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Abstract

In 2013, Nebe and Villar gave a series of ternary self-dual codes
of length 2(p + 1) for a prime p congruent to 5 modulo 8. As a
consequence, the third ternary extremal self-dual code of length 60 was
found. We show that the ternary self-dual code contains codewords
which form a Hadamard matrix of order 2(p+1) when p is congruent to
5 modulo 24. In addition, it is shown that the ternary self-dual code is
generated by the rows of the Hadamard matrix. We also demonstrate
that the third ternary extremal self-dual code of length 60 contains at
least two inequivalent Hadamard matrices.

1 Introduction

Self-dual codes are one of the most interesting classes of codes. This interest is
justified by many combinatorial objects and algebraic objects related to self-
dual codes (see e.g., [15]). A Hadamard matrix is a kind of orthogonal matrix
appearing in many research areas of Mathematics and practical applications
(see e.g., [16] and [17]). One of the interesting and successful applications

∗Department of Computer Science, Shizuoka University, Hamamatsu 432–8011, Japan.
email: araya@inf.shizuoka.ac.jp

†Research Center for Pure and Applied Mathematics, Graduate School of Information
Sciences, Tohoku University, Sendai 980–8579, Japan. email: mharada@tohoku.ac.jp

‡Division of Natural Science, Faculty of Advanced Science and Technology, Kumamoto
University, Kumamoto 860–8555, Japan. email: momihara@educ.kumamoto-u.ac.jp.

1

http://arxiv.org/abs/2205.15498v1


of Hadamard matrices is their use as codes. In particular, a special class
of Hadamard matrices can give rise to self-dual codes as their row spaces.
In this paper, we are interested in Hadamard matrices related to ternary
self-dual codes found by Nebe and Villar [11].

A ternary self-dual code C of length n is an [n, n/2] code over the finite
field of order 3 satisfying C = C⊥, where C⊥ is the dual code of C. A
ternary self-dual code of length n exists if and only if n is divisible by four.
It was shown in [10] that the minimum weight d of a ternary self-dual code of
length n is bounded by d ≤ 3⌊n/12⌋+3. If d = 3⌊n/12⌋+3, then the code is
called extremal. For n ∈ {4, 8, 12, . . . , 64}, it is known that there is a ternary
extremal self-dual code of length n (see [7, Table 6]). The ternary extended
quadratic residue codes and the Pless symmetry codes are well known families
of ternary (self-dual) codes. It is known that the ternary extended quadratic
residue code QR60 of length 60 and the Pless symmetry code P60 of length
60 are ternary extremal self-dual codes (see [15, Table XII]). In 2013, Nebe
and Villar [11] gave a series of ternary self-dual codes of length 2(p+ 1) for
all primes p ≡ 5 (mod 8). As a consequence, the third ternary extremal
self-dual code of length 60 was found.

A Hadamard matrixH of order n is an n×nmatrix whose entries are from
{1,−1} such that HHT = nIn, where H

T is the transpose of H and In is the
identity matrix of order n. It is known that the order n is necessarily 1, 2, or
a multiple of 4. Recently, Tonchev [19] studied Hadamard matrices of order n
formed by codewords of weight n in ternary extremal self-dual codes of length
n, especially the extended quadratic residue codes and the Pless symmetry
codes. From the construction, the extended quadratic residue code contains a
type I Paley-Hadamard matrix. The Pless symmetry code contains a type II
Paley-Hadamard matrix [13]. Tonchev [19] showed that the Pless symmetry
code of length 36 contains exactly two inequivalent Hadamard matrices of
order 36. This motivates us to study the existence of Hadamard matrices of
order n formed by codewords of weight n in ternary self-dual codes found by
Nebe and Villar [11].

