
ar
X

iv
:2

20
6.

06
75

1v
2 

 [
m

at
h.

C
O

] 
 3

 J
ul

 2
02

2

The existence of cyclic (v, 4, 1)-designs

Menglong Zhanga, Tao Fenga and Xiaomiao Wangb

aSchool of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P.R. China
bSchool of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China

mlzhang@bjtu.edu.cn; tfeng@bjtu.edu.cn; wangxiaomiao@nbu.edu.cn

Abstract

Even though Peltesohn proved that a cyclic (v, 3, 1)-design exists if and only if v ≡ 1, 3

(mod 6) as early as 1939, the problem of determining the spectrum of cyclic (v, k, 1)-

designs with k > 3 is far from being settled, even for k = 4. This paper shows that a

cyclic (v, 4, 1)-design exists if and only if v ≡ 1, 4 (mod 12) and v 6∈ {16, 25, 28}.
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1 Introduction

Let X be a set of v points, and B be a collection of k-subsets of X called blocks. A pair (X,B) is

called a (v, k, 1)-design if every pair of distinct elements of X is contained in exactly one block

of B. Kirkman [21] in 1847 showed that a (v, 3, 1)-design exists if and only if v ≡ 1, 3 (mod 6),

and Hanani [18] in 1961 showed that a (v, 4, 1)-design exists if and only if v ≡ 1, 4 (mod 12).

An automorphism of a (v, k, 1)-design (X,B) is a permutation on X leaving B invariant. A

(v, k, 1)-design is said to be cyclic if it admits an automorphism consisting of a cycle of length

v. Without loss of generality we identify X with Zv, the additive group of integers modulo v.

The blocks of a cyclic (v, k, 1)-design can be partitioned into orbits under Zv. We can choose

any fixed block from each orbit and then call these base blocks. If the cardinality of an orbit is

equal to v, the orbit is full. Otherwise, it is short. If gcd(v, k) = 1, then all orbits of a cyclic

(v, k, 1)-design are full (see [22, Lemma 1]).

The existence problem for cyclic (v, 3, 1)-designs is equivalent to Heffter’s difference prob-

lems. To generalize one of Netto’s constructions [23] in 1893 for cyclic (v, 3, 1)-designs, Heffter

[19] in 1896 introduced his famous first difference problem that is related to constructions for

cyclic (v, 3, 1)-designs with v ≡ 1 (mod 6), and a year later both the first and second differ-

ence problems appeared [20]. Heffter’s difference problems were eventually solved in 1939 by

Peltesohn [24].

Theorem 1. [24] There exists a cyclic (v, 3, 1)-design if and only if v ≡ 1, 3 (mod 6) and

v 6= 9.
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The problem of determining the spectrum of cyclic (v, k, 1)-designs with k > 3 is far from

being settled, even for k = 4. For small orders, no cyclic (v, 4, 1)-design exists for v = 16, 25, 28

[16]; a cyclic (12t + 1, 4, 1)-design exists for any t 6 1000 except for t = 2 [17]; a cyclic

(12t+4, 4, 1)-design exists for any 3 6 t 6 50 [12]. It has been conjectured that cyclic (v, 4, 1)-

designs exist for all v ≡ 1, 4 (mod 12) and v > 37 [25].

When p ≡ 1 (mod 12) is a prime, Bose [3] provided a sufficient condition for the existence

of a cyclic (p, 4, 1)-design admitting a multiplier of order 3, and the necessary and sufficient

condition for this special kind of cyclic (p, 4, 1)-designs was established by Buratti in [4]. Fol-

lowing Buratti’s work in [5], Chen and Zhu [13] showed that a cyclic (p, 4, 1)-design exists for

any prime p ≡ 1 (mod 12). When p ≡ 13 (mod 24) is a prime, Check and Colbourn [11] gave

a direct construction for cyclic (4pn, 4, 1)-designs with any given nonnegative integer n. Buratti

[8] presented an explicit construction for cyclic (4p, 4, 1)-designs for any prime p ≡ 1 (mod 12).

Actually one can extend any cyclic (p, k, 1)-design with p a prime to a cyclic (kp, k, 1)-design

(cf. [6]). On the other hand, by means of recursive constructions (cf. [7, 15]) cyclic designs of

composite order v = v1v2 can be obtained. On the whole, it appears that no infinite family

of cyclic (v, 4, 1)-design was known such that v can run over a congruent class and v is not a

prime. For more information on cyclic (v, 4, 1)-designs, the reader is referred to [1, 2, 9, 10].

As the main result of the paper, we are to prove the following theorem.

Theorem 2. There exists a cyclic (v, 4, 1)-design if and only if v ≡ 1, 4 (mod 12) and v 6∈

{16, 25, 28}.

Cyclic designs are closely related to optical orthogonal codes that are widely used as spread-

ing codes in optical code-division multiple access systems [14]. As a corollary of Theorem 2,

we obtain the following optimal optical orthogonal codes.

Theorem 3. There exists an optimal (v, 4, 1)-optical orthogonal code for any v ≡ 1, 4 (mod 12)

and v 6∈ {16, 25, 28}.

2 Preliminaries

A useful tool for generating cyclic designs is the concept of cyclic difference families. Every

union in this paper will be understood as multiset union. A (v, k, 1)-cyclic difference packing

(briefly CDP) is a family F of k-subsets (called base blocks) of Zv such that the multiset

∆F :=
⋃

F∈F

∆F := {x− y (mod v) : x, y ∈ F, x 6= y, F ∈ F}

contains every element of Zv \ {0} at most once. Write L := Zv \ ∆F , and L is said to be

the difference leave or leave of F . If L = {0}, F is called a (v, k, 1)-cyclic difference family.

If k is a divisor of v and L is the subgroup of order k in Zv, F is called a (v, k, k, 1)-cyclic

difference family (briefly CDF). A (v, k, 1)-CDF contains (v − 1)/k(k − 1) base blocks, and a

(v, k, k, 1)-CDF contains (v − k)/k(k − 1) base blocks.

Lemma 1. [16]

(1) Let F be a (v, k, 1)-CDF. Then F forms the set of base blocks of a cyclic (v, k, 1)-design.

(2) Let F be a (v, k, k, 1)-CDF. Then F ∪ {{0, v/k, 2v/k, . . . , (k − 1)v/k}} forms the set of

base blocks of a cyclic (v, k, 1)-design.
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For any base block F of a (v, k, 1)-CDP F , if x, y ∈ F and x > y, we call x − y a positive

difference from F , and y − x (mod v) a negative difference from F . The collection of all

positive differences (resp. negative differences) in ∆F is denoted by ∆+F (resp. ∆−F ). Write

∆+F =
⋃

F∈F
∆+F and ∆−F =

⋃
F∈F

∆−F . Clearly ∆F = ∆+F ∪∆−F .

For positive integers a, b and c such that a 6 b and a ≡ b (mod c), we set [a, b]c := {a+ ci :

0 6 i 6 (b− a)/c}. When c = 1, [a, b]1 is simply written as [a, b].

3 Direct constructions for cyclic difference families

The idea that we use to construct a (v, 4, 1)-CDF is from [27] which is a monograph on coding

theory and cryptography written by Yang and Lin in Chinese in 1992. In Section 3.1 we give

a review of Yang and Lin’s construction for optical orthogonal codes, which are equivalent

to cyclic difference packings. By modifying Yang and Lin’s construction slightly, we obtain

a (v, 4, 1)-CDF for any v ≡ 1 (mod 72) in Section 3.2. Further modification of Yang and

Lin’s construction is made in Section 3.3 to produce (v, 4, 1)-CDFs and (v, 4, 4, 1)-CDFs for all

admissible values of v.

