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Several classes of bent functions over finite fields

Xi Xie, Nian Li, Xiangyong Zeng, Xiaohu Tang, Yao Yao *

Abstract: Let Fyn be the finite field with p™ elements and Tr(-) be the trace function
from Fp» to [F,, where p is a prime and n is an integer. Inspired by the works of
Mesnager (IEEE Trans. Inf. Theory 60(7): 4397-4407, 2014) and Tang et al. (IEEE
Trans. Inf. Theory 63(10): 6149-6157, 2017), we study a class of bent functions of the
form f(x) = g(z) + F(Tr(uix), Tr(ugx), - - -, Tr(urz)), where g(x) is a function from
Fyn to Fp, 7 > 2is an integer, F'(z1,- -, xy,) is areduced polynomial in Fp[zq, - -, zy,]
and u; € Fyn for 1 < i < 7. As a consequence, we obtain a generic result on the
Walsh transform of f(z) and characterize the bentness of f(z) when g(x) is bent for
p =2 and p > 2 respectively. Our results generalize some earlier works. In addition,
we study the construction of bent functions f(z) when g(z) is not bent for the first

time and present a class of bent functions from non-bent Gold functions.

Keywords: Algebraic degree, Bent function, Walsh transform.

1 Introduction

Boolean bent functions were first introduced by Rothaus in 1976 [14] as an interesting com-
binatorial object with maximum Hamming distance to the set of all affine functions. Over the
last four decades, bent functions have attracted a lot of research interest due to their important
applications in cryptography [I], sequences [12] and coding theory [2L[6]. Kumar, Scholtz and
Welch in [9] generalized the notion of Boolean bent functions to the case of functions over an
arbitrary finite field.

Given a function f(z) mapping from Fp» to F,, the Walsh transform of f(x) is defined by
(b)) = f(x)=Tr(bx) n
J(v) ermpn w , b€ Fpn,
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where w = e~ 7 is a complex primitive p-th root of unity. According to [9], f(x) is called a

p-ary bent function if all its Walsh coefficients satisfy |f(b)| = p™2. A p-ary bent function f(z) is
called regular if f(b) = p"/2wF ) holds for some function f(x) mapping Fy» to Fp, and it is called
weakly regular if there exists a complex p having unit magnitude such that f(b) = pLpn/2uf®)

for all b € Fpn. The function f(x) is called the dual of f(x) and it is also bent.

An interesting class of bent functions over finite fields with the form

f(x) = g(z) + F(Tr(wz), Tr(ugz), - - -, Tr(urz)) (1)
was studied in the past years, where g(z) is a function from Fp» to Fp, F'(zy, - ,z;) is an
arbitrary reduced polynomial in Fy[z1,---,2;], 7 > 2 is an integer and u; € Fy. for all 1 <

i < 7. The initial work on this issue is due to Mesnager [I1] who studied the case p = 2,
F(x1,29) = x129 and g(x) is a bent function whose dual function has a null second order
derivative. This motivated Xu et al. to construct bent functions by using some known bent
functions g(x) via the cases F(z1, %9, x3) = x129x3 for p = 2 [17] and F(x1,22) = x129 for p =3
[I819], respectively. Later, Wang et al. characterized the bentness of f(x) when g(z) is bent
and F(z1, -+ ,x;) = x1 -+ -z, for p = 2 and consequently constructed bent functions of the form
(@) from some bent functions g(x) whose dual functions are already known [16]. Meanwhile, also
for p = 2, Tang et al. [I5] investigated the bentness of f(z) with the form () for an arbitrary

reduced polynomial F(z1, -+ ,z,) and a bent function g(x) whose dual satisfies

o= wt) =g@) +y. gt (2)

where t; € F,, and g;(z) is a function from Fp» to F, for each 1 < ¢ < 7. The analogues of
the results in [I5] for an odd prime p were obtained in [I3] where g(z) was required to be a
homogeneous quadratic bent function and its dual also satisfies ([2). In 2019, Zheng et al. [20]
showed that for p = 2, f(z) of the form (IJ) is bent for any reduced polynomial F'(x1,--- ,z;) if
and only if g(x) is bent whose dual satisfies (2I).

Inspired by the above works, in this paper, we further study the construction of bent functions
with the form (IJ). We first derive a generic result on Walsh transform of the function f(z) of
the form (]) in which g(x) is not necessarily bent. Then we characterize the bentness of f(z) in

(@) when g(x) is bent whose dual satisfies

gl = witi)=g(z) + Zl<i<j<7- Aijtits +) . gi@)t; (3)

for some A;; # 0. Our results generalize some earlier works in this direction. In addition, we
attempt to construct bent functions f(x) having the form () from non-bent functions g(z)

and consequently obtain a class of such bent functions by using non-bent Gold functions and



F(x1,29) = x122. To the best of our knowledge, the construction of bent functions with the
form () from either bent functions satisfying (@) for some A;; # 0 or non-bent functions is

studied in this paper for the first time in the literature.

The rest of this paper is organized as follows. Section Bl gives some preliminaries. Section
provides some results on the Walsh transform of functions with the form () and characterizes the
bentness of such functions when g(x) satisfies (B]) for some nonzero A;;. Section@ proposes a class
of bent functions of the form () in which g(x) is a non-bent Gold function and F'(z1,x2) = z1x2.

Section [Bl concludes this paper.

2 Preliminaries
Throughout this paper, let F,» denote the finite field with p" elements, where n is a positive

integer and p is a prime. The trace function from Fyn to its subfield F . is defined by Try(z) =

Z?:/lg_l 27" In particular, when k = 1, we use the notation Tr(z) instead of Tr?(z).

2.1 Algebraic degree

A function F(zy,---,xy) : F) = F) is often represented by its algebraic normal form:

Flzy,- @) = > a(e)(J[«5), ale) € Fp. (4)

e=(e1, ,en)€Fp =1
A polynomial in Fy, [z, - -+ , 2] with the form (@) is called a reduced polynomial. The algebraic
degree of F(x1,- -+ ,2,), denoted by deg(F), is defined as deg(F') = maxeern{d_;_; €; : ale) #
0}, where e = (e1,--- ,e,). The following lemma will be used to determine the algebraic degree

of some reduced functions, which is a direct generalization of the result proposed in [I5, Lemma
2.1].

Lemma 1. Let uy,ug, - ,ur; € Fpn be linearly independent over ¥, where T is an integer with
1 <7 <mn. Let F(x1, -+ ,x;) be a reduced polynomial in Fplz1,--- ,z.] of algebraic degree d.