The paper is organized as follows. In Section 2, definitions, notations
and basic results are given. Especially, we review the construction of ternary
self-dual codes NV (a)(p) in [11] of length 2(p + 1), where p is a prime with
p ≡ 5 (mod 8) and a ∈ {1,−1}. In Section 3, we show that NV (a)(p)
contains 2(p+1) codewords of weight 2(p+1) which form a Hadamard matrix
HNV (a)(p) of order 2(p + 1) for any prime p ≡ 5 (mod 24) and a ∈ {1,−1}
(see Theorem 2, which is our main theorem of this paper). We also give
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characterizations of the Hadamard matrices HNV (a)(p) of order 2(p + 1). In

particular, it is shown that the ternary self-dual code NV (a)(p) is generated
by the rows of the Hadamard matrix HNV (a)(p). This gives an alternative

construction of the ternary self-dual code NV (a)(p). By Theorem 2, the
third ternary extremal self-dual code NV (1)(29) of length 60, which was
found in [11], contains a Hadamard matrix of order 60. In Section 4, our
computer search shows that NV (1)(29) contains one more Hadamard matrix
of order 60. Finally, in Section 5, we demonstrate that the currently known
three ternary extremal self-dual codes of length 60 are constructed as four-
negacirculant codes.

2 Preliminaries

In this section, we give definitions and some known results of ternary self-
dual codes and Hadamard matrices used in this paper. Especially, we give
details for the construction of ternary self-dual codes NV (a)(p) in [11] of
length 2(p+ 1), where p is a prime with p ≡ 5 (mod 8) and a ∈ {1,−1}.

2.1 Ternary self-dual codes

Let F3 = {0, 1, 2} denote the finite field of order 3. A ternary [n, k] code C is
a k-dimensional vector subspace of Fn

3 . All codes in this paper are ternary.
The parameter n is called the length of C. A generator matrix of C is a k×n
matrix whose rows are a basis of C. The weight wt(x) of a vector x of Fn

3 is
the number of non-zero components of x. A vector of C is called a codeword.
The minimum non-zero weight of all codewords in C is called the minimum
weight of C. The weight enumerator of C is given by

∑

c∈C ywt(c) ∈ Z[y].
The dual code C⊥ of a ternary code C of length n is defined as C⊥ =

{x ∈ F
n
3 | x · y = 0 for all y ∈ C}, where x · y is the standard inner product.

A ternary code C is self-dual if C = C⊥. A ternary self-dual code of length
n exists if and only if n is divisible by four. Two ternary codes C and C ′ are
equivalent if there is a monomial matrix P over F3 with C ′ = C · P , where
C · P = {xP | x ∈ C}. We denote two equivalent ternary codes C and D by
C ∼= D. All ternary self-dual codes were classified in [4], [6], [9] and [14] for
lengths up to 24.
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2.2 Ternary extremal self-dual codes

It was shown in [10] that the minimum weight d of a ternary self-dual code
of length n is bounded by d ≤ 3⌊n/12⌋ + 3. If d = 3⌊n/12⌋ + 3, then the
code is called extremal. For n ∈ {4, 8, 12, . . . , 64}, it is known that there
is a ternary extremal self-dual code of length n (see [7, Table 6]). By the
Assmus–Mattson theorem [1], the supports of codewords of minimum weight
in a ternary extremal self-dual code of length divisible by 12 form a 5-design.
This is a reason for our interest in ternary extremal self-dual codes of length
divisible by 12.

The weight enumerator of a ternary extremal self-dual code of length n is
uniquely determined for each n [10]. The number An of codewords of weight
n in a ternary extremal self-dual code of length n is listed in Table 1 for
n = 12, 24, 36, 48, 60 (see [19]). Note that An = 2n for n = 12, 24, 48.

Table 1: Numbers An of codewords of weight n

n 12 24 36 48 60

An 24 48 888 96 41184

The ternary extended quadratic residue codes and the Pless symmetry
codes are well known families of ternary (self-dual) codes. More precisely, the
extended quadratic residue code QRp+1 of length p+ 1 is a ternary self-dual
code when p is a prime such that p ≡ −1 (mod 12) (see [8, Chapter 6]). The
Pless symmetry code P2q+2 of length 2q + 2 is a ternary self-dual code when
q is a prime power such that q ≡ −1 (mod 6) [13] (see also [8, Chapter 10]).
The extended quadratic residue codes QRn and the Pless symmetry codes Pn

yield ternary extremal self-dual codes when n ≤ 60 (see [15]). More precisely,
P36 is the currently known ternary extremal self-dual code of length 36, QR48

and P48 are the currently known ternary extremal self-dual codes of length
48. In addition, QR60 and P60 are ternary extremal self-dual codes of length
60.

