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The Grassl-Rotteler cyclic and consta-cyclic MDS
codes are generalised Reed-Solomon codes

Simeon Ball*

Abstract

We prove that the cyclic and constacyclic codes constructed by Grassl and Rétteler in
[6] are generalised Reed-Solomon codes. This note can be considered as an addendum to
Grassl and Rotteler [6]. It can also be considered as an appendix to Ball and Vilar [4], where
Conjecture 11 of [6], which was stated for Grassl-Rétteler codes, is proven for generalised
Reed-Solomon codes. The content of this note, together with [4l], therefore implies that
Conjecture 11 from [€] is true.

1 Introduction

Let IF, denote the finite field with ¢ elements.
The weight of an element of 7 is the number of non-zero coordinates that it has.

A k-dimensional linear code of length n and minimum distance d over F,, denoted as a [n, k, d],
code, is a k-dimensional subspace of ' in which every non-zero vector has weight at least d.

The Singleton bound for linear codes states that
n>k+d—1
and a linear code which attains the Singleton bound is called a maximum distance separable

codes, or MDS code for short.

It is a simple matter to prove the bound n < ¢+ k£ — 1 and the MDS conjecture, for linear codes,
states that if 4 < k < g — 2 then
n<q+ 1.
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For values of & outside of this range it is not difficult to determine the longest length of a linear
MDS code. The MDS conjecture is known to hold for ¢ prime [1], where it was also proven
that if £ # (¢ + 1)/2 and ¢ is prime then a [¢ + 1,k,q + 2 — k], MDS code is a generalised
Reed-Solomon code.

Let {ai,...,a,} be the set of elements of F,,.

A generalised Reed-Solomon code over I, is

D= {(elf(a1)> s 7‘9qf<aq>78q+1fk_1> ‘ f S Fq{X]? degf < k- 1}7 (D

where f; denotes the coefficient of X" in f(X) and 6, € F, \ {0}.
The Reed-Solomon code is the case in which 6; = 1, for all j.

We note that our definition of a (generalised) Reed-Solomon code is what some authors call
the extended or doubly extended Reed-Solomon code. That is, many authors do not include
the final coordinate or the evaluation at zero. However, a more natural definition of the Reed-
Solomon code, which is entirely equivalent to the above, is obtained by evaluating homogeneous
polynomials f € F [X;, X5] of degree k£ — 1, at the points of the projective line,

D ={(6.f(ar,1),...,0,f(a;1),0,41f(1,0)) | f € F,[X1, X2, fhomogeneous, deg f = k—1}.
()

2 Generalised Reed-Solomon codes

In this section we prove that a generalised Reed-Solomon code can be constructed as an evalua-
tion code, evaluating at the (¢+1)-st roots of unity of IF 2. Thus, any generalised Reed-Solomon
code can be obtained in this way by multiplying the ¢-th coordinate by a non-zero 0; € I, as in
definition (1)) and @)).

Let {1, ..., aq41} be the set of (g + 1)-st roots of unity of IFe.

Lemma 1. If k is odd then the code
C = {(han) + h(@r)", ..., h(@gar) + haga)?) | h € FalX], degh < (k- 1)}
isalq+1,k,q+ 2 — k|, generalised Reed-Solomon code.
Proof. Note that C' is a subspace over [, and that it has size ¢* since the constant term of
h(X) + h(X)?

is an element of FF,. Thus, C'is a k-dimensional subspace of IE‘ZH.



Let
(k—1)/2

Z X

Suppose that {1, e} is a basis for F . over F,.
For a, a (¢ + 1)-st root of unity, let 1, x5 € [F, be such that

a = (7, + ewy)? .

Observe that as (x1, z5) vary over the points of the projective line, o will run through the distinct
(g + 1)-st roots of unity.

Then
(k=1)/2

h(a) + h(a)? = Z ci(y + ewy) @™V 4 () + ewy) 79
i=0
(k—1)/2
Z ci(zy + €%wo) (zy + exa) ™ + ¢l (xy + exa)' (21 + elay) ™"
=0

= (11 + exy) BT DH/2 < D il + ew) BT (g 4 etay) BTIH

_|_C§1(x1 + €$2)(k_1)/2+i(x1 + eqx2>(k—1)/2—i).
Note that (7, + exq)~k=D@+D/2 ¢ | does not depend on h(X).