Then the following univariate function
F(Tr(uiz), Tr(ugx), - -, Tr(u,sz))

has algebraic degree d.

The algebraic degree of a p-ary bent function has been characterized as follows.



Lemma 2. ([8, Propositions 4.4 and 4.5]) Let f(x) be a bent function from Fyn to F,, then the
algebraic degree deg(f) of f(x) satisfies deg(f) < (p—L)n 1) + 1, and if f(x) is weakly reqular bent,
then deg(f) < w.

2.2 Certain exponential sums

Tr(bx

For each b € Fy», the function x;(z) = w ) defines an additive character for z € Fpn. The

character x := x1 is called the canonical additive character of Fyn

Lemma 3. ([I0, Theorems 5.15 and 5.33]) Let p be an odd prime, n be the quadratic multiplica-
tive character of F), and p* = (—1)%1) =n(—1)p. Then

ZmGFP x(az?® 4 bx) = n(a)\/p*w” fa aEFp,bGIFp.

Lemma 4. Let p be an odd prime and a; € F), for i =1,2,3,4,5. Denote

H— E : Wz’ tazy’+azrytasztasy
(z,y)€FZ

If a% —4ajas =0, then

p2, ifa1:0,a2:a4:a5:0,
2
_ %
e n(ag)py/p*w 42, if a3 =0, a2 #0, ag =0,
- 2
_ 24
n(a)pyp*w tor, if ar #0, a5 = G,
0, otherwise,

and if a3 — dajas # 0, then
a2a3+glag—a3a4a5
H =n(a3 — 4ajag)pw 3%
Proof. We first consider the case a3 4daras = 0. If a; = 0, then a3 = 0 and Lemma [ yields

P2, if ag = a4 =as =0,

_ tasy?+asy _ _ad
H= Z WHETRETEY = pypnlaz)w B, if ag £ 0, ag =0,
(z,y)€F2 .
0, otherwise.

If a1 # 0, again by Lemma [3 one obtains

H=/pn(an) ] w0

y€F,

(a3u+a4)

2
azaq a4
_ / ,'7 (Il E w(a5_ 2aq )y_ 4aq

S



due to a% —4aias = 0. This implies that

2
a4

H =py/p*n(ar)w *1

if a5 = asaq/2ay and H = 0 otherwise.

Next, we calculate H for the case ag —4dayas # 0. If ap = 0, then a3 # 0 and it can be

readily verified that

H = Z w(a3y+a4)m+a2y2+a5y _ prLQ(*%)QﬂLas(*%).
(z,y)€F3

If a1 # 0, then by Lemma [3] one gets

(agytay)?

2 a1
_ a2y tasy— - —— % 2 2 57 24,
H = +/p*n(ay) g yGIpr far = p*n(dajag — ag)w 314102

2
a
(a __a3a4 )27 4a41

Then the result follows from p* = n(—1)p and p*n(4aias — a?) = pn(a3 —4aias). This completes
the proof. 0

2.3 Walsh transform of Gold functions

In this subsection, we present some known results on the Walsh transform of Gold functions
which will be used to construct bent functions f(z) of the form (Il from non-bent functions g(z)

in Section [l
Coulter studied the Walsh transform of Gold functions for odd p [4] and p = 2 [5] respectively.
Let n, k be positive integers with d = ged(k,n) and g(z) = Tr(axpkﬂ), where a € )., then the

Walsh transform of g(x) has been determined as below.

Lemma 5. ([5l Theorem 4.2]) Suppose n/d is odd. Then for b € Faon,

0, if Tr%(be™1) #1,
(b) = n+d . 1
+22, if Tefj(be™ ") =1,

where ¢ € F3,, is the unique element satisfying i

Lemma 6. ([3l4) Theorems 1 and 2] and [5, Theorem 5.3]) Suppose n/d is even, n = 2m and
p s a prime. Then for b € Fpn,

p"—1

(~)mpmx(aay T, i are £ (<1)F,
~ o p—1 m
g(b) = (—1)m/d+1pm+dY(a1‘gk+l), if ar?+1 = (_1)7’ Trgd(b/acpk) — 07
0, otherwise,
where ¢ € Fn satisfies a?" P +ac=0 and xg 1s the solution of a" 2P + ax = —bP".
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3 Constructions of bent functions of the form ()

In this section, we first derive a generic result on the Walsh transform of f(z) with the form
(@) in which g(x) is not necessarily bent. Then, we characterize the bentness of f(z) in () for a
bent function g(x) whose dual satisfies (B]) with some A;; # 0 for p = 2 and p > 2 respectively.

The Walsh transform of a multivariate function F'(x1,--- ,z,) over [y is
ﬁ(bl, e by) = Z wF @ an) =30 bz (5)
(@1, ,wn)EFR
where (b1, -+ ,b,) € F. Then the inverse Walsh transform of F'(xq,--- ,zy) is given by
1 n b
Wl @an) — 2% Z it b”‘”F(bh o, by). (6)

(blv"' 7bn)eF;}

Using (@) and (@), the Walsh transform of f(x) in ({l) can be expressed as below.

Theorem 1. Let f(z) be defined as (), then for any b € Fpn,

Foy =4 S Bl t)g-3 tu).

(t1,- tr)EFF
In particular, if F(xy, -+ ,x;) = x1 -z, then

7—1 p—1 p—1

ziti T—1 T7—1
g E w™ T b—E A tiui—”A Tilr).
i=1 i=1

1,j=1t;=0x;=0

Proof. According to (@), for any b € F,», one obtains

f(b) _ Z WI@)+F (Tr(u12), Tr(uz), - Tr (urx))~Tr(b)
zE€F,n
_ iT Z Z wg(z)—Tr(bx)-i—Z::lTl"(uzm)tiﬁ(tl’ e ty)
(t1,+ ,tr)EF] z€Fyn

1 ~ . T
=— Fty,-- t7)gb =Y tiw).

p
(t1,+ tr)EFF



H
=
3
8
=
&
:‘_/
I

x1 - xr, then by (), one gets

—~ 1 T .
foy=—= > o whrrr g — le tiu)
P (t1, tr)€FY (z1, 27 )EFY -
1 7—1 p—1 p—1 p—1 p—1 L L .
- (T2 wi—tr)zr =200 tiwigy(p .
G ‘thzzo ZOtZ:O Zow 1 Ll Zi:1 bius)
1,j=1t;=0x;=0t;=0x,=
1 7—1 p—1 p—1

prl Z Z Z w Zi:ll mitig(b o 23;11 tiu; — HZ;11 x@'ur)

i,j=1t;=0 ;=0

due to the fact that Zi:io WIS wi—to)zr — ) if tr # sz_ll x;. This completes the proof. [

Remark 1. Note that Theorem [1 holds for an arbitrary prime p and g(x) is a function from

Fpn to I, which is not necessary to be bent. It generalizes some earlier works:

1). Theorem [ is a generalization of Lemma 1 in [16].