2.3 Ternary self-dual codes given in [11]

In 2013, Nebe and Villar [11] gave a new series of ternary self-dual codes
NV (a)(p) of length 2(p + 1) for all primes p ≡ 5 (mod 8) and a ∈ {1,−1}
(see also [3, Section 4] for the details). Here, we review the construction of
the ternary self-dual codes NV (a)(p).
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Suppose that p ≡ 5 (mod 8). Let Fp = {0, 1, . . . , p− 1} denote the finite
field of order p. Let χ denote the quadratic character of Fp. Define two p×p
matrices RX = (rXa,b) and RY = (rY a,b) as follows

rXa,b =

{

0, if a = b or b− a is not a nonzero square in Fp,

χ(c), if b− a is a nonzero square c2 in Fp,

rY a,b =

{

0, if a = b or 2(b− a) is not a nonzero square in Fp,

χ(c), if 2(b− a) is a nonzero square c2 in Fp,

where rows and columns of RX and RY are indexed by the elements of Fp

with a fixed ordering. Then define two (p + 1)× (p + 1) matrices X and Y
as follows

X =











0 1 · · · 1
−1
... RX

−1











and Y =











0 0 · · · 0
0
... RY

0











.

In addition, define two 2(p+ 1)× 2(p+ 1) matrices as follows

Bw =

(

X Y
−Y T XT

)

and Bǫw =

(

−Y T XT

−X −Y

)

.

Throughout this paper, let In denote the identity matrix of order n. For
a = 1 and −1, let NV (a)(p) denote the ternary code generated by the matrix
M , where

M =

{

aI2(p+1) +Bw, if p ≡ 5 (mod 24),

aI2(p+1) +Bw +Bǫw, if p ≡ 13 (mod 24).

Then NV (a)(p) is self-dual [11] (see also [3, Theorem 8]).

Proposition 1 (Nebe and Villar [11]). NV (1)(29) ∼= NV (−1)(29) and QR60 6∼=
NV (1)(29) 6∼= P60.

The above proposition means thatNV (1)(29) is the third ternary extremal
self-dual code of length 60. In this paper, we denote the code NV (1)(29) by
NV60.
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2.4 Hadamard matrices and results in [19]

A Hadamard matrix H of order n is an n× n matrix whose entries are from
{1,−1} such that HHT = nIn, where H

T is the transpose of H . It is known
that the order n is necessarily 1, 2, or a multiple of 4. A Hadamard matrix
H of order n is called skew if H = A+ In, where A = −AT . Two Hadamard
matrices H and K are said to be equivalent if there is (1,−1, 0)-monomial
matrices P and Q with K = PHQ. An automorphism of a Hadamard matrix
H is an equivalence of H to itself, i.e., a pair (P,Q) of monomial matrices
P and Q such that H = PHQ. The set of all automorphisms of H forms
a group, called the automorphism group of H , under the component-wise
product: (P1, Q1)(P2, Q2) = (P1P2, Q1Q2).

Recently, Tonchev [19] studied Hadamard matrices of order n formed by
codewords of weight n in ternary extremal self-dual codes of length n, espe-
cially the extended quadratic residue codes and the Pless symmetry codes.
In the context of Hadamard matrices, we consider the element 0, 1, 2 of F3

as 0, 1,−1 of Z, throughout this paper. It is trivial that n ≡ 0 (mod 12) if
a ternary (extremal) self-dual code of length n contains a Hadamard matrix
formed by codewords of weight n. This is another reason for our interest in
ternary extremal self-dual codes of length divisible by 12.

From the construction, the extended quadratic residue code contains a
type I Paley-Hadamard matrix. The Pless symmetry code contains a type II
Paley-Hadamard matrix [13]. Tonchev [19] showed that P36 contains exactly
two inequivalent Hadamard matrices of order 36. In addition, Tonchev [19]
gave a natural question, namely, is there any other ternary extremal self-
dual code of length 36, 48, or 60 which contains a Hadamard matrix? This
motivates us to study the existence of Hadamard matrices of order 2(p+ 1)
formed by codewords of weight 2(p+1) in the ternary self-dual codesNV (a)(p)
found by Nebe and Villar [11].

