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ABSTRACT. We study combinatorial configurations with the asso-
ciated point and line graphs being strongly regular. Examples not
belonging to known classes such as partial geometries and their
generalizations or elliptic semiplanes are constructed. Necessary
existence conditions are proved and a table of feasible parame-
ters of such configurations with at most 200 points is presented.
Non-existence of some configurations with feasible parameters is
proved.

1. INTRODUCTION

A (combinatorial) configuration is a finite partial linear space with
constant point and line degrees. If there are v points of degree r and b
lines of degree k, the parameters are written (v, b). If v = b, or equiv-
alently r = k, the configuration is called symmetric and the parameters
are written (vy). Throughout the paper we assume k > 3 and r > 3.

The point graph of a configuration has the v points as vertices, with
two vertices being adjacent if the points are collinear. The line graph
is defined dually: the b lines of the configuration are the vertices, and
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adjacency is concurrenceH The point and line graphs are regular of
degrees r(k — 1) and k(r — 1), respectively. A graph is called strongly
reqular with parameters SRG(n,d, \, p) if it has n vertices, is regular
of degree d, and every two vertices have A common neighbors if they
are adjacent and p common neighbors if they are not adjacent. We are
interested in configurations with both associated graphs being strongly
regular.

A prominent family of such configurations are the partial geometries
pg(s,t, a), introduced by R. C. Bose [3]. These are configurations with
r=1t+1and £ = s+ 1 such that for every non-incident point-line
pair (P, ), there are exactly « points on ¢ collinear with P. The point
graph is a

s+ 1)(st+ )

SRG(< ,s(t+1),s—1+t(a—1),a(t+1)>, (1)

and the line graph is a

(t+ 1)(st + «)

SRG( ,t(s—l—l),t—1+s(a—1),a(s+1)>. (2)
Partial geometries include Steiner 2-designs pg(s,t,s + 1) and their
duals pg(s, t,t+1), Bruck nets pg(s, t,t) [9,[10] and their duals pg(s, ¢, s)
(transversal designs), and generalized quadrangles pg(s,t, 1) as special
cases.

If v # b, partial geometries are the only configurations with both
associated graphs strongly regular. This follows from [6] Theorem 1.2]:

Theorem 1.1. Let the point graph of a (v, b) configuration be strongly
reqular. Then the configuration is a partial geometry orv < b. Ifv =0,
then det(A + kI) is a square, where A is the adjacency matriz of the
point graph.

If v = b, there are such configurations that are not partial geometries.
The smallest examples are (103) configurations with associated graphs
SRG(10,6,3,4) (the complement of the Petersen graph). One such
configuration is the Desargues configuration, which is a semipartial
geometry for o« = 2 and 1 = 4 (see Sectionfor the definition). There is
another such configuration not belonging to the known generalizations
of partial geometries such as semipartial geometries [15, 20} [16] and
strongly regular (o, 3)-geometries [28], represented in Figure [1]

'We will always use the term line graph in this sense, and not in the sense of
graph theory (the line graph L(G) of a graph G).
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FIGURE 1. A strongly regular configuration that is not
an (o, §)-geometry.

In this paper we study combinatorial configurations similar to this
one. In Section 2] we give the definition of a strongly regular configura-
tion. The concept unifies known classes such as (semi)partial geome-
tries and elliptic semiplanes [2I] with several sporadic examples from
the literature (see Remark on page 37 of [6] and Section 7.2 of [7]). We
focus on strongly regular configurations that are proper and primitive,
not belonging to the known classes. We prove two necessary condi-
tions on the parameters of strongly regular configurations, stronger
than conditions on the parameters of the associated strongly regular
graphs.

In Section [3] we present families of strongly regular configurations. A
family associated with Moore graphs and a family constructed from the
points and planes of the finite projective space PG(4, ¢) have the same
parameters as semipartial geometries. We prove that there are strongly
regular configurations with these parameters that are not semipartial
geometries. A third family constructed from finite projective planes
has parameters not compatible with semipartial geometries.

Section {| contains constructions of strongly regular configurations
from difference sets in groups. Some of the configurations from the
previous section can also be constructed in this way. We perform an
exhaustive search in groups of order v < 200 and find three other pa-
rameter sets (vg; A, p) for which strongly regular configurations exist.
Configurations with a fourth parameter set are constructed in a differ-
ent manner.

In the final Section [5| we present a table of feasible parameters of
strongly regular configurations with v < 200. An on-line version of the
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table with links to the actual configurations is available on the web
page

https://web.math.pmf.unizg.hr/~krcko/results/srconf.html
We perform complete classifications of configurations with small pa-
rameters and prove non-existence for infinitely many feasible parameter
sets corresponding to rook graphs.

2. DEFINITIONS AND CONDITIONS ON THE PARAMETERS

In view of the motivation presented in the Introduction, we make
the following definition.

Definition 2.1. A symmetric configuration will be called a strongly
regular configuration with parameters (vg; A, p) if the associated point

graph is a SRG(v, k(k — 1), A\, ).

We can prove that the line graph is also strongly regular with the
same parameters. We use the following lemma from [12].

Lemma 2.2. Suppose that the point graph of a (v,,by) configuration is
strongly reqular with parameters (1)) corresponding to a partial geometry
pg(s,t,a). Then the configuration is a pg(s,t,a).

Theorem 2.3. Given a strongly reqular (vg; A, ) configuration, the
associated line graph is a SRG(v, k(k — 1), \, ).

