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Abstract

We present the formula for the number of monic irreducible polynomials of degree n over

the finite field Fq where the coefficients of xn−1 and x vanish for n ≥ 3. In particular, we

give a relation between rational points of algebraic curves over finite fields and the number

of elements a ∈ Fqn for which Trace(a) = 0 and Trace(a−1) = 0. Besides, we apply

the formula to give an upper bound on the number of distinct constructions of a family of

sequences with good family complexity and cross-correlation measure.

Keywords: Irreducible polynomials, Finite fields, Trace function, Algebraic curves, Pseu-

dorandom sequences

Subject Classification: 11T06,11G20,94A55

1 Introduction

Let r be a positive integer, p be a prime number and q = pr, Fq be the finite field with q elements

and let Iq(n) denote the number of monic irreducible polynomials of degree n over Fq[x]. It is

a well-known formula given by Gauss [6] that

Iq(n) =
1

n

∑

d|n

µ(d)qn/d.
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Let Iq(n, γ1, . . . , γk) denote the number of monic irreducible polynomials over Fq of degree n
whose first k coefficients following the leading one is prescribed to γ1, . . . , γk ∈ Fq, respec-

tively. Carlitz in [4] showed that

Iq(n, γ) =
1

qn

∑

d|n,p∤d

µ(d)qn/d.

Kuz’min [10, 11] considered the case of two prescribed coefficients and gave the formula for

Iq(n, γ1, γ2). Yucas and Mullen determined the formula for I2(n, γ1, γ2, γ3) when n is even [22],

later Yucas and Fitzgerald determined the formula for I2(n, γ1, γ2, γ3) when n is odd [5]. Also,

Yucas [21] gave an alternative proof of Carlit’z formula. Ahmadi et al. in [2] gave the formula

for I2r(n, 0, 0) for all r ≥ 1. Most recently, Granger present direct and indirect methods for

solving the prescribed traces problem for q = 2 and n odd. And then in [7] he applied these

methods for Iq(n, γ1, γ2, . . . , γl) and l ≥ 7. Also he obtained explicit formulas for l = 3 where

q = 3. Let Īq(n, γ1, γ2) denote the number of monic irreducible polynomials over Fq of degree

n with the coefficients of xn−1 and x being the prescribed values γ1, γ2, respectively. In this

paper we give the formula for Īq(n, 0, 0). Besides, we use this formula to present an upper

bound on the number of distinct families with good pseudorandom measures such as family

complexity and cross-correlation.

The paper is organized as follows. We present some definitions and previous results in Sec-

tion 2. In Section 3 we present the concept of L-polynomial of algebraic curves over Fq and

its connection to the number of rational points on the algebraic curve. In Section 4, we present

our main result and prove the formula on the number of irreducible polynomials with vanishing

trace and reciprocal trace. In Section 5 we give examples and tables for q = 4 and q = 9. In

Section 6 we give a result on the number of distinct families of pseudorandom sequences with

good family complexity and cross-correlation measure.

2 Preliminaries

For a ∈ Fqn , let the characteristic polynomial of a over Fq be

n−1
∏

i=0

(x− aq
i

) = xn − an−1x
n−1 + · · ·+ (−1)n−1a1x+ (−1)na0.

Then we define trace and reciprocal-trace of a ∈ Fqn to the base field Fq as Tr(a) := an−1 and

rTr(a) := a1/a0, respectively. Hence, we have

Tr(a) =
n−1
∑

i=0

aq
i

and rTr(a) =
n−1
∑

i=0

a−qi .

Let f(x) = xn− cn−1x
n−1+ · · ·+(−1)n−1c1x+(−1)nc0 ∈ Fq[x] be an irreducible polynomial

over Fq. Similarly, we define trace and reciprocal-trace of f ∈ Fqn[x] as Tr(f) := cn−1 and

rTr(f) := c1/c0, respectively.
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For γ1, γ2 ∈ Fq, let Fq(n, γ1, γ2) be the number of elements a ∈ Fn
q for which Tr(a) = γ1 and

rTr(a) = γ2. In this paper we will first consider the values of Fq(n, γ1, γ2) and give its formula

for γ1 = 0 and γ2 = 0. Before that, we give some definitions and preliminary results. We begin

with the definition of Möbius function.