Thus, the coefficient of 27 57~ of

(k—1)/2
Z ci(w1 + emg) PV gy 4 ey FTD/ZH (1) ey FTD/EH (g 4 elpy) RD/2E
i=0

is also an element of IF,. Hence, the o coordinate of a codeword of C' is the evaluation of a
homogeneous polynomial in F,[z;, 25| of degree k£ — 1, multiplied by a non-zero element of F,,.
By definition (2)), we conclude that such a code C'is a generalised Reed-Solomon code. U

The previous lemma only applies to the case when £ is odd. The following lemma deals with
the case k is even.

Lemma 2. For oy, a (q + 1)-st root of unity, let w; be such that o;; = wf_l. If k is even then the
code

C = {wih(on) +wih(an)?, . .., w0l h(ag) +worih(agi)?) | h € Fp[X], degh < 3k —1}

isalq+1,k,q+ 2 — k|, generalised Reed-Solomon code.



Proof. The proof is similar to that of Lemmalll In this case we have that, w = 21 + ex and so

k—1

wih(a) + wh(a)? = ci(Ty + ex) @V 4 () 4 egy) LT
=0

N[

1 1 . 1,
_ (xl +6x2)—(§k—1)(q+1) (Z Ci(xl +6x2)§k—1—z(xl +eqx2)§k+z
q Lt Lp1-i
+cl(xy + exs) 2" (21 + €92)2 .

The coefficient of 272577,

1 : 1 . 1 ) 1 '
Zc,-(xl —Fel’z)ik—l—i(xl +eqx2)§k+z ‘l‘Cg(l’l —|—61’2)§k+2(l’1 —|—6ql‘2)§k_l_l,
7

is an element of IF,. Thus, the lemma follows in the same way as Lemmalll O

3 Grassl-Rotteler cyclic and constacyclic MDS codes

The k-dimensional cyclic or constacyclic code (g) of length n over [F,, where

n—k

9(X)=> ;X7 €F,[X],

=0
is a linear code of length n spanned by the £ cyclic shifts of the codeword
(coy-- s Cnek,0,...,0).

It is a cyclic code if g divides X" — 1 and constacyclic code if ¢ divides X" — ), for some 1 # 1.
See [2] or [8] for the basic results concerning cyclic codes.

In [6], Grassl and Rétteler introduced three [¢ + 1, k, ¢ + 2 — k|, MDS codes, the first two are
constructed as cyclic codes and the third as a constacyclic code. As mentioned in the introduc-
tion, it follows from [1] that when ¢ is prime, these codes are generalised Reed-Solomon codes.
In this section we shall prove that they are generalised Reed-Solomon codes for all q.

Let w be a primitive element of F 2 and let « = w?"!, a primitive (¢ + 1)-st root of unity.
The Grassl-Rotteler codes depend on the parity of ¢ and k.
For ¢ and % both odd, and ¢ and % both even, the Grassl-Rotteler code is (g, ), where



For k odd and ¢ even, the Grassl-Rétteler code is the cyclic code (go), where

lgtr+1
X)= I x-a.
i:%q—r
And for k even and ¢ odd, the Grassl-Rétteler code is the constacyclic code (g3), where

T

w(X)= ] (x-wa).

i=—r+1
It is a simple matter to check that for ¢ € {1,2,3}, g; € F,[X] and fori € {1, 2}, the polynomial
g; divides X9t — 1 and g5 divides X9t — 9F!,

We now treat each of the four cases, which depends on the parity of £ and ¢, in turn and prove
that they are all generalised Reed-Solomon codes.

Let {e1, ..., eq1} be the canonical basis of FI*.

Let 5 € IF 2 be such that § + 7 = 1.

Theorem 3. If k and q are both odd then the [q + 1,k,q + 2 — k], code (g1) is a generalised
Reed-Solomon code.