Proof. A graph is strongly regular with parameters SRG(v,d, A\, ) if
and only if its adjacency matrix A satisfies

A2 =dl + MA+pu(J — 1 — A). (3)

Here I and J are the v X v identity matrix and the all-one matrix. Let NV
be the incidence matrix of the configuration. Then, A = NN®—kI and
B = N!'N — kI are adjacency matrices of the point and line graphs,
respectively. By , we have

NN'NN*+ (u—X—=2k)NN" + (k(A — p+ 1) 4+ p)] — pJ = 0.

If the incidence matrix N is non-singular, we can multiply by N~! from
the left and by N from the right. Using N=1.J = %J and JN = kJ, we
get
N'NN'N + (p =X —=2k)N'N + (k(A—p+ 1) + p)I — pJ = 0.
This is equation for the matrix B, and therefore the line graph is
also strongly regular with the same parameters.
Now assume that the incidence matrix N is singular. Then the

matrix IV has eigenvalue 0 and the matrix A has eigenvalue —k. Thus,
k*—(p—N)k+p—k(k—1) = 0 holds and k divides p. Denoting o = p/k,
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we see that the parameters of the point graph correspond to a partial
geometry . By Lemma , the configuration is a partial geometry
and the line graph is also strongly regular with parameters . The
same argument was used in the proof of [6 Theorem 1.2]. O

We shall call strongly regular configurations with non-singular inci-
dence matrices proper. The previous proof shows that improper con-
figurations must be partial geometries. The parameters of a strongly
regular configuration are not independent. A necessary condition for

the existence of a SRG (v, k(k — 1), A\, u) is
(v=1—k(k—1)pu=k(k—1)(k(k—1)—1-=M\).

From this, v can be expressed from k, A, and pu, provided pu # 0.
There are many other necessary conditions on the parameters of a
SRG(v,k(k — 1), A\, u). The adjacency matrix has eigenvalue k(k — 1)
with multiplicity 1 and two more eigenvalues

ros = (A=t VO 07— A Kk 1)) (4)

with respective multiplicities

f’g:%(v_le(r—i—s)(v—rl_)ij;(k;—l)). (5)

The multiplicities are integers, giving divisibility conditions on the
parameters. If f # g, the eigenvalues r, s are also integers. See [§] for
further necessary conditions and [4] for tables of parameters of strongly
regular graphs with up-to-date information on their existence. The pa-
rameters (vg; A, i) of a strongly regular configuration will be considered
feasible if the associated strongly regular graphs exist or their existence
cannot be ruled out. On top of that, we assume two more necessary
conditions on the parameters. The first condition follows from [6, The-
orem 1.2]: det(A+kI) = det(NN?) = (det N)? is a square. The matrix
A + kI has eigenvalues k2, r + k, s + k with multiplicities 1, f, ¢ and
the determinant can be computed from the parameters.

Proposition 2.4. If a strongly reqular (v; A\, i) configuration exists,
then (r + k) (s + k)9 is the square of an integer, where r, s, f, g are

given by and .

For example, the condition rules out strongly regular (28,;6,4) con-
figurations, although SRG(28,12,6,4) graphs exist. Equations (4)) and
giver =4, s = -2, f =7, g = 20, and 2* is not a square. The
second condition follows from a counting argument.
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Theorem 2.5. If a strongly reqular (vi; A, i) configuration exists, then
(v—k)(A\+1) > k(k—1)3. Equality holds if and only if the configuration
1 a partial geometry.

Proof. Fix a line ¢ and for any point P not on ¢, denote by ap the

number of lines through P concurrent with /. Count the number of
flags (P, ;) with ¢; concurrent with ¢ in two ways to obtain

> ap=k(k—1).

Similarly, counting triples (P, 1, {3), where {1 # {5 are lines through P
concurrent with ¢, gives

> aplap —1) =k(k—1)(A = (k - 2)).

The sums are taken over all P ¢ (. The average ap is a =
Now we can compute

OSZ(QP_&)zzzap(Oép—1)+(1—2Q)ZQP+(U_k)a2:

:k(k—1)(x—k+2>+(1_2%)“/{—1)%%:

k(k—1)3
=kk—1) (A 4+1———F].
R
From this we see that (v — k)(A 4+ 1) > k(k — 1)® holds, with equality
if and only if ap = « for all P ¢ /, i.e. the configuration is a partial
geometry. 0

For example, the parameters (815;1,6) do not satisfy Theorem
and strongly regular configurations with these parameters don’t exist,
although a SRG(81,20,1,6) graph does. An equivalent form of the
inequality k(p — A — 1) < p follows from Hoffman’s bound on the size
of cliques in strongly regular graphs; see [0, Section 1.3]. Theorem
characterizes proper strongly regular configurations by their parame-
ters.

k(k—1)2
v—k

Corollary 2.6. A strongly reqular (vg; A\, 1) configuration that is not a
projective plane is proper if and only if (v —k)(A+1) > k(k —1)3.

Projective planes of order n are partial geometries pg(n,n,n + 1)
and satisfy Theorem with equality, but have non-singular incidence
matrices. The associated point and line graphs are complete. More
generally, we now consider the case when the associated graphs are
imprimitive, i.e. 4 = 0 or u = k(k — 1) holds. In the first case the
graphs are disjoint unions of complete graphs m - K,2,,,; and the
configuration is a disjoint union of m projective planes of order n.
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This case can be characterized as strongly regular configurations with
collinearity of points being an equivalence relation.