3.1 Revisit of Yang and Lin’s construction

A (v, k, 1)-optical orthogonal code (briefly OOC) C, is a family of (0, 1) sequences (called

codewords) of length v and weight k satisfying that for any x = (x0, x1, . . . , xv−1) ∈ C,

y = (y0, y1, . . . , yv−1) ∈ C and any integer r,
∑v−1

i=0
xiyi+r 6 1, where either x 6= y or r 6= 0, and

the arithmetic i+ r is reduced modulo v. A (v, k, 1)-OOC with ⌊(v − 1)/k(k − 1)⌋ codewords

is said to be optimal.

Lemma 2. [28, Theorem 2.1] A (v, k, 1)-CDP with b base blocks is equivalent to a (v, k, 1)-OOC

with b codewords.

Yang and Lin [27] constructed a (v, 4, 1)-OOC with v−1

12
− 2 codewords for any v ≡ 1

(mod 72). Actually one of these codewords is not correct, so their (v, 4, 1)-OOC consists of v−1

12
−

3 codewords. Lemma 2 establishes the equivalence between (v, 4, 1)-OOCs and (v, 4, 1)-CDPs.

Thus modifying Yang and Lin’s construction to obtain (v, 4, 1)-CDFs is worth pursuing. We

include Yang and Lin’s construction here to facilitate the reader to compare their construction

with ours.

Lemma 3. [27] There exists a (v, 4, 1)-CDP with v−1

12
− 3 base blocks for any integer v ≡ 1

(mod 72) and v > 1.

Proof. Let v = 72t+ 1 and t > 0. The 6t− 3 base blocks are listed below:

F1,i = {0, 43t+ i, 31t+ 1 + 2i, 8t+ 2 + 3i}, i ∈ I1;

F2,i = {0, 23t+ i, 5t+ 1 + 2i, 8t+ 1 + 3i}, i ∈ I2;

F3,i = {0, 41t+ i, 25t+ 2i, 8t+ 3i}, i ∈ I3;

F4,i = {0, 35t+ i, 5t+ 2i, 1 + 3i}, i ∈ I4;

F5,i = {0, 47t+ 2 + i, 19t+ 1 + 2i, 2 + 3i}, i ∈ I5;

F6,i = {0, 21t+ i, 13t+ 2i, 3i}, i ∈ I6,

where I1 = I3 = I6 = {i : 1 6 i 6 t− 1} and I2 = I4 = I5 = {i : 0 6 i 6 t− 1}.

3



Table 1: Differences from base blocks in Lemma 3

∆F+

1,i ∆F+

1 ∆F−

1 ∆F+

2,i ∆F+

2

43t+ i [43t+ 1, 44t− 1] [28t+ 2, 29t] 23t+ i [23t, 24t− 1]
31t+ 1 + 2i [31t+ 3, 33t− 1]2 5t + 1 + 2i [5t+ 1, 7t− 1]2
8t+ 2 + 3i [8t+ 5, 11t− 1]3 8t + 1 + 3i [8t+ 1, 11t− 2]3
12t− 1− i [11t, 12t− 2] 18t− 1− i [17t, 18t− 1]
35t− 2− 2i [33t, 35t− 4]2 15t− 1− 2i [13t+ 1, 15t− 1]2
23t− 1− i [22t, 23t− 2] 3t+ i [3t, 4t− 1]

∆F+

3,i ∆F+

3 ∆F−

3 ∆F+

4,i ∆F+

4

41t+ i [41t+ 1, 42t− 1] [30t+ 2, 31t] 35t+ i [35t, 36t− 1]
25t+ 2i [25t+ 2, 27t− 2]2 5t+ 2i [5t, 7t− 2]2
8t+ 3i [8t+ 3, 11t− 3]3 1 + 3i [1, 3t− 2]3
16t− i [15t+ 1, 16t− 1] 30t− i [29t+ 1, 30t]
33t− 2i [31t+ 2, 33t− 2]2 35t− 1− 2i [33t+ 1, 35t− 1]2
17t− i [16t+ 1, 17t− 1] 5t− 1− i [4t, 5t− 1]
∆F+

5,i ∆F+
5 ∆F−

5 ∆F+

6,i ∆F+
6

47t+ 2 + i [47t+ 2, 48t+ 1] [24t, 25t− 1] 21t+ i [21t+ 1, 22t− 1]
19t+ 1 + 2i [19t+ 1, 21t− 1]2 13t+ 2i [13t+ 2, 15t− 2]2

2 + 3i [2, 3t− 1]3 3i [3, 3t− 3]3
28t+ 1− i [27t+ 2, 28t+ 1] 8t− i [7t+ 1, 8t− 1]
47t− 2i [45t+ 2, 47t]2 [25t+ 1, 27t− 1]2 21t− 2i [19t+ 2, 21t− 2]2

19t− 1− i [18t, 19t− 1] 13t− i [12t+ 1, 13t− 1]

There is no detailed explanation in [27] on how Yang and Lin found the above base blocks,

and the verification of the correctness of these base blocks is left to the reader. In order to

obtain some intuition on the choices of these base blocks, we provide details here to check their

construction. Let Fr = {Fr,i : i ∈ Ir} for 1 6 r 6 6. All positive differences from Fr are listed

in Table 1, and if a positive difference is greater than 36t, we list its corresponding negative

difference. Let

L ={0} ∪ ±{7t, 8t, 12t, 15t, 19t, 27t}

∪ ±{8t + 2, 12t− 1, 13t, 16t, 21t, 23t− 1, 25t, 27t+ 1, 30t+ 1, 31t+ 1, 35t− 2, 36t}.

It is readily checked that ∆(
⋃6

r=1
Fr) covers every element in Zv \ L exactly once.

3.2 Slight modification of Yang and Lin’s construction

In Yang and Lin’s construction, all base blocks are divided into 6 parts. Each base block in the

r-th part, 1 6 r 6 6, is of the form

{0, αr1t+ αr2 + i, βr1t+ βr2 + 2i, γr1t + γr2 + 3i}, (1)

where i runs over some set Ir. By choosing appropriate parameters αr1, αr2, βr1, βr2, γr1, γr2 and

Ir, Yang and Lin constructed (v, 4, 1)-CDPs shown in Lemma 3.

Observe the difference leave L of the (v, 4, 1)-CDP in the proof of Lemma 3. Each differ-

ence in L is almost a multiple of t. It is easy to see that we can add one more base block,
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{0, 7t, 19t, 64t + 1}, to form a (v, 4, 1)-CDP with v−1

12
− 2 base blocks. However, we cannot

extend it anymore. A natural idea to solve this problem is to reduce the range of values for Ir
such that more differences are released and then reassemble them to produce a CDF. In our

construction (see Lemma 4), we set Ir = {i : 1 6 i 6 t− 2} \ {⌊t/2⌋} for each 1 6 r 6 6. Note

that the lack of ⌊t/2⌋ in our Ir ensures that each difference in L is around some multiple of

⌊t/2⌋. This increases the flexibility to complete a CDP to a CDF.

Lemma 4. There exists a (v, 4, 1)-CDF for any positive integer v ≡ 1 (mod 72).