2). If one takes p = 2, 7 = 2 and f(x) = g(x) + Tr(ux) Tr(vx), where u,v € F5,., then our
result gives f(b) = 2@G0) +g(b+u) +G(b+v) —Gb+u+v)) for any b € Fon. When g(z)
is a Boolean bent function with the dual g(x), it can be verified that f(x) is bent if and
only if g(x) + g(x +u) + g(z +v) + g(x + w+v) = 0. This is Corollary 5 in [11)].

3). If one takes p = 2, 7 = 3 and f(z) = g(z) + Tr(uzx) Tr(vz) Tr(rz), where u,v,r € F,,
then our result gives f(b) = 2(39(0) +g(b+u) +gb+v) +gb+7) +gb+u+v+71) —
gb+u+v)—glb+u+r)—gb+v+r)) for any b € Fon. This is Lemma 1 in [17].

4). If one takes p =3, 7 = 2 and f(z) = g(x) + Tr(uz) Tr(va) for u,v € Fi., then by Theorem
@ one obtains f(b) = 2@®) +g(b+u) +gb—u)+gb—v) +gb+v) +wgb —v+u) +
W2Gb — v — u) + w?g(b 4+ v +u) + wg(b+ v —u) for any b € F3n, where w is a primitive
3-rd root of unity. This is exactly Lemma 4 in [18].

3.1 Bent functions of the form (1) for p =2

Let p = 2 and f(x) be defined as ([Il). Tang et al. [I5] proved that f(z) is bent for any reduced
polynomial F'(zy,--- ,x;) in Fylzy,--- ,z,] if g(z) is a bent function whose dual satisfies ().
Later, Zheng et al. [20] showed that this condition is also necessary. In this section, we consider
the bentness of f(x) for a more general bent function g(z), i.e., g(x) satisfies (@) for some
Ai; #0, where 1 <4 < j <7 and 7 is a positive integer.

Suppose that g(x) is a bent function over Fon and its dual satisfies (@), then for b € Fon,

t; € Fy and u; € F5,, where ¢ =1,2,--- , 7, one gets
~ T n S(H_S°T s
30— 37 o) = 20T,
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where g(z) is the dual of g(z). This together with (Bl) and Theorem [ gives
- 1 - ~ .
) = 5 Y Bl t)ib- Y tw)
(t1, tr)€F]

F(xlw" wr)+g(b)+ 3 Agtity+ 30 (gi(b) i+ Au)t

_ 2n/2 T Z Z Z 1<i<j<r i=1 , (7)

1,j=12;=01;=0
where g;(x) is a function from Fan to Fo for each 1 < i < 7.

Now assume that the nonzero elements in {A4;; : 1 <1i < j <7} are A, 5 Aijs

¢ is a positive integer, i3 < js for 1 < s </l and 1 < <--- < iy < 7. For simplicity, denote
h; = gi(b) + A;; and define

where

F:{ihjla'“ 7i£7j5}- (8)
Then, we discuss () as the following two cases:
Case I: #I' = 2/, where 2 < 20 < 7.

For this case, we have A; ;. =1 for 1 <s < /¢ and A;; = 0 otherwise. Then () becomes

1

f(b) = 2n/2 T g(b Z Z Z F(xlf"’xf)JFZi:l tistjs+2 5= (hitai)ti

1,j=12;=01,;=0
4 4
2”/2 26 Z Z Z 1'17'"7xT)|I¢:hivi€F+S§1(tjs+(his+x’is))t’is+S§1(hjs+xjs)tjs
i,7€l'z;=01;=0

4
9n/2-L(_1)3() Z Z F(l“lv'“va>|z¢:hi,¢¢r+S§1(his+ris)(hjsﬂjs),
el z;=

where the second identity holds due to Ziizo(—l)(hiﬂ”i)ti = 2 if 2; = h; and 0 otherwise for any
i¢T.
Then, in this case, f(z) defined by () can be bent for certain special F(x1, -, z;).

Theorem 2. Let n = 2m and uy,us,--- ,u,; be pairwise distinct elements in F5,., where 2 <
T < m. Let g(x) be a bent function over Fon whose dual satisfies @) with A;; # 0 fori,j € I’
and A;; = 0 otherwise, where I' is defined by @). If #I' = 2¢ and F(x1,--- ,x,) satisfies
l
F(l‘l; tt )xT)|$z:h1,Z€F — Zs:l(ﬂsl‘is + P}sx]‘s) + FO

for some F_, Fj,, Fy € Fy, where h; = g;(b) + Aji, then f(x) defined by () is bent and its Walsh
transform at point b € Fon is

f(b) = 2"/2(_1)§(b)+2§:1 [(his+Fjs)(hjs +Fig)+highjs]+Fo



Example 1. Let n = 2m = 6, 7 = 4, £ be a primitive element of € Fis and g(r) = Trd (29).
From [T1] we know that the dual of g(x) satisfies @) with Ay = Tr3(u)), A;; = Tr(uiuég») fori<j
and g;(z) = Tr(ulx). Taking uy =1, ug = &, uz = &4, uy = €2, and F(z1,22,73,74) = 11272 +
12324, then Ags = 1 and Ajg = A1 = Ay = Aoy = Agy = 0. It indicates #I' = #{2,3} =2

and F(x1,x9,x3,24) salisfies
F(21, 22,23, 24) [0y~ T () 4 Les=r(e105) = (Tr(D) + D)z + (Tr(b) + 1) Tr(£°)as.
Magma shows that
F(@) = Trd(@®) + Tr(z) Tr(Ex) + Te(w) Tr(€'e) Tr(¢%)
is bent over Fos and its Walsh transform at b € Foe is
f(b) — 23(_1)Tr?(b9)+1+(Tr(§8b)+(Tr(b)+1)Tr(é“’b))(Tr(§32b)+Tr(b)+1)+Tr(§8b) Tr(§32b)’
which is consistent with our result in Theorem [2

Case II: #I' < 20, where 2 < 2¢ < 7.