The second imprimitive case p = k(k — 1) is complementary: non-
collinearity of points is an equivalence relation and the associated graphs
are complete multipartite. Strongly regular configurations with these
properties are known as elliptic semiplanes. Dembowski [21] defined a
finite semiplane as a partial linear space with parallelism of lines and
non-collinearity of points being equivalence relations. A semiplane is
of order n if the largest degree of a point or line is n + 1. Dembowski
proved that the set of all degrees is either {n —1,n,n+ 1}, {n,n+ 1},
or {n + 1}, and called semiplanes hyperbolic, parabolic, or elliptic ac-
cordingly. Elliptic semiplanes are precisely the strongly regular config-
urations with p = k(k — 1). Most known elliptic semiplanes are of the
form P — B, where P is a projective plane of order n, and B is a closed
Baer subset. The only known exceptions are Baker’s semiplane [I] with
parameters (457;39,42) and Mathon’s semiplane [34] with parameters
(13519; 129, 132).

In the sequel we focus on strongly regular configurations that are
proper and primitive, i.e. such that neither collinearity nor non-col-
linearity of points are equivalence relations. This is equivalent with
0 < pu < k(k —1). Table 3 contains all feasible parameters of such
configurations with v < 200. We first present constructions of proper
and primitive strongly regular configurations.

3. FAMILIES OF STRONGLY REGULAR CONFIGURATIONS

An (a, B)-geometry [19] is a (v,, by) configuration such that for ev-
ery non-incident point-line pair (P, (), there are either o or § points
on { collinear with P. Thus, a partial geometry is an («, 5)-geometry
with a = . If @ # 3, the point graph is not necessarily strongly
regular. Geometries with this additional property are called strongly
reqular («, 5)-geometries and are studied in [28]. An important spe-
cial case are the semipartial geometries, introduced in [I5]. They are
(0, @)-geometries such that for every pair of non-collinear points, there
are exactly p points collinear with both. The parameters are written
(s,t,, ), where r = t+1 and k = s+ 1 are the point and line degrees,
and the point graph is a

s+ 1) (p+t(s+1—a)
Ju!

Strongly regular (o, §)-geometries with v = b are strongly regular
configurations by Definition 2.1 Our introductory example in Figure|]]
is not an («, #)-geometry, although the parameters correspond to a

SRG(l—i— ,s(t—i—l),s—l—l—t(a—l),u).
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semipartial geometry. If ¢ is the line represented as a circle, there are
points P ouside ¢ with 1, 2, or 3 points on ¢ collinear with P. This
example is part of a family associated with Moore graphs of diameter
two, i.e. strongly regular graphs with A =0 and p = 1.

Moore graphs have parameters SRG(k*+1,k,0,1) with k € {2,3,7,
57} [29]. There is a unique graph for & = 2 (the pentagon), k = 3
(the Petersen graph), and k = 7 (the Hoffman-Sigleton graph), while
for £ = 57 the existence of such a graph is unknown. The incidence
structure with points being vertices of a SRG(k* + 1,k,0,1) and lines
being neighborhoods of single vertices is a semipartial geometry with
s=t=a=%k—1and p = (k— 1) [15]. The point graph is the
complementary SRG(k* + 1,k(k — 1), k(k — 2), (k — 1)?). Hence, this
incidence structure is a strongly regular (vy; A, i) configuration with
v=k+1,A\=k(k—2),and u= (k— 1)

For k = 3, the semipartial geometry is the Desargues configura-
tion and there is one other (103;3,4) configuration given in Figure .
For k = 7, the semipartial geometry has full automorphism group
PSU(3,5) : Zy of order 252000 acting flag-transitively. We found 210
other (507;35,36) configurations that are not («, 3)-geometries. The
semipartial geometry and 110 of the new examples are self-dual and
the remaining ones form 50 dual pairs.

Proposition 3.1. There are at least 211 non-isomorphic (507; 35, 36)
configurations, one of which is a semipartial geometry. Orders of their
full automorphism groups are given in Table[1].

[Aut| #Cf|[Aut| #Cf||Aut| #CE|[Aut| #Cf|[Aut| #Cf
252000 1 | 120 1 | 40 1 | 20 6 | 6 13
2520 1 | 96 1 | 3 1 | 16 3 | 4 15
440 1 | 72 1 | 32 1| 12 1 318
720 1 | 48 1| 24 6 | 10 1 2 46
20 1 | 42 1| 21 2| 8 11| 1 76

TABLE 1. Distribution of (507;35,36) configurations by
order of full automorphism group.

The configurations of Proposition are available through the on-
line version of Table They were constructed computationally, by
prescribing automorphism groups and switching submatrices of the in-

cidence matrix:
10 0 1
011710/
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We used GAP [23] and our own programs written in C. To check for iso-
morphism and compute full automorphism groups, we used nauty [36].
The construction method for configurations with prescribed automor-
phism groups is similar to constructions of quasi-symmetric designs
in [33] 31] and relies on the clique-finding program Cliquer [39)].

Another family of semipartial geometries is family (g) from [15], de-
noted by LP(n,q) in [20, [16]. The points of LP(n,q) are lines of the
projective space PG(n,q), n > 3. The lines of LP(n,q) are 2-planes
of PG(n,q) and incidence is inclusion. Then, LP(n,q) is a semipartial
geometry with s = ¢(¢+1), ¢t = qn;_ll_l —lL,a=q+1,and p = (g+1)%
It is a partial geometry if and only if n = 3. Moreover, v = b holds if
and only if n = 4. Thus, LP(4,q) is a (vg; A, 1) configuration with

v=(+ 1"+ + @ +q+ 1), k=¢+q+1,
A= +2¢%+q—1, p=(¢+1)>
It is self-dual and has full automorphism group PT'L(5, q).

