 = vµ/(1− v)

For the denominators to be nonzero, we must not use v = 1 or a v that satisfies the

quadratic equation in v, sψ v2 + (−s + µ(−r + µ) − sψ) v + s − µ(−r + µ) = 0. To

justify that this quadratic polynomial in v is not identically zero for some sequence of

parameters, consider the leading coefficient, sψ. It is nonzero since ψ 6= 0 and −s is the

constant term in the defining polynomial of H. Hence, in a large enough basefield, there

exists a v 6= 1 that is not a root of the quadratic polynomial (in v) listed above. Similar

reasoning works for the denominators of the remaining five lines we build between the

points on ℓ1 and ℓ2.

Since we chose to create type 2 lines A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1, we

must also consider the constraints created to ensure that the second component of slope

is nonzero for each line. We find that for line A1B2, the numerator of m2 equals zero

16



when v = (2s+ rµ±
√
r2 + 4sµ)/(2s). We must avoid such values of v. There are many

reasons why this does not invalidate our solution. First of all, if µ = 0, since s 6= 0, we

have that v = 1 which we already determined that we would not use. If µ 6= 0, then

these values of v do not exist in the basefield due the fact that the defining polynomial

f(x) = x2 − rx− s is irreducible over F. Similar reasoning ensures that the components

of the other five lines listed above exist and the lines are of type 2.

The intersection point of lines A1B2 and A2B1 is C3. Its coordinates (x,y) are provided

below.

x1 = −(γ(v−h)h(µ(−r+µ)+s(−1+vψ)))/(−s(−vδ+h)2+(vδµ−hµ−vγψ)(r(−vδ+
h) + vδµ− hµ− vγψ))

x2 = (s(δh2 + v2δ(δ − h + δh) − vh(δ + δ2 − h + δ h)) − v2δ2µ2 + vδhµ2 + v2δhµ2 +

vδ2hµ2−v2δ2hµ2−vh2µ2−δh2µ2+vδh2µ2+2v2γδµψ−v2γhµψ−2vγδhµψ+2v2γδhµψ−
vγh2µψ−v2γ2ψ2+vγ2hψ2−v2γ2hψ2+r(−δh+v(δ−h+δh))(vδµ− hµ−vγψ))/(s(−vδ+
h)2 + (vδµ− hµ− vγψ)(rvδ − rh− vδµ+ hµ+ vγψ))

y1 = (−(v−h)(r−µ)µ(rδ− δµ+ γψ)(vδµ−hµ− vγψ)− s2(vδ−h)(−δh+ v(δ−hψ+

δhψ)) + s(h2µ(2δµ− γψ) + v2(δ2µ2(2 + hψ) + γψ2 (γ + hµ+ γhψ)− δ µψ(hµ+ 2γ(1 +

hψ))) + r(−2δh2µ+ vh(2δ2µ− γδψ − hµψ + δµ(2 + hψ)) + v2(−γhψ2 − δ2µ(2 + hψ) +

δψ(γ + hµ + γhψ))) + vh(−2δ2µ2 − δµ(−2γ ψ + µ(2 + hψ)) + ψ(hµ2 − γ2ψ + γ(µ +

hµψ)))))/(ψ(−s(−vδ + h)2 + (vδµ− h µ− vγψ)(r(−vδ + h) + vδµ− hµ− vγψ)))

y2 = (−r2(−δh+v(δ−h+δh))(vδµ− hµ−vγψ)−(v−h)(µ(δµ− γψ)(vδµ−hµ−vγψ)+
s(−vδ2µ+δhµ−γ hψ+vγhψ))+r(s(−δh2−v2δ(δ−h+δh)+vh(δ+δ2−h+δ h))+h2µ(2δµ−
γψ)+v2(δµ−γψ)(δ(2+h) µ−γψ−h(µ+γψ))+vh(−2δ2µ2−δµ((2+ h)µ−3γψ)+γψ(µ−
γ ψ)+hµ(µ+ γψ))))/(−s(−vδ+h)2+(vδµ−hµ− vγψ)(r(−vδ+h)+ vδµ−hµ− vγψ))