If this case happens, then i5, = is, or i5, = js, for at least two integers 1 < s1, so < ¢. Here

we only discuss the case A;,;, =1 for s =1,---,¢; and A;; = 0 for any other 7 # j since other
cases can be considered in the same manner, where 1 <14y < j; < --- < j5, < 7. For this case,
([@) becomes

Fib) = 20/ (a0,
where

Y4 ¥4
1 1 1 1

F(x1, @0 ) oy=hy igr (20 tig+hig +xiq iy + 20 (Rjs+aj5)t,
T — E E E (_1) s=1 s=1

i,j€l ©;=0t;=0

14 ¢
1 ¢ 1 L L
L F(‘le"' 7xT)|zi:hi,i€F+(hj1 +xj1 )( Z tjs +h’21 +£B11)+ Z (h’]s +mjs )tjs
2 E E E E (_1) s=2 s=2

i€l ;=0 s=2 tjs =0

e
1 7 1 1
9 Z Z Zl Z ( 1)F($17"'71'T)|x¢=hi7i€1—‘+22(hjs+$js+hjl+xj1)tjs +(hi1+$i1)(hj1+xj1)
1€l ;=0 s=21;,=0
1 1
= 251 Z Z (_1)F($17...7$T)‘xi:hi,i€1",xjs:le+hj1+hjs ,2<s<0q +(hi1 +$i1)(h]‘1+l‘j1).

Then, another class of bent functions can be obtained as follows.



Theorem 3. Letn = 2m, uj,ug,- - ,u; be pairwise distinct elements in F5,, where 2 < 17 < 'm.
Let g(x) be a bent function over Fon whose dual satisfies @) with A; j;, =1 for 1 <ip < ji <
< jo <T,5=1,--- l1 and A;j =0 for other 1 <i < j < 7. If F(x1,--- ,z,) satisfies

F(z1, 7)) |zi=hiigl ), =aj, +hy, +hiy 2<s<t; = Fiy @iy + Fj x5, + Fo

for some F;, F} , Fy € Fa, where h; = g;i(b) + Ay, I' is defined in ). Then f(x) defined by ()
is bent and its Walsh transform at b € Fon is

J/c\(b) — 2n/2(—1)§(b)+(h11+FJI)(th +Fi1)+hilhj1+F().
Example 2. Letn =2m =8, 7 =4, { be a primitive element of € Fis and g(z) = Tri (e 7217).
From [T1] we know that the dual of () satisfies @) with Ay = Tr3(£238ulT), A;; = Tr(§238uiu]1.6)
for i < j and gi(xr) = Tr(¥¥ul®z). Taking u; = &, ug = €, ug = &1, uy = €29, and

F($1,$2,$3,$4) = T1X4 —|—$2$3$4, then A12 == A13 =1 and A14 == A23 == A24 == A34 =0. It
indicates I' = {1,2,3} and F(z1,x2,x3,4) satisfies

F (21, %9, 23, 24) |5y ~Te(38) g a1 Tr( (€70 +£159)5) = Tr(E*90)y + Tr(E80)(Tr((€7 + €")b) + 1)

Magma shows that

fla) = Try(7 ') + Tr(éx) Tr(%x) + Tr(€%2) Tr(6! e) Te(%2)
is bent over Fos and its Walsh transform at b € Fos is

f(b) — 24(_1)Tri‘(5238b”)+1+(TY(£254b)+TY(£48b)(Tr((£79+£159)b)+1))(TY(£79b)+Tr(£4Sb))+Tr(£254b) Tr(£7b)

which 1s consistent with our result in Theorem [3.

Remark 2. For an odd prime p, when A; =0 for all 1 < i < 7, similar results to Theorem [2

and Theorem[3 can be obtained through the above discussion.

3.2 Bent functions of the form (1) for odd p

In this subsection, let p be an odd prime and f(x) be of the form (Il), where g(x) is a weakly

regular bent function whose dual satisfies (3]).

Since g(z) is a weakly regular bent function, suppose that g(z) = p~'p"/2w9®)  then by @),
[{) and Theorem [I], one gets

7 p—1 p—1

f(b) *1 "/2 T Z Z ZWF(xh T (b)+21§i§jgfAijtitfrzzzl(gi(b)*mi)ti’ (9)

1,j=1x;=0t;=

10



where g;(z) is a function from Fpn» to F,, for each 1 <i <7, A;; e Fpfor 1 <i<j <.
In particular, if one takes 7 = 2 and F'(x1, x2) = z1x2, then Theorem [I] yields

p—1 p—1
J/t'\(b) _ Mflpn/277—+1 E Z w*fl'ltl+§(b)+Allt%+A12xltl+A221'%+gl(b)t1+92(b)1'1.

x1=0t1=0
As a consequence, the following result can be verified by Lemma [4

Proposition 1. Let p be an odd prime and g(x) be a weakly regular bent function over Fyn

whose dual satisfies
§(z — iy — tyug) = g(z) + Apit] + Anats + Avatats + g1 (2)t1 + ga(2)t

for all x € Fpn and ty, to € Fp, where gi1(x) and g2(x) are functions from Fpn to Fp,. Let
uy, ug € Fpn, then f(z) = g(v) + Tr(uiz) Tr(ugz) is a weakly regular bent function if and only if
(A1p — 1)% — 4411 Asy # 0. Moreover, for b € Fyn, the Walsh transform of f(x) is

(b)+ Agog1 ()2 +A1192(0)2—(A12-1)g1 (b)ga (b)
(A12-1)2—4A11 Ago

~

F0) = (A2 — 1)? — 4413 Ago)p™/ 2w’

Example 3. Let p =5, n =2, uj,uz € F;, and g(v) = Tr(ax?) with a € FZ,. It is known in
2
[7] that g(b) = —n(a)f)wTr(%) forb € Fso. Then g(x — tyuy — tausg) is equal to

2
Tr(.%'_) 4 TI‘( uU1uU2 ulxr uQx
a

2
LTl Yty — 2 Tr(— )ty — 2 Tr(—)ta.
a a

2
)it + Tr(%)t% +2T(

Magma experiments show that f(x) = Tr(ax?) + Tr(uiw) Tr(ugx) is bent if and only if A =
2 2
(2 Tr(*™22) — 1)? + Tr(2) Tr(22) # 0. Moreover, for b € Fso, the Walsh transform of f(z) is

u? u1b u? uob upu u1b uogb
b2y Tr(-2) Tr(M12)2 (L) Tr(*22)2 - 2 Tr(MLE2) 1) Te(“17) Tr(“27)
. Tr(T)_ a a au - a u2 a u2 a a
f(b) = —n(al)dw (2Tr(H2)—1)2 4 Tr(L) Tr(-2)
For a general F'(z1,---,z,), we assume that the nonzero elements in {A4;; : 1 <i < j <
T} are Aj .-+, Ai,j,, where £ is an integer, 1 < i3 < --- <4y < 7and 1 < j; < -+ <

o~

je < 7. Let I be given as in ({), it is extremely difficult to calculate the value of f(b) when
deg(F'(21,"* ,T7)|w;=g,(b),igr) > 2- Thus, we focus on the case deg(F'(x1,* , T7)|z,—g,(b),igr) <
2, and then we can discuss (@) as follows:

Case I: #I' < 2.

