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Several classes of bent functions over finite fields

Xi Xie, Nian Li, Xiangyong Zeng, Xiaohu Tang, Yao Yao ∗

Abstract: Let Fpn be the finite field with pn elements and Tr(·) be the trace function
from Fpn to Fp, where p is a prime and n is an integer. Inspired by the works of

Mesnager (IEEE Trans. Inf. Theory 60(7): 4397-4407, 2014) and Tang et al. (IEEE

Trans. Inf. Theory 63(10): 6149-6157, 2017), we study a class of bent functions of the

form f(x) = g(x) +F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)), where g(x) is a function from

Fpn to Fp, τ ≥ 2 is an integer, F (x1, · · · , xn) is a reduced polynomial in Fp[x1, · · · , xn]
and ui ∈ F∗

pn for 1 ≤ i ≤ τ . As a consequence, we obtain a generic result on the

Walsh transform of f(x) and characterize the bentness of f(x) when g(x) is bent for

p = 2 and p > 2 respectively. Our results generalize some earlier works. In addition,

we study the construction of bent functions f(x) when g(x) is not bent for the first

time and present a class of bent functions from non-bent Gold functions.

Keywords: Algebraic degree, Bent function, Walsh transform.

1 Introduction

Boolean bent functions were first introduced by Rothaus in 1976 [14] as an interesting com-

binatorial object with maximum Hamming distance to the set of all affine functions. Over the

last four decades, bent functions have attracted a lot of research interest due to their important

applications in cryptography [1], sequences [12] and coding theory [2, 6]. Kumar, Scholtz and

Welch in [9] generalized the notion of Boolean bent functions to the case of functions over an

arbitrary finite field.

Given a function f(x) mapping from Fpn to Fp, the Walsh transform of f(x) is defined by

f̂(b) =
∑

x∈Fpn
ωf(x)−Tr(bx), b ∈ Fpn ,
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where ω = e
2π

√−1
p is a complex primitive p-th root of unity. According to [9], f(x) is called a

p-ary bent function if all its Walsh coefficients satisfy
∣∣f̂(b)| = pn/2. A p-ary bent function f(x) is

called regular if f̂(b) = pn/2ωf̃(b) holds for some function f̃(x) mapping Fpn to Fp, and it is called

weakly regular if there exists a complex µ having unit magnitude such that f̂(b) = µ−1pn/2ωf̃(b)

for all b ∈ Fpn. The function f̃(x) is called the dual of f(x) and it is also bent.

An interesting class of bent functions over finite fields with the form

f(x) = g(x) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)) (1)

was studied in the past years, where g(x) is a function from Fpn to Fp, F (x1, · · · , xτ ) is an

arbitrary reduced polynomial in Fp[x1, · · · , xτ ], τ ≥ 2 is an integer and ui ∈ F∗
pn for all 1 ≤

i ≤ τ . The initial work on this issue is due to Mesnager [11] who studied the case p = 2,

F (x1, x2) = x1x2 and g(x) is a bent function whose dual function has a null second order

derivative. This motivated Xu et al. to construct bent functions by using some known bent

functions g(x) via the cases F (x1, x2, x3) = x1x2x3 for p = 2 [17] and F (x1, x2) = x1x2 for p = 3

[18, 19], respectively. Later, Wang et al. characterized the bentness of f(x) when g(x) is bent

and F (x1, · · · , xτ ) = x1 · · · xτ for p = 2 and consequently constructed bent functions of the form

(1) from some bent functions g(x) whose dual functions are already known [16]. Meanwhile, also

for p = 2, Tang et al. [15] investigated the bentness of f(x) with the form (1) for an arbitrary

reduced polynomial F (x1, · · · , xτ ) and a bent function g(x) whose dual satisfies

g̃(x−
∑τ

i=1
uiti) = g̃(x) +

∑τ

i=1
gi(x)ti, (2)

where ti ∈ Fp and gi(x) is a function from Fpn to Fp for each 1 ≤ i ≤ τ . The analogues of

the results in [15] for an odd prime p were obtained in [13] where g(x) was required to be a

homogeneous quadratic bent function and its dual also satisfies (2). In 2019, Zheng et al. [20]

showed that for p = 2, f(x) of the form (1) is bent for any reduced polynomial F (x1, · · · , xτ ) if
and only if g(x) is bent whose dual satisfies (2).

Inspired by the above works, in this paper, we further study the construction of bent functions

with the form (1). We first derive a generic result on Walsh transform of the function f(x) of

the form (1) in which g(x) is not necessarily bent. Then we characterize the bentness of f(x) in

(1) when g(x) is bent whose dual satisfies

g̃(x−
∑τ

i=1
uiti) = g̃(x) +

∑
1≤i≤j≤τ

Aijtitj +
∑τ

i=1
gi(x)ti (3)

for some Aij 6= 0. Our results generalize some earlier works in this direction. In addition, we

attempt to construct bent functions f(x) having the form (1) from non-bent functions g(x)

and consequently obtain a class of such bent functions by using non-bent Gold functions and
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F (x1, x2) = x1x2. To the best of our knowledge, the construction of bent functions with the

form (1) from either bent functions satisfying (3) for some Aij 6= 0 or non-bent functions is

studied in this paper for the first time in the literature.

The rest of this paper is organized as follows. Section 2 gives some preliminaries. Section 3

provides some results on the Walsh transform of functions with the form (1) and characterizes the

bentness of such functions when g(x) satisfies (3) for some nonzero Aij . Section 4 proposes a class

of bent functions of the form (1) in which g(x) is a non-bent Gold function and F (x1, x2) = x1x2.

Section 5 concludes this paper.

2 Preliminaries

Throughout this paper, let Fpn denote the finite field with pn elements, where n is a positive

integer and p is a prime. The trace function from Fpn to its subfield Fpk is defined by Trnk(x) =∑n/k−1
i=0 xp

ik
. In particular, when k = 1, we use the notation Tr(x) instead of Trn1 (x).

2.1 Algebraic degree

A function F (x1, · · · , xn) : Fn
p 7→ Fp is often represented by its algebraic normal form:

F (x1, · · · , xn) =
∑

e=(e1,··· ,en)∈Fn
p

a(e)(

n∏

i=1

xeii ), a(e) ∈ Fp. (4)

A polynomial in Fp[x1, · · · , xn] with the form (4) is called a reduced polynomial. The algebraic

degree of F (x1, · · · , xn), denoted by deg(F ), is defined as deg(F ) = maxe∈Fn
p
{
∑n

i=1 ei : a(e) 6=
0}, where e = (e1, · · · , en). The following lemma will be used to determine the algebraic degree

of some reduced functions, which is a direct generalization of the result proposed in [15, Lemma

2.1].

Lemma 1. Let u1, u2, · · · , uτ ∈ F∗
pn be linearly independent over Fp, where τ is an integer with

1 ≤ τ ≤ n. Let F (x1, · · · , xτ ) be a reduced polynomial in Fp[x1, · · · , xτ ] of algebraic degree d.

Then the following univariate function

F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx))

has algebraic degree d.

The algebraic degree of a p-ary bent function has been characterized as follows.
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Lemma 2. ([8, Propositions 4.4 and 4.5]) Let f(x) be a bent function from Fpn to Fp, then the

algebraic degree deg(f) of f(x) satisfies deg(f) ≤ (p−1)n
2 + 1, and if f(x) is weakly regular bent,

then deg(f) ≤ (p−1)n
2 .

2.2 Certain exponential sums

For each b ∈ Fpn , the function χb(x) = ωTr(bx) defines an additive character for x ∈ Fpn . The

character χ := χ1 is called the canonical additive character of Fpn .

Lemma 3. ([10, Theorems 5.15 and 5.33]) Let p be an odd prime, η be the quadratic multiplica-

tive character of Fp and p∗ = (−1)
p−1
2 p = η(−1)p. Then

∑
x∈Fp

χ(ax2 + bx) = η(a)
√

p∗ω− b2

4a , a ∈ F∗
p, b ∈ Fp.