We now describe transformations of LP(4,q) into strongly regular
configurations that are not semipartial geometries. We refer to them
as polarity transformations; they are similar to the construction of
polarity designs in [30]. Let Hy be a hyperplane of PG(4,q). As a
subgeometry, Hy is isomorphic to PG(3,q) and admits a polarity m,
i.e. an inclusion-reversing involution. The polarity permutes the set of
projective lines contained in Hy and exchanges the set of points in Hy
with the set of planes in Hy. We modify incidence of the elements of
LP(4,q) contained in Hy: a point L (projective line contained in Hy)
is incident with a line p (projective plane contained in Hy) if (L) C
p. For the remaining pairs (L,p), with L or p not contained in Hy,
incidence remains unaltered. We claim that the new incidence structure
LP(4,q)" is a (vg; A, p) configuration with parameters ().

The point and line degrees clearly remain the same and there is
at most one line through every pair of points. The point graphs of
LP(4,q)" and LP(4, q) are identical. This follows from the next lemma.

(6)

Lemma 3.2. Two projective lines of PG(n,q) are coplanar if and only
if they intersect.

If Ly and Ly are projective lines of Hy, then 7(Ly), w(Ly) are con-
tained in a plane p if and only if L;, Ly intersect in the point m(p)
and hence, by Lemma [3.2] are contained in some plane p’. The line
graph of LP(4,q)™ is changed, but remains strongly regular because of
Theorem 2.3

To see that the new configuration LP(4,¢)™ is not a semipartial
geometry, take a plane p in Hy and a projective line L intersecting Hy
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in the point 7(p). Then, (L,p) is a non-incident point-line pair of
LP(4,q)". If 7(M) C p, then M contains 7(p) and is coplanar with L,
i.e. collinear as a point of the configuration. Hence, all ¢> + ¢ + 1
points on p are collinear with L, whereas in a semipartial geometry
the number is always 0 or @« = ¢ + 1. The configurations LP(4,q)
and LP(4,q)" are therefore not isomorphic. Configurations obtained
by transforming LP(4,q) with different polarities are all isomorphic,
because the composition of two polarities is an isomorphism.

We define a dual transformation of LP(4, q) in the following manner.
Take a point Py of PG(4, q) and consider the quotient geometry of lines,
planes and solids containing P,. It is isomorphic to PG(3, ¢) and admits
a polarity 7’ permuting the planes through Py and exchanging the lines
and solids through Py. We modify incidence in LP(4, q) for projective
lines L and planes p through Py: they are incident if L C 7/(p). The
new configuration LP(4, q), is isomorphic to the dual of LP(4,¢)™ and
therefore strongly regular with parameters @, but not a semipartial
geometry. The line graphs of LP(4,q) and LP(4,q) are identical,
while the point graph of LP(4, q), is changed.

A fourth (vg; A, 1) configuration is obtained if we take a non-incident
point-hyperplane pair Py, Hy of PG(4,q) and apply both transforma-
tions. The lines and planes in Hy are different from the lines and planes
through F,, so incidence is changed in disjoint parts of the configura-
tion. The resulting configuration LP(4,¢)7, has the same line graph
as LP(4,q)™ and the same point graph as LP(4,q), and is self-dual.
This proves the following theorem.

Theorem 3.3. For every prime power q, there are at least four strongly
reqular (vi; A\, 1) configuration with parameters @ One of them 1is
the semipartial geometry LP(4,q) and the others are not semipartial
geometries.

We now present an infinite family of strongly regular configurations
with parameters different from semipartial geometries. The construc-
tion works by deleting a suitable subset from a projective plane, simi-
larly as constructions of elliptic semiplanes.

Theorem 3.4. Let P be a projective plane of order n > 5 and A, B,
C' be three non-collinear points. By deleting all points on the lines AB,
AC, BC and all lines through the points A, B, C, there remains a
strongly reqular (vi; A\, p) configuration with v = (n —1)%, k =n — 2,
A= (n—4)2+1, and p = (n—3)(n —4). This configuration is not an
(e, B)-geometry.
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Proof. The number of points and lines in the remaining configuration is
v=n?’+n+1-3-3(n—1) = (n—1)? and they are of degree k = n—2.
Let P and ) be two remaining points that are collinear, i.e. are not on
a line of P through A, B or C. Then the points non-collinear with P
are the remaining points on the lines AP, BP, C'P. There are 3(n —2)
such points, and as many for ). The points non-collinear with both
P and @ are the intersections of one of the lines AP, BP, C'P with
one of the lines AQ, BQ, C'Q; there are 6 such points. By inclusion-
exclusion, the number of points in the remaining configuration collinear
with both P and Qis A\=(n—1)2—-2—-6(n—2)+6 = (n—4)? + 1.
If the points P and () are non-collinear, a similar count shows that the
number of points in the remaining configuration collinear with both P
and Q is u = (n —3)(n —4).

Let (P, {) be a non-incident point-line pair of the remaining config-
uration. We now count the points on £ collinear with P. Let A’, B,
C’ be the intersections of BC, AC, AB with {. These are the deleted
points of ¢. If the lines AA’", BB’', CC" are concurrent, P lies on 0, 1
or 3 of these lines. Then there are n — 5, n — 4 or n — 2 points on /¢
collinear with P. In this case, the points A, B, C, A’, B’, C' and the
common point of AA’, BB, C'C’" form a Fano subplane, so this can
only occur if n is even or P is non-Desarguesian. On the other hand, if
the lines AA’, BB', CC" are not concurrent, P lies on 0, 1 or 2 of these
lines and there are n — 5, n — 4 or n — 3 points on ¢ collinear with P.
In both cases there are three possibilities for the number of points on ¢
collinear with P, so the configuration is not an (a, 8)-geometry. 0

The associated graphs have parameters
SRG((n —1)% (n —2)(n —3), (n —4)* + 1, (n — 3)(n — 4)).