Proof. For v ∈ {73, 145}, a (v, 4, 1)-CDF exists by [2, Theorem 16.28]. For v ≡ 1 (mod 72)

and v > 145, let v = 72t + 1 where t > 2. A (v, 4, 1)-CDF, F , contains 6t base blocks. The

first 6t− 18 base blocks are listed below:

F1,i := {0, 43t+ i, 31t+ 1 + 2i, 8t + 2 + 3i},

F2,i := {0, 23t+ i, 5t+ 1 + 2i, 8t + 1 + 3i},

F3,i := {0, 41t+ i, 25t+ 2i, 8t + 3i},

F4,i := {0, 35t+ i, 5t+ 2i, 1 + 3i},

F5,i := {0, 47t+ 2 + i, 19t+ 1 + 2i, 2 + 3i},

F6,i := {0, 21t+ i, 13t+ 2i, 3i},

where 1 6 i 6 t − 2 and i 6= ⌊t/2⌋. The remaining 18 base blocks are given according to the

parity of t. If t is odd, we take

{0, 1, 3t−1

2
, 11t− 2}, {0, 2, 3t− 1, 15t}, {0, 3t− 2, 11t− 1, 35t− 2},

{0, 4t− 1, 12t− 1, 27t− 2}, {0, 3t+1

2
, 57t+3

2
, 71t−1

2
}, {0, 5t− 1, 13t+ 1, 34t},

{0, 7t+ 1, 28t+ 1, 42t}, {0, 17t, 36t+ 2, 95t+3

2
}, {0, 37t−1

2
, 43t−1

2
, 89t−1

2
},

{0, 7t− 1, 18t− 1, 42t− 1}, {0, 4t, 33t+1

2
, 40t}, {0, 6t− 1, 33t+ 1, 45t+ 1},

{0, 15t+ 1, 31t+ 2, 56t+ 1}, {0, 7t, 25t, 53t+ 2}, {0, 15t+1

2
, 59t+1

2
, 99t+3

2
},

{0, 9t−1

2
, 19t−1

2
, 109t+3

2
}, {0, 6t, 31t+1

2
, 19t}, {0, 5t+ 1, 25t+ 1, 58t+ 1}.

If t is even, we take

{0, 1, 3t− 2, 11t− 2}, {0, 3t− 1, 15t− 2, 60t+ 1}, {0, 3t
2
+ 2, 6t+ 1, 19t+ 1},

{0, 2, 35t, 42t+ 1}, {0, 8t+ 2, 38t+ 3, 99t
2
+ 2}, {0, 19t

2
+ 2, 57t

2
+ 1, 107t

2
+ 2},

{0, 19t
2
, 33t

2
, 95t

2
+ 2}, {0, 20t, 39t+ 2, 46t}, {0, 59t

2
, 31t+ 1, 45t},

{0, 3t
2
, 25t, 64t}, {0, 15t+ 1, 20t+ 1, 55t

2
+ 1}, {0, 7t

2
, 40t+ 1, 54t+ 1},

{0, 4t, 15t, 51t+ 2}, {0, 5t− 1, 22t− 1, 50t+ 1}, {0, 6t, 24t− 1, 51t+ 1},

{0, 3t, 16t+ 1, 39t+ 1}, {0, 12t+ 1, 16t, 65t+ 2}, {0, 5t+ 1, 29t+ 1, 40t}.

One can make a table similar to Table 1 for the first 6t− 18 base blocks and then check that

∆F = Zv \ {0}. Thus F is a (v, 4, 1)-CDF.

To facilitate the reader to check the correctness of our results, we provide a computer code

written by GAP [26] to show that our constructions in Lemma 4, Lemma 5 and Theorem 5

always work regardless of the parameter t. The interested reader can get a copy of the computer

code from [29].

3.3 Further modification of Yang and Lin’s construction

To construct (v, 4, 1)-CDFs with v 6≡ 1 (mod 72), we need to modify the values of αr2, βr2 and

γr2 in (1).
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Lemma 5. There exists a (v, 4, 1)-CDF for any positive integer v ≡ 13, 25, 37, 49, 61 (mod 72)

and v 6= 25.

Proof. For v ≡ 13, 25, 37, 49, 61 (mod 72), v 6= 25 and v 6 205, a (v, 4, 1)-CDF exists by [2,

Theorem 16.28]. For v > 205, let v = 72t+12x+1 where t > 2 and 1 6 x 6 5. A (v, 4, 1)-CDF

contains 6t+ x base blocks. The first 6t− 18 base blocks are listed below:

{0, 43t+ a1 + i, 31t+ a2 + 2i, 8t+ a3 + 3i},

{0, 23t+ b1 + i, 5t+ b2 + 2i, 8t+ b3 + 3i},

{0, 41t+ c1 + i, 25t+ c2 + 2i, 8t+ c3 + 3i},

{0, 35t+ d1 + i, 5t+ d2 + 2i, d3 + 3i},

{0, 47t+ e1 + i, 19t+ e2 + 2i, e3 + 3i},

{0, 21t+ f1 + i, 13t+ f2 + 2i, f3 + 3i},

where 1 6 i 6 t − 2, i 6= ⌊t/2⌋, and aj , bj, cj , dj, ej , fj for 1 6 j 6 3 are given in the following

table:

x a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2 f3
1 8 7 5 4 3 4 9 6 3 5 2 1 10 3 2 2 1 0

2 16 14 8 10 4 7 15 11 6 12 3 1 17 9 2 6 4 0

3 25 20 10 14 5 8 24 18 9 17 4 1 24 11 2 12 7 0

4 31 24 10 18 7 8 30 20 9 23 6 1 32 13 2 16 11 0

5 38 30 11 21 8 9 37 24 10 29 7 1 40 17 2 18 13 0

.

The remaining 18 + x base blocks are provided in Table 2 according to the parity of t.

In the proof of Lemma 5, the first 6t − 18 base blocks were found by hand, and the latter

18 + x base blocks were found by computer search. We illustrate why and how to modify the

values of αr2, βr2 and γr2 in (1) to get the 6t− 18 base blocks in Lemma 5. For instance, when

v ≡ 13 (mod 72), let v = 72t + 13. Consider Yang and Lin’s base blocks in Lemma 3, which

can be rewritten as follows:

F1,i = {0, 43t+ a1 + i, 31t+ a2 + 2i, 8t+ a3 + 3i}, i ∈ I1;

F2,i = {0, 23t+ b1 + i, 5t+ b2 + 2i, 8t+ b3 + 3i}, i ∈ I2;

F3,i = {0, 41t+ c1 + i, 25t+ c2 + 2i, 8t+ c3 + 3i}, i ∈ I3;

F4,i = {0, 35t+ d1 + i, 5t+ d2 + 2i, d3 + 3i}, i ∈ I4;

F5,i = {0, 47t+ e1 + i, 19t+ e2 + 2i, e3 + 3i}, i ∈ I5;

F6,i = {0, 21t+ f1 + i, 13t+ f2 + 2i, f3 + 3i}, i ∈ I6,

where I1 = I3 = I6 = {i : 1 6 i 6 t−1}, I2 = I4 = I5 = {i : 0 6 i 6 t−1}, (a1, a2, a3) = (0, 1, 2),

(b1, b2, b3) = (0, 1, 1), (c1, c2, c3) = (0, 0, 0), (d1, d2, d3) = (0, 0, 1), (e1, e2, e3) = (2, 1, 2) and

(f1, f2, f3) = (0, 0, 0).

Let’s analyze why some of Yang and Lin’s base blocks are not valid for v ≡ 13 (mod 72).

By Table 1, [43t + 1, 44t − 1] ∈ ∆F+

1 . Then v = 72t + 13 implies that ∆F−

1 contains the set

[28t+14, 29t+12], which interacts with the set [29t+1, 30t] ∈ ∆F+
4 on 12 elements. With the

same argument, [41t+ 1, 42t− 1] ∈ ∆F+

3 leads to [30t+ 14, 31t+ 12] ∈ ∆F−

3 , which intersects

with both the sets [31t + 3, 33t − 1]2 ∈ ∆F+

1 and [31t + 2, 33t − 2]2 ∈ ∆F+

3 . Also, the sets

[47t+2, 48t+1] and [45t+2, 47t]2 from ∆F+
5 lead to [24t+12, 25t+11], [25t+13, 27t+11]2 ∈ ∆F−

5 ,

which intersect with [25t+ 2, 27t− 2]2 ∈ ∆F+

3 and [27t+ 2, 28t+ 1] ∈ ∆F+

5 respectively.