Lemma 4. Let p be an odd prime and ai ∈ Fp for i = 1, 2, 3, 4, 5. Denote

H =
∑

(x,y)∈F2
p

ωa1x2+a2y2+a3xy+a4x+a5y.

If a23 − 4a1a2 = 0, then

H =





p2, if a1 = 0, a2 = a4 = a5 = 0,

η(a2)p
√
p∗ω

−
a25
4a2 , if a1 = 0, a2 6= 0, a4 = 0,

η(a1)p
√
p∗ω

−
a24
4a1 , if a1 6= 0, a5 =

a3a4
2a1

,

0, otherwise,

and if a23 − 4a1a2 6= 0, then

H = η(a23 − 4a1a2)pω

a2a
2
4+a1a

2
5−a3a4a5

a2
3
−4a1a2 .

Proof. We first consider the case a23 − 4a1a2 = 0. If a1 = 0, then a3 = 0 and Lemma 3 yields

H =
∑

(x,y)∈F2
p

ωa4x+a2y2+a5y =





p2, if a2 = a4 = a5 = 0,

p
√
p∗η(a2)ω

−
a25
4a2 , if a2 6= 0, a4 = 0,

0, otherwise.

If a1 6= 0, again by Lemma 3 one obtains

H =
√

p∗η(a1)
∑

y∈Fp
ω
a2y2+a5y−

(a3y+a4)
2

4a1 =
√

p∗η(a1)
∑

y∈Fp
ω
(a5−

a3a4
2a1

)y−
a24
4a1
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due to a23 − 4a1a2 = 0. This implies that

H = p
√

p∗η(a1)ω
−

a24
4a1

if a5 = a3a4/2a1 and H = 0 otherwise.

Next, we calculate H for the case a23 − 4a1a2 6= 0. If a1 = 0, then a3 6= 0 and it can be

readily verified that

H =
∑

(x,y)∈F2
p

ω(a3y+a4)x+a2y2+a5y = pω
a2(−

a4
a3

)2+a5(−
a4
a3

)
.

If a1 6= 0, then by Lemma 3, one gets

H =
√

p∗η(a1)
∑

y∈Fp

ω
a2y2+a5y−

(a3y+a4)
2

4a1 = p∗η(4a1a2 − a23)ω
a1

a2
3
−4a1a2

(a5−
a3a4
2a1

)2−
a24
4a1 .

Then the result follows from p∗ = η(−1)p and p∗η(4a1a2−a23) = pη(a23−4a1a2). This completes

the proof.

2.3 Walsh transform of Gold functions

In this subsection, we present some known results on the Walsh transform of Gold functions

which will be used to construct bent functions f(x) of the form (1) from non-bent functions g(x)

in Section 4.

Coulter studied the Walsh transform of Gold functions for odd p [4] and p = 2 [5] respectively.

Let n, k be positive integers with d = gcd(k, n) and g(x) = Tr(axp
k+1), where a ∈ F∗

pn, then the

Walsh transform of g(x) has been determined as below.

Lemma 5. ([5, Theorem 4.2]) Suppose n/d is odd. Then for b ∈ F2n,

ĝ(b) =

{
0, if Trnd (bc

−1) 6= 1,

±2
n+d
2 , if Trnd (bc

−1) = 1,

where c ∈ F∗
2n is the unique element satisfying c2

k+1 = a.

Lemma 6. ([3, 4, Theorems 1 and 2] and [5, Theorem 5.3]) Suppose n/d is even, n = 2m and

p is a prime. Then for b ∈ Fpn,

ĝ(b) =





(−1)m/dpmχ(axp
k+1

0 ), if a
pn−1

pd+1 6= (−1)
m
d ,

(−1)m/d+1pm+dχ(axp
k+1

0 ), if a
pn−1

pd+1 = (−1)
m
d , Trn2d(b/ac

pk) = 0,

0, otherwise,

where c ∈ F∗
pn satisfies ap

k
cp

2k
+ ac = 0 and x0 is the solution of ap

k
xp

2k
+ ax = −bp

k
.
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3 Constructions of bent functions of the form (1)

In this section, we first derive a generic result on the Walsh transform of f(x) with the form

(1) in which g(x) is not necessarily bent. Then, we characterize the bentness of f(x) in (1) for a

bent function g(x) whose dual satisfies (3) with some Aij 6= 0 for p = 2 and p > 2 respectively.

The Walsh transform of a multivariate function F (x1, · · · , xn) over Fn
p is

F̂ (b1, · · · , bn) =
∑

(x1,··· ,xn)∈Fn
p

ωF (x1,··· ,xn)−
∑n

i=1 bixi , (5)

where (b1, · · · , bn) ∈ Fn
p . Then the inverse Walsh transform of F (x1, · · · , xn) is given by

ωF (x1,··· ,xn) =
1

pn

∑

(b1,··· ,bn)∈Fn
p

ω
∑n

i=1 bixi F̂ (b1, · · · , bn). (6)

Using (5) and (6), the Walsh transform of f(x) in (1) can be expressed as below.

Theorem 1. Let f(x) be defined as (1), then for any b ∈ Fpn,

f̂(b) =
1

pτ

∑

(t1,··· ,tτ )∈Fτ
p

F̂ (t1, · · · , tτ )ĝ(b−
∑τ

i=1
tiui).

In particular, if F (x1, · · · , xτ ) = x1 · · · xτ , then

f̂(b) =
1

pτ−1

τ−1∑

i,j=1

p−1∑

ti=0

p−1∑

xj=0

ω−
∑τ−1

i=1 xiti ĝ(b−
∑τ−1

i=1
tiui −

∏τ−1

i=1
xiuτ ).

Proof. According to (6), for any b ∈ Fpn, one obtains

f̂(b) =
∑

x∈Fpn

ωg(x)+F (Tr(u1x),Tr(u2x),··· ,Tr(uτx))−Tr(bx)

=
1

pτ

∑

(t1,··· ,tτ )∈Fτ
p

∑

x∈Fpn

ωg(x)−Tr(bx)+
∑τ

i=1 Tr(uix)ti F̂ (t1, · · · , tτ )

=
1

pτ

∑

(t1,··· ,tτ )∈Fτ
p

F̂ (t1, · · · , tτ )ĝ(b−
∑τ

i=1
tiui).
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If F (x1, · · · , xτ ) = x1 · · · xτ , then by (5), one gets

f̂(b) =
1

pτ

∑

(t1,··· ,tτ )∈Fτ
p

∑

(x1,··· ,xτ )∈Fτ
p

ωx1···xτ−
∑τ

i=1 tixi ĝ(b−
∑τ

i=1
tiui)

=
1

pτ

τ−1∑

i,j=1

p−1∑

ti=0

p−1∑

xj=0

p−1∑

tτ=0

p−1∑

xτ=0

ω(
∏τ−1

i=1 xi−tτ )xτ−
∑τ−1

i=1 tixi ĝ(b−
∑τ

i=1
tiui)

=
1

pτ−1

τ−1∑

i,j=1

p−1∑

ti=0

p−1∑

xj=0

ω−
∑τ−1

i=1 xiti ĝ(b−
∑τ−1

i=1
tiui −

∏τ−1

i=1
xiuτ )

due to the fact that
∑p−1

xτ=0 ω
(
∏τ−1

i=1 xi−tτ )xτ = 0 if tτ 6= ∏τ−1
i=1 xi. This completes the proof.

Remark 1. Note that Theorem 1 holds for an arbitrary prime p and g(x) is a function from

Fpn to Fp which is not necessary to be bent. It generalizes some earlier works:

1). Theorem 1 is a generalization of Lemma 1 in [16].

2). If one takes p = 2, τ = 2 and f(x) = g(x) + Tr(ux)Tr(vx), where u, v ∈ F∗
2n , then our

result gives f̂(b) = 1
2(ĝ(b) + ĝ(b+ u)+ ĝ(b+ v)− ĝ(b+u+ v)) for any b ∈ F2n. When g(x)

is a Boolean bent function with the dual g̃(x), it can be verified that f(x) is bent if and

only if g̃(x) + g̃(x+ u) + g̃(x+ v) + g̃(x+ u+ v) = 0. This is Corollary 5 in [11].