3 Hadamard matrices related to NV (a)(p)

Throughout this section, suppose that p is a prime with p ≡ 5 (mod 24). In
this section, we show that NV (a)(p) contains 2(p + 1) codewords of weight
2(p + 1) which form a Hadamard matrix HNV (a)(p) of order 2(p + 1) for a ∈
{1,−1}. We also give characterizations of the Hadamard matrices HNV (a)(p)

of order 2(p+ 1).
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Let X and Y be the (p+ 1)× (p+ 1) matrices as defined in Section 2.3.
As described there, for a = 1 and −1, the ternary code NV (a)(p) generated
by the following matrix

aI2(p+1) +

(

X Y
−Y T XT

)

is a ternary self-dual code [11] (see also [3, Theorem 8]).
The following is our main theorem of this paper.

Theorem 2. Suppose that p ≡ 5 (mod 24) and a ∈ {1,−1}. Then the
ternary self-dual code NV (a)(p) of length 2(p+1) contains 2(p+1) codewords
of weight 2(p+ 1) which form a Hadamard matrix of order 2(p+ 1).

Proof. Since NV (a)(p) is generated by the following matrix

(

X + aIp+1 Y
−Y T XT + aIp+1

)

,

the rows of the following two matrices

(

X − Y T + aIp+1 Y +XT + aIp+1

)

and
(

−Y T −X − aIp+1 XT − Y + aIp+1

)

are codewords of NV (a)(p). From the definition of X and Y , the 2(p + 1)
codewords has weight 2(p + 1). In addition, we regard the following matrix
as a Z-matrix

HNV (a)(p) =

(

X − Y T + aIp+1 Y +XT + aIp+1

−Y T −X − aIp+1 XT − Y + aIp+1

)

. (1)

Since it is known [3] that

XT = −X, Y T = −Y,XY = Y X and X2 + Y 2 = −pIp+1,

HNV (a)(p) is a Hadamard matrix of order 2(p+ 1).

Now we give characterizations of Hadamard matrices HNV (a)(p) of order
2(p+ 1).

Proposition 3. Let HNV (a)(p) denote the Hadamard matrix given in (1).
Then aHNV (a)(p) is a skew Hadamard matrix for a = 1 and −1.

7



Proof. The claim follows from that HNV (a)(p) +HT
NV (a)(p)

= 2aI2(p+1).

Note that HNV (a)(p) has the form HNV (a)(p) =

(

A B
−BT AT

)

, where

A =X − Y T + aIp+1 =











a 1 · · · 1
−1
... A′

−1











and

B =Y +XT + aIp+1 =











a −1 · · · −1
1
... B′

1











,

for some p× p matrices A′ and B′. Let ω be a fixed primitive element of Fp.
Define

Ci = ωi〈ω4〉, i = 0, 1, 2, 3, (2)

which are the cosets of the multiplicative subgroup of index 4 of Fp. Note
that C1 and C3 are interchanged if we choose ω−1 as a primitive element
instead of ω. Since p ≡ 5 (mod 8), we have −1 ∈ C2 and 2 ∈ NQ = C1∪C3,
where NQ denotes the set of nonsquares in Fp. Hence, −2 ∈ C1 or −2 ∈ C3,
depending on the choice of ω. We denote by Cǫ the coset containing −2, that
is,

− 2 ∈ Cǫ. (3)

Then A′ = (a′s,t) and B′ = (b′s,t) can be written as

a′s,t =











a, if t = s,

1, if t− s ∈ C0 ∪ Cǫ,

−1, if t− s ∈ C2 ∪ Cǫ+2,

b′s,t =











a, if t = s,

1, if t− s ∈ C2 ∪ Cǫ,

−1, if t− s ∈ C0 ∪ Cǫ+2.

(4)

Throughout this section, we reduce the subscript of Ci modulo 4.
Let G be an additively written abelian group of order v. Two subsets

D1 and D2 of G with k = |D1| = |D2| are called (v, k, λ) supplementary
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difference sets if the list of differences x − y, x, y ∈ Di, i = 1, 2, represents
every nonzero element of G exactly λ times. Fixing an ordering for the
elements of G, we define a matrix M = (mi,j) by

mi,j =

{

1, if j − i ∈ X,

−1, if j − i 6∈ X,

for X ⊂ G. The matrix M is called a type-1 matrix of X .
The following construction of Hadamard matrices easily follows from [16,

Corollary 4.5 (i) and Lemma 4.8].