These are pseudo Latin square graphs LS, 3(n — 1), see [8, Section
8.4.2]. For n = 5, we get the Shrikhande graph [44] which is not a
Latin square graph. For n = 7, the graphs have parameters LS4(6)
and are not Latin square graphs because there are no orthogonal Latin
squares of order 6.

In the smallest case n = 5, the (163;2,2) configuration of Theo-
rem can be extended to a (164;8,12) configuration by adding a
point to every line. This is a (4,4)-net and can be embedded in the
projective plane of order 4. This is an interesting transformation of the
projective plane of order 5 into the projective plane of order 4, but it
does not generalize to n > 5.
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In the Desarguesian projective plane PG(2, ¢), all triangles { A, B, C'}
are equivalent and Theorem gives just one strongly regular config-
uration up to isomorphism, being self-dual. The smallest non-Desar-
guesian projective planes are of order 9: the Hall plane, its dual, and
the self-dual Hughes plane. The Hall plane contains six inequivalent
triangles and as many non-isomorphic (647; 26, 30) configurations arise
from Theorem [3.4] These configurations are not self-dual. Of course,
they are duals of the configurations derived from the dual Hall plane.
The Hughes plane contains 16 inequivalent triangles. The correspond-
ing configurations are not isomorphic; 10 are self-dual and there are 3
dual pairs. Information on the orders of full automorphism groups of
these configurations is given in Table

Plane  |Aut| #Cf| Plane |Aut| #Cf
PG(2,9) 768 1 |Hughes 144 1
Hall 768 1 48 1
96 2 32 1
12 2 18 1
6 1 12 3
Dual Hall 768 1 6 4
96 2 4 3
12 2 2 1
6 1 1 1

TABLE 2. Distribution of (647;26,30) configurations by
order of full automorphism group.

Configurations obtained from different projective planes of order 9
are not isomorphic. Hence, the total number of (647;26,30) configu-
rations arising from Theorem is 29. We could not find any other
examples with these parameters. This, together with the uniqueness re-
sults of Section [5| (Corollary and Proposition [5.6]), seems to suggest
that every strongly regular configuration with parameters from Theo-
rem can be uniquely embedded in a projective plane of order n, but
we do not have a proof.

4. STRONG DEFICIENT DIFFERENCE SETS

Next we present constructions of strongly regular configurations us-
ing difference sets. Let G be a group of order v. A subset D C G of
size k is a deficient difference set if for every x € G \ {1}, there is at
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most one pair (dy,dy) € D x D such that x = d;'dy. Shortly, the left
differences d; 'd, must all be distinct. This is equivalent with the right
differences d;d; " being distinct. The elements of G as points and the
development devD = {gD | g € G} as lines form a symmetric (vy)
configuration. The configuration has G an automorphism group acting
regularly on the points and lines [22] [38]. In the cyclic case G = Z,,
deficient difference sets are also called modular Golomb rulers [11].

Let A(D) = {d;'dy | d1,dy € D,d; # dy} be the set of left differences
of D. This is a subset of G \ {1} of size k(k — 1). For a group element
x # 1, denote by n(z) = |A(D) N xA(D)|. Suppose that n(x) = X for
every x € A(D), and n(z) = u for every x ¢ A(D). We shall call a
subset D with this property a strong deficient difference set (SDDS)
for (vg; A, p).

Theorem 4.1. Let G be a group and D C G a strong deficient differ-
ence set for (vi; A\, ). Then, (G,dev D) is a strongly reqular (vg; A, 1)
configuration with G as an automorphism group acting reqularly on the
points and lines. Conversely, any strongly reqular (vg; A\, 1) configura-

tion with an automorphism group G acting reqularly on the points and
lines can be obtained from a SDDS in G.

Proof. Two points x,y € G are collinear if and only if 7'y € A(D).
Let us count the number of points z € G \ {z,y} collinear with both
x and y. This is equivalent with z7'2 € A(D) and y~'z € A(D), or
z € zA(D) NyA(D), or x7'2 € A(D) Nz 'yA(D). The number of
such points z is A if x7'y € A(D), i.e. if x and y are collinear, and
otherwise. Hence, the point graph is strongly regular with parameters
SRG (v, k(k — 1), A\, u).

Conversely, assume a (vg; A, ) configuration possesses an automor-
phism group G acting regularly. Then the points can be identified with
the elements of G and every block is a deficient difference set generat-
ing this configuration. The argument above shows that it is in fact a
(vk; A, ) SDDS. O

Configurations constructed from PG(2,q) by Theorem can be
obtained from strong deficient difference sets in the group G = F; x
F,. Here, F; denotes the multiplicative group of the finite field F,,
isomorphic to the cyclic group Z,—;. If two of the points {A, B,C'}
are chosen on the “line at infinity” and the third point as the “origin”
(0,0), points of the configuration can be identified with pairs (z,y)
with z,y € Fy. Lines are sets of points satisfying equations of the form
y=ar+b,abelF; Hence,eg D={(r,x+1)|xecF;\{-1}}isa
SDDS for (vg; A\, p) withv = (¢— 1), k=q—2, A= (¢ —4)*+1, and
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1= (q—3)(¢—4). The full automorphism group of the configuration is
((Fy xFy) : Aut(F,)) : S, where Aut(IF,) are the field automorphisms,
and S3 corresponds to collineations of PG(2,q) exchanging vertices of
the triangle {A, B, C'}.

