# The proportion of non-degenerate complementary subspaces in classical spaces

S.P. Glasby<sup>1</sup>, Ferdinand Ihringer<sup>2</sup> and Sam Mattheus<sup>3,4</sup>

<sup>1</sup>Center for the Mathematics and Symmetry and Computation, University of Western Australia, Perth, 6009, Australia.

<sup>2</sup>Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium.

<sup>3</sup>Department of Mathematics and Data Science, Vrije Universiteit Brussel, Belgium.

<sup>4</sup>Department of Mathematics, University of California San Diego, United States.

> Contributing authors: Stephen.Glasby@uwa.edu.au; Ferdinand.Ihringer@ugent.be; SMattheus@ucsd.edu;

#### Abstract

Given positive integers  $e_1, e_2$ , let  $X_i$  denote the set of  $e_i$ -dimensional subspaces of a fixed finite vector space  $V = (\mathbb{F}_q)^{e_1+e_2}$ . Let  $Y_i$ be a non-empty subset of  $X_i$  and let  $\alpha_i = |Y_i|/|X_i|$ . We give a positive lower bound, depending only on  $\alpha_1, \alpha_2, e_1, e_2, q$ , for the proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  which intersect trivially. As an application, we bound the proportion of pairs of non-degenerate subspaces of complementary dimensions in a finite classical space that intersect trivially. This problem is motivated by an algorithm for recognizing classical groups. By using techniques from algebraic graph theory, we are able to handle orthogonal groups over the field of order 2, a case which had eluded Niemeyer, Praeger, and the first author.

 ${\bf Keywords:} \ {\rm expander} \ {\rm mixing} \ {\rm lemma}, \ {\rm finite} \ {\rm classical} \ {\rm group}, \ {\rm opposition} \ {\rm graph}$ 

### 1 Introduction

In this paper we use techniques from algebraic graph theory to solve a problem that arose from computational group theory. More precisely, we use the expander mixing lemma for bipartite graphs to establish bounds that are useful for algorithms which 'recognise' classical groups acting on their natural module, a central and difficult computational problem. The nature of this recognition problem is sketched in Section 1.2.

Let  $\mathbb{F}$  be a finite field, let  $e_1, e_2$  be positive integers and let  $V = \mathbb{F}^{e_1+e_2}$  be an  $(e_1 + e_2)$ -dimensional  $\mathbb{F}$ -space endowed with a non-degenerate quadratic, symplectic or hermitian form. We bound the probability that a non-degenerate  $e_1$ -subspace  $S_1$  of V, and a non-degenerate  $e_2$ -subspace  $S_2$  of V, intersect trivially that is, satisfy  $S_1 \cap S_2 = \{0\}$ . Except for orthogonal spaces with q = 2, this problem was solved in [10, Theorem 1.1], using a combinatorial doublecounting argument [10, §3]. The following theorem gives sharper bounds, without exception, and is proved via relatively straightforward calculations involving the second largest eigenvalue of a graph, see Section 1.1.

**Theorem 1.1** Let  $V = \mathbb{F}^{e_1+e_2}$  be a non-degenerate orthogonal, symplectic or hermitian space where  $\mathbb{F}, e_1, e_2$  are given in Table 1. Let  $Y_i$  be the set of all non-degenerate  $e_i$ -subspaces of V (of a fixed type  $\sigma_i \in \{-,+\}$  in the orthogonal case). Then the proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  for which  $S_1 \cap S_2 = \{0\}$  is at least  $1 - \frac{c}{|\mathbb{F}|}$  where c is given in Table 1. We may take  $c = \frac{3}{2}$  if  $(e_1, e_2, q) \neq (1, 1, 2)$ .

form on  $V = \mathbb{F}^{e_1 + e_2}$  $\mathbb{F}$  $e_i$ -subspaces  $Y_i$  $e_1$  $e_2$ c $\mathbb{F}_q$ orthogonal of non-degenerate of  $3/_{2}$ even even type  $\varepsilon \in \{-,+\}$ type  $\sigma_i \in \{-,+\}$ 10/7 < 3/2 $\mathbb{F}_q$ non-degenerate even even symplectic  $\mathbb{F}_{q^2}$  $\geq 1$  $\geq 1$ hermitian non-degenerate 3/2 $(e_1, e_2, q) \neq (1, 1, 2)$ 