Definition 1. [15, Definition 2.1.22] The Möbius µ function is defined on the set of positive

integers by

µ(m) =







1 if m = 1
(−1)k if m = m1m2 . . .mk where the mi are distinct primes

0 if p2 divides m for some prime p

Lemma 1. [13, Theorem 2.25] Let F be a finite extension of K = Fq. Then for a ∈ F we have

Tr(a) = 0 if and only if a = yq − y for some y ∈ F .

We note that for a positive integer n with a positive divisor d and P be a polynomial of degree

n/d, the following trivially holds

Tr(P d) = d · Tr(P ) and rTr(P d) = d · rTr(P ). (1)

We now present an analog result of [2, Theorem 1] in the following theorem. Since the proof is

not direct, we give it here.

Theorem 1. Let n ≥ 2 be an integer. Then

Īq(n, 0, 0) =
1

n

∑

d|n,p∤d

µ(d)
(

Fq(n/d, 0, 0)− [p divides n]qn/pd
)

.

Proof. We have

Fq(n, 0, 0) =

∣

∣

∣

∣

∣

∣

⋃

β∈Fqn , Tr(β)=0,rTr(β)=0

Min(β)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

d|n

n

d

{

P ∈ Irr
(n

d

)

: d · Tr(P ) = 0, d · rTr(P ) = 0
}

∣

∣

∣

∣

∣

∣

= [p divides n]

∣

∣

∣

∣

∣

∣

⋃

d|n, p|d

n

d

{

P ∈ Irr
(n

d

)}

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

d|n, p∤d

n

d

{

P ∈ Irr
(n

d

)

: Tr(P ) = 0, rTr(P ) = 0
}

∣

∣

∣

∣

∣

∣

= [p divides n]
∑

d|n, p|d

n

d
Īq

(n

d

)

+
∑

d|n, p∤d

n

d
Īq

(n

d
, 0, 0

)

= [p divides n]qn/p +
∑

d|n, p∤d

n

d
Īq

(n

d
, 0, 0

)

,
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where the third equality follows from (1). Therefore,

Īq(n, 0, 0) =
1

n

∑

d|n, p∤d

(

Fq(n/d, 0, 0)− [p divides n]qn/pd
)

.

3 L-Polynomial

In this chapter we define the L-Polynomial of curves over a finite field. Also we give a well-

known formula for the number of rational points on algebraic curves over the finite fields.

Definition 2. Let q = pr where p is a prime number. Let C = C(Fq) be a (projective, smooth,

absolutely irreducible) algebraic curve of genus g defined over Fq. Consider the L-polynomial

of the curve C over Fq defined by

LC(t) = exp

( ∞
∑

n=1

(#C(Fqn)− qn − 1)
tn

n

)

where #C(Fqn) denotes the number of Fqn-rational points of C.

Also LC(t) is defined as follows:

LC(t) =

2g
∑

i=0

cit
i

where ci ∈ Z and g is the genus of C. For instance, for genus 1, the L-polynomial given by

LC(t) = qt2 + c1t + 1, where c1 = #C(Fq) − (q + 1). In general, the coefficients of the

L-polynomial are determined by #C(Fqn) for n = 1, 2, . . . , g. Let α1, . . . , α2g be the roots of

the reciprocal of the L-polynomial of C over Fq. Then

LC(t) =

2g
∏

i=1

(1− αn
i t).

We also have that

#C(Fqn) = (qn + 1)−
2g
∑

i=1

(αi)
n (2)

for all n ≥ 1, where |αi| =
√
q.

4 Finding the values Fq(n, 0, 0)

In this section we will find the numbers Fq(n, 0, 0) where q is an even prime power and n is a

positive integer. We relate these numbers with q−1 elliptic curves which are related with trace.
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Since calculating the number of Fq-rational points of an elliptic curve is enough to find all the

number of Fqn-rational points, the given formula for Fq(n, 0, 0) is fast to compute. Since these

curves are related with trace, we can prefer to write an algorithm using the trace forms.