Proof. Let c; be defined by

r 2r+1
gi(X) = H (X —a') = Z X7
i=—r 7=0

Observe that &k = g — 2r.
We will prove that, for a € {0,...,k — 1},

g+1—k+a
> (=1 amabarr = (0,0, (1) %o, ..., (=1)TFF0, 40,0
s=a a k—1—a

are the evaluations of polynomials,
h(X) + h(X)?

where h € F2[X] is of degree at most (k — 1)/2, evaluated at the (g + 1)-st roots of unity.

Lemmal[Ilimplies that if we multiply the (s+1)-th coordinate of the codewords in (g;) by (—1)°
then we obtain a generalised Reed-Solomon code, which implies that (g, ) is a generalised Reed-
Solomon code.



Fora € {0,...,k — 1}, define

(q—1)/2 2r+41 2r+1 2r+1
ho(X) = Z cjo i(G+a) x (¢+1)/2—i | Z C] j+a6 + Z ¢ 5X(q+1
i=1 j=0 Jj=0

Foralli € {0,...,r},
q
Z Cjaij =0,
=0

since g1 (a*) = 0. Thus, the degree of h, is at most (¢ — 1)/2 —r = (k — 1) /2.
We have that

(¢—1)/2 2r+1 2r+1 2r+1
ha(a c;alras) +Z J+QB+ZCJ
=1 j=0
Since,
(g=1)/2 q
( Z Cjai(j+a—s)>q _ Z CjOéi(j+a_s),
i=1 i=(q+3)/2

and 5 + B9 = 1, it follows that

ho(a®) + ho(a®)? = (—1)° Z Z c;a'Uta=s),

j=0 =0
Since > 7 ;" = O unless j = 0, in which case it is one,

ho(a®) 4+ he(a®)? = (=1)%cs_q,

which is precisely what we had to prove. 0]

We next deal with the case k and ¢ are both even, since this is again the code (g;).

Theorem 4. If k and q are both even then the [q + 1, k,q + 2 — k|, code (g1) is a generalised
Reed-Solomon code.

Proof. We can simply copy the proof of Theorem [3] until we define h,(X). Then we have to
define h,(X) differently, partly because we will apply Lemmal[2lin place of Lemmal[ll

Fora € {0,...,k — 1}, define

1
29 2r+1 2r+1

;oI X 2ql+ cﬁXZq
j

i=1 5=0



Observe that, since g;(a') = 0, which implies that

q

P A
E cja? =0
j=0

forall i € {0,...,r}. Thus, the degree of h, is at most %q —r—1= %k: -1

As before, let w be a fixed primitive element of F 2 and let « = w?~*!, a primitive (¢ + 1)-st root
of unity. Then

1
29 2r41 2r+1
E E c;allites Sa25q+ E cjﬂafq
i=1 7=0
and so
1
29 2r41 2r+1
_sh q_§:E:caz(]+asa2sqs+§:cﬁqa2sqs
i=1 j=0

1 1
Since, 5+ 7 =1and o 2°7° = 2%, it follows that

2r+1 gq

1 .
he(0®) + a *he(a®)! = a2 Z Z c;a'UTes),

j=0 i=0

Since Y7, a* = 0 unless j = 0, in which case it is one,

1
ho(a®) + a *he(a®)? = a2%cy_,.

Hence,
1
W hg () + why(a®)? = w25@H e .

Lemma [2] implies that if we multiply the (s + 1)-th coordinate of the codewords in (g;) by

1
w2 then we obtain a generalised Reed-Solomon code, which implies that (g;) is a gener-

alised Reed-Solomon code. O

The next theorem deals with the case k is odd and ¢ is even. In this case the Grassl-Rotteler
code is (gs).

Theorem 5. If k is odd and q is even then the [q + 1, k,q + 2 — k], code (g2) is a generalised
Reed-Solomon code.



Proof. Let c; be defined by

%q+r+1 242
()= [ (X-a)= 3 ox

Z_lq T '7:0

-2

Observe that k = ¢ — 2r — 1.
As in Theorem [3] we look for polynomials A, (X) which allow us to apply Lemmal[ll
Fora € {0,...,k — 1}, let

2‘1 2r+2 2r+2

1—
=33 gt (+e) e+ § jcjﬁ
i=1 7=0

Observe that, foralli € {3¢+1,..., 3¢+ 7+ 1},

q

ij _
g cja? =0,
J=0

since g1 (a’) = 0. Thus, the degree of h, isatmost 3¢ +1 — (r +2) = 2(k — 1).