Lemma 4. Let Di, i = 1, 2, be (2m+ 1, m,m− 1) supplementary difference
sets in an abelian group G of order v = 2m+ 1. Furthermore, let M1 (resp.
M2) be the type-1 matrix of D1 (resp. D2). Then

H(D1, D2) =









1 1 1v −1v

−1 1 −1v −1v

−1T
v 1T

v −M1 −M2

1T
v 1T

v MT
2 −MT

1









is a Hadamard matrix of order 4(m+1), where 1v denotes the all-one vector
of length v.

It is known [18] that for any prime p ≡ 5 (mod 24) and any i = 0, 1, 2, 3,
the sets Ci∪Ci+1 and Ci+1∪Ci+2 are (p, (p−1)/2, (p−3)/2) supplementary
difference sets in the additive group of Fp, where Ci’s are defined as in (2)
(more generally, the same claim holds for any prime power p ≡ 5 (mod 8)).
By Lemma 4, H(Ci∪Ci+1, Ci+1∪Ci+2) is a Hadamard matrix of order 2(p+1).
Furthermore, from (4), the following theorem holds.

Theorem 5. Let HNV (a)(p) denote the Hadamard matrix defined as in (1).
Then HNV (1)(p) and HNV (−1)(p) are equivalent to H(C2 ∪C2+ǫ, C0 ∪Cǫ+2) and
H(C0 ∪ Cǫ, C2 ∪ Cǫ), respectively, where Cǫ is defined as in (3).

Although the proof of the following proposition is somewhat trivial, we
give it for the sake of completeness.

Proposition 6. The ternary self-dual code NV (a)(p) is generated by the rows
of the Hadamard matrix HNV (a)(p) defined as in (1).

9



Proof. It is sufficient to show that rank3(HNV (a)(p)) = p+1. Since HNV (a)(p)+

HT
NV (a)(p)

= 2aI2(p+1), we have

2(p+ 1) = rank3(2aI2(p+1)) = rank3(HNV (a)(p) +HT
NV (a)(p))

≤ 2 rank3(HNV (a)(p)),

i.e., p + 1 ≤ rank3(HNV (a)(p)). On the other hand, since p + 1 ≡ 0 (mod 3),

HNV (a)(p)H
T
NV (a)(p)

≡ O (mod 3), where O denotes the 2(p + 1) × 2(p + 1)

zero matrix. This implies that rank3(HNV (a)(p)) ≤ p+ 1. This completes the
proof.

The above proposition gives an alternative construction of the ternary
self-dual code NV (a)(p).

4 Hadamard matrices related to NV60

By Theorem 2, the third ternary extremal self-dual code NV60 of length 60,
which was found in [11], contains a Hadamard matrix of order 60. In this
section, our computer search found one more Hadamard matrix of order 60
in NV60. All computer calculations in this section were done by programs in
the language C and programs in Magma [2].

Any ternary extremal self-dual code of length 60 contains 41184 code-
words of weight 60 (see Table 1). Let W60 be the set of 41184 codewords of
weight 60 in NV60. It is trivial that there is a set W+

60 consisting of 20592
codewords of weight 60 such that

W60 = W+
60 ∪ {2x | x ∈ W+

60}.

Let ρ be a map from F3 to Z sending 0, 1, 2 to 0, 1,−1, respectively. Define
the following set

W Z

60 = {(ρ(x1), ρ(x2), . . . , ρ(x60)) | (x1, x2, . . . , x60) ∈ W+
60} ⊂ Z

60.

Then we define the simple undirected graph Γ, whose set of vertices is the
set W Z

60 and two vertices x and y are adjacent if x and y are orthogonal,
noting that x, y ∈ Z

60. Clearly, a 60-clique in Γ gives a Hadamard matrix.
In addition, in order to find a Hadamard matrix, it is sufficient to consider
only W Z

60 as the set of vertices of Γ. Due to the computational complexity,

10



by the above approach, our computer search was able to find two 60-cliques,
which imply two inequivalent Hadamard matrices HNV,1 and HNV,2. The
computation for finding cliques was performed using the clique finding al-
gorithm Cliquer [12]. The computation for verifying the inequivalence of
HNV,1 and HNV,2 was done by the Magma function IsHadamardEquivalent.
Therefore, we have the following proposition.

Proposition 7. The third ternary extremal self-dual code NV60 of length 60
contains at least two inequivalent Hadamard matrices of order 60 having as
rows codewords of weight 60.