We note that exact method can be applied for Fq(n, t1, t2) where q is an any prime power and

t1, t2 ∈ Fq.

Let q be an even prime power and n be a positive integer. For functions q1, q2 : Fqn → Fq

define related N(t1, t2) be the number of elements in Fqn satisfying q1(x) = t1 and q2(x) = t2.

For a function f : Fqn → Fq define Z(f) be the number of elements in Fqn satisfying f(x) = 0.

Lemma 2. [2, Lemma 6] Let q1, q2 : Fqn → Fq be any functions. Then

N(0, 0) =
1

q



Z(q1) +
∑

α∈Fq

Z(αq1 − q2)− qn



 .

Proof. It follows by the following equalities.

qn =
∑

α,β∈Fq

N(α, β) =
∑

β∈Fq

N(0, β) +
∑

β∈Fq

∑

α∈F×

q

N(α, β)

= Z(q1) +
∑

β∈Fq

∑

α∈F×

q

N(α, αβ)

= Z(q1) +
∑

α,β∈Fq

N(β, αβ)− qN(0, 0)

= Z(q1) +
∑

α∈Fq

Z(αq1 − q2)− qN(0, 0).

Lemma 3. Let q1(x) = Tr(x) and q2(x) = rTr(x) be functions from Fqn to Fq. The number of

Fqn-rational points of x(yq − y) = αx2 − 1 equals to qZ(αq1 − q2)− q + 2.

Proof. The projective curve xyq − xyzq−1 = αx2zq−1 − zq+1 has two infinity points (1 : 0 : 0)
and (0 : 1 : 0) and has no extra solution when x = 0. If x 6= 0, then the points on x(yq − y) =
αx2 − 1 are related with the the set of zeros of Tr(αx − x−1). If x is a such zero, then there

exists y ∈ Fqn such that all the points (x, y + c) are on the curve where c ∈ Fqn . Therefore,

Fqn-rational points of x(yq − y) = αx2 − 1 equals to

2 + q(Z(αq1 − q2)− 1) = qZ(αq1 − q2)− q + 2.

Lemma 4. Assume that q is an even prime power. Let α ∈ F×
q . The number of Fqn-rational

points of the curves x(yq + y) = αx2 + 1 and x(yq + y) = x2 + 1 over Fq are same.

Proof. Since order of α is odd, there exist n such that 2n+1 is the order of α. The transforma-

tion (x, y) → (αnx, α−ny) on x(yq + y) = αx2 + 1 gives x(yq + y) = x2 + 1.
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The following lemma follows by Lemma 8 in [2].

Lemma 5. Assume that q is an even prime power. The curve C : x(yq + y) = x2 +1 over Fq is

the fiber product of the curves Cα : x(y2 + y) = α(x2 + 1) over Fq where α ∈ F×
q . Therefore,

#C(Fqn)− (qn + 1) =
∑

α∈F×

q

(#Cα(Fqn)− (qn + 1)) .

The following lemma follows by an analogue of Lemma 8 in [2] to all primes.

Lemma 6. Assume that q is prime p-power. Let α ∈ F×
q . The curve Cα : x(yq − y) = αx2 − 1

over Fq is the fiber product of the curves Cα,β : x(yp − y) = β(αx2 − 1) over Fq where

β ∈ F×
q /F

×
p as a representative set in F×

q . Therefore,

#Cα(Fqn)− (qn + 1) =
∑

β∈F×

q /F×

p

(#Cα,β(Fqn)− (qn + 1)) .

Theorem 2. Assume that q is an even prime power. Let Cα : x(y2 + y) = α(x2 + 1) be curves

over Fq for α ∈ F×
q . Define Sα(Fqn) = #Cα(Fqn)− (qn + 1). Then

Fq(n, 0, 0) = qn−2 +
q − 1

q2

∑

α∈F×

q

(Sα(Fqn) + 1) .