3). If one takes p = 2, τ = 3 and f(x) = g(x) + Tr(ux)Tr(vx)Tr(rx), where u, v, r ∈ F∗
2n ,

then our result gives f̂(b) = 1
4(3ĝ(b) + ĝ(b + u) + ĝ(b+ v) + ĝ(b+ r) + ĝ(b+ u+ v + r)−

ĝ(b+ u+ v)− ĝ(b+ u+ r)− ĝ(b+ v + r)) for any b ∈ F2n . This is Lemma 1 in [17].

4). If one takes p = 3, τ = 2 and f(x) = g(x)+Tr(ux)Tr(vx) for u, v ∈ F∗
3n, then by Theorem

1 one obtains f̂(b) = 1
3(ĝ(b) + ĝ(b+ u) + ĝ(b− u) + ĝ(b− v) + ĝ(b+ v) + ωĝ(b− v + u) +

ω2ĝ(b − v − u) + ω2ĝ(b + v + u) + ωĝ(b + v − u) for any b ∈ F3n, where ω is a primitive

3-rd root of unity. This is exactly Lemma 4 in [18].

3.1 Bent functions of the form (1) for p = 2

Let p = 2 and f(x) be defined as (1). Tang et al. [15] proved that f(x) is bent for any reduced

polynomial F (x1, · · · , xτ ) in Fp[x1, · · · , xn] if g(x) is a bent function whose dual satisfies (2).

Later, Zheng et al. [20] showed that this condition is also necessary. In this section, we consider

the bentness of f(x) for a more general bent function g(x), i.e., g(x) satisfies (3) for some

Aij 6= 0, where 1 ≤ i < j ≤ τ and τ is a positive integer.

Suppose that g(x) is a bent function over F2n and its dual satisfies (3), then for b ∈ F2n ,

ti ∈ F2 and ui ∈ F∗
2n , where i = 1, 2, · · · , τ , one gets

ĝ(b−
∑τ

i=1
tiui) = 2

n
2 (−1)g̃(b−

∑τ
i=1 tiui),
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where g̃(x) is the dual of g(x). This together with (5) and Theorem 1 gives

f̂(b) =
1

2τ

∑

(t1,··· ,tτ )∈Fτ
2

F̂ (t1, · · · , tτ )ĝ(b−
∑τ

i=1
tiui)

= 2n/2−τ
τ∑

i,j=1

1∑

xi=0

1∑

tj=0

(−1)
F (x1,··· ,xτ )+g̃(b)+

∑
1≤i<j≤τ

Aijtitj+
τ∑

i=1
(gi(b)+xi+Aii)ti

, (7)

where gi(x) is a function from F2n to F2 for each 1 ≤ i ≤ τ .

Now assume that the nonzero elements in {Aij : 1 ≤ i < j ≤ τ} are Ai1j1 , · · · , Aiℓjℓ , where

ℓ is a positive integer, is < js for 1 ≤ s ≤ ℓ and 1 ≤ i1 ≤ · · · ≤ iℓ < τ . For simplicity, denote

hi = gi(b) +Aii and define

Γ = {i1, j1, · · · , iℓ, jℓ}. (8)

Then, we discuss (7) as the following two cases:

Case I: #Γ = 2ℓ, where 2 ≤ 2ℓ ≤ τ .

For this case, we have Aisjs = 1 for 1 ≤ s ≤ ℓ and Aij = 0 otherwise. Then (7) becomes

f̂(b) = 2n/2−τ (−1)g̃(b)
τ∑

i,j=1

1∑

xi=0

1∑

tj=0

(−1)F (x1,··· ,xτ )+
∑ℓ

s=1 tis tjs+
∑τ

i=1(hi+xi)ti

= 2n/2−2ℓ(−1)g̃(b)
∑

i,j∈Γ

1∑

xi=0

1∑

tj=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ+

ℓ∑
s=1

(tjs+(his+xis))tis+
ℓ∑

s=1
(hjs+xjs )tjs

= 2n/2−ℓ(−1)g̃(b)
∑

i∈Γ

1∑

xi=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ+

ℓ∑
s=1

(his+xis)(hjs+xjs)
,

where the second identity holds due to
∑1

ti=0(−1)(hi+xi)ti = 2 if xi = hi and 0 otherwise for any

i 6∈ Γ.

Then, in this case, f(x) defined by (1) can be bent for certain special F (x1, · · · , xτ ).

Theorem 2. Let n = 2m and u1, u2, · · · , uτ be pairwise distinct elements in F∗
2n, where 2 ≤

τ ≤ m. Let g(x) be a bent function over F2n whose dual satisfies (3) with Aij 6= 0 for i, j ∈ Γ

and Aij = 0 otherwise, where Γ is defined by (8). If #Γ = 2ℓ and F (x1, · · · , xτ ) satisfies

F (x1, · · · , xτ )|xi=hi,i 6∈Γ =
∑ℓ

s=1
(Fisxis + Fjsxjs) + F0

for some Fis , Fjs , F0 ∈ F2, where hi = gi(b)+Aii, then f(x) defined by (1) is bent and its Walsh

transform at point b ∈ F2n is

f̂(b) = 2n/2(−1)g̃(b)+
∑ℓ

s=1[(his+Fjs)(hjs+Fis)+hishjs ]+F0 .
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Example 1. Let n = 2m = 6, τ = 4, ξ be a primitive element of ∈ F∗
26 and g(x) = Tr31(x

9).

From [11] we know that the dual of g(x) satisfies (3) with Aii = Tr31(u
9
i ), Aij = Tr(uiu

8
j) for i < j

and gi(x) = Tr(u8i x). Taking u1 = 1, u2 = ξ, u3 = ξ4, u4 = ξ2, and F (x1, x2, x3, x4) = x1x2 +

x1x3x4, then A23 = 1 and A12 = A13 = A14 = A24 = A34 = 0. It indicates #Γ = #{2, 3} = 2

and F (x1, x2, x3, x4) satisfies

F (x1, x2, x3, x4)|x1=Tr(b)+1,x4=Tr(ξ16b) = (Tr(b) + 1)x2 + (Tr(b) + 1)Tr(ξ16b)x3.

Magma shows that

f(x) = Tr31(x
9) + Tr(x)Tr(ξx) + Tr(x)Tr(ξ4x)Tr(ξ2x)

is bent over F26 and its Walsh transform at b ∈ F26 is

f̂(b) = 23(−1)Tr
3
1(b

9)+1+(Tr(ξ8b)+(Tr(b)+1) Tr(ξ16b))(Tr(ξ32b)+Tr(b)+1)+Tr(ξ8b) Tr(ξ32b),

which is consistent with our result in Theorem 2.

Case II: #Γ < 2ℓ, where 2 ≤ 2ℓ ≤ τ .

If this case happens, then is1 = is2 or is1 = js2 for at least two integers 1 ≤ s1, s2 ≤ ℓ. Here

we only discuss the case Ai1js = 1 for s = 1, · · · , ℓ1 and Aij = 0 for any other i 6= j since other

cases can be considered in the same manner, where 1 ≤ i1 < j1 < · · · < jℓ1 ≤ τ . For this case,

(7) becomes

f̂(b) = 2n/2−ℓ1−1(−1)g̃(b)T,

where

T =
∑

i,j∈Γ

1∑

xi=0

1∑

tj=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ+(

ℓ1∑
s=1

tjs+hi1
+xi1

)ti1+
ℓ1∑
s=1

(hjs+xjs)tjs

= 2
∑

i∈Γ

1∑

xi=0

ℓ1∑

s=2

1∑

tjs=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ+(hj1

+xj1
)(

ℓ1∑
s=2

tjs+hi1
+xi1

)+
ℓ1∑
s=2

(hjs+xjs )tjs

= 2
∑

i∈Γ

1∑

xi=0

ℓ1∑

s=2

1∑

tjs=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ+

ℓ1∑
s=2

(hjs+xjs+hj1
+xj1

)tjs+(hi1
+xi1

)(hj1
+xj1

)

= 2ℓ1
1∑

xi1
=0

1∑

xj1
=0

(−1)
F (x1,··· ,xτ )|xi=hi,i6∈Γ,xjs=xj1

+hj1
+hjs ,2≤s≤ℓ1

+(hi1
+xi1

)(hj1
+xj1

)
.