On one hand, by the above observation, we could delete all the base blocks that produce

overlapped differences and then reassemble them to form a (v, 4, 1)-CDF with v ≡ 13 (mod 72).
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However, this would lead to a big leave that contains too many differences to extend the resulting

CDP to a CDF by computer search. On the other hand, we can try to make slight adjustment

for the values of a1, a2, a3, . . . , f1, f2, f3 such that the intervals of differences are mutually disjoint

and the leave of the CDP is as small as possible. We did this procedure by hand and it often

spent us several hours for each v modulo 72. Once a (v, 4, 1)-CDF with v ≡ 13 (mod 72) was

found, we took its first 6t−18 base blocks, and then did the same strategy for v ≡ 25 (mod 72)

to get new 6t− 18 base blocks, and so on. For each case of v, the time used to search for the

remaining 18 + x base blocks by a common personal computer was ranged from a half day to

two days.

Table 2: The remaining 18 + x base blocks in Lemma 5

x = 1 and t is odd

{0, 2, 35t+ 5, 41t+ 7} {0, 3t−3

2
, 14t, 56t+ 10} {0, 3t−1

2
, 13t+ 1, 25t+ 3}

{0, 3t+1

2
, 5t+ 1, 23t+ 2} {0, 3t− 3, 3t− 2, 35t+ 4} {0, 3t, 27t+ 4, 68t+ 13}

{0, 4t+ 2, 27t+ 6, 68t+ 12} {0, 5t+ 2, 20t+ 2, 135t+23

2
} {0, 6t+ 1, 25t+ 5, 52t+ 10}

{0, 19t+3

2
, 26t+ 5, 45t+ 6} {0, 11t, 22t+ 2, 129t+23

2
} {0, 12t+ 1, 19t+ 2, 27t+ 3}

{0, 15t− 1, 23t+ 3, 65t+ 11} {0, 15t+ 1, 34t+ 4, 42t+ 9} {0, 31t+7

2
, 25t+ 6, 59t+ 11}

{0, 18t+ 2, 21t+ 1, 57t+ 10} {0, 21t+ 2, 24t+ 3, 57t+ 9} {0, 45t+5

2
, 61t+9

2
, 89t+11

2
}

{0, 25t+ 4, 36t+ 5, 41t+ 8}

x = 1 and t is even

{0, 3t− 2, 15t, 40t+ 6} {0, 3t
2
+ 2, 19t+ 3, 26t+ 5} {0, 3t− 3, 40t+ 7, 125t

2
+ 9}

{0, 3t
2
, 23t+ 2, 64t+ 8} {0, 3t, 22t+ 2, 60t+ 12} {0, 3t+ 1, 45t+ 9, 51t+ 11}

{0, 4t+ 1, 8t+ 1, 58t+ 13} {0, 7t
2
+ 1, 5t+ 2, 27t+ 5} {0, 9t

2
+ 1, 71t

2
+ 5, 87t

2
+ 8}

{0, 5t+ 3, 25t+ 5, 61t+ 12} {0, 8t+ 2, 8t+ 4, 53t+ 9} {0, 11t, 37t
2
+ 1, 34t+ 4}

{0, 23t
2
+ 1, 59t

2
+ 3, 89t

2
+ 6} {0, 14t+ 1, 21t+ 1, 61t

2
+ 4} {0, 15t− 1, 30t+ 3, 41t+ 5}

{0, 15t+ 2, 20t+ 3, 45t+ 6} {0, 19t+ 1, 25t+ 4, 56t+ 10} {0, 23t+ 3, 36t+ 4, 36t+ 5}

{0, 24t+ 4, 27t+ 3, 31t+ 5}

x = 2 and t is odd

{0, 3t−3

2
, 43t+11

2
, 55t+17

2
} {0, 3t− 3, 22t+ 6, 47t+ 14} {0, 3t, 14t+ 3, 30t+ 9}

{0, 15t+ 2, 23t+ 6, 64t+ 17} {0, 3t+ 3, 24t+ 9, 57t+ 22} {0, 4t+ 3, 19t+ 7, 69t+ 27}

{0, 15t+5

2
, 31t+9

2
, 25t+ 9} {0, 8t+ 3, 39t+ 14, 44t+ 16} {0, 29t+ 10, 37t+ 15, 37t+ 17}

{0, 19t+11

2
, 47t+19

2
, 73t+27

2
} {0, 19t+13

2
, 38t+ 16, 99t+37

2
} {0, 12t+ 2, 12t+ 3, 30t+ 10}

{0, 12t+ 4, 37t+ 14, 43t+ 16} {0, 15t+ 5, 33t+11

2
, 137t+45

2
} {0, 3t+ 2, 36t+ 11, 67t+ 21}

{0, 17t+ 5, 59t+19

2
, 34t+ 12} {0, 17t+ 6, 40t+ 15, 83t+29

2
} {0, 19t+ 8, 22t+ 7, 35t+ 12}

{0, 23t+ 8, 26t+ 9, 30t+ 11} {0, 7t+ 2, 12t+ 5, 56t+ 20}

x = 2 and t is even

{0, 1, 15t+ 4, 64t+ 19} {0, 2, 12t+ 4, 28t+ 10} {0, 3t
2
, 30t+ 9, 64t+ 17}

{0, 3t
2
+ 1, 17t+ 5, 37t

2
+ 7} {0, 3t− 1, 32t+ 9, 68t+ 23} {0, 4t+ 3, 7t+ 3, 25t+ 9}

{0, 9t
2
+ 2, 27t+ 8, 64t+ 23} {0, 5t+ 2, 24t+ 9, 36t+ 12} {0, 5t+ 3, 18t+ 8, 37t+ 17}

{0, 5t+ 4, 33t+ 13, 50t+ 20} {0, 6t+ 3, 71t
2
+ 12, 47t+ 14} {0, 7t+ 2, 23t+ 7, 26t+ 10}

{0, 33t
2
+ 5, 26t+ 11, 95t

2
+ 17} {0, 8t+ 3, 30t+ 10, 33t+ 11} {0, 8t+ 4, 23t+ 9, 37t+ 13}

{0, 12t+ 5, 15t+ 2, 35t+ 11} {0, 14t+ 3, 35t
2
+ 6, 47t

2
+ 10} {0, 15t

2
+ 2, 55t

2
+ 8, 61t

2
+ 10}

{0, 18t+ 7, 31t+ 11, 56t+ 21} {0, 22t+ 6, 30t+ 11, 33t+ 9}
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Table 2: (Cont.) The remaining 18 + x base blocks in Lemma 5

x = 3 and t is odd

{0, 1, 8t+ 9, 55t+ 28} {0, 3t−3

2
, 23t+ 10, 64t+ 27} {0, 14t+ 7, 35t+ 16, 47t+ 24}

{0, 3t+ 3, 8t+ 7, 57t+ 30} {0, 4t+ 2, 41t+ 22, 60t+ 32} {0, 25t+ 16, 32t+ 19, 43t+ 25}

{0, 6t+ 4, 35t+19

2
, 137t+69

2
} {0, 7t+ 4, 36t+ 17, 43t+ 23} {0, 20t+ 10, 24t+ 14, 57t+ 32}

{0, 12t+ 6, 15t+ 6, 23t+ 11} {0, 13t+ 8, 16t+ 6, 41t+ 21} {0, 12t+ 7, 16t+ 10, 65t+ 35}