Proof. Let q1(x) = Tr(x) and q2(x) = rTr(x) be functions from Fqn to Fq. By Lemma 2

qFq(n, 0, 0) = Z(q1) + Z(q2) +
∑

α∈F×

q

Z(αq1 + q2)− qn

= qn−1 + qn−1 +
∑

α∈F×

q

Z(αq1 + q2)− qn

= qn−1 +
∑

α∈F×

q

(

Z(αq1 + q2)− qn−1
)

.

By Lemma 3 and Lemma 4

qFq(n, 0, 0) = qn−1 +
∑

α∈F×

q

(

#C(Fqn) + q − 2

q
− qn−1

)

= qn−1 +
q − 1

q
(#C(Fqn)− (qn + 1) + q − 1)

By Lemma 5

Fq(n, 0, 0) = qn−2 +
q − 1

q2









∑

α∈F×

q

(#Cα(Fqn)− (qn + 1))



+ q − 1





= qn−2 +
q − 1

q2

∑

α∈F×

q

(Sα(Fqn) + 1) .

6



Similarly, we can prove the following theorem. We will skip similar calculation details.

Theorem 3. Assume that q is prime p-power. Let Cα,β : x(yp−y) = β(αx2−1) be curves over

Fq for α ∈ F×
q and β ∈ F×

q /F×
p as representative set in F×

q . Define Sα,β(Fqn) = #Cα,β(Fqn)−
(qn + 1). Then

Fq(n, 0, 0) = qn−2 +
(q − 1)2

q2
+

1

q2

∑

α∈F×

q

∑

β∈F×

q /F×

p

Sα,β(Fqn)

Proof. Let q1(x) = Tr(x) and q2(x) = rTr(x) be functions from Fqn to Fq. By Lemma 2

qFq(n, 0, 0) = qn−1 +
∑

α∈F×

q

(

Z(αq1 − q2)− qn−1
)

.

By Lemma 3 and Lemma 6

Fq(n, 0, 0) = qn−2 +
(q − 1)2

q2
+

1

q2

∑

α∈F×

q

(#Cα(Fqn)− (qn + 1))

= qn−2 +
(q − 1)2

q2
+

1

q

∑

α∈F×

q





∑

β∈F×

q /F×

p

(#Cα,β(Fqn)− (qn + 1))





= qn−2 +
(q − 1)2

q2
+

1

q2

∑

α∈F×

q

∑

β∈F×

q /F×

p

Sα,β(Fqn).

Remark. We note that the curve Cα : x(y2+y) = α(x2+1) over F2r for α ∈ F×
q is non-singular.

Therefore by using genus-degree formula it has genus 1. On the other hand, for an odd prime

power q = pr, the curve Cα,β : x(yp − y) = β(αx2 − 1) over Fq for α ∈ F×
q and β ∈ F×

q /F×
p

has genus p− 1. This can be seen form [17, Theorem 3.7.8] as the Artin-Schreier extension of

the rational function field Fq(x) defined by yp − y = β(αx2 − 1)/x has only ramified rational

places x and 1/x of Fq(x).

5 Examples

In this section, we illustrate Theorems 1 and 3 for q = 4 and q = 9, respectively.

Example 1. Let q = 4 and n = 5. Let Cα,β : x(y2 − y) = α(x2 + 1) be curves over F4 for

α ∈ F×
4 . Let Sα(Fqn) be defined as in Theorem 2. Then by using Magma [3] we get

∑

α∈F×

4

Sα(F45 + 1) = −176. (3)

7



Then Theorem 2 gives

F4(5, 0, 0) = 64− 528

16
= 31. (4)

On the other hand, we, in Table 1, tabulate the number of elements in F4n with both vanishing

trace and reciprocal trace. We get the values in Table 1 by exhaustive counting. Note that (4)

complies with the corresponding value in the Table 1.

Table 1: The values of F4(n, 0, 0).

n 3 4 5 6 7 8 9 10

F4(n, 0, 0) 7 16 31 268 1135 4096 16279 64684

Now we calculate the number of monic irreducible polynomials of degree 5 in F4[x] with van-

ishing trace and reciprocal trace. By Theorem 1 we have

Ī4(5, 0, 0) =
1

5

(

µ(5)(F4(1, 0, 0) + µ(1)(F4(1, 0, 0)
)

. (5)

Besides, Theorem 2 gives F4(1, 0, 0) = 1 and F4(5, 0, 0) = 31 as above. Therefore we get

Ī4(5, 0, 0) = 6. (6)

Similarly, we counted exhaustively the number Ī4(n, 0, 0) of irreducible polynomials for n =
3, 4, . . . , 10 and tabulated them in Table 2. We see that (6) complies with the value given in

Table 2.