Assume that 71 # 7 and I' C {71, 72}, i.e., Arr, Ariros Aryry, € Fp and A;; = 0 otherwise.
Then (@) is reduced to
7ib) = 12200
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by using the fact that Zfi_:lo wlo®) =zt — p if 2, = g;(b) and 0 otherwise for i & {1, 7}, where

p—1 p—1
M Z Z wFl Z Z w 7171t71+A727'2t +A7-17'2t7-1t7'2+(97'1(b)_l'rl)t71+(972(b)—737-2)t7-2
Ty =0 Ty =0 try =0 try =0
with F' = F(21," -+ ,27)|0,—g,(),i¢{m,m}- Lhen, according to Lemma [ we can calculate () as

the following four cases:

(1): Aryry = Arjr, = Aryr, = 0. For this case, by Lemmal] it can be readily verified that

Fb) = pLpn 28O P01 (0).920). .97 ().

(2): Arry = Arr, = 0 and Ar,,, # 0. If this case occurs, then again by Lemma [ one can
claim that g, (b) — z;, = 0 and
R P Dl (g (b)—79)?
Fb) = u " P prn(Aryy )T Z At T Ay

xT270
Under this case, if deg(F (w1, , %7 )|2,—g,(b),i£m) < 2, then F(xy,--- ;) satisfies
F(I’l, T 7'%'7')’mi=gi(b),i;£7’2 = a2$72_2 + FZ(b)xm + Fo(b) (10)
for some Fy(x), Fo(z) € Fp[z] and as € F),. Consequently, one obtains
p—1 L1

J/c\(b) _ Mflpn/271\/ﬁn(AT2T2)w§(b) Z (az— 4,4727 )xrg+(F2(b)+ 2)%‘72+F0(b)_

ZTry=0

g7o ()2
4ArgyTy

Then we can deduce that f(z) is bent only if ay — 2— # 0 and
T272

~ Ao T g9 (b) g (b)2
TO)H+ o2 (Fa(b)+ 252 V2 Fo(b) - S

J/C\(b) 1% 1pn/277( - 4a2AT2T2)W
from Lemma [3l

(3): Ayyry #0 and A2 =4A, , A, In this case, by Lemma one has

AT1’F2 (g’rl (b) — x’rl)

T172

9r. b) — Try = )
2( ) 2 2147_17_1
ie, T, = 2’2:11:?1 x7 + @(b) with o(b) = g, (b) — ATT”fl g7, (b). Then M becomes

p—1 (21, 20)] (971 () —71)?
=p / 7,] TlTl E W 1 T)lw;=g;(b),i¢{T1, 7o} xrg=Ar o xT) /(2AT 71 )+ (D) 4Am T

zr =0
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Note that deg(F(x1,--- , ;) B),ig{r,m}) < 2 yields F(xy,--- ,x;) satisfies

F(z1, 20 aimgu0)ig(r m) = O11EF, + @227, + @127, Try + Fy(b)arr, + Fa(b)r, + Fo(b) (11)

for some Fy(z), F(z), Fo(z) € Fplz] and a11, a2, a12 € Fp, then M turns into

—1
M = p\/l?n(Anﬂ) Zp walxgl Foatn +a3,

Ty =0
where «; are given by

214-T1T2 a12 — 1

o TIT2 \2
ap = ajl+ (QATm) a2 + 4A )
i Ar o Fo(b) 4 g+ (b
ay = ( 1 2a22—|—a12)go(b)—|—F1(b)+ 172 2( ) gl( ), (12)
Arry 2Arn
- (b)?
03 = anp(v) + B)a(b) + Fyb) - 42
T1T1

Then it can be verified that f(z) is bent only if a; # 0 and in this case we have
f(b) = M_lpn/zn(—Aﬁnal)wg(b)+a3_“§/(4a1),

(4): A2 —4A. A, #0. When F(xy,--- ,2,) satisfies ([I]), similar to the above case, a

T1T2

straightforward computation gives

p—1 p-1
M:pn(A) Z Z wagl+B2x32+Bax71$72+51x71+52x72+53’

Tr;=0275=0

where A = A2 —4A, . A, B; are given by

T1T2

TQ T TLT AT T
By =a1 + AQQ,BQZQQQ—{— All,B3:a12— AIQ (13)
and (; are given by
AT T gT (b) - 2AT T gT (b)
— (b 17297120 272911

51 1( )+ A ’
ATT T b _2ATT T b

52 = Fz(b)—i— 1291()A 1192()’ (14)

53 = Fo(b) + ATQTQ‘qu (b)2 + ATlTlgTQ (b)2 — AT1T2.ng (b)grz (b)

A .
Then by Lemma [ one can conclude that f(z) is bent only if Bf —4B; By # 0 and consequently

B153+B2f3—B3h1 62
B2-4B1 By

g(b)+ +8s

Fo) = p " Pn(A)n(B3 - AB1 Ba)w
Based on the above discussions, we can arrive at the following result.
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Theorem 4. Let p be an odd prime, uy,uz,- - ,ur € Fpn with 7 > 2 and f(x) be defined by (),
where g(x) is a weakly reqular bent function over Fpn whose dual satisfies @) and F(xy,- -, xy)
is a reduced polynomial in Fp[zq, -, zy)].

(1) If Aj; =0 for all1 <i < j <7, then f(x) is weakly regular bent and its Walsh transform is

Fb) = p~ T/ 29O+ F(91(0),92(8),+gr (b))

(2) If there exists some 1 < 1o < T such that A;,., # 0, A;; = 0 otherwise, F(x1, -, ;)
satisfies (I0) and as — 414% # 0, then f(x) is weakly regular bent and its Walsh transform is
T272

~ Aty 9o (b) 2 gt (b)2
g(b)+%(&(b)+21ﬁ?) +F0(b)*4,427272

f(b) = ﬂilpn/277(1 —daz Ar,r, )w

(3) If there exist some 1 < 11 < 7o < T such that Ar 7, #0, A2, —4A; 7 Aryry, =0, 435 =0
otherwise, F(x1,--- ,x.) satisfies (IIl) and aq # 0, then f(z) is weakly regular bent and its
Walsh transform is

f(b) = M*lpn/2n(_Aﬁnal)w'gv(b)qtagfag/(zml)’

where «; are given by ([I2)).
(4) If there exist some 1 < 71 < 19 < T such that A% —4A. ; Ar,ny # 0, A;j = 0 otherwise,
F(x1,--- ,x.) satisfies (TI)) and B —4B1 By # 0, then f(x) is weakly regular bent and its Walsh

transform is

.\, B1B3+Byp? B3B8y
N - B
FO) = i P 2n(A2 . —4A . An n(AB1Bs — B2 T B-im 3

T1T2

where B;, B; are given by ([I3)) and () respectively.