The two (647;26,30) configurations with full automorphism groups
of order 768 constructed from the Hall plane and its dual (see Table
can be obtained from SDDS’s in the group G = Qs x Qs, where Qg =
{#£1, +i, +j, £k} is the quaternion group with usual multiplication (e.g.
i? = j2=k? = —1, ij = k). The difference set

Dl = {(17 1)7 (i? _k)v (]7 k)a (kv _j>7 (_i7j>7 (_ju i)v (_k7 _Z)}

gives the configuration constructed from the Hall plane and

D2 = {(17 1)7 <i7 _k)v (]a])v (kv _j)7 (_ia _7;)7 (_jai)v <_k7 k)}

gives the dual configuration. The Hall plane of order 9 and its dual are
coordinatized by the quaternionic near-field. The first configuration
arises from Theorem when two of the points {A, B, C'} are chosen
on the translation line of the Hall plane, and the second configuration
when one of the points is the translation point of the dual Hall plane.
We performed an exhaustive computer search for strong deficient
difference sets with parameters corresponding to proper and primi-
tive strongly regular configurations in groups of order v < 200, using
the GAP library of small groups [23]. Apart from the examples just
described, we found four other examples not corresponding to Theo-
rem [3.4, The configurations constructed from these SDDS’s have flag-
transitive automorphism groups. Here are their descriptions.

Example 4.2. SDDS’s for (133;2,3) exist in the cyclic group Zis.
There is one SDDS fized by the multiplier 3: {7,8,11}. The develop-
ment has full automorphism group Zi3 : Zs3 acting flag-transitively.

This is the only cyclic strongly regular configuration we found. It
can be embedded in the projective plane of order 3 by adding a point
to every line.

Example 4.3. SDDS’s for (965;4,4) exist in the groups Zy X Sy, (Zs X
Zox Ay) : Lo, Dy x Ay and Zy X Zig X Sy. Here is one SDDS in Zy X Sy:

{(0,id), (1, (1,4)(2,3)), (1, (1,3,4,2)),(1,(1,4,3)),(2,(1,2,4)) }.

The developments are all isomorphic and give one self-dual configura-
tion. The full automorphism group is ((Ze X Lo X Lo X Zs) : Ag) : Lo
of order 11520 and acts flag-transitively.
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The associated graphs have parameters SRG(96,20,4,4). Many
such graphs are known, see [7, 25]. The graph with the largest auto-
morphism group of order 138240 is the point graph of the generalized
quadrangle pg(5,3,1). The graph of the (965;4,4) configuration has
full automorphism group of order 11520. In [7], this graph is denoted
by K” and the configuration is mentioned as a “partial linear space
with five points per line and five lines on each point”.

Example 4.4. SDDS’s for (120g;28,24) exist in the symmetric group
S5, e.g.

{id, (1,2,5,3,4), (1,3,4,2,5), (1,5,3,2,4), (1,4)(2,3,5),
(1,4,5,2), (1,2,4), (1,2,5)}.

Up to isomorphism one self-dual strongly reqular configuration arises.
The full automorphism group is isomorphic to the alternating group Ag
of size 20160 and acts flag-transitively.

This (120g; 28, 24) configuration was constructed in [6] by embedding
the pg(7,8,4) of [18,12] into a Steiner 2-(120, 8, 1) design. The 135 lines
of the pg(7,8,4) and the 120 lines of the configuration cover every pair
of the 120 points exactly once and form a design. The point graphs
of the pg(7,8,4) and the (120g;28,24) configuration are complemen-
tary with parameters SRG(120,63,30,36) and SRG(120,56,28,24),
respectively.

The pg(7,8,4) is part of an infinite family constructed from the
hyperbolic quadric in PG(4n — 1,2) [18]. The family is denoted by
PQ%(2n — 1,2) and has parameters pg(2?"~1 — 11,2271 227=2) These
parameters fit a hypothetical (vg; A, ) configuration with

v = 2277,—1(227’1_1)7 k, — 227’1—1’ A — 22n—2(22n—1_1)7M — 2271—1(2271—2_1)

to make a 2-(v, k, 1) design, but in [0, Theorem 2.1] it was proved that
this is not possible for n > 2. Non-isomorphic partial geometries with
the same parameters were constructed in [35, [I7] that could possibly
be embedded in Steiner 2-designs.

Example 4.5. SDDS’s for (1557; 17,9) exist in the group G = Zs : Zs.
Let G be represented as permutations of Zs, generated by f : x+— x+1
(mod 31) and g : x + 2z (mod 31). Then, {id, f*2g*, g, '8, f?°4?,
1253, £39% is a SDDS. One self-dual strongly regular configuration arises,
isomorphic to the semipartial geometry LP(4,2). The full automor-
phism group PTL(5,2) is of order 9999360 and acts flag-transitively.
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The configurations obtained from LP(4,2) by polarity transforma-
tions cannot be constructed from SDDS because their full automor-
phism groups are not transitive. The dual pair LP(4,2)™ and LP(4,2)
have full automorphism groups of order 322560 isomorphic to (Zg)* :
PT'L(4,2). The group acts in orbits of size 35, 120 on the points and
15, 140 on the lines of LP(4,2)", and vice versa for LP(4,2). The
self-dual configuration LP(4,2)7, has full automorphism group of order
20160 isomorphic to PT'L(4,2) acting in orbits of size 15, 35, 105.