Note that the denominators of x1 and y2 are identical, and the denominator of y1 is

equal to −ψ times the denominator of x2. As stated above, the element ψ 6= 0. The

denominator of each component of point C3 is a quadratic polynomial in h with a nonzero

leading coefficient, −f(µ) or ψf(µ) (where f is the defining polynomial of the Hall system

which is irreducible over F). Thus, in a large enough basefield, we can find values of h

that are not roots of those quadratic polynomials in h. In this way, we are certain that

the components of point C3 exist.
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Finally, we create the lines A3B3 and A3C3 and compare the slopes to determine if the

Pappus line exists. This solution yields a type 2 Pappus line with a formula for the first

component of slope that would fill 18 pages of this document. It is too long to list here.

The arguments for the existence of the components and that the lines are of type 2 are

similar to those used above. The subroutines to compute the components of the points

and lines not listed here are provided on the website listed in citation [12] .

4.2 Case: NBF/NBF (ii): Parallel Lines

For this case, we consider any pair of parallel lines from NBF .

Proof. We analytically construct a Pappus configuration to prove the 2 + 0 Theorem.

(This is also a proof that the 3 + 0 Question is affirmative in this case.) We appeal to

Proposition 2.10 to map any pair of parallel lines from NBF to the pair ℓ1 : y = x(0, 1)+

κ and ℓ2 : y = x(0, 1) for some κ ∈ H, and then we proceed as before to determine the

coordinates of points A1, B1, C1 and A2, B2, C2 on lines ℓ1 and ℓ2, respectively. We build

six type 2 lines, A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1, then compute the coordinates

of points A3, B3, and C3.

Once again, we begin with general formulas for the points A1, B1, C1 and A2, B2, C2

and apply Proposition 2.10 , without loss of generality, to fix the point A1 by setting

α = 0 and β = 1. We provide two solutions to this case by using specializations for the

unknowns: (i) g = h = t = 0 and (ii) g = t = 0, h = 1. The resulting equations of lines

ℓ1 and ℓ2 and the coordinates of the points used in the Pappus configuration are listed

below.

(i) ℓ1 : (y1, y2) = (x1, x2)(0, 1) + (κ1, κ2) ℓ2 : (y1, y2) = (x1, x2)(0, 1)

A1 : ((0, 1), (κ1 + s, κ2 + r)) A2 : ((0, 0), (0, 0))

B1 : ((γ, δ), (κ1 + sδ, κ2 + γ + rδ)) B2 : ((0, v), (sv, rv))

C1 : ((e, j), (κ1 + sj, κ2 + e + rj)) C2 : ((w, z), (sz, w + rz))
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(ii) ℓ1 : (y1, y2) = (x1, x2)(0, 1) + (κ1, κ2) ℓ2 : (y1, y2) = (x1, x2)(0, 1)

A1 : ((0, 1), (κ1 + s, κ2 + r)) A2 : ((0, 1), (s, r))

B1 : ((γ, δ), (κ1 + sδ, κ2 + γ + rδ)) B2 : ((0, v), (sv, rv))

C1 : ((e, j), (κ1 + sj, κ2 + e + rj)) C2 : ((w, z), (sz, w + rz))

The computations required to construct and to verify that the Pappus configuration

exists proceed as before. We could not prove that the slopes of lines A3B3 and A3C3

were equal without specializing h. To show that we can specialize h to only take on the

values of 0 or 1 without loss of generality in the parameters, consider the lines A2B1 and

A2C1 that both contain the point A2. Since A2 has component x2 = h = 0 in solution

(i) and x2 = h = 1 in solution (ii), when we determine the constraints required so that

the denominators and the second component of the slope of line A2B1 are nonzero, we

find that if γ = κ2, δ is arbitrary. If γ = −κ2, then in solution (i), δ 6= 0 and in solution

(ii) δ 6= 1. Since κ, γ, and δ are given and the constraints are mutually exclusive, δ is

arbitrary. Similarly, for line A1C2, we find that if e = κ2, j is arbitrary. If e = −κ2, then

in solution (i), j 6= 0 and in solution (ii) j 6= 1. Hence, j is arbitrary. These are the only

lines with constraints on parameters. All other possible constraints are resolved as they

were in the previous case in Subsection 4.1. The verification that the polynomials in the

denominators of the components of the lines containing point A2 requires substituting in

the constraints on the parameter sequence from one specialization to show that they are

not constraints on the parameter sequence in the other specialization. The subroutines

to compute the components of the points and lines not listed here are provided on the

website listed in citation [12] .