Remark 3. Notice that the item Aiit? will be reduced to A;t; if p = 2 and for this case the
result in (1) of Theorem [] still holds, which has been studied in [15]. For an odd prime p, the
result in (1) of Theorem [] has been obtained in [13, Theorem 3.2].

Example 4. Letp =3, n =4, 7 =3, { be a primitive element of 3, and g(z) = Tr(x?). From
[7] we know that g(b) = —32%~ T for b € Fyu and §(z) satisfies @) with Ay = — Tr(u?),
Aij = Tr(uguj) if i < j and gi(x) = — Tr(uz). Taking us = £ and F (21, 29, 23) = 2125+ 2023,
then Ass3 = 0. Then Magma shows

f(z) = Tr(z?) + Tr(upz) Te(£%32)? + Tr(ugx) Tr(€%3x)

18 a weakly reqular bent function if one of the following conditions satisfies
(1) up = ug = £, In this case Ay = Agg = Ajg = A1z = Asg = 0 and the Walsh transform of
flx) is

f(b) 32, Tr(b?)—Tr(£13b) Tr(£53b)2+Tr(£130) Tr(§53b)‘
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(2) up = &3 and ug = €2. This case gives Aoy = 1, Ajg = A1 = A13 = As3 =0 and
F(21, 22, 23) |y = — Tr(e130) g —— Tr(es3p) = — Tr(€7°b)aa — Tr(€1°b) Tr(£7°0)?,
which indicates as = 0, as + 1/ Tr(¢*) =1 # 0, and then the Walsh transform of f(z) is
Flb) = —3%w™ Tr(b?)+Tr((6%—€%%)b)* ~Tr(£'%b) Tr(¢°%6)* —Tx(€%0)*

(3) uy = €2 and upy = £7. For this case, we have Ay = Agy = A1p = 1 and Az = Agz = 0,
which implies that A%2 — Ay1A99 =0 and

F(.%'l, 9, 1‘3)’13:, Tr(£33b) = Tr(§53b)2m1 - Tr(§53b)x2.

Then oy = —1, g = Tr(€%30)% + Tr((€53 + €2)b), az = Tr(£%3b) Tr((£2 + £7)b) — Tr(£2b)? and

F(b) = — 32~ T HTHED) Tr(€€7D)—TH(ED)+ (TH () +Tr((€7+€2)°

(4) u1 = &€ and us = &°. In this case we have Ayp = Ajg = 1, Agg = —1, A3 = Agz = 0,
A =A% — AjjAyy = —1, By =1, By = —1, B3y = 1, 1 = Tr(%b)2 + Tr((€° — €2)b), B2 =
Tr((€° + €2 — £53)b) and B3 = Tr(£2b)? — Tr(£%b) + Tr(£2b) Tr(€%). Then B2 — B1By = —1 # 0
and the Walsh transform of f(x) is

f(b) _ _32w—T‘r(b2)+ﬁf—5§+5152+53‘
Computer experiments are consistent with our results in Theorem [{}

The algebraic degree of the weakly regular bent functions in Theorem Ml can be determined

for some wu; by Lemma Il

Proposition 2. Let uy,uz, -+ ,ur; € Fpn be linearly independent over Iy, where 7 is an integer
with 2 < 7 < n. Let F(z1,--- ,x;) be a reduced polynomial in Fylzy,--- ,z;] with algebraic

degree d. Then the algebraic degree of the weakly reqular bent function constructed in Theorem

is max{d, deg(g(x))}.

The algebraic degree of f(z) in Theorem [ can achieve the upper bound in Lemma 2l Let
uy, Uz, ,ur € Fpn be linearly independent over Fy, where 2 < 7 <n. Let f(x) be the weakly
regular bent function generated by Theorem Ml then the algebraic degree of f(z) is w if
one takes p > 3 and F(xy, -+ ,2,) = [[I_;z" with Y7 e = (pal)", where 2 < 7 < n,

Ogeigp—l.

Case II: #I" > 2.
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In this case, in order to guarantee deg(F'(z1,--- ,%7)|s,—g,b),igr) < 2 for a general I', we

consider the case deg(F(x1,--- ,x;)) = 2. Without loss of generality, assume that

f)=gle)+> 7 i Tr(uw) Tr(ujz), (15)

where a;; € F), are not all zero. Let g(z) be a weakly regular bent function over F,» whose dual
satisfies () with A;; = 0 for i # j (the case A;; are not all zero when i # j can be similarly

considered), i.e

Gla =Y ut)=g@) +> At +Y gt
Then (@) is reduced to

T p—1 p-1
f(b) —1pn/2=T Z Z szl<l<J<Ta”xzxj+g(b)+z 1At 30T (9i(b)—wa)ti (16)

1,j=12;=01;=0

Observe that if A; =0 for some 1 <i¢ < 7, say A;; = 0, then f(b) equals

T T T
L e aijziz;+g(b)+ X Aut?+ 3 (g:(0)—xz )t Y aijg1(b)zj+arigr(b)
—7+1 E ’ E ’ § w2<z<]<7 i=2 i=2 Cwi=2
)
1,j=2x;=01;=

which implies that f(x) degenerates to the case

F@y=g(@)+>, ey Tr(ua) Tr(wa;).
Thus, we next assume that A; # 0 for all 1 <i < 7.