Table 2: The number Ī4(n, 0, 0) of monic irreducible polynomials

n 3 4 5 6 7 8 9 10

Ī4(n, 0, 0) 0 0 6 34 162 480 1808 6366

Example 2. Let q = 9 and n = 5. Let Cα,β : x(y3− y) = β(αx2− 1) be curves over F9, where

α ∈ F×
9 and the elements β are the representatives of the quotient group F×

9 /F×
3 . Let Sα,β(Fqn)

be defined as in Theorem 3. Then by using Magma [3] we get

∑

α∈F×

9

∑

β∈F×

9
/F×

3

Sα,β(F95) = 5768. (7)

Then by Theorem 3 we have

F9(5, 0, 0) = 729 +
64 + 5768

81
= 801. (8)

We see that (8) is equal to the value that we obtain by counting the number of elements in F9

with vanishing trace and reciprocal trace, see Table 3.

8



Table 3: The values of F9(n, 0, 0).

n 3 4 5 6 7 8

F9(n, 0, 0) 9 9 89 801 6561 57904

We know by Theorem 1 that the number of monic irreducible polynomials of degree 5 over

F9[x] with vanishing trace and reciprocal trace satisfies

Ī9(5, 0, 0) =
1

5

(

µ(5)(F9(1, 0, 0) + µ(1)(F9(5, 0, 0)
)

. (9)

By Theorem 3 we get F9(1, 0, 0) = 1 and F9(5, 0, 0) = 801. Therefore we obtain

Ī9(5, 0, 0) = 160. (10)

Then also we see that the values in Table 4 and (10) are equal.

Table 4: The number Ī9(n, 0, 0) of monic irreducible polynomials

n 3 4 5 6 7 8 9

Ī9(n, 0, 0) 0 0 160 1080 8272 66500 530592

6 Pseudorandom sequences

Pseudorandom sequence is a sequence of numbers generated deterministically and looks ran-

dom. The quality of a pseudorandom sequence are screened not only by statistical test packages

(for example L’Ecuyer’s TESTU01 [12], Marsaglia’s Diehard [14] or the NIST battery [16]) but

also by theoretical results on certain measures of pseudorandomness, see [8, 19] and references

therein.

In some applications such as cryptography we need a large family of good pseudorandom se-

quences and we need to provide some bounds on several figures of merit [18]. In this section

we consider the family complexity (short f -complexity) and the cross-correlation measure of

order ℓ of families of sequences. We start with their definitions and then we define a family of

sequences with good f -complexity and the cross-correlation measure. In this section we give

an upper bound on the number of distinct families by using Theorems 1 and 3. Ahlswede et

al. [1] introduced the f -complexity as follows.

Definition 3. The f -complexity C(F) of a family F of binary sequences EN ∈ {−1,+1}N of

length N is the greatest integer j ≥ 0 such that for any 1 ≤ i1 < i2 < · · · < ij ≤ N and any

ǫ1, ǫ2, . . . , ǫj ∈ {−1,+1} there is a sequence EN = {e1, e2, . . . , eN} ∈ F with

ei1 = ǫ1, ei2 = ǫ2, . . . , eij = ǫj .

It is easy to see that 2C(F) ≤ |F|, where |F| denotes the size of the family F .

Gyarmati et al. [9] introduced the cross-correlation measure of order ℓ.