Then, another class of bent functions can be obtained as follows.
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Theorem 3. Let n = 2m, u1, u2, · · · , uτ be pairwise distinct elements in F∗
2n , where 2 ≤ τ ≤ m.

Let g(x) be a bent function over F2n whose dual satisfies (3) with Ai1js = 1 for 1 ≤ i1 < j1 <

· · · < jℓ1 ≤ τ , s = 1, · · · , ℓ1 and Aij = 0 for other 1 ≤ i < j ≤ τ . If F (x1, · · · , xτ ) satisfies

F (x1, · · · , xτ )|xi=hi,i 6∈Γ,xjs=xj1
+hj1

+hjs ,2≤s≤ℓ1 = Fi1xi1 + Fj1xj1 + F0

for some Fi1 , Fj1 , F0 ∈ F2, where hi = gi(b) +Aii, Γ is defined in (8). Then f(x) defined by (1)

is bent and its Walsh transform at b ∈ F2n is

f̂(b) = 2n/2(−1)g̃(b)+(hi1
+Fj1

)(hj1
+Fi1

)+hi1
hj1

+F0 .

Example 2. Let n = 2m = 8, τ = 4, ξ be a primitive element of ∈ F∗
28 and g(x) = Tr41(ξ

17x17).

From [11] we know that the dual of g(x) satisfies (3) with Aii = Tr31(ξ
238u17i ), Aij = Tr(ξ238uiu

16
j )

for i < j and gi(x) = Tr(ξ238u16i x). Taking u1 = ξ, u2 = ξ6, u3 = ξ11, u4 = ξ20, and

F (x1, x2, x3, x4) = x1x4 + x2x3x4, then A12 = A13 = 1 and A14 = A23 = A24 = A34 = 0. It

indicates Γ = {1, 2, 3} and F (x1, x2, x3, x4) satisfies

F (x1, x2, x3, x4)|x4=Tr(ξ48b),x3=x2+Tr((ξ79+ξ159)b) = Tr(ξ48b)x1 +Tr(ξ48b)(Tr((ξ79 + ξ159)b) + 1)x2.

Magma shows that

f(x) = Tr41(ξ
17x17) + Tr(ξx)Tr(ξ20x) + Tr(ξ6x)Tr(ξ11x)Tr(ξ20x)

is bent over F28 and its Walsh transform at b ∈ F28 is

f̂(b) = 24(−1)Tr
4
1(ξ

238b17)+1+(Tr(ξ254b)+Tr(ξ48b)(Tr((ξ79+ξ159)b)+1))(Tr(ξ79b)+Tr(ξ48b))+Tr(ξ254b) Tr(ξ79b),

which is consistent with our result in Theorem 3.

Remark 2. For an odd prime p, when Aii = 0 for all 1 ≤ i ≤ τ , similar results to Theorem 2

and Theorem 3 can be obtained through the above discussion.

3.2 Bent functions of the form (1) for odd p

In this subsection, let p be an odd prime and f(x) be of the form (1), where g(x) is a weakly

regular bent function whose dual satisfies (3).

Since g(x) is a weakly regular bent function, suppose that ĝ(x) = µ−1pn/2ωg̃(x), then by (3),

(5) and Theorem 1, one gets

f̂(b) = µ−1pn/2−τ
τ∑

i,j=1

p−1∑

xi=0

p−1∑

tj=0

ωF (x1,··· ,xτ )+g̃(b)+
∑

1≤i≤j≤τ Aijtitj+
∑τ

i=1(gi(b)−xi)ti , (9)
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where gi(x) is a function from Fpn to Fp for each 1 ≤ i ≤ τ , Aij ∈ Fp for 1 ≤ i ≤ j ≤ τ .

In particular, if one takes τ = 2 and F (x1, x2) = x1x2, then Theorem 1 yields

f̂(b) = µ−1pn/2−τ+1
p−1∑

x1=0

p−1∑

t1=0

ω−x1t1+g̃(b)+A11t21+A12x1t1+A22x2
1+g1(b)t1+g2(b)x1 .

As a consequence, the following result can be verified by Lemma 4.

Proposition 1. Let p be an odd prime and g(x) be a weakly regular bent function over Fpn

whose dual satisfies

g̃(x− t1u1 − t2u2) = g̃(x) +A11t
2
1 +A22t

2
2 +A12t1t2 + g1(x)t1 + g2(x)t2

for all x ∈ Fpn and t1, t2 ∈ Fp, where g1(x) and g2(x) are functions from Fpn to Fp. Let

u1, u2 ∈ F∗
pn, then f(x) = g(x) +Tr(u1x)Tr(u2x) is a weakly regular bent function if and only if

(A12 − 1)2 − 4A11A22 6= 0. Moreover, for b ∈ Fpn, the Walsh transform of f(x) is

f̂(b) = µ−1η((A12 − 1)2 − 4A11A22)p
n/2ω

g̃(b)+
A22g1(b)

2+A11g2(b)
2−(A12−1)g1(b)g2(b)

(A12−1)2−4A11A22 .

Example 3. Let p = 5, n = 2, u1, u2 ∈ F∗
52 and g(x) = Tr(ax2) with a ∈ F∗

52. It is known in

[7] that ĝ(b) = −η(a)5ωTr( b
2

a
) for b ∈ F52. Then g̃(x− t1u1 − t2u2) is equal to

Tr(
x2

a
) + Tr(

u21
a
)t21 +Tr(

u22
a
)t22 + 2Tr(

u1u2
a

)t1t2 − 2Tr(
u1x

a
)t1 − 2Tr(

u2x

a
)t2.

Magma experiments show that f(x) = Tr(ax2) + Tr(u1x)Tr(u2x) is bent if and only if ∆ =

(2Tr(u1u2
a )− 1)2 +Tr(

u2
1
a )Tr(

u2
2
a ) 6= 0. Moreover, for b ∈ F52, the Walsh transform of f(x) is

f̂(b) = −η(a∆)5ω
Tr( b

2

a
)−

Tr(
u22
a ) Tr(

u1b
a )2+Tr(

u21
a ) Tr(

u2b
a )2−(2Tr(

u1u2
a )−1) Tr(

u1b
a )Tr(

u2b
a )

(2Tr(
u1u2

a )−1)2+Tr(
u2
1
a )Tr(

u2
2
a ) .

For a general F (x1, · · · , xτ ), we assume that the nonzero elements in {Aij : 1 ≤ i ≤ j ≤
τ} are Ai1j1 , · · · , Aiℓjℓ, where ℓ is an integer, 1 ≤ i1 ≤ · · · ≤ iℓ ≤ τ and 1 < j1 ≤ · · · ≤
jℓ ≤ τ . Let Γ be given as in (8), it is extremely difficult to calculate the value of f̂(b) when

deg(F (x1, · · · , xτ )|xi=gi(b),i 6∈Γ) > 2. Thus, we focus on the case deg(F (x1, · · · , xτ )|xi=gi(b),i 6∈Γ) ≤
2, and then we can discuss (9) as follows:

Case I: #Γ ≤ 2.

Assume that τ1 6= τ2 and Γ ⊂ {τ1, τ2}, i.e., Aτ1τ1 , Aτ1τ2 , Aτ2τ2 ∈ Fp and Aij = 0 otherwise.

Then (9) is reduced to

f̂(b) = µ−1pn/2−2ωg̃(b)M
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by using the fact that
∑p−1

ti=0 ω
(gi(b)−xi)ti = p if xi = gi(b) and 0 otherwise for i 6∈ {τ1, τ2}, where

M =

p−1∑

xτ1=0

p−1∑

xτ2=0

ωF ′
p−1∑

tτ1=0

p−1∑

tτ2=0

ωAτ1τ1t
2
τ1

+Aτ2τ2 t
2
τ2

+Aτ1τ2 tτ1 tτ2+(gτ1 (b)−xτ1 )tτ1+(gτ2 (b)−xτ2 )tτ2

with F ′ = F (x1, · · · , xτ )|xi=gi(b),i 6∈{τ1,τ2}. Then, according to Lemma 4, we can calculate (9) as

the following four cases:

(1): Aτ1τ1 = Aτ1τ2 = Aτ2τ2 = 0. For this case, by Lemma 4, it can be readily verified that

f̂(b) = µ−1pn/2ωg̃(b)+F (g1(b),g2(b),··· ,gτ (b)).