Our final examples of strongly regular configurations can also not be
obtained from SDDS’s. They don’t admit automorphism groups acting
regularly, although some have flag-transitive automorphism groups.

Example 4.6. There are at least four non-isomorphic (63¢; 13, 15) con-
figurations. Two of them are self-dual with full automorphism groups
PSU(3,3) : Zs of order 12096 acting flag-transitively. Furthermore,
there is a dual pair with full automorphism groups (SL(2,3) : Zy) : Zo
of order 192 acting in orbits of size 1, 6, 24, 32.

The two self-dual (634; 13, 15) configurations are related to the small-
est generalized hexagon GH (2, 2) (see |24, Section 5.7]). This is a (633)
configuration with point and line graphs of girth 12 and diameter 6.
The graphs are distance regular, but not strongly regular. A strongly
regular (63g;13,15) configuration can be constructed similarly as a
semipartial geometry from a Moore graph: the new configuration has
the same points as GH (2, 2), and lines of the new configuration are sets
of 6 points collinear with a given point of GH(2,2). The point graph
of this (63¢) configuration is a SRG(63, 30, 13,15). The other self-dual
(636; 13, 15) configuration is constructed in the same way from the dual
of GH(2,2). We discovered the dual pair of non-transitive (634; 13, 15)
configurations computationally, by prescribing automorphism groups.

5. A TABLE OF FEASIBLE PARAMETERS

In the final section we present a table of feasible parameters of
strongly regular configurations with v < 200. A. E. Brouwer’s table of
strongly regular graphs [4] contains 437 parameter sets SRG (v, d, A, 1)
with v < 200. It is known that strongly regular graphs do not exist
in 62 cases. Among the remaining 375 cases, we look for those with
d = k(k — 1) for some k > 3. This way we get 64 parameter sets
(vgs A, ).

Eleven of the 64 parameter sets do not satisfy Theorem [2.5] Six
satisfy the theorem with equality and correspond to partial geometries

19(2,2,1), pg(3,3,1), pg(6,6,4), pg(5,5,2), pg(4,4,1), and pg(5,5,1).
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The pg(q, q,1) with ¢ = 2,3, 4,5 are the classical generalized quadran-
gles W(q) and their duals, see [41]. Two non-isomorphic pg(5,5,2)’s
are known [40], 14, [32], whereas the existence of a pg(6, 6,4) is open. Six
of the remaining 47 parameter sets are eliminated by Proposition [2.4]

Thus, there are 41 feasible parameter sets (vg; A, ) of proper and
primitive strongly regular configurations with v < 200. The para-
meters are listed in Table |3 along with information on the numbers
of strongly regular configurations (#Cf) and self-dual strongly regular
configurations (#SCf) up to isomorphism. A number in boldface
indicates that this is the exact number, otherwise it is a lower bound.

In the smallest case (103;3,4), there are altogether ten combinatorial
(103) configurations denoted by (103);,7 = 1,...,10 in [27, Section 2.2].
Two of them are strongly regular: the Desargues configuration (103);
and the configuration (103)4 depicted in Figure[l] Interestingly, (105)4
is the only one of the ten (103) configurations that cannot be drawn with
straight lines, i.e. that is not a geometric configuration (see [27,42]). In
the next two cases (133;2,3) and (163;2,2), the total numbers of (133)
and (163) configurations are also known: 2036 [26] and 3004 881 [2],
respectively. Since the number of combinatorial (vg) configurations
grows rapidly with v, a better approach to classifying strongly regular
configurations is through the associated graphs.

Suppose that a strongly regular graph I" with parameters S RG (v, k(k—
1), A, ) is the point graph of a (vg; A, ) configuration. Every line of
the configuration gives a clique of size k in I'. Thus, there must be v
such cliques with every pair of them intersecting in at most one point.
Given the graph I', we define the clique graph C(I") with vertices being
k-cliques in I". Vertices of C(I") are adjacent if the cliques intersect in
at most one point. The task is to find the cliques of size v in C(I).

Up to isomorphism, there is a unique graph SRG(13, 6,2, 3), the Pa-
ley graph. The vertices of I' are elements of the finite field Fy3 with
two vertices being adjacent if their difference is a quadratic residue.
Using Cliquer [39], we found 26 cliques of size 3 in I". The clique graph
C(I") has 26 vertices and 286 edges. Using Cliquer once more, we
found exactly two cliques of size 13 in C(I"), corresponding to isomor-
phic (133;2, 3) configurations. This proves that the cyclic configuration
constructed in Example is unique.

Proposition 5.1. There is one (133;2,3) configuration up to isomor-
phism.

There are two graphs with parameters SRG(16,6,2,2). One of them
is the Shrikhande graph [44] with full automorphism group of order 192.
Similarly as for the previous parameters, we found 32 cliques of size 3
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No. (Vg; A, 1) #Cf #SCf Comments
1 (1053,4) 2 2
2 (135;2,3) 1 1 Proposition 5.1
3 (163;2,2) 1 1 Proposition [5.3
4 (254;5,6) 0 0  Proposition 5.5
5  (365;10,12) 1 1 Proposition [5.6
6  (4159,10) 7 ?
7 (454;3,3) 0 0  Proposition E
8  (4945,2) 0 0  Corollary[s.4
9 (49 17,20) 1 1 Theorem 3.4
10 (507:35,36) 211 111 Proposition 3.1
11 (6l5;14,15) 7 2
12 (63:;13,15) 4 2 Example
13 (647;26,30) 29 11  Theorem
14 (81g;37,42) 7 7
15 (85g;11,10) 7 7
16 (85:;20,21) 7 7
17 (965,4,4) 1 1  Example
18 (99-;21,15) 7 7
19 (100;50,56) 1 1  Theorem 3.4
20 (105¢;51,45) ? 2
21 (1134;27,28) ? 7
22 (1205;28,24) 1 1 Example
23 (12159,2) 0 0  Corollary
24 (1216;11,6) 7 ?
25 (1219;43,42) ? 2
26 (12140;65,72) ? 2
27 (1259;45,36) 7 ?
28 (1365;15,4) 7  ?
29 (1369;36,40) ?  ?
30 (144,1;82,90) 1 1 Theorem[3.4]

TABLE 3. Feasible parameters of proper primitive
strongly regular configurations.
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No. (Vg A, 1) #Cf #SCf Comments
31 (1459;35,36) 7 7

32 (153519,21)  ? ?