For simplicity, define 'yi(l) = a; — 1/(44;), o) = gi(b)/(24;) for 1 < i <7, 'yA(l‘) = a;; for

) iy

1<i<j<rTand

k k—

AF = 4D <fy,£12> /4y,

k k—1 k—1)

72(,1) - ’Y@(,] ) 'Yl(c 1z'Yk 1])/( ;i ), (17)
k k— k

o = oV oY sy )

for 2 < k < 7. Then, according to (If) and Lemma 3], one gets

FO) = w79 T n(Aa)? N,

where
N = y pzl WZT 1= (gz(b) xl) +aual )+ Z;=i+1 AijTi% ;5
i=1 x;=0
= i=1 giAb)Q i Z wZZ 11(%1) 2+(Z; it+1 7”95]4-951)) i)+7£1)x3+9(71)x7

i=1 x;=
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If fyl 7é 0, then by Lemma [3] one obtains

_yr s ® 2 (1) L ST @2 (0T 4Pt 22, @),
N =w =1 44y 1 11 \/p 77 Z Z (iei=2 (74 +( j=it1Vij Tite; i)+ ai+or T,
1=2 ;=

Therefore, if 72 75 0 for all 1 <¢ < 7, one can conclude that

-1
®)? 4 - )
N = o Zi=t s (-1 § W22 e Ve = S N )
x+=0

where N(k), 1 < k <7 is defined as

N® = " H . ~ 5k (@) /(4

Theorem 5. Let p be an odd prime and uy,uz, -+ ,ur € Fyn with 7> 2. Let g(x) be a weakly
reqular bent function over Fyn whose dual satisfies [B)) with A;j =0 fori # j and Ay # 0 for all
1 <i < 7. Then the function f(x) of the form ([IH) is a weakly regular bent function if %(Z) #0
for all 1 <i < 7. Moreover, the Walsh transform of f(x) is
~\ T gz(b) (942 (1)
f _ n/2 ]]Z 1 ,}/( ))wg(b) i= 1( +(o; )2/ (4 %))

zz, )

where 'yl-( ), 'Y@(]) and g( ) are given by ([IQ) for1 <k <.

Example 5. Letp =3, n =5, 7 = 4, § be a primitive element of € F}; and g(v) = Tr(2?). From

[7] we know that §(b) = (—3)>/2w™ (") for b € Fys and §(z) satisfies @) with Ay = — Tr(u?),

Aij = Tr(uguy) if i < j and gi(z) = —Tr(uw;x). Taking up = €2, up = €5, ug = &4, uy = €1,

and F(x1,x9,x3,24) = X172 + w324, then Ajg = Agg = —1, Agg = Aygy =1, Ajg = A1z = Ay =

Agg = Agy = Azq = 0, and from (), we have 'y%l) = 752) 7&3) = 'yz(l ) =1, g(l) = —Tr(£%),
( ) = Tr((&° — £2)b), gg?’) = — Tr(£%), ggjl) = Tr((¢1% — ¢4)b). Magma shows that

f(a) = Tr(2?) + Te(E2) Te(2) + Tr(E'z) Tr(E %)
is bent over Fss. Moreover, for b € Fas, the Walsh transform of f(x) is

f(b) = (_3)5/2&)* Tr(b?)—Tr(€°b)? —Tr((§>—€2)b)* —Tr(£1°b)* —Tr((¢'°—¢*)b)?

)

which 1s consistent with our result in Theorem [4.

To end this section, we point out that more bent functions of the form (Il) can be obtained
from our results. The previous works in this direction focused on the constructions of bent
functions satisfying (Il) and (2)) and new bent functions were obtained in [I1[I3LTI5H19]. Using
similar techniques, the analogues of the results in above references can also be obtained for bent
functions which satisfy (Il) and (B]), we omit the details here.
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4 Constructions of bent functions from non-bent ones

In this section, we aim to construct the bent function f(x) of the form (II) from a non-bent
function g(z), which is much more difficult than the case when g(x) is a bent function. Let
7 = 2 and m, k be integers with n = 2m and d = ged(k,n), we investigate the bentness of the

functions having the form
f(z) = Tr(axpk‘H) + Tr(ux) Tr(vzx), (18)

where a € F. and u,v € Fy.. We always assume that u # v if p = 2 since f(x) is reduced to
Tr(aa:pkﬂ) + Tr(uz) when p = 2.

Theorem 6. Let p =2, n/d be odd and u,v be two distinct elements in F5.. Then the Boolean

function f(x) of the form ([R) is bent if and only if d =2 and Trh(uc™t) - Trl(ve™ ) - Ted ((u +

2k 41

v)e 1) # 0, where ¢ € T, is the unique element satisfying c =aq.

Proof. Set p =2 and 7 = 2, then for any b € Fon, Theorem [ yields

) = %@(b)+§(b+U)+§(b+v)—§(b+U+v))- (19)

Notice that g(b) € {0, i2nT+d} and g(b) # 0 if and only if Tr"}(bc™!) = 1 by Lemma[El Since n

is even and n/d is odd, we have d > 2 is even.

(1): sufficiency. If d = 2 and Tr%(uc™t) - Trh(ve™t) - Te((u + v)e™t) # 0, then Trd(uc™t),
Trf (ve™t) and Trf((u + v)c™t) are distinct nonzero elements. Suppose that 6 is a primitive

element of Fy2, one then gets
{Tel (ue™t), Te (ve™), Ted ((u + v)e ™)} = {1,6,6%}.
Therefore, for b € Fan, one can conclude that
{Teh (be™ ), TeR((b 4+ w)e™ ), Ted (b + v)e ), Ted (b + u + v)e H} = {0,1, 0, 6%}.

This together with Lemma [Bl implies that

1, .
7o) = i(iz%Q +3.0) = £2™.

(2): necessity. Since Tr"(bc™!) runs through Foa when b ranges over Fon, if d > 2, one has
(T (ue™Y)s + Te(ve V)t @ s, t € Fy} S {Te(be™) +1:b € Fan}.

This indicates that there exists b € Fan such that Tr”((b + su + tv)c™t) # 1 for arbitrary

o~

s, t € Fy which leads to f(b) = 0 by (I9) and then f(z) is not bent. Now assume that d = 2

18



and at least one of Tr (uc™!), Trf(ve™!) and Trj ((u+wv)c™!) is 0, without loss of generality, let
Trf (uc!) = 0, then

Try((b+ su+tv)e ) = Trj(be™ ') + t Ty (ve ).
Observe that there also exists b € Fon such that Tr% (be™!) +¢ Tr (ve™t) # 1 for any ¢ € Fy since
(Tl (et t € Fo} G {Trlj(be™") +1: b€ Fau},

i.e., there exists b € Fon such that g(b + su + tv) = 0 for any s, t € Fo. Then by (I9) one has
that f(z) is not bent. O

Example 6. Let p =2, n =6, and u, v be two distinct elements in F5s. Suppose that k is an
integer and d = ged(n, k). Taking a = §2k+1 and ¢ = &, where £ is a primitive element of Fye,
then 2" +1 = a. Magma experiments show that f(z) = Tr(¢2 122" +1) 4+ Tr(uz) Tr(va) is bent
if and only if k =2 or 4 and Tr§(¢ 1) - Te§ (¢ 1v) - TYS (6~ (u + v)) # 0.

n
p -1 m

Theorem 7. Let p be an arbitrary prime and a,u,v € Fyn. If n/d is even and ar’+ = (=1)4,

then the function f(z) of the form (IR) is bent if and only if d = 1, Tr}(v/(ac?™)) # 0 and

k
Try (u/(ac?”)) : pk p2k —
Trg (v/(acP®)) ¢ F,, where ¢ satisfies aP” &~ + ac = 0.

p"—1

Proof. Tf n/d is even and a»™+1 = (—1)d, then by Lemma [ for b € Fn one has that
§(b) = (=)™ 1" Y aaf )
if Trgd(b/(acpk)) = 0 and §(b) = 0 otherwise, where g is the solution of a?" 27" + ax = —b?".