We have that .

54 2r42 2742
=303 alranes +Z%/3
i=1 j=0
and so .
249 2r42 2r+2
ZZCO{ ’L+2q+1 J+a S _‘_chﬁq
i=1 7=0
Since, § + (7 = 1, it follows that
2r4+2 q
he(a®) + he(a®)! = Z Z cjo/(”“_s).
j=0 i=0

Since > 7 ;" = O unless j = 0, in which case it is one,
ho(a®) + ho(a®)? = cs_q.

Lemma 2 implies that (g;) is a generalised Reed-Solomon code.

Finally, we deal with the case k is even and ¢ is odd, which is the constacyclic code (gs).



Theorem 6. If k is even and q is odd then the [q + 1, k,q + 2 — k], code (gs) is a generalised
Reed-Solomon code.

Proof. Let c; be defined by

g3(X) = J] (X—wa’) ZCJXJ

i=—r+1

Observe that k = g — 2r + 1.
As in Theorem ], we look for polynomials A, (X) which allow us to apply Lemma 2]
Fora € {0,...,k — 1}, let

Observe that, for all i € {0,...,r},

2r

It —
g cjw’a =0,
=0

since g3(wa’) = 0. Thus, the degree of h, isatmost 3(¢+ 1) — (r+1) = 1k — 1.

We have that .
5(@+1) o
ha(0®) = Z ij—i-acjai(j—i-a—s)(_l)s.
i=1 j=0
and, since w? = wa,
L+ o

_Sh q_ Z Zw]—i-ac a—(z 1) (j+a— s)( 1)3
=1 7=0

Hence, it follows that

q+1 2r
ha(0) + 0~ hy(@?)0 = 373wt 0o (—1)
i=1 7=0

Since - ¥ = 0 unless j = 0, in which case it is one,

ho(a®) + a *he(a®)? = w*(—1)°cs_q.
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Hence,
Wha(0f) + wiha(a®)? = WD (—1)%c,_,.

Lemma [2] implies that if we multiply the (s + 1)-th coordinate of the codewords in (g3) by
(—w(@*1)* then we obtain a generalised Reed-Solomon code, which implies that (gs) is a gen-
eralised Reed-Solomon code. U

4 Conclusions

This note was motivated by Conjecture 11 from [6] which states that the minimum distance d
of the puncture code of the Grassl-Rotteler code satisfies

2k if1<k<q/2

d (g+1)(k—(g—1)/2) if(¢+1)/2<k<g—1, godd
q(k+1—q/2) if g/2<k<q—1, qeven
¢ +1 if k=gq.

This conjecture is proven in [4] for generalised Reed-Solomon codes, which combined with the
content of this note, implies that Conjecture 11 from [6] is indeed true.

It may be an interesting and worthwhile exercise to see if the other known [¢ + 1, &, ¢ + 2 — k],
MDS codes can be easily obtained as evaluation codes, evaluating at the (¢ + 1)-st roots of unity.
It may even be that the evaluation is over a more exotic set of elements in some extension of I,.
For completeness sake, we mention the other known [¢ + 1, k, ¢ + 2 — k], MDS codes.

For k£ = 3 and ¢ even, there are many examples known. These can all be extended to a [¢ +
2,k,q+ 3 — k], MDS code. The columns of a generator matrix of such a code can be viewed
as a set of points in the projective plane PG(2, ¢). Such a set of points is known as a hyperoval.
For a complete list of known hyperovals, see [3, Table 1].

There are only two other known examples, up to duality.

The following is due to Segre [7]. The linear code whose columns are the elements of the set
{1t 47 7 [t € F} U{(0,0,0,1)}

isa[g+1,4,q— 2], linear MDS code, whenever ¢ = 2" and (e, h) = 1.

The other is due to Glynn [3]. Let 1 be an element of IFy such that n* = —1. The linear code
whose columns are the elements of the set

{(1,t,82 +nt® 3, t*) | t € Fy} U {(0,0,0,0,1)}.

is a [10, 5, 6] linear MDS code,
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