9



Definition 4. The cross-correlation measure of order ℓ of a family F of binary sequences

Ei,N = (ei,1, ei,2, . . . , ei,N) ∈ {−1 + 1}N , i = 1, 2, . . . , F , is defined as

Φℓ(F) = max
M,D,I

∣

∣

∣

∣

∣

M
∑

n=1

ei1,n+d1 · · · eiℓ,n+dℓ

∣

∣

∣

∣

∣

,

where D denotes an ℓ tuple (d1, d2, . . . , dℓ) of integers such that 0 ≤ d1 ≤ d2 ≤ · · · ≤ dℓ <
M + dℓ ≤ N and di 6= dj if Ei,N = Ej,N for i 6= j and I denotes an ℓ tuple (i1, i2, . . . , iℓ) ∈
{1, 2, . . . , F}ℓ.
In [20], a family of sequences of Legendre symbols generated from some irreducible polynomi-

als with high family complexity and small cross-correlation measure up to a large order ℓ was

given. Similarly, it was shown that its dual family has good measures. Let p > 2 be a prime

number, n ≥ 5 and Ωp,n be a set of irreducible polynomials over Fp of degree n defined as

Ωp,n = {f(x) = xn + a2x
n−2 + a3x

n−3 + · · ·+ an−2x
2 + an ∈ Fp[x], a2, a3 6= 0}.

Let f ∈ Ωp,n, fi(X) = inf(X/i) for i ∈ {1, 2, . . . , p − 1} and Ff be a family of binary

sequences defined as

Ff =

{

(

fi(j)

p

)p−1

j=1

: i = 1, . . . , p− 1

}

, (11)

and Ff be the dual of Ff . Then it is shown in [20] that they have good cross-correlation measure

and family complexity as

Φk(Ff) ≪ nkp1/2 log p and Φk(Ff) ≪ nkp1/2 log p

for each integer k ∈ {1, 2, . . . , p− 1} and

C(Ff) ≥
(

1

2
− o(1)

)

log(p/n2)

log 2
and C(Ff) ≥

(

1

2
− o(1)

)

log(p/n2)

log 2
.

We have the family size |Ff | = p for the family given in (11). On the other hand, the number

#{Ff |f ∈ Ωp,n} of distinct families that can be constructed as in (11) not known. Here, we give

a partial solution for this problem, that is, an upper bound on the number of distinct families.

Corollary 1. Let Cα : x(yp+ y) = α(x2+1) be curves over Fp for α ∈ F×
p . Define Sα(Fpn) =

#Cα(Fpn)− (pn + 1). Then

#{Ff |f ∈ Ωp,n} <
1

n

∑

d|n,p∤d

µ(d)
(

Fp(n/d, 0, 0)− [p divides n]pn/pd
)

,

where

Fp(n, 0, 0) = pn−2 +
(p− 1)2

p2
+

1

p2

∑

α∈F×

p

Sα(Fpn).

Proof. The family F is constructed by using irreducible polynomials f ∈ Ip(n, 0, 0). Hence we

have the case q = pr for r = 1. By Theorem 1, we get the number of irreducible polynomials

in terms of Fp(n, 0, 0). On the other hand, as q = p, Theorem 3 gives the result.
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7 Conclusion

In this paper, we proved the formula for number Īq(n, 0, 0) of irreducible polynomial of degree

n over the finite field Fq, q = pr, such that the terms xn−1 and x vanish. Our formula reduces the

problem of finding Īq(n, 0, 0) into getting the roots of the L-polynomial of the corresponding

algebraic curve defined over Fq. The latter is an easier problem as the genus of the curve is

p − 1. In particular, they are elliptic curves when q = 2r and the L-polynomial has only two

roots.
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complexity measure for families of binary sequences. Period. Math. Hungar., 46(2):107–

118, 2003.
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[20] Oğuz Yayla. Families of sequences with good family complexity and cross-correlation

measure. arXiv preprint arXiv:2004.13938, 2020.

[21] Joseph L. Yucas. Irreducible polynomials over finite fields with prescribed

trace/prescribed constant term. Finite Fields Appl., 2006.

[22] Joseph L. Yucas and Gary L. Mullen. Irreducible polynomials over GF(2) with prescribed

coefficients. Discrete Mathematics, 274(1):265 – 279, 2004.

12


	1 Introduction
	2 Preliminaries
	3 L-Polynomial
	4 Finding the values Fq(n,0,0)
	5 Examples
	6 Pseudorandom sequences
	7 Conclusion