Set 7 = 2, then Theorem [I] yields

SN WG+ su+ tv),V b€ Fyn. (20)

n k
(1): sufficiency. If d = 1, Trg(v/(acpk)) # 0 and W ¢ I, then
rh (v/(ac

Tef (su+tv)/(ac? ) = s Teh (u/(ac”)) + t Teh (v/(ac”)) # 0

when s, t € F,, are not 0 simultaneously. This implies that Trj((su + tv)/ (ac?™)) = 0 only if
(s, t) = (0, 0) and Tr}((su + tv)/(ac?")) are distinct for each pair (s,¢) when s, ¢ range from 0

to p — 1. Suppose that 0 is a primitive element of

p2, one gets

(T3 ((su +t0) /(ac”)) : 0 < s, t <p—1} ={0, 1, ...,67 2.
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Then, for any b € Fyn, there exists exactly one pair (s, t) such that Tr5((b+ su +tv)/(ac®)) =0

when s, ¢ run over F), set as (s, t'). Hence, according to Lemma [l and (20), one can claim

- 1 14! iy
Fb) = (0w Xaaf ) + (0= 1) 0) = (=)™ x(arh ),
where zq is the solution of a?"2P™" + ax = —(b+ s'u + t'v)P", i.e., f(z) is bent.

(2): necessity. If d > 1, then by the property of trace functions, we have
n k n k n k
{Try(u/(ac?”))s 4+ Tryg(v/(ac? )t : s, t € Fp} G {—Tryy(b/(ac?)) : b € Fpn},

which indicates that there exists b € Fp» such that Try,;((b + su + tv)/ (acpk)) # 0 for any

s, t € Fp. For this b, by Lemma [0l and (20), one gets f(b) = 0. Thus, f(x) cannot be bent if
d > 1. Now we assume that d = 1 and Tr% (u/(ac?")) = r Tt} (v/(ac?")) for some r € F,. Then

T (0 + s+ t0)/(ac)) = T (b) (ac)) + (s7 + 1) T (0] (ac™)).

Since
{(s7+ ) Ty (v/(acd™)) < s,t € By} G {— Tri(b/(ac”")) : b € Fyn},
then there exists b € Fpn such that Trh;((b+ su + tv)/(acpk)) # 0 for arbitrary s, t € [Fp, and

~

consequently, for this b, we have f(b) = 0 by ([20) which implies that f(z) is not bent. O

Example 7. Let p =3, n =2m =4 and u, v € F3,. Let k be an integer with 1 < k < 4 and
d = ged(n, k). Taking a =1 and ¢ = & with 53%_1 = —1, where F3, = (), then a3 3 fac=0.
Magma experiments show that f(z) = Tr(x?’kﬂ) + Tr(uz) Tr(vx) is bent if and only if k =1 or

3 and Try(€ " u)/ Tra(¢7"v) ¢ Fs.

Remark 4. The construction of the bent function f(x) with the form () from a non-bent
function g(x) is much more difficult when T > 3. Our computer experiments indicate that such
bent functions indeed exist and then it will be interesting to find an efficient way to construct
this kind of bent functions.

5 Conclusion

In this paper, we investigated the bentness of the function f(x) over the finite field Fy» with
the form (II) by using different kinds of g(x) as before (see Table[Il), where n is a positive integer
and p is a prime. We firstly obtained a generic result on the Walsh transform of the function
f(x), which generalized some previous works, and then characterized its bentness for the case
g(x) is bent for p = 2 and p > 2 respectively. It was shown that bent functions with the maximal
algebraic degree can be obtained from our construction. Moreover, we presented a class of bent

functions f(z) of the form (Il) when g(z) is a non-bent Gold function.
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Table 1: Known bent functions over F,» with the form ()

| g(z) is bent with g(x) satisfies (8] | F(x1, - ,x7), 7> 2 | Refs. |
p=2 A2 =0 F(z1,22) = z122 [11]
p=3 A1n =0, A1z =0 F(x1,22) = 2122 8]
p=3 (A1 —1)? # A1 Aos F(x1,x2) = x122 [19]
p=2 Az = A1z = A3 =0 F(z1,22,23) = x12273 [17)
p=2 Aij=0,1<i<j<rT F(zy, - ,z;)=z1- 27 [16]
p=2 Aij=0,1<i<ji<rT any [15]
odd p Aij=0,1<i<j<r7T any [13]
p=2A;; #0,14,j €T, #I' = 2(, otherwise A;; =0 deg(F(x1, - ,&7)|a;=h,;,igr) < 1 Thm.2l
p=2| Aij, #0,s=1,--- £y, otherwise Ay =0 |deg(F (21, Tr)|o,=hi,igl 2, =a; +h +hy, s#1) < 1|Thm.[]
odd p (A1 —1)® —4A11 422 #0 F(x1,x2) = x122 Prop.[]
odd p| Ari71, Aryry, Ari7y € Fp, otherwise A;; =0 deg(F'(z1,+ ,%+) |, =g, b),igr) < 2 Thm.[]
odd p| Ay #0,i=1,---,7, otherwise A;; =0 F(xy, - ,x7) = Zl<i<7’<7— Qi T T Thm.[H]
| P g(z) is non-bent F(x1, - ,x7), 7> 2 | Refs. |
p=2 Tr(ax2k+1), n/ ged(k,n) is odd F(z1,22) = z122 Thm.[]
any p Tr(ax]”k“)7 n/ged(k,n) is even F(x1,x2) = x122 Thm.[T]

- where A;j, gi(b) are defined by @) with h; = ¢;(b) + Aii, I and F(z1,- -
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