(2): Aτ1τ1 = Aτ1τ2 = 0 and Aτ2τ2 6= 0. If this case occurs, then again by Lemma 4 one can

claim that gτ1(b)− xτ1 = 0 and

f̂(b) = µ−1pn/2−1
√

p∗η(Aτ2τ2)ω
g̃(b)

p−1∑

xτ2=0

ω
F (x1,··· ,xτ )|xi=gi(b),i6=τ2

−
(gτ2 (b)−xτ2)2

4Aτ2τ2 .

Under this case, if deg(F (x1, · · · , xτ )|xi=gi(b),i 6=τ2) ≤ 2, then F (x1, · · · , xτ ) satisfies

F (x1, · · · , xτ )|xi=gi(b),i 6=τ2 = a2x
2
τ2 + F2(b)xτ2 + F0(b) (10)

for some F2(x), F0(x) ∈ Fp[x] and a2 ∈ Fp. Consequently, one obtains

f̂(b) = µ−1pn/2−1
√

p∗η(Aτ2τ2)ω
g̃(b)

p−1∑

xτ2=0

ω
(a2−

1
4Aτ2τ2

)x2
τ2

+(F2(b)+
gτ2 (b)

2Aτ2τ2
)xτ2+F0(b)−

gτ2 (b)2

4Aτ2τ2 .

Then we can deduce that f(x) is bent only if a2 − 1
4Aτ2τ2

6= 0 and

f̂(b) = µ−1pn/2η(1− 4a2Aτ2τ2)ω
g̃(b)+

Aτ2τ2
1−4a2Aτ2τ2

(F2(b)+
gτ2 (b)

2Aτ2τ2
)2+F0(b)−

gτ2 (b)2

4Aτ2τ2

from Lemma 3.

(3): Aτ1τ1 6= 0 and A2
τ1τ2 = 4Aτ1τ1Aτ2τ2 . In this case, by Lemma 4, one has

gτ2(b)− xτ2 =
Aτ1τ2(gτ1(b)− xτ1)

2Aτ1τ1

,

i.e., xτ2 =
Aτ1τ2
2Aτ1τ1

xτ1 + ϕ(b) with ϕ(b) = gτ2(b)−
Aτ1τ2
2Aτ1τ1

gτ1(b). Then M becomes

M = p
√

p∗η(Aτ1τ1)

p−1∑

xτ1=0

ω
F (x1,··· ,xτ )|xi=gi(b),i6∈{τ1,τ2},xτ2=Aτ1τ2xτ1/(2Aτ1τ1 )+ϕ(b)−

(gτ1 (b)−xτ1 )2

4Aτ1τ1 .
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Note that deg(F (x1, · · · , xτ )|xi=gi(b),i 6∈{τ1,τ2}) ≤ 2 yields F (x1, · · · , xτ ) satisfies

F (x1, · · · , xτ )|xi=gi(b),i 6∈{τ1,τ2} = a11x
2
τ1 + a22x

2
τ2 + a12xτ1xτ2 +F1(b)xτ1 +F2(b)xτ2 +F0(b) (11)

for some F1(x), F2(x), F0(x) ∈ Fp[x] and a11, a22, a12 ∈ Fp, then M turns into

M = p
√

p∗η(Aτ1τ1)
∑p−1

xτ1=0
ωα1x2

τ1
+α2xτ1+α3 ,

where αi are given by

α1 = a11 + (
Aτ1τ2

2Aτ1τ1

)2a22 +
2Aτ1τ2a12 − 1

4Aτ1τ1

,

α2 = (
Aτ1τ2

Aτ1τ1

a22 + a12)ϕ(b) + F1(b) +
Aτ1τ2F2(b) + gτ1(b)

2Aτ1τ1

, (12)

α3 = a22ϕ(b)
2 + F2(b)ϕ(b) + F0(b)−

gτ1(b)
2

4Aτ1τ1

.

Then it can be verified that f(x) is bent only if α1 6= 0 and in this case we have

f̂(b) = µ−1pn/2η(−Aτ1τ1α1)ω
g̃(b)+α3−α2

2/(4α1).

(4): A2
τ1τ2 − 4Aτ1τ1Aτ2τ2 6= 0. When F (x1, · · · , xτ ) satisfies (11), similar to the above case, a

straightforward computation gives

M = pη(∆)

p−1∑

xτ1=0

p−1∑

xτ2=0

ωB1x2
τ1

+B2x2
τ2

+B3xτ1xτ2+β1xτ1+β2xτ2+β3 ,

where ∆ = A2
τ1τ2 − 4Aτ1τ1Aτ2τ2 , Bi are given by

B1 = a11 +
Aτ2τ2

∆
, B2 = a22 +

Aτ1τ1

∆
, B3 = a12 −

Aτ1τ2

∆
(13)

and βi are given by

β1 = F1(b) +
Aτ1τ2gτ2(b)− 2Aτ2τ2gτ1(b)

∆
,

β2 = F2(b) +
Aτ1τ2gτ1(b)− 2Aτ1τ1gτ2(b)

∆
, (14)

β3 = F0(b) +
Aτ2τ2gτ1(b)

2 +Aτ1τ1gτ2(b)
2 −Aτ1τ2gτ1(b)gτ2(b)

∆
.

Then by Lemma 4 one can conclude that f(x) is bent only if B2
3 − 4B1B2 6= 0 and consequently

f̂(b) = µ−1pn/2η(∆)η(B2
3 − 4B1B2)ω

g̃(b)+
B1β

2
2+B2β

2
1−B3β1β2

B2
3
−4B1B2

+β3

.

Based on the above discussions, we can arrive at the following result.
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Theorem 4. Let p be an odd prime, u1, u2, · · · , uτ ∈ F∗
pn with τ ≥ 2 and f(x) be defined by (1),

where g(x) is a weakly regular bent function over Fpn whose dual satisfies (3) and F (x1, · · · , xn)
is a reduced polynomial in Fp[x1, · · · , xn].
(1) If Aij = 0 for all 1 ≤ i ≤ j ≤ τ , then f(x) is weakly regular bent and its Walsh transform is

f̂(b) = µ−1pn/2ωg̃(b)+F (g1(b),g2(b),··· ,gτ (b)).

(2) If there exists some 1 ≤ τ2 ≤ τ such that Aτ2τ2 6= 0, Aij = 0 otherwise, F (x1, · · · , xτ )
satisfies (10) and a2 − 1

4Aτ2τ2
6= 0, then f(x) is weakly regular bent and its Walsh transform is

f̂(b) = µ−1pn/2η(1 − 4a2Aτ2τ2)ω
g̃(b)+

Aτ2τ2
1−4a2Aτ2τ2

(F2(b)+
gτ2 (b)

2Aτ2τ2
)2+F0(b)−

gτ2 (b)2

4Aτ2τ2 .

(3) If there exist some 1 ≤ τ1 < τ2 ≤ τ such that Aτ1τ1 6= 0, A2
τ1τ2 − 4Aτ1τ1Aτ2τ2 = 0, Aij = 0

otherwise, F (x1, · · · , xτ ) satisfies (11) and α1 6= 0, then f(x) is weakly regular bent and its

Walsh transform is

f̂(b) = µ−1pn/2η(−Aτ1τ1α1)ω
g̃(b)+α3−α2

2/(4α1),

where αi are given by (12).