**Table 1** Choices for  $\mathbb{F}$ ,  $e_1$ ,  $e_2$ , form on V,  $Y_i$  and c in Theorem 1.1

The non-degenerate subspaces of a symplectic space have even dimension so that  $e_1$  and  $e_2$  are both even in the second line of Table 1. In the case that V is a non-degenerate orthogonal space the  $e_i$  are also both even; however this is for a different reason. The authors of [11], in forthcoming work, describe an algorithm for recognising classical groups, and the papers [10, 11] provide the necessary background. In the algorithmic application the subspace  $S_i$  is the image of  $g_i - 1$  for some element  $g_i$  of the orthogonal group on V, and  $S_i$  is non-degenerate of minus type by [11, Lemma 3.8(b)]. Hence the  $e_i$  are even in the first line of Table 1, as claimed. In the unitary case, we have c = 2 when  $(e_1, e_2, q) = (1, 1, 2)$  and c = 1.26when  $e_1, e_2 \ge 2$ , see Theorem 5.2. The bounds listed in Table 1 all satisfy  $1 - \frac{3}{2|\mathbb{F}|} \ge \frac{1}{4}$ , and they facilitate a uniform analysis, for all fields, of a randomized algorithm for recognising classical groups. In contrast, the values of c in [10, Table 1] are 2.69 (for  $q \ge 3$ ), 1.67 and 1.8 in the orthogonal, symplectic and unitary cases, respectively. Further, our methods are somewhat stronger and easier to apply than those in [10], and offer hope for extensions, see Section 6.

### 1.1 *q*-Kneser graphs

Let  $V = (\mathbb{F}_q)^d$  be a *d*-dimensional vector space over the field with q elements. Let  $e_1, e_2$  be positive integers. For i = 1, 2, denote by  $X_i$  the set of  $e_i$ -dimensional subspaces of V. We refer to an element  $S_i \in X_i$  as an  $e_i$ -subspace or an  $e_i$ -space. Let  $\Gamma_{d,e_1,e_2}$  be the bipartite graph whose vertex set is the disjoint union  $X_1 \cup X_2$  (where we take two disjoint copies of the set of  $e_1$ -spaces if  $e_1 = e_2$ ), and where two vertices  $(S_1, S_2) \in X_1 \times X_2$  are adjacent whenever  $S_1$  and  $S_2$  intersect trivially. The condition  $S_1 \cap S_2 = \{0\}$  is equivalently to dim $(S_1 + S_2) = e_1 + e_2$ .

The q-Kneser graph qK(d, e) has been previously studied, for example, see [2, 5]. The vertices of qK(d, e) comprise e-subspaces of  $V = (\mathbb{F}_q)^d$  and  $\{S_1, S_2\}$  is an edge if  $S_1 \cap S_2 = \{0\}$ . If qK(d, e) has adjacency matrix A, then the bipartite double of qK(d, e) has adjacency matrix  $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$  and is isomorphic to  $\Gamma_{d,e,e}$ . The spectrum of qK(d, e) (i.e, the set of eigenvalues of A) is known, and hence too for its bipartite double  $\Gamma_{d,e,e}$ , and can be obtained from Delsarte [7, Theorem 10] or Eisfeld [8, Theorem 2.7]. The spectrum of  $\Gamma_{d,e_1,e_2}$  when  $e_1 \neq e_2$  is more complicated. Brouwer [3] gives the spectrum of  $\Gamma_{3,1,2}$ ; also Suda and Tanaka [16] study "cross-independent" sets in  $\Gamma_{d,e_1,e_2}$  with  $d \ge 2e_1, 2e_2$ . However, for our applications we want  $d = e_1 + e_2$ , as this is the key case for [10] which underpins [11].