{0, 3t+1

2
, 49t+27

2
, 87t+49

2
} {0, 33t+19

2
, 26t+ 17, 113t+61

2
} {0, 19t+ 12, 19t+ 14, 22t+ 11}

{0, 45t+21

2
, 55t+27

2
, 107t+55

2
} {0, 15t+11

2
, 20t+ 13, 56t+ 29} {0, 24t+ 13, 31t+ 18, 45t+ 24}

{0, 59t+27

2
, 31t+ 13, 71t+33

2
} {0, 5t+ 5, 8t+ 6, 38t+ 20} {0, 25t+ 14, 38t+ 21, 41t+ 23}

x = 3 and t is even

{0, 2, 8t+ 10, 37t+ 22} {0, 3t
2
+ 2, 19t

2
+ 8, 101t

2
+ 25} {0, 25t+ 15, 25t+ 16, 28t+ 13}

{0, 33t
2
+ 9, 26t+ 18, 113t

2
+ 31} {0, 7t

2
+ 3, 37t

2
+ 9, 89t

2
+ 24} {0, 47t

2
+ 14, 41t+ 23, 85t

2
+ 24}

{0, 20t+ 11, 24t+ 14, 27t+ 13} {0, 11t+ 5, 17t+ 9, 64t+ 28} {0, 23t
2
+ 5, 40t+ 17, 99t

2
+ 27}

{0, 25t+ 14, 36t+ 20, 41t+ 24} {0, 13t+ 8, 16t+ 9, 49t+ 24} {0, 16t+ 6, 29t+ 13, 36t+ 18}

{0, 16t+ 7, 30t+ 13, 35t+ 16} {0, 7t+ 4, 14t+ 7, 19t+ 12} {0, 17t+ 10, 21t+ 12, 51t+ 26}

{0, 18t+ 10, 33t+ 17, 49t+ 25} {0, 8t+ 5, 29t+ 14, 33t+ 18} {0, 23t+ 10, 31t+ 17, 54t+ 28}

{0, 3t+ 3, 6t+ 5, 141t
2

+ 37} {0, 7t+ 6, 19t+ 11, 22t+ 11} {0, 12t+ 6, 49t
2
+ 13, 60t+ 30}

x = 4 and t is odd

{0, 1, 3t− 2, 11t+ 8} {0, 2, 4t+ 2, 53t+ 33} {0, 3t−3

2
, 23t+ 14, 64t+ 40}

{0, 3t− 1, 15t+ 9, 39t+ 26} {0, 3t+ 1, 15t+ 10, 31t+ 20} {0, 4t+ 3, 23t+ 15, 40t+ 27}

{0, 4t+ 4, 39t+ 25, 51t+ 33} {0, 4t+ 5, 20t+ 17, 42t+ 32} {0, 27t+ 19, 61t+39

2
, 46t+ 30}

{0, 5t+ 7, 12t+ 11, 69t+ 49} {0, 7t+ 5, 36t+ 23, 41t+ 28} {0, 14t+ 10, 37t+ 26, 41t+ 27}

{0, 15t+11

2
, 57t+37

2
, 121t+83

2
} {0, 8t+ 5, 13t+ 11, 60t+ 42} {0, 14t+ 11, 35t+ 22, 39t+ 28}

{0, 8t+ 8, 39t+ 27, 55t+ 38} {0, 19t+17

2
, 55t+39

2
, 45t+ 31} {0, 11t+ 5, 30t+ 19, 60t+ 37}

{0, 11t+ 6, 59t+35

2
, 119t+75

2
} {0, 9t+11

2
, 6t+ 5, 27t+ 20} {0, 8t+ 6, 19t+13

2
, 111t+75

2
}

{0, 7t+ 6, 13t+ 12, 31t+ 24}

x = 4 and t is even

{0, 1, 19t
2
+ 9, 39t+ 26} {0, 3t

2
+ 1, 19t

2
+ 10, 87t

2
+ 31} {0, 33t

2
+ 11, 83t

2
+ 30, 89t

2
+ 30}

{0, 3t− 2, 30t+ 17, 35t+ 22} {0, 3t+ 1, 8t+ 8, 26t+ 19} {0, 7t
2
+ 1, 31t

2
+ 10, 51t+ 33}

{0, 4t+ 1, 16t+ 11, 64t+ 43} {0, 4t+ 4, 27t+ 20, 41t+ 30} {0, 11t+ 8, 27t+ 18, 46t+ 29}

{0, 6t+ 6, 23t+ 17, 53t+ 35} {0, 7t+ 4, 11t+ 7, 121t
2

+ 42} {0, 7t+ 5, 34t+ 22, 67t+ 43}

{0, 7t+ 6, 11t+ 6, 24t+ 18} {0, 15t
2
+ 5, 20t+ 16, 43t

2
+ 16} {0, 8t+ 5, 41t+ 27, 49t+ 34}

{0, 11t+ 5, 15t+ 10, 36t+ 23} {0, 9t
2
+ 5, 6t+ 7, 47t

2
+ 18} {0, 12t+ 8, 41t+ 26, 54t+ 37}

{0, 15t+ 9, 36t+ 24, 56t+ 37} {0, 3t− 3, 3t− 1, 22t+ 15} {0, 19t+ 12, 23t+ 14, 31t+ 24}

{0, 21t+ 11, 25t+ 17, 57t+ 38}

x = 5 and t is odd

{0, 1, 3t− 2, 60t+ 48} {0, 3t−1

2
, 19t+17

2
, 111t+93

2
} {0, 25t+ 21, 36t+ 28, 41t+ 36}

{0, 3t+ 1, 15t+ 12, 39t+ 33} {0, 7t+1

2
, 8t+ 7, 11t+ 6} {0, 16t+ 13, 33t+ 27, 40t+ 33}

{0, 4t+ 1, 12t+ 12, 47t+ 39} {0, 4t+ 2, 35t+ 28, 54t+ 46} {0, 4t+ 5, 8t+ 8, 72t+ 59}

{0, 4t+ 6, 31t+ 28, 53t+ 46} {0, 5t+ 6, 35t+ 29, 53t+ 45} {0, 6t+ 6, 31t+ 30, 85t+77

2
}

{0, 6t+ 7, 47t+41

2
, 51t+ 44} {0, 8t+ 5, 21t+ 18, 41t+ 34} {0, 8t+ 6, 30t+ 25, 44t+ 37}

{0, 19t+15

2
, 11t+ 8, 57t+ 47} {0, 19t+19

2
, 32t+ 29, 51t+ 46} {0, 12t+ 9, 25t+ 23, 56t+ 47}

{0, 15t+ 13, 27t+ 23, 60t+ 53} {0, 4t, 18t+ 13, 23t+ 20} {0, 20t+ 19, 43t+35

2
, 50t+ 41}

{0, 23t+ 19, 30t+ 24, 34t+ 28} {0, 3t, 31t+27

2
, 34t+ 29}
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Table 2: (Cont.) The remaining 18 + x base blocks in Lemma 5

x = 5 and t is even

{0, 1, 19t
2
+ 10, 39t+ 32} {0, 3t

2
+ 1, 24t+ 20, 64t+ 51} {0, 19t+ 20, 22t+ 20, 37t+ 34}

{0, 7t
2
+ 1, 31t

2
+ 13, 55t

2
+ 23} {0, 4t+ 4, 15t+ 11, 52t+ 44} {0, 13t+ 14, 17t+ 14, 44t+ 38}

{0, 27t+ 23, 30t+ 22, 35t+ 29} {0, 5t+ 6, 23t+ 19, 51t+ 43} {0, 6t+ 7, 33t+ 28, 65t+ 55}

{0, 35t
2
+ 13, 19t+ 15, 135t

2
+ 55} {0, 11t+ 8, 71t

2
+ 29, 47t+ 37} {0, 12t+ 9, 61t

2
+ 24, 111t

2
+ 47}

{0, 12t+ 14, 16t+ 15, 42t+ 38} {0, 4t+ 5, 8t+ 11, 68t+ 59} {0, 15t+ 12, 23t+ 20, 56t+ 47}

{0, 16t+ 13, 30t+ 25, 41t+ 34} {0, 15t
2
+ 5, 20t+ 18, 43t

2
+ 18} {0, 18t+ 15, 22t+ 18, 41t+ 36}

{0, 19t+ 16, 38t+ 33, 50t+ 44} {0, 3t+ 1, 8t+ 9, 11t+ 6} {0, 21t+ 15, 21t+ 17, 57t+ 48}

{0, 25t+ 22, 31t+ 30, 43t+ 38} {0, 4t+ 7, 31t+ 29, 69t+ 63}

Theorem 4. There exists a (v, 4, 1)-CDF if and only if v ≡ 1 (mod 12) and v 6= 25.