(4) If there exist some 1 ≤ τ1 < τ2 ≤ τ such that A2
τ1τ2 − 4Aτ1τ1Aτ2τ2 6= 0, Aij = 0 otherwise,

F (x1, · · · , xτ ) satisfies (11) and B2
3 −4B1B2 6= 0, then f(x) is weakly regular bent and its Walsh

transform is

f̂(b) = µ−1pn/2η(A2
τ1τ2 − 4Aτ1τ1Aτ2τ2)η(4B1B2 −B2

3)ω
g̃(b)+

B1β
2
2+B2β

2
1−B3β1β2

B2
3
−4B1B2

+β3
,

where Bi, βi are given by (13) and (14) respectively.

Remark 3. Notice that the item Aiit
2
i will be reduced to Aiiti if p = 2 and for this case the

result in (1) of Theorem 4 still holds, which has been studied in [15]. For an odd prime p, the

result in (1) of Theorem 4 has been obtained in [13, Theorem 3.2].

Example 4. Let p = 3, n = 4, τ = 3, ξ be a primitive element of F∗
34 and g(x) = Tr(x2). From

[7] we know that ĝ(b) = −32ω−Tr(b2) for b ∈ F34 and g̃(x) satisfies (3) with Aii = −Tr(u2i ),

Aij = Tr(uiuj) if i < j and gi(x) = −Tr(uix). Taking u3 = ξ53 and F (x1, x2, x3) = x1x
2
3+x2x3,

then A33 = 0. Then Magma shows

f(x) = Tr(x2) + Tr(u1x)Tr(ξ
53x)2 +Tr(u2x)Tr(ξ

53x)

is a weakly regular bent function if one of the following conditions satisfies

(1) u1 = u2 = ξ13. In this case A11 = A22 = A12 = A13 = A23 = 0 and the Walsh transform of

f(x) is

f̂(b) = −32ω−Tr(b2)−Tr(ξ13b)Tr(ξ53b)2+Tr(ξ13b)Tr(ξ53b).
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(2) u1 = ξ13 and u2 = ξ2. This case gives A22 = 1, A11 = A12 = A13 = A23 = 0 and

F (x1, x2, x3)|x1=−Tr(ξ13b),x3=−Tr(ξ53b) = −Tr(ξ53b)x2 − Tr(ξ13b)Tr(ξ53b)2,

which indicates a2 = 0, a2 + 1/Tr(ξ4) = 1 6= 0, and then the Walsh transform of f(x) is

f̂(b) = −32ω−Tr(b2)+Tr((ξ2−ξ53)b)2−Tr(ξ13b)Tr(ξ53b)2−Tr(ξ2b)2 .

(3) u1 = ξ2 and u2 = ξ7. For this case, we have A11 = A22 = A12 = 1 and A13 = A23 = 0,

which implies that A2
12 −A11A22 = 0 and

F (x1, x2, x3)|x3=−Tr(ξ53b) = Tr(ξ53b)2x1 − Tr(ξ53b)x2.

Then α1 = −1, α2 = Tr(ξ53b)2 +Tr((ξ53 + ξ2)b), α3 = Tr(ξ53b)Tr((ξ2 + ξ7)b)− Tr(ξ2b)2 and

f̂(b) = −32ω−Tr(b2)+Tr(ξ53b) Tr((ξ2+ξ7)b)−Tr(ξ2b)2+(Tr(ξ53b)2+Tr((ξ53+ξ2)b))2 .

(4) u1 = ξ2 and u2 = ξ9. In this case we have A11 = A12 = 1, A22 = −1, A13 = A23 = 0,

∆ = A2
12 − A11A22 = −1, B1 = 1, B2 = −1, B3 = 1, β1 = Tr(ξ53b)2 + Tr((ξ9 − ξ2)b), β2 =

Tr((ξ9 + ξ2 − ξ53)b) and β3 = Tr(ξ2b)2 −Tr(ξ9b)2 +Tr(ξ2b)Tr(ξ9b). Then B2
3 −B1B2 = −1 6= 0

and the Walsh transform of f(x) is

f̂(b) = −32ω−Tr(b2)+β2
1−β2

2+β1β2+β3 .

Computer experiments are consistent with our results in Theorem 4.

The algebraic degree of the weakly regular bent functions in Theorem 4 can be determined

for some ui by Lemma 1.

Proposition 2. Let u1, u2, · · · , uτ ∈ F∗
pn be linearly independent over Fp, where τ is an integer

with 2 ≤ τ ≤ n. Let F (x1, · · · , xτ ) be a reduced polynomial in Fp[x1, · · · , xτ ] with algebraic

degree d. Then the algebraic degree of the weakly regular bent function constructed in Theorem

4 is max{d,deg(g(x))}.

The algebraic degree of f(x) in Theorem 4 can achieve the upper bound in Lemma 2. Let

u1, u2, · · · , uτ ∈ F∗
pn be linearly independent over Fp, where 2 ≤ τ ≤ n. Let f(x) be the weakly

regular bent function generated by Theorem 4, then the algebraic degree of f(x) is (p−1)n
2 if

one takes p ≥ 3 and F (x1, · · · , xτ ) =
∏τ

i=1 x
ei
i with

∑τ
i=1 ei = (p−1)n

2 , where 2 ≤ τ ≤ n,

0 ≤ ei ≤ p− 1.

Case II: #Γ > 2.
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In this case, in order to guarantee deg(F (x1, · · · , xτ )|xi=gi(b),i 6∈Γ) ≤ 2 for a general Γ, we

consider the case deg(F (x1, · · · , xτ )) = 2. Without loss of generality, assume that

f(x) = g(x) +
∑

1≤i≤j≤τ
aij Tr(uix)Tr(ujx), (15)

where aij ∈ Fp are not all zero. Let g(x) be a weakly regular bent function over Fpn whose dual

satisfies (3) with Aij = 0 for i 6= j (the case Aij are not all zero when i 6= j can be similarly

considered), i.e.,

g̃(x−
∑τ

i=1
uiti) = g̃(x) +

∑τ

i=1
Aiit

2
i +

∑τ

i=1
gi(x)ti.

Then (9) is reduced to

f̂(b) = µ−1pn/2−τ
τ∑

i,j=1

p−1∑

xi=0

p−1∑

tj=0

ω
∑

1≤i≤j≤τ aijxixj+g̃(b)+
∑τ

i=1 Aiit2i+
∑τ

i=1(gi(b)−xi)ti . (16)

Observe that if Aii = 0 for some 1 ≤ i ≤ τ , say A11 = 0, then f̂(b) equals

µ−1p
n
2
−τ+1

τ∑

i,j=2

p−1∑

xi=0

p−1∑

tj=0

ω

∑
2≤i≤j≤τ

aijxixj+g̃(b)+
τ∑

i=2
Aiit2i+

τ∑
i=2

(gi(b)−xi)ti
· ω

τ∑
j=2

a1jg1(b)xj+a11g1(b)2

,

which implies that f(x) degenerates to the case

f(x) = g(x) +
∑

2≤i≤j≤τ
aij Tr(uixi)Tr(ujxj).

Thus, we next assume that Aii 6= 0 for all 1 ≤ i ≤ τ .