4.3 Case: BF/NBF

For this case, we consider any pair of lines with the first from BF and the second from

NBF . Clearly, these lines are intersecting.

Proof. We analytically construct a Pappus configuration to prove the 2 + 0 Theorem.

We appeal to Proposition 2.11 to map any pair of lines with the first from BF and the

second from NBF to the pair ℓ1 : x = 0 and ℓ2 : y = x(0, 1), and then we proceed as

before to determine the coordinates of points A1, B1, C1 and A2, B2, C2 on lines ℓ1 and ℓ2,

respectively. We build six type 2 lines, A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1, then
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compute the coordinates of points A3, B3, and C3 or determine that lines A1B2, A2B1,

and A1C2, A2C1, and B1C2, B2C1 occur in parallel pairs.

Once again, we begin with general formulas for the points A1, B1, C1 and A2, B2, C2 and

apply Proposition 2.11 , without loss of generality, to fix the point A1 by setting α = 0 and

β = 1. We provide two solutions to this case by using specializations for the unknowns:

If γ = 0, then (i) e = t = w = 0, and if γ 6= 0, then (ii) j = (γ − e + δe)/γ, t = (γ2 +

rγg− sδg− sγh)/(γ2+ rγδ− sδ2), v = (γδ−γg− sδh)/(γ2+ rγδ− sδ2), w = (γ(s(−1+

δ)eg + γ (−e2 + sg − reg + seh)))/(s(γ + (−1 + δ)e)2 − γe( γe+ r(γ + (−1 + δ)e))), z =

(γ(γe(−1+g)+sγh−(−1+δ)e(e−sh)))/(s(γ+(−1+δ)e)2−γe( γe+r(γ+(−1+δ)e))).

The resulting equations of lines ℓ1 and ℓ2 and the coordinates of the points used in the

Pappus configuration are listed below.

(i) ℓ1 : (x1, x2) = (0, 0) ℓ2 : (y1, y2) = (x1, x2)(0, 1)

A1 : ((0, 0), (0, 1)) A2 : ((g, h), (sh, g + rh))

B1 : ((0, 0), (0, δ)) B2 : ((0, v), (sv, rv))

C1 : ((0, 0), (0, j)) C2 : ((0, z), (sz, rz))

(ii) ℓ1 : (x1, x2) = (0, 0) ℓ2 : (y1, y2) = (x1, x2)(0, 1)

A1 : ((0, 0), (0, 1) A2 : ((g, h), (sh, g + rh))

B1 : ((0, 0), (γ, δ)) B2 : (xb,yb)

C1 : ((0, 0) , (e, (γ − e + δe)/γ)) C2 : (xc,yc)

where

xb1 = (γ2 + rγg − sδg − sγh)/(γ2 + rγδ − sδ2)

xb2 = (γδ − γg − sδh)/(γ2 + rγδ − sδ2)

yb1 = (s(γ(δ − g)− sδh))/(γ2 + rγδ − sδ2)

yb2 = (γ2 − sδ(g + rh) + γ(rδ − sh))/(γ2 + rγδ − sδ2),

and

xc1 = (γ(s(−1+ δ)eg+ γ (−e2 + sg− reg+ seh)))/(s(γ+ (−1+ δ)e)2 − γe( γe+ r(γ+

(−1 + δ)e)))

xc2 = (γ(γe(−1 + g) + sγh− (−1 + δ)e(e− sh)))/(s(γ + (−1 + δ)e)2 − γe( γe+ r(γ +

(−1 + δ)e)))
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yc1 = (sγ(γe(−1 + g) + sγh− (−1 + δ)e(e− sh)))/(s(γ + (−1 + δ)e)2 − γe( γe+ r(γ +

(−1 + δ)e)))

yc2 = (γ((−e2−egr+gs+ehs)γ+egs(−1+δ))+rγ(e(−1+g)γ+hsγ−e(e−hs)(−1+

δ)))/((s(γ + (−1 + δ)e)2 − γe( γe + r(γ + (−1 + δ)e))))

Both solutions have the six type 2 lines, A1B2, A2B1, A1C2, A2C1, B1C2, and B2C1. In

solution (i), the Pappus line is also a type 2 line. In solution (ii), the lines A1B2, A2B1,

and A1C2, A2C1, and B1C2, B2C1 occur in parallel pairs. Let us list the reasons that

these configurations together are sufficient to prove the 2 + 0 Theorem in this case.