Proof. A (v, 4, 1)-CDF contains (v−1)/12 base blocks, so v ≡ 1 (mod 12). For the sufficiency,

it is known that a (25, 4, 1)-CDF does not exist by [16]. Combine the results of Lemma 4 and

Lemma 5 to complete the proof.

Next using similar techniques to those in the proof of Lemma 5, we establish the existence

of a (v, 4, 4, 1)-CDF for any v ≡ 4 (mod 12) and v 6∈ {16, 28}.

Theorem 5. There exists a (v, 4, 4, 1)-CDF if and only if v ≡ 4 (mod 12) except for the two

definite exceptions of v = 16 and 28.

Proof. A (v, 4, 4, 1)-CDF contains (v − 4)/12 base blocks, so v ≡ 4 (mod 12). For the suf-

ficiency, it is known that a (v, 4, 4, 1)-CDF with v ∈ {16, 28} does not exist by [16]. For

v ≡ 4 (mod 12), v 6∈ {16, 28} and v 6 208, a (v, 4, 4, 1)-CDF exists by [12]. For v > 208, let

v = 72t + 12x + 4 where t > 2 and 0 6 x 6 5. A (v, 4, 4, 1)-CDF, F , contains 6t + x base

blocks. The first 6t− 18 base blocks are listed below:

{0, 43t+ a1 + i, 31t+ a2 + 2i, 8t+ a3 + 3i},

{0, 23t+ b1 + i, 5t+ b2 + 2i, 8t+ b3 + 3i},

{0, 41t+ c1 + i, 25t+ c2 + 2i, 8t+ c3 + 3i},

{0, 35t+ d1 + i, 5t+ d2 + 2i, d3 + 3i},

{0, 47t+ e1 + i, 19t+ e2 + 2i, e3 + 3i},

{0, 21t+ f1 + i, 13t+ f2 + 2i, f3 + 3i},

where 1 6 i 6 t − 2, i 6= ⌊t/2⌋, and aj , bj, cj , dj, ej , fj for 1 6 j 6 3 are given in the following

table:

x a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2 f3
0 2 2 2 2 1 1 1 2 0 0 0 1 3 2 2 1 0 0

1 10 7 5 6 3 4 9 6 3 7 2 1 11 5 2 4 1 0

2 18 14 8 10 4 7 17 11 6 12 3 1 18 9 2 8 6 0

3 26 20 10 14 5 8 26 18 9 18 4 1 25 11 2 10 7 0

4 32 24 10 18 5 8 30 20 9 24 4 1 35 17 2 16 11 0

5 41 31 11 21 6 9 38 25 10 30 5 1 42 18 2 17 13 0

.
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The remaining 18 + x base blocks are provided in Table 3 according to the parity of t. Then

one can check that ∆F = Zv \ {0, v/4, v/2, 3v/4}, and so F is a (v, 4, 4, 1)-CDF.

4 Summary and proofs of the main theorems

Now we are to prove Theorems 2 and 3.

Proof of Theorem 2: A cyclic (v, 4, 1)-design exists only if v ≡ 1, 4 (mod 12) and v 6∈

{16, 25, 28} by [16]. For the sufficiency, it follows from Lemma 1(1) and Theorem 4 that a

cyclic (v, 4, 1)-design exists for any v ≡ 1 (mod 12) and v 66= 25. By Lemma 1(2) and Theorem

5, a cyclic (v, 4, 1)-design exists for any v ≡ 4 (mod 12) and v 6∈ {16, 28}.

Proof of Theorem 3: By Lemma 2, a (v, 4, 1)-CDP with b base blocks is equivalent to a

(v, 4, 1)-OOC with b codewords. A (v, k, 1)-CDF contains (v − 1)/k(k − 1) base blocks, and

a (v, k, k, 1)-CDF contains (v − k)/k(k − 1) base blocks. An optimal (v, 4, 1)-OOC contains

⌊(v − 1)/12⌋ codewords. It follows from Theorem 2 that Theorem 3 holds.

Many open problems were raised by Reid and Rosa [25, Section 14] in their survey on

(v, 4, 1)-designs, where the first two problems are to find a direct proof of the existence of

(v, 4, 1)-designs and to show that a cyclic (v, 4, 1)-design exists for all admissible v > 37,

respectively. This paper gives a solution to both of the problems.

A further research topic is to examine the existence of a (v, 4, 1)-CDP with ⌊(v − 1)/12⌋

base blocks for any v 6≡ 1, 4 (mod 12), which yields an optimal (v, 4, 1)-OOC. There should be

no serious obstacle to extending our technique in Section 2 to construct them, but much more

time will be required to search for the sporadic base blocks. Also we believe that our technique

can be employed to construct 1-rotational (v, 4, 1)-designs (see [25] for the definition), which

can be seen as a special kind of (v, 4, 1)-CDPs.

A more interesting topic is to examine the existence of cyclic (v, k, 1)-designs with k > 5.

A possible approach is to require that each base block is of the form

{0, α1,1t+ α1,2 + i, α2,1t+ α2,2 + 2i, . . . , αk−1,1t+ αk−1,2 + (k − 1)i}

for some t that is related to v. We leave it as an open problem in the more challenging case.
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Table 3: The remaining 18 + x base blocks in Theorem 5

x = 0 and t is odd

{0, 1, 36t+ 1, 67t+ 4} {0, 2, 15t, 45t+ 4} {0, 3t−3

2
, 14t− 1, 83t+1

2
}

{0, 3t−1

2
, 11t− 2, 95t+5

2
} {0, 3t+1

2
, 13t+ 1, 20t+ 1} {0, 3t− 3, 16t, 19t}

{0, 3t− 2, 35t− 1, 42t+ 1} {0, 3t− 1, 42t+ 3, 53t+ 3} {0, 6t− 1, 31t−1

2
, 65t+ 3}

{0, 7t− 2, 21t, 44t+ 2} {0, 7t− 1, 11t− 1, 34t} {0, 15t+3

2
, 25t+ 3, 137t+9

2
}

{0, 19t−1

2
, 43t+1

2
, 111t+3

2
} {0, 12t, 16t− 1, 64t+ 2} {0, 16t+ 1, 22t+ 1, 64t+ 3}

{0, 16t+ 2, 21t+ 1, 49t+ 4} {0, 19t+ 3, 30t, 55t+ 2} {0, 25t+ 1, 59t+1

2
, 53t+ 2}

x = 0 and t is even

{0, 1, 36t+ 5, 47t+ 2} {0, 3t
2
+ 1, 30t+ 3, 64t+ 3} {0, 3t− 3, 3t− 1, 9t

2
− 1}

{0, 3t− 2, 40t+ 2, 56t+ 2} {0, 7t
2
, 19t

2
, 22t} {0, 4t− 1, 23t, 61t+ 5}

{0, 5t− 1, 33t+ 1, 50t+ 3} {0, 5t, 32t+ 1, 65t+ 3} {0, 5t+ 1, 21t, 47t+ 3}

{0, 6t+ 1, 13t+ 3, 65t+ 5} {0, 7t− 2, 11t− 2, 35t− 1} {0, 7t, 47t
2
+ 2, 99t

2
+ 4}

{0, 15t
2
+ 1, 61t

2
+ 3, 58t+ 4} {0, 8t+ 2, 31t+ 3, 61t+ 4} {0, 19t

2
+ 1, 21t+ 1, 57t+ 4}

{0, 11t+ 1, 24t+ 2, 27t+ 2} {0, 14t+ 1, 30t+ 4, 42t+ 4} {0, 31t
2
− 1, 33t, 52t+ 3}