For simplicity, define γ
(1)
i = aii − 1/(4Aii), ̺

(1)
i = gi(b)/(2Aii) for 1 ≤ i ≤ τ , γ

(1)
i,j = aij for

1 ≤ i < j ≤ τ and

γ
(k)
i = γ

(k−1)
i − (γ

(k−1)
k−1,i )

2/(4γ
(k−1)
k−1 ),

γ
(k)
i,j = γ

(k−1)
i,j − γ

(k−1)
k−1,i γ

(k−1)
k−1,j /(2γ

(k−1)
k−1 ), (17)

̺
(k)
i = ̺

(k−1)
i − γ

(k−1)
k−1,i ̺

(k−1)
k−1 /(2γ

(k−1)
k−1 )

for 2 ≤ k ≤ τ . Then, according to (16) and Lemma 3, one gets

f̂(b) = µ−1pn/2−τ
√

p∗
τ ∏τ

i=1
η(Aii)ω

g̃(b)N,

where

N =

τ∑

i=1

p−1∑

xi=0

ω
∑τ

i=1(−
(gi(b)−xi)

2

4Aii
+aiix2

i )+
∑τ−1

i=1

∑τ
j=i+1 aijxixj

= ω
−
∑τ

i=1
gi(b)

2

4Aii

τ∑

i=1

p−1∑

xi=0

ω
∑τ−1

i=1 (γ
(1)
i x2

i+(
∑τ

j=i+1 γ
(1)
i,j xj+̺

(1)
i )xi)+γ

(1)
τ x2

τ+̺
(1)
τ xτ .
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If γ
(1)
1 6= 0, then by Lemma 3 one obtains

N = ω
−

∑τ
i=1

gi(b)
2

4Aii
−(̺

(1)
1 )2/4γ

(1)
1

√
p∗η(γ

(1)
1 )

τ∑

i=2

p−1∑

xi=0

ω
∑τ−1

i=2 (γ
(2)
i x2

i+(
∑τ

j=i+1 γ
(2)
i,j xj+̺

(2)
i )xi)+γ

(2)
τ x2

τ+̺
(2)
τ xτ ,

Therefore, if γ
(i)
i 6= 0 for all 1 ≤ i ≤ τ , one can conclude that

N = ω
−

∑τ
i=1

gi(b)
2

4Aii N (τ−1)
p−1∑

xτ=0

ωγ
(τ)
τ x2

τ+̺
(τ)
τ xτ = ω

−
∑τ

i=1
gi(b)

2

4Aii N (τ),

where N (k), 1 ≤ k ≤ τ is defined as

N (k) =
√

p∗
k ∏k

i=1
η(γ

(i)
i )ω−

∑k
i=1(̺

(i)
i )2/(4γ

(i)
i ).

Theorem 5. Let p be an odd prime and u1, u2, · · · , uτ ∈ F∗
pn with τ ≥ 2. Let g(x) be a weakly

regular bent function over Fpn whose dual satisfies (3) with Aij = 0 for i 6= j and Aii 6= 0 for all

1 ≤ i ≤ τ . Then the function f(x) of the form (15) is a weakly regular bent function if γ
(i)
i 6= 0

for all 1 ≤ i ≤ τ . Moreover, the Walsh transform of f(x) is

f̂(b) = µ−1pn/2
∏τ

i=1
η((−1)τAiiγ

(i)
i )ω

g̃(b)−
∑τ

i=1(
gi(b)

2

4Aii
+(̺

(i)
i )2/(4γ

(i)
i ))

,

where γ
(k)
i , γ

(k)
i,j and ̺

(k)
i are given by (17) for 1 ≤ k ≤ τ .

Example 5. Let p = 3, n = 5, τ = 4, ξ be a primitive element of ∈ F∗
35 and g(x) = Tr(x2). From

[7] we know that ĝ(b) = (−3)5/2ω−Tr(b2) for b ∈ F35 and g̃(x) satisfies (3) with Aii = −Tr(u2i ),

Aij = Tr(uiuj) if i < j and gi(x) = −Tr(uix). Taking u1 = ξ2, u2 = ξ5, u3 = ξ4, u4 = ξ16,

and F (x1, x2, x3, x4) = x1x2 + x3x4, then A11 = A33 = −1, A22 = A44 = 1, A12 = A13 = A14 =

A23 = A24 = A34 = 0, and from (17), we have γ
(1)
1 = γ

(2)
2 = γ

(3)
3 = γ

(4)
4 = 1, ̺

(1)
1 = −Tr(ξ2b),

̺
(2)
2 = Tr((ξ5 − ξ2)b), ̺

(3)
3 = −Tr(ξ4b), ̺

(4)
4 = Tr((ξ16 − ξ4)b). Magma shows that

f(x) = Tr(x2) + Tr(ξ2x)Tr(ξ5x) + Tr(ξ4x)Tr(ξ16x)

is bent over F35 . Moreover, for b ∈ F35, the Walsh transform of f(x) is

f̂(b) = (−3)5/2ω−Tr(b2)−Tr(ξ5b)2−Tr((ξ5−ξ2)b)2−Tr(ξ16b)2−Tr((ξ16−ξ4)b)2 ,

which is consistent with our result in Theorem 5.

To end this section, we point out that more bent functions of the form (1) can be obtained

from our results. The previous works in this direction focused on the constructions of bent

functions satisfying (1) and (2) and new bent functions were obtained in [11, 13, 15–19]. Using

similar techniques, the analogues of the results in above references can also be obtained for bent

functions which satisfy (1) and (3), we omit the details here.
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4 Constructions of bent functions from non-bent ones

In this section, we aim to construct the bent function f(x) of the form (1) from a non-bent

function g(x), which is much more difficult than the case when g(x) is a bent function. Let

τ = 2 and m,k be integers with n = 2m and d = gcd(k, n), we investigate the bentness of the

functions having the form

f(x) = Tr(axp
k+1) + Tr(ux)Tr(vx), (18)

where a ∈ F∗
pn and u, v ∈ F∗

pn . We always assume that u 6= v if p = 2 since f(x) is reduced to

Tr(axp
k+1) + Tr(ux) when p = 2.

Theorem 6. Let p = 2, n/d be odd and u, v be two distinct elements in F∗
2n . Then the Boolean

function f(x) of the form (18) is bent if and only if d = 2 and Trn2 (uc
−1) · Trn2 (vc−1) · Trn2 ((u+

v)c−1) 6= 0, where c ∈ F∗
2n is the unique element satisfying c2

k+1 = a.

Proof. Set p = 2 and τ = 2, then for any b ∈ F2n , Theorem 1 yields

f̂(b) =
1

2
(ĝ(b) + ĝ(b+ u) + ĝ(b+ v)− ĝ(b+ u+ v)). (19)

Notice that ĝ(b) ∈ {0,±2
n+d
2 } and ĝ(b) 6= 0 if and only if Trnd (bc

−1) = 1 by Lemma 5. Since n

is even and n/d is odd, we have d ≥ 2 is even.

(1): sufficiency. If d = 2 and Trn2 (uc
−1) · Trn2 (vc−1) · Trn2 ((u + v)c−1) 6= 0, then Trn2 (uc

−1),

Trn2 (vc
−1) and Trn2 ((u + v)c−1) are distinct nonzero elements. Suppose that θ is a primitive

element of F22 , one then gets

{Trn2 (uc−1),Trn2 (vc
−1),Trn2 ((u+ v)c−1)} = {1, θ, θ2}.

Therefore, for b ∈ F2n , one can conclude that

{Trn2 (bc−1),Trn2 ((b+ u)c−1),Trn2 ((b+ v)c−1),Trn2 ((b+ u+ v)c−1)} = {0, 1, θ, θ2}.

This together with Lemma 5 implies that

f̂(b) =
1

2
(±2

n+2
2 + 3 · 0) = ±2m.

(2): necessity. Since Trnd (bc
−1) runs through F2d when b ranges over F2n , if d > 2, one has

{Trnd (uc−1)s+Trnd (vc
−1)t : s, t ∈ F2} $ {Trnd (bc−1) + 1 : b ∈ F2n}.

This indicates that there exists b ∈ F2n such that Trnd ((b + su + tv)c−1) 6= 1 for arbitrary

s, t ∈ F2 which leads to f̂(b) = 0 by (19) and then f(x) is not bent. Now assume that d = 2
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and at least one of Trn2 (uc
−1), Trn2 (vc

−1) and Trn2 ((u+ v)c−1) is 0, without loss of generality, let

Trn2 (uc
−1) = 0, then

Trn2 ((b+ su+ tv)c−1) = Trn2 (bc
−1) + tTrn2 (vc

−1).

Observe that there also exists b ∈ F2n such that Trn2 (bc
−1)+ tTrn2 (vc

−1) 6= 1 for any t ∈ F2 since

{Trnd (vc−1)t : t ∈ F2} $ {Trnd (bc−1) + 1 : b ∈ F2n},

i.e., there exists b ∈ F2n such that ĝ(b + su + tv) = 0 for any s, t ∈ F2. Then by (19) one has

that f(x) is not bent.