We henceforth assume that  $d = e_1 + e_2$ , and write  $\Gamma_{e_1,e_2} = \Gamma_{d,e_1,e_2}$ . Since  $\Gamma_{e_1,e_2} \cong \Gamma_{e_2,e_1}$ , we shall assume additionally, without loss of generality, that  $e_1 \ge e_2$ .

For each  $e_1$ -subspace  $S_1$  of  $(\mathbb{F}_q)^{e_1+e_2}$ , there are  $q^{e_1e_2}$  choices for an  $e_2$ subspace  $S_2$  with  $S_1 \cap S_2 = \{0\}$ . Similarly, for each  $e_2$ -subspace  $S_2$  there are  $q^{e_2e_1}$  choices for an  $e_1$ -subspace  $S_1$  with  $S_1 \cap S_2 = \{0\}$ . Hence the graph  $\Gamma_{e_1,e_2}$ is  $q^{e_1e_2}$ -regular. The following result is proved in Section 2, it determines the distinct eigenvalues of  $\Gamma_{e_1,e_2}$ , but not their multiplicities.

**Proposition 1.2** Suppose that  $e_1 \ge e_2 \ge 1$  and  $d = e_1 + e_2$ . The distinct eigenvalues of the bipartite graph  $\Gamma_{e_1,e_2}$  are  $\lambda_0 > \cdots > \lambda_{e_2} > -\lambda_{e_2} > \cdots > -\lambda_0$  where  $\lambda_j = q^{m_j}$  for  $0 \le j \le e_2$  and  $m_j = e_1e_2 - \frac{j(d+1-j)}{2}$ .

The number  $\begin{bmatrix} a \\ b \end{bmatrix}_a$  of b-subspaces of the a-dimensional vector space  $(\mathbb{F}_q)^a$  is

$$\begin{bmatrix} a \\ b \end{bmatrix}_q = \prod_{i=0}^{b-1} \frac{q^{a-i}-1}{q^{b-i}-1} = \prod_{i=0}^{b-1} \frac{q^{a-i-1}+\dots+q+1}{q^{b-i-1}+\dots+q+1} = \prod_{i=1}^b \frac{q^{a-i+1}-1}{q^i-1}.$$

The second middle product shows that  $\lim_{q\to 1} {a \brack b}_q = \prod_{i=0}^{b-1} \frac{a-i}{b-i} = {a \choose b}$ , and  ${a \brack b}_q \sim q^{b(a-b)}$  as  $q \to \infty$ . The next result is proved in Section 3 using Proposition 1.2, and the expander mixing lemma for regular bipartite graphs, see Lemma 3.1.

**Proposition 1.3** Suppose that  $e_1 \ge e_2 \ge 1$  and  $d = e_1 + e_2$ . Let  $Y_1 \subseteq X_1$  and  $Y_2 \subseteq X_2$  be non-empty. Put  $\alpha_i = |Y_i|/|X_i|$  for  $i \in \{1, 2\}$ . Then  $\alpha_1 \alpha_2 > 0$  and

$$\frac{|\{(S_1, S_2) \in Y_1 \times Y_2 : S_1 \cap S_2 = 0\}|}{|Y_1| \cdot |Y_2|} \ge \frac{q^{e_1 e_2}}{\begin{bmatrix} d \\ e_1 \end{bmatrix}_q} \left(1 - \sqrt{(\frac{1}{\alpha_1} - 1)(\frac{1}{\alpha_2} - 1)q^{-\frac{d}{2}}}\right).$$

Suppose that  $\min\{\alpha_1, \alpha_2\} \ge \alpha > 0$  and  $\omega_q(e) = \prod_{i=1}^e (1 - q^{-i})$ . Then

$$\frac{|\{(S_1, S_2) \in Y_1 \times Y_2 : S_1 \cap S_2 = 0\}|}{|Y_1| \cdot |Y_2|} > \omega_q(e_2) \left(1 - \left(\frac{1}{\alpha} - 1\right)q^{-\frac{d}{2}}\right)$$