x = 1 and t is odd

{0, 1, 8t+ 4, 23t+ 3} {0, 3t−1

2
, 25t+ 5, 30t+ 6} {0, 3t+1

2
, 20t+ 4, 57t+ 13}

{0, 3t− 3, 3t− 1, 64t+ 11} {0, 7t+1

2
, 21t+ 4, 125t+25

2
} {0, 4t, 29t+ 6, 65t+ 16}

{0, 4t+ 1, 7t+ 1, 23t+ 5} {0, 4t+ 2, 31t+ 7, 57t+ 12} {0, 9t+3

2
, 14t+ 3, 27t+ 4}

{0, 5t+ 3, 23t+ 6, 49t+ 12} {0, 6t+ 2, 30t+ 8, 45t+ 10} {0, 7t+ 3, 40t+ 10, 51t+ 13}

{0, 7t+ 4, 39t+ 11, 42t+ 9} {0, 15t+7

2
, 20t+ 5, 43t+7

2
} {0, 11t+ 1, 16t+ 3, 35t+ 6}

{0, 23t+7

2
, 89t+19

2
, 95t+21

2
} {0, 13t+ 2, 30t+ 5, 47t+ 9} {0, 19t+ 5, 34t+ 6, 41t+ 8}

{0, 27t+ 7, 73t+19

2
, 85t+21

2
}

x = 1 and t is even

{0, 2, 49t+ 13, 57t+ 17} {0, 3t
2
+ 2, 19t+ 5, 135t

2
+ 15} {0, 3t− 3, 11t, 25t

2
+ 1}

{0, 3t− 1, 14t+ 1, 59t+ 12} {0, 3t, 48t+ 10, 55t+ 12} {0, 7t
2
+ 1, 5t+ 1, 47t+ 11}

{0, 4t, 23t
2
+ 3, 34t+ 5} {0, 5t+ 2, 36t+ 10, 57t+ 13} {0, 5t+ 3, 16t+ 4, 49t+ 12}

{0, 6t+ 2, 33t+ 6, 85t
2
+ 11} {0, 7t+ 4, 39t+ 11, 42t+ 9} {0, 8t+ 5, 30t+ 8, 49t+ 14}

{0, 11t+ 3, 24t+ 5, 45t+ 9} {0, 13t+ 1, 17t+ 3, 36t+ 7} {0, 14t+ 2, 29t+ 6, 47t+ 9}

{0, 15t+ 2, 19t+ 3, 26t+ 6} {0, 31t
2
+ 3, 25t+ 6, 111t

2
+ 13} {0, 49t

2
+ 5, 55t

2
+ 6, 46t+ 9}

{0, 28t+ 6, 35t+ 6, 35t+ 7}

x = 2 and t is odd

{0, 1, 3t−1

2
, 64t+ 21} {0, 2, 3t+ 3, 15t+ 7} {0, 3t− 1, 35t+ 11, 54t+ 20}

{0, 3t+ 2, 31t+ 11, 55t+ 21} {0, 7t+5

2
, 19t+11

2
, 85t+37

2
} {0, 9t+5

2
, 15t+5

2
, 99t+43

2
}

{0, 5t+ 2, 23t+ 8, 42t+ 18} {0, 5t+ 4, 49t+ 22, 52t+ 20} {0, 6t+ 2, 14t+ 4, 101t+41

2
}

{0, 7t+ 3, 14t+ 5, 50t+ 21} {0, 8t+ 4, 19t+9

2
, 57t+ 22} {0, 8t+ 5, 25t+ 10, 41t+ 16}

{0, 8t+ 6, 23t+ 9, 44t+ 17} {0, 11t+ 5, 19t+ 8, 24t+ 11} {0, 23t+9

2
, 31t+13

2
, 83t+33

2
}

{0, 12t+ 5, 38t+ 16, 111t+45

2
} {0, 12t+ 7, 15t+ 4, 47t+ 17} {0, 25t+13

2
, 47t+19

2
, 107t+41

2
}

{0, 17t+ 6, 36t+ 13, 48t+ 19} {0, 23t+ 7, 27t+ 10, 34t+ 11}
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Table 3: (Cont.) The remaining 18 + x base blocks in Theorem 5

x = 2 and t is even

{0, 1, 3t
2
+ 1, 64t+ 21} {0, 2, 3t− 1, 15t+ 6} {0, 3t

2
+ 2, 31t+ 11, 64t+ 23}

{0, 3t− 2, 41t+ 16, 64t+ 22} {0, 3t, 36t+ 11, 67t+ 25} {0, 3t+ 1, 43t
2
+ 8, 45t+ 18}

{0, 3t+ 2, 17t+ 5, 54t+ 22} {0, 3t+ 3, 26t+ 12, 42t+ 18} {0, 9t
2
+ 2, 19t

2
+ 6, 113t

2
+ 22}

{0, 6t+ 4, 57t
2
+ 10, 65t+ 26} {0, 7t+ 1, 35t+ 10, 53t+ 18} {0, 15t

2
+ 2, 11t+ 5, 68t+ 26}

{0, 8t+ 2, 44t+ 18, 50t+ 21} {0, 8t+ 4, 25t+ 11, 48t+ 18} {0, 12t+ 4, 27t+ 9, 67t+ 26}

{0, 12t+ 5, 31t+ 13, 61t+ 25} {0, 12t+ 6, 19t+ 9, 48t+ 19} {0, 25t
2
+ 6, 37t+ 16, 57t+ 25}

{0, 14t+ 6, 61t
2
+ 11, 48t+ 17} {0, 21t+ 7, 25t+ 10, 44t+ 17}

x = 3 and t is odd

{0, 1, 25t+ 18, 69t+ 43} {0, 3t−3

2
, 19t+13

2
, 19t+17

2
} {0, 3t−1

2
, 31t+ 14, 71t+35

2
}

{0, 3t, 61t+29

2
, 55t+ 30} {0, 3t+ 1, 39t+ 22, 113t+63

2
} {0, 7t+5

2
, 15t+ 9, 141t+79

2
}

{0, 4t+ 3, 11t+ 7, 33t+ 17} {0, 4t+ 4, 36t+ 22, 39t+ 21} {0, 5t+ 4, 8t+ 7, 24t+ 16}

{0, 5t+ 5, 25t+ 16, 37t+ 24} {0, 7t+ 2, 31t+ 15, 56t+ 30} {0, 15t+7

2
, 43t+19

2
, 31t+ 17}

{0, 8t+ 4, 19t+ 9, 22t+ 11} {0, 8t+ 5, 12t+ 7, 57t+ 32} {0, 8t+ 9, 23t+ 14, 49t+ 30}