Solution (i) is used when γ = 0 and the free unknowns on line ℓ2 are g, h, v, z. To verify

that all denominators are nonzero and all type 2 lines have slopes not in the basefield

(nonzero second component) requires that the free unknowns can take on values that

are not roots of certain polynomials. Using reasoning similar to that in the first case in

Subsection 4.1 to verify we have nonzero polynomials in a particular unknown, we find

that in a large enough basefield, we are assured that there exist values of the unknowns

that produce nonzero denominators and type 2 lines with nonzero second component.

Solution (ii) is used when γ 6= 0 and the free unknowns on line ℓ2 are g, h. To verify

that all denominators are nonzero and all type 2 lines have slopes not in the basefield

(nonzero second component) requires that we ignore degenerate cases (when two of the

points A1, B1, C1 or A2, B2, C2 coincide with each other or the point of intersection of lines

ℓ1, ℓ2) which produce trivial Pappus configurations, that we recognize that the defining

polynomial is irreducible over the basefield, and finally that we recognize that the free

unknowns can take on values that are not roots of certain polynomials with at least one

nonzero coefficient, which in a large enough basefield is assured. Note that in this case,

the points A3, B3, and C3 do not exist since the lines A1B2, A2B1, and A1C2, A2C1, and

B1C2, B2C1 occur in parallel pairs.

The subroutines to compute the components of the points and lines not listed here are

provided on the website listed in citation [12] .

5 Concluding remarks

A fool can ask more questions in one hour than a wise man can answer in seven years.

– European proverb.
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As our verification using computer supports the affirmative answer to the 3+1 Question,

it is desirable to answer it (non-asymptotically) for Hall planes. Another line of research

can be establishing the strongest form of Pappus’s Theorem for other classes of finite

nonclassical planes. We would like to repeat the question that motivated our research.

We could not find any reference to it in the literature.

Question 5.1. Is it true that every finite projective plane contains at least one Pappus

configuration?

Let us call a pair of lines in a finite projective plane Pappian if any choice of three points

on one line and any choice of three points on the other line yields a Pappus configuration.

It was shown by Pickert [20], and later by Burn [1], that any finite projective plane with

a Pappian pair of lines is classical. We would like to ask the following question.

Question 5.2. What is the smallest number of Pappus configurations on a pair of lines

in a projective plane of order n that implies the plane is classical?

As was mentioned in the introduction, we know from [16] that every finite projective

plane contains Desargues configuration. Though this paper primarily concerns Pappus

configuration, we think the following question, similar to Question 5.2 , is of interest. We

call a triple of concurrent lines Desarguesian if any two triangles each having one vertex

on each of these lines yields a Desargues configuration.

Question 5.3. (i) If a finite projective plane has a Desarguesian triple of lines, is it

necessarily a classical plane?

(ii) What is the smallest number of Desargues configurations on a triple of con-

current lines in a projective plane of order n that implies the plane is classical?

Of course similar questions can be asked (and were asked) about some other configu-

rations. In particular, the one that attracted the attention of many researchers, is the

existence of a Fano configuration in any finite Non-Desarguesian projective plane (see

[21]).

At the end we want to mention an “inverse” question asked by Welsh [22] (see comments

in [15]), and independently by Erdős [4] that in geometric terms can be stated as follows.

Question 5.4. Is every finite partial linear space (a configuration) embedded in a finite

projective plane?
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See [15] for more details. As far as we know, researchers are divided in their opinions

whether the answer to Erdős’ question is positive or negative. In graph theoretic terms,

the question is equivalent to:

Question 5.5. Is every bipartite graph without 4-cycles a subgraph of the point-line

incidence graph of a finite projective plane?
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