33 (155;;17,9) 4 2 Theorem
34 (1699:31,30) 7 7

35 (16952;101,110) ? 2

36 (171,;73,66) 7 7

37 (1756;5,5) 77

38 (18110;44,45) 7 ?

39 (1964; 40, 42) ? ?

40 (19615122,132) 7 7

A1 (19615 125,120) 7 ?

TABLE 3. Feasible parameters of proper primitive
strongly regular configurations (continued).

in I" and two cliques of size 16 in C(I"), corresponding to isomorphic
(163;2,2) configurations.

The other SRG(16,6,2,2) has full automorphism group of order
1152. This is the 4 X 4 rook graph, sometimes also called the lattice
graph or grid graph. Vertices of the n x n rook graph R, are pairs
(x,y) with z,y € {1,...,n}. Two vertices (z1,v1), (2,y2) are adja-
cent if 1 = x5 or y; = yo holds. The graph R, is strongly regular with
parameters SRG(n?,2(n — 1),n — 2,2) and has 2n maximal cliques of
size n, being sets of vertices with a fixed coordinate. Any clique of size
at least 2 is contained in exactly one of these maximal cliques. If R, is
the point graph of a (vy; A, i) configuration, then 2(n — 1) = k(k — 1)
holds. This is equivalent with n = (S) + 1 and the configuration would
have parameters

() @ o

We now prove that this cannot occur.

Theorem 5.2. The nxn rook graph is not the point graph of a strongly
reqular configuration.

Proof. Lines of the configuration would give a set C of v = n? cliques
of size k in R,,, pairwise intersecting in at most one vertex. A maximal

clique of size n = (5) + 1 contains no more than ZEZ:B of the cliques
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in C, because each of the n(n — 1) pairs of distinct vertices is contained
in at most one k-clique, and a k-clique covers k(k —1) pairs. Therefore,
n(n—1)
k(k—1)
the cliques of C contained in a given n-clique cover every pair of its n
vertices exactly once. In this way we get a Steiner 2-(n, k,1) design.

If r = Z—j is the replication number of the design, Fisher’s inequality

r >k givesn —1 > k(k — 1), a contradiction with n = (g) + 1. O

. This is equal to v = n?, and therefore

C is not larger than 2n -

Together with the discussion about the Shrikhande graph, this proves
that the strongly regular configuration constructed from PG(2,5) by
Theorem is unique.

Corollary 5.3. There is one (163;2,2) configuration up to isomor-
phism.

Furthermore, Theorem[5.2) eliminates infinitely many feasible param-
eter sets of strongly regular configurations.

Corollary 5.4. Strongly reqular configurations with parameters @ do
not exist for k > 3.

Proof. In [44], Shrikhande proved that for n > 4 the only strongly
regular graph with parameters SRG(n?,2(n —1),n —2,2) is the n x n
rook graph. 0

We can eliminate two more parameter sets (vg; A, 1) and prove unique-
ness for another computationally, when all SRG (v, k(k—1), A\, ) graphs
are known.

Proposition 5.5. Strongly reqular (254;5,6) configurations do not ex-
15t.

Proof. Up to isomorphism, there are exactly 15 strongly regular graphs
with parameters SRG(25,12,5,6) [40, 43]. The adjacency matrices are
available on E. Spence’s web page [45]. Cliquer found from 73 to 90
cliques of size 4 in these graphs, but none of the corresponding clique
graphs C(I") contain a clique of size 25. O

Proposition 5.6. There is one (365;10,12) configuration up to iso-
morphism.

Proof. There are exactly 32548 graphs SRG(36,20,10,12) [37]. Ad-
jacency matrices of the complementary graphs are available on the
web page [45]. Using Cliquer, we found that the SRG(36, 20, 10, 12)
graphs I' contain from 132 to 336 cliques of size 5. Only one of the corre-
sponding clique graphs C(I") contains a clique of size 36. This happens
when the complementary graph I with parameters SRG(36,15,6,6) is
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the graph constructed from the cyclic Latin square of order 6. Two
strongly regular configurations arise, both isomorphic to the configu-
ration constructed from PG(2,7) by Theorem [3.4] O

Proposition 5.7. Strongly reqular (454;3,3) configurations do not ex-
15t.

Proof. There are 78 graphs SRG(45,12,3,3) [13]. Adjacency matrices
are available on [45]. The graphs contain from 12 to 135 cliques of

size 4 and the corresponding clique graphs do not contain cliques of
size 45. 0

It is also known that graphs with parameters SRG (50,42, 35, 36) are
unique, i.e. isomorphic to the complement of the Hoffman-Singleton
graph. This graph has 2708 150 cliques of size 7 and we could not
classify all cliques of size 50 in C(I'). There may be other (507; 35, 36)
configurations apart from the 211 examples of Proposition [3.1]
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