Example 6. Let p = 2, n = 6, and u, v be two distinct elements in F∗
26. Suppose that k is an

integer and d = gcd(n, k). Taking a = ξ2
k+1 and c = ξ, where ξ is a primitive element of F26 ,

then c2
k+1 = a. Magma experiments show that f(x) = Tr(ξ2

k+1x2
k+1) + Tr(ux)Tr(vx) is bent

if and only if k = 2 or 4 and Tr62(ξ
−1u) · Tr62(ξ−1v) · Tr62(ξ−1(u+ v)) 6= 0.

Theorem 7. Let p be an arbitrary prime and a, u, v ∈ F∗
pn. If n/d is even and a

pn−1

pd+1 = (−1)
m
d ,

then the function f(x) of the form (18) is bent if and only if d = 1, Trn2 (v/(ac
pk )) 6= 0 and

Trn2 (u/(ac
pk ))

Trn2 (v/(ac
pk ))

/∈ Fp, where c satisfies ap
k
cp

2k
+ ac = 0.

Proof. If n/d is even and a
pn−1

pd+1 = (−1)
m
d , then by Lemma 6 for b ∈ Fpn one has that

ĝ(b) = (−1)m/d+1pm+dχ(axp
k+1

0 )

if Trn2d(b/(ac
pk)) = 0 and ĝ(b) = 0 otherwise, where x0 is the solution of ap

k
xp

2k
+ ax = −bp

k
.

Set τ = 2, then Theorem 1 yields

f̂(b) =
1

p

p−1∑

s=0

p−1∑

t=0

ω−stĝ(b+ su+ tv),∀ b ∈ Fpn . (20)

(1): sufficiency. If d = 1, Trn2 (v/(ac
pk )) 6= 0 and

Trn2 (u/(ac
pk ))

Trn2 (v/(ac
pk ))

/∈ Fp, then

Trn2 ((su+ tv)/(acp
k
)) = sTrn2 (u/(ac

pk )) + tTrn2 (v/(ac
pk )) 6= 0

when s, t ∈ Fp are not 0 simultaneously. This implies that Trn2 ((su + tv)/(acp
k
)) = 0 only if

(s, t) = (0, 0) and Trn2 ((su+ tv)/(acp
k
)) are distinct for each pair (s, t) when s, t range from 0

to p− 1. Suppose that θ is a primitive element of Fp2 , one gets

{Trn2 ((su+ tv)/(acp
k
)) : 0 ≤ s, t ≤ p− 1} = {0, 1, . . . , θp2−2}.
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Then, for any b ∈ Fpn , there exists exactly one pair (s, t) such that Trn2 ((b+ su+ tv)/(acp
k
)) = 0

when s, t run over Fp, set as (s
′, t′). Hence, according to Lemma 6 and (20), one can claim

f̂(b) =
1

p
((−1)m+1pm+1ω−s′t′χ(axp

k+1
0 ) + (p− 1) · 0) = (−1)m+1pmω−s′t′χ(axp

k+1
0 ),

where x0 is the solution of ap
k
xp

2k
+ ax = −(b+ s′u+ t′v)p

k
, i.e., f(x) is bent.

(2): necessity. If d > 1, then by the property of trace functions, we have

{Trn2d(u/(acp
k
))s+Trn2d(v/(ac

pk ))t : s, t ∈ Fp} $ {−Trn2d(b/(ac
pk)) : b ∈ Fpn},

which indicates that there exists b ∈ Fpn such that Trn2d((b + su + tv)/(acp
k
)) 6= 0 for any

s, t ∈ Fp. For this b, by Lemma 6 and (20), one gets f̂(b) = 0. Thus, f(x) cannot be bent if

d > 1. Now we assume that d = 1 and Trn2 (u/(ac
pk )) = rTrn2 (v/(ac

pk )) for some r ∈ Fp. Then

Trn2 ((b+ su+ tv)/(acp
k
)) = Trn2 (b/(ac

pk)) + (sr + t)Trn2 (v/(ac
pk)).

Since

{(sr + t)Trn2 (v/(ac
pk )) : s, t ∈ Fp} $ {−Trn2 (b/(ac

pk)) : b ∈ Fpn},
then there exists b ∈ Fpn such that Trn2d((b + su + tv)/(acp

k
)) 6= 0 for arbitrary s, t ∈ Fp, and

consequently, for this b, we have f̂(b) = 0 by (20) which implies that f(x) is not bent.

Example 7. Let p = 3, n = 2m = 4 and u, v ∈ F∗
34. Let k be an integer with 1 ≤ k ≤ 4 and

d = gcd(n, k). Taking a = 1 and c = ξ with ξ3
2k−1 = −1, where F∗

34 = 〈ξ〉, then a3
k
c3

2k
+ac = 0.

Magma experiments show that f(x) = Tr(x3
k+1) + Tr(ux)Tr(vx) is bent if and only if k = 1 or

3 and Tr42(ξ
−pku)/Tr42(ξ

−pkv) /∈ F3.

Remark 4. The construction of the bent function f(x) with the form (1) from a non-bent

function g(x) is much more difficult when τ ≥ 3. Our computer experiments indicate that such

bent functions indeed exist and then it will be interesting to find an efficient way to construct

this kind of bent functions.

5 Conclusion

In this paper, we investigated the bentness of the function f(x) over the finite field Fpn with

the form (1) by using different kinds of g(x) as before (see Table 1), where n is a positive integer

and p is a prime. We firstly obtained a generic result on the Walsh transform of the function

f(x), which generalized some previous works, and then characterized its bentness for the case

g(x) is bent for p = 2 and p > 2 respectively. It was shown that bent functions with the maximal

algebraic degree can be obtained from our construction. Moreover, we presented a class of bent

functions f(x) of the form (1) when g(x) is a non-bent Gold function.
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Table 1: Known bent functions over Fpn with the form (1)

p g(x) is bent with g̃(x) satisfies (3) F (x1, · · · , xτ ), τ ≥ 2 Refs.

p = 2 A12 = 0 F (x1, x2) = x1x2 [11]

p = 3 A11 = 0, A12 = 0 F (x1, x2) = x1x2 [18]

p = 3 (A12 − 1)2 6= A11A22 F (x1, x2) = x1x2 [19]

p = 2 A12 = A13 = A23 = 0 F (x1, x2, x3) = x1x2x3 [17]

p = 2 Aij = 0, 1 ≤ i < j ≤ τ F (x1, · · · , xτ ) = x1 · · · xτ [16]

p = 2 Aij = 0, 1 ≤ i < j ≤ τ any [15]

odd p Aij = 0, 1 ≤ i ≤ j ≤ τ any [13]

p = 2 Aij 6= 0, i, j ∈ Γ, #Γ = 2ℓ, otherwise Aij = 0 deg(F (x1, · · · , xτ )|xi=hi,i6∈Γ) ≤ 1 Thm. 2

p = 2 Ai1js 6= 0, s = 1, · · · , ℓ1, otherwise Aij = 0 deg(F (x1, · · · , xτ )|xi=hi,i6∈Γ,xjs
=xj1

+hj1
+hjs

,s6=1) ≤ 1 Thm. 3

odd p (A12 − 1)2 − 4A11A22 6= 0 F (x1, x2) = x1x2 Prop. 1

odd p Aτ1τ1 , Aτ2τ2 , Aτ1τ2 ∈ Fp, otherwise Aij = 0 deg(F (x1, · · · , xτ )|xi=gi(b),i6∈Γ) ≤ 2 Thm. 4

odd p Aii 6= 0, i = 1, · · · , τ , otherwise Aij = 0 F (x1, · · · , xτ ) =
∑

1≤i≤j≤τ aijxixj Thm. 5

p g(x) is non-bent F (x1, · · · , xτ ), τ ≥ 2 Refs.

p = 2 Tr(ax2k+1), n/ gcd(k, n) is odd F (x1, x2) = x1x2 Thm. 6

any p Tr(axpk+1), n/ gcd(k, n) is even F (x1, x2) = x1x2 Thm. 7

- where Aij , gi(b) are defined by (3) with hi = gi(b) +Aii, Γ and F (x1, · · · , xτ ) are given by (8) and (4).
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