### 1.2 Recognising classical groups and outline of the paper

A group G satisfying  $\operatorname{SL}_d(q) \leq G \leq \operatorname{GL}_d(q)$  is generated by a set  $\mathcal{X}$  of elementary matrices, corresponding to elementary row operations. Furthermore, given an element  $g \in G$  there is an efficient algorithm (e.g. Gaussian elimination) which writes g as a word in  $\mathcal{X}$ . However, in computational problems Gmay be generated by a set  $\mathcal{Y}$  of arbitrary-looking matrices, and 'recognising' G involves writing each element of  $\mathcal{X}$  as a word in  $\mathcal{Y}$ . A particularly helpful special case is when G is generated by a set  $\mathcal{Y}' = \{g_1, g_2\}$  of two matrices with  $S_1 = \operatorname{im}(g_1 - 1)$  and  $S_2 = \operatorname{im}(g_2 - 1)$  non-degenerate complementary subspaces, and a key problem is to write each element of  $\mathcal{X}$  as a word in  $\mathcal{Y}'$ . This problem is practically difficult, as is the analogous problem for classical groups, and its solution uses random selections in G and the natural G-module  $V = (\mathbb{F}_q)^d$ . The authors of [10, 11] describe in forthcoming work an algorithm to solve this word problem, and the translation from a problem in group theory to a geometric problem is described, in part, in [10, 11]. Further context and details are given in [11, Section 3].

In Section 2, we determine the distinct eigenvalues of  $\Gamma_{e_1,e_2}$  by proving Proposition 1.2. The proof relies on an explicit algorithm in [6] based on the seminal work of Brouwer [3]. In Section 3, the role of the second largest eigenvalue  $\lambda_2$  of  $\Gamma_{e_1,e_2}$  is elucidated in the expander mixing lemma for bipartite graphs: we give a short proof in Lemma 3.1. In addition, we prove Proposition 1.3 which shows that bounds (lower and upper) can be determined simply by computing two ratios  $\alpha_1$  and  $\alpha_2$ . Bounds for the orthogonal case are computed in Section 4, for the symplectic and unitary cases in Section 5, and computing  $\alpha_1, \alpha_2$  is key. The orthogonal case is hardest because of the types of the (even dimensional) non-degenerate subspaces  $S_1$  and  $S_2$ . Finally, Section 6 discusses the general case  $d > e_1 + e_2$ .

### 2 Eigenvalues

The graph  $\Gamma_{e_1,e_2}$  can be described in the spherical building of type  $A_{d-1}$ , corresponding to the classical group  $PSL_d(q)$ . Adjacency in  $\Gamma_{e_1,e_2}$  corresponds to opposition in  $A_{d-1}$  (that is, an  $e_1$ -space and an  $e_2$ -space in  $A_{d-1}$  are opposite in a building-theoretical sense precisely when they are complementary, see [3] and [6, Lemma 3.7]). The Coxeter diagram for  $A_{d-1}$  is shown in Fig. 1. Brouwer observed in [3, Theorem 1.1] that for any opposition graph of a spherical building over  $\mathbb{F}_q$ , its eigenvalues are powers of q. Implicitly, [3] describes an algorithm to calculate the eigenvalues of graphs such as  $\Gamma_{e_1,e_2}$ . This algorithm is explicitly stated in [6, Algorithms 1, 2], which we sometimes refer to simply as Algorithms 1, 2.



**Fig. 1** The Coxeter diagram of  $A_{d-1}$  where  $d = e_1 + e_2$  and  $e_1 \ge e_2$ .

The key observation in [3] is that we can calculate the eigenvalues of the oppositeness relation from the irreducible characters of the Coxeter group associated with the building. In the case of  $A_{d-1}$  this means that we can calculate the eigenvalues of any opposition graph in  $A_{d-1}$  such as  $\Gamma_{e_1,e_2}$  from the irreducible characters of the symmetric group Sym(d).

The symmetric group is viewed in this setting as a Coxeter group with the set of adjacent transpositions  $\{s_1, \ldots, s_{d-1}\}$  as its set of generators S, where  $s_i = (i, i+1)$  for  $i \in \{1, \ldots, d-1\}$ .