We verified by Magma that HNV,1 and HNV (1)(29) are equivalent, and
HNV,1 and HNV,2 have automorphism groups of orders 24360 and 812, respec-
tively. These were done by the Magma functions IsHadamardEquivalent

and HadamardAutomorphismGroup, respectively.
Now we display the Hadamard matrixHNV,2. Here, instead of this matrix,

we display its binary Hadamard matrix BNV,2 = (HNV,2 + J)/2, where J
is the 60 × 60 all-one matrix. Let ri denote the i-th row of BNV,2. To
save space, the vectors r1, r2, . . . , r60 are written in octal using 0 = (0, 0, 0),
1 = (0, 0, 1), . . . , 7 = (1, 1, 1) in Figure 1. For example, the first row of HNV,2

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

− 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

corresponds to 77777777773777777777.
It is worthwhile to determine whether C contains a Hadamard matrix

which is not equivalent to a Paley-Hadamard matrix for C = QR60 and P60.

5 Four-negacirculant codes of length 60

In this section, we demonstrate that the currently known ternary extremal
self-dual codes of length 60 are constructed as four-negacirculant codes. All
computer calculations in this section were done by programs in Magma [2].

An n× n negacirculant matrix has the following form














r0 r1 r2 · · · rn−2 rn−1

2rn−1 r0 r1 · · · rn−3 rn−2

2rn−2 2rn−1 r0 · · · rn−4 rn−3
...

...
...

...
...

2r1 2r2 2r3 · · · 2rn−1 r0















.
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777777777737777777770000000000377777777777101523240306056672

762032465106141355640221363475131260237102747172112540476254

744065152314302733500427471721225404762504427471722625404762

724762032427206141357246517440135564143005716364221301174531

710152324730605667200717211057047625453007504427473712625404

104427471712625404761057163642053011745311057163641453011745

651744065116414302736515237101273350306064762032463206141355

646517440635564143021363475044260237126263710152321030605667

632476203226720614136203246517214135564116364221361174531260

171636422130117453121721105716362545301160324651741413556414

574406515201430273352110571636254530117421363475041260237126

221363475031260237125523710152335030605655232476200566720614

234750442702371262542364221363174531260224221363470531260237

523710152335030605665232476203166720614151744065152414302733

515237101533350306052747172110140476254550152324760605667206

476203246520614135564651744065156414302746515237100273350306

316364221301174531263172110571076254530132110571632254530117

440651523703027335034324651744013556414334717211050047625453

347504427423712625403504427471312625404741523247622056672061

363475044220237126253642213634345312602340651523713027335030

Figure 1: Binary Hadamard matrix BNV,2

Let A and B be n×n negacirculant matrices. A ternary [4n, 2n] code having
the following generator matrix

(

I2n
A B

2BT AT

)

(5)

is called a four-negacirculant code. Many ternary extremal self-dual four-
negacirculant codes are known (see e.g., [5]).

Let C1, C2 and C3 be the ternary four-negacirculant codes of length 60,
having generator matrices of form (5), where the pairs (rA, rB) of the first
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rows rA and rB of the negacirculant matrices A and B are as follows

((1, 1, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 0, 0, 2), (2, 0, 0, 2, 1, 0, 0, 1, 2, 2, 0, 1, 0, 2, 2)),

((1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2), (2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 2, 2, 1, 1)),

((1, 0, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 0, 2), (1, 2, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 2, 2, 0)),

respectively. We verified by Magma that C1
∼= QR60, C2

∼= P60 and C3
∼=

NV60. This was done by the Magma function IsIsomorphic. Hence, we
have the following proposition.

Proposition 8. For each C of the codes QR60, P60 and NV60, there is a
four-negacirculant code D such that C ∼= D.

It is worthwhile to determine whether there is a new ternary extremal
four-negacirculant self-dual code of length 60.

Remark 9. Two ternary extremal self-dual codes D60,1 and D60,2 of length
60 were constructed in [5]. We verified by Magma that D60,1

∼= QR60 and
D60,2

∼= P60. This was also done by the Magma function IsIsomorphic.

Remark 10. Recently, it has been shown in [3] that there are exactly three
inequivalent ternary extremal self-dual codes of length 60 having an auto-
morphism of order 29. On the other hand, since each of QR60, P60 and NV60

has an automorphism of order 29, the three codes found in [3] are QR60, P60

and NV60.
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