{0, 12t+ 6, 31t+ 16, 55t+ 31} {0, 25t+15

2
, 35t+ 18, 41t+ 22} {0, 13t+ 7, 28t+ 14, 64t+ 37}

{0, 15t+ 6, 21t+ 9, 34t+ 17} {0, 16t+ 8, 24t+ 14, 46t+ 23} {0, 23t+ 11, 30t+ 14, 41t+ 20}

x = 3 and t is even

{0, 1, 8t+ 10, 11t+ 7} {0, 2, 37t+ 24, 68t+ 38} {0, 3t
2
, 45t

2
+ 10, 61t

2
+ 14}

{0, 3t
2
+ 2, 19t

2
+ 10, 113t

2
+ 32} {0, 3t− 2, 15t+ 6, 46t+ 23} {0, 3t− 1, 19t+ 9, 22t+ 11}

{0, 3t+ 1, 16t+ 8, 34t+ 17} {0, 3t+ 3, 23t+ 13, 31t+ 18} {0, 7t
2
+ 3, 33t+ 17, 66t+ 35}

{0, 9t
2
+ 3, 15t

2
+ 3, 23t

2
+ 6} {0, 5t+ 3, 36t+ 23, 58t+ 33} {0, 5t+ 4, 25t+ 15, 49t+ 30}

{0, 6t+ 4, 55t
2
+ 14, 37t+ 23} {0, 7t+ 2, 15t+ 9, 30t+ 14} {0, 7t+ 4, 15t+ 7, 39t+ 21}

{0, 8t+ 6, 23t+ 14, 49t
2
+ 15} {0, 12t+ 7, 24t+ 13, 50t+ 31} {0, 13t+ 8, 73t

2
+ 22, 49t+ 29}

{0, 16t+ 9, 30t+ 15, 47t+ 24} {0, 35t
2
+ 9, 57t

2
+ 14, 107t

2
+ 31} {0, 19t+ 11, 24t+ 16, 51t+ 31}

x = 4 and t is odd

{0, 3t−3

2
, 19t+15

2
, 101t+73

2
} {0, 3t−1

2
, 11t+ 6, 119t+81

2
} {0, 3t+1

2
, 26t+ 18, 107t+73

2
}

{0, 3t− 1, 27t+ 17, 54t+ 36} {0, 3t+ 1, 27t+ 18, 39t+ 29} {0, 3t+ 2, 26t+ 19, 135t+97

2
}

{0, 3t+ 3, 8t+ 8, 39t+ 30} {0, 5t+ 3, 18t+ 14, 47t+ 35} {0, 5t+ 4, 21t+ 16, 28t+ 19}

{0, 6t+ 3, 45t+29

2
, 85t+63

2
} {0, 6t+ 4, 41t+ 28, 55t+ 38} {0, 7t+ 5, 11t+ 8, 23t+ 16}

{0, 8t+ 6, 12t+ 10, 15t+ 10} {0, 8t+ 7, 38t+ 28, 42t+ 30} {0, 19t+17

2
, 35t+27

2
, 113t+83

2
}

{0, 11t+ 5, 19t+ 15, 54t+ 37} {0, 17t+ 12, 17t+ 13, 36t+ 29} {0, 23t+17

2
, 15t+ 11, 40t+ 29}

{0, 12t+ 9, 40t+ 30, 47t+ 32} {0, 12t+ 12, 15t+ 9, 65t+ 46} {0, 13t+ 12, 16t+ 10, 55t+ 41}

{0, 11t+ 7, 11t+ 9, 39t+ 27}

x = 4 and t is even

{0, 1, 3t
2
+ 2, 64t+ 44} {0, 2, 19t+ 18, 69t+ 55} {0, 3t

2
, 5t+ 3, 33t

2
+ 11}

{0, 3t− 2, 11t+ 8, 15t+ 10} {0, 29t+ 21, 32t+ 24, 36t+ 27} {0, 9t
2
+ 3, 27t+ 17, 32t+ 21}

{0, 6t+ 4, 23t+ 18, 44t+ 34} {0, 20t+ 17, 31t+ 22, 55t+ 39} {0, 12t+ 11, 39t+ 30, 56t+ 42}

{0, 19t
2
+ 8, 31t+ 24, 58t+ 42} {0, 31t

2
+ 10, 23t+ 15, 83t

2
+ 30} {0, 12t+ 8, 25t+ 19, 69t+ 51}

{0, 8t+ 5, 12t+ 9, 47t+ 32} {0, 13t+ 12, 19t+ 17, 30t+ 23} {0, 14t+ 11, 30t+ 22, 38t+ 29}

{0, 19t
2
+ 9, 25t

2
+ 11, 85t

2
+ 32} {0, 35t

2
+ 13, 49t

2
+ 17, 61t+ 45} {0, 18t+ 14, 25t+ 17, 54t+ 37}

{0, 7t+ 2, 25t+ 18, 46t+ 33} {0, 23t+ 14, 28t+ 19, 35t+ 24} {0, 23t+ 17, 31t+ 23, 42t+ 32}

{0, 3t, 23t+ 16, 39t+ 28}
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Table 3: (Cont.) The remaining 18 + x base blocks in Theorem 5

x = 5 and t is odd

{0, 1, 3t− 2, 36t+ 30} {0, 2, 24t+ 23, 64t+ 58} {0, 3t−3

2
, 29t+ 23, 64t+ 53}

{0, 3t−1

2
, 3t, 43t+33

2
} {0, 11t+ 10, 16t+ 14, 33t+ 29} {0, 4t+ 2, 33t+31

2
, 137t+123

2
}

{0, 4t+ 3, 7t+ 4, 58t+ 52} {0, 4t+ 5, 16t+ 16, 61t+ 58} {0, 5t+ 5, 45t+41

2
, 27t+ 25}

{0, 6t+ 4, 31t+ 27, 60t+ 51} {0, 15t+ 13, 31t+ 26, 61t+ 53} {0, 22t+ 21, 30t+ 25, 43t+ 38}

{0, 19t+15

2
, 57t+47

2
, 83t+75

2
} {0, 11t+ 7, 71t+59

2
, 47t+ 40} {0, 11t+ 8, 23t+ 20, 64t+ 54}

{0, 3t− 1, 8t+ 5, 53t+ 45} {0, 12t+ 14, 19t+ 17, 50t+ 48} {0, 14t+ 13, 38t+ 33, 41t+ 36}

{0, 6t+ 5, 59t+51

2
, 125t+111

2
} {0, 15t+ 14, 23t+ 21, 39t+ 36} {0, 22t+ 17, 30t+ 26, 47t+ 42}

{0, 7t+ 5, 11t+ 9, 44t+ 40} {0, 26t+ 23, 29t+ 25, 41t+ 35}

x = 5 and t is even

{0, 2, 39t+ 36, 60t+ 52} {0, 19t+ 19, 22t+ 16, 22t+ 17} {0, 3t
2
+ 1, 19t
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+ 9, 25t+ 22}
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[22] E. Köhler, k-difference-cycles and the construction of cyclic t-designs, in: Geometries and

Groups, in: Lecture Notes in Math., Springer-Verlag, Berlin, 893 (1981), 195–203.

[23] E. Netto, Zur Theorie der Tripelsysteme, Math. Ann., 42 (1893), 143–152.

[24] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio

Math., 6 (1939), 251–257.

[25] C. Reid and A. Rosa, Steiner systems S(2, 4, v) - a survey, Electron. J. Combin., (2010),

#DS18.

[26] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021,

https://www.gap-system.org.

[27] Y. Yang and X. Lin, Coding Theory and Cryptography (in Chinese), People’s Post and

Telecommunications Press, Beijing, China, 1992.

[28] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185

(1998), 201–219.

[29] M. Zhang, T. Feng, and X. Wang, The existence of cyclic (v, 4, 1)-designs, 2022,

https://doi.org/10.5281/zenodo.6370238.

14

https://www.gap-system.org
https://doi.org/10.5281/zenodo.6370238

	1 Introduction
	2 Preliminaries
	3 Direct constructions for cyclic difference families
	3.1 Revisit of Yang and Lin's construction
	3.2 Slight modification of Yang and Lin's construction
	3.3 Further modification of Yang and Lin's construction

	4 Summary and proofs of the main theorems