The unique longest word in Sym(d) with respect to the Coxeter generators is denoted  $w_0$ . Its length is  $\binom{d}{2}$  and

$$w_0 = \begin{pmatrix} 1 & 2 & \cdots & d \\ d & d - 1 & \cdots & 1 \end{pmatrix} = \prod_{i=1}^{d-1} s_{d-1} \cdots s_{i+1} s_i.$$

For instance,  $w_0 = s_3 s_2 s_1 s_3 s_2 s_3$  when d = 4.

We follow [6, Algorithms 1, 2] to calculate the eigenvalues of  $\Gamma_{e_1,e_2}$  up to sign. This suffices since the graph  $\Gamma_{e_1,e_2}$  is bipartite, and  $\lambda$  is an eigenvalue of  $\Gamma_{e_1,e_2}$  if and only if  $-\lambda$  is an eigenvalue.

We apply Algorithm 2 to the building of type  $A_{d-1}$  with Coxeter group W = Sym(d). An  $e_1$ -space is a partial flag of type  $\{e_1\}$ , its cotype is  $J = \{1, \ldots, d-1\} \setminus \{e_1\}$ . Set  $W_J = \langle s_i : i \in J \rangle$ . Then  $W_J \cong \text{Sym}(e_1) \times \text{Sym}(e_2)$  as  $e_2 = d - e_1$ .

A partition  $\mu$  of d, denoted  $\mu \vdash d$ , is a sequence  $[\mu_1, \ldots, \mu_k]$  of positive integers with  $\mu_1 \ge \cdots \ge \mu_k > 0$  and  $\sum_{i=1}^k \mu_i = d$ . The irreducible complex characters of Sym(d) have the form  $\chi_{\mu}$  for a unique  $\mu \vdash d$ . The parts of the conjugate partition  $\mu^*$  of  $\mu$  satisfy  $\mu_i^* = |\{j \mid \mu_i \ge i\}|$ . We define two invariants  $a(\mu)$  and  $a^*(\mu)$  as

$$a(\mu) = \sum_{i=1}^{k} (i-1)\mu_i$$
, and  $a^*(\mu) = \sum_{i=1}^{k} \frac{\mu_i(\mu_i - 1)}{2} = \sum_{i=1}^{k} {\binom{\mu_i}{2}},$  (1)

and note that  $a^*(\mu) = a(\mu^*)$ , see [9, §§5.4.1, 5.4.2] and c.f. [6, Proposition 3.3].

**Proposition 2.1** ([9, Proposition 5.4.11]) Let  $d \ge 1$ . Let  $\chi_{\mu}$  denote a character of Sym(d) corresponding to the partition  $\mu$  of d. Then

$$\binom{d}{2}\frac{\chi_{\mu}(r)}{\chi_{\mu}(1)} = a^{*}(\mu) - a(\mu), \quad where \ r \in \operatorname{Sym}(d) \ is \ a \ transposition.$$

Following [6, Algorithm 1], we denote by R a set of representatives of the conjugacy classes containing the generators in S. Then observe that Rcomprises one transposition r since the conjugacy class  $s_i^W$  comprises all transpositions in W = Sym(d) for any  $i \in \{1, \dots, d-1\}$ , so that  $|r^W| = \binom{d}{2}$ . Furthermore, the structure constant  $q_s$  in Algorithm 1 equals q by the comment after [6, Proposition 2.4]. In summary, the output of Algorithm 1 is the eigenvalue  $\lambda_{\mu}$ , where  $\lambda_{\mu}^2 = q^{e_{\mu}}$  and the value of  $e_{\mu} = {d \choose 2} \left(1 + \frac{\chi_{\mu}(s)}{\chi_{\mu}(1)}\right)$  is independent of the choice of  $s \in S$ .

Algorithm 2 applied to W = Sym(d) can be described as follows. It is convenient to compute the eigenvalue  $\lambda_{\mu}$  of  $\chi_{\mu}$  up to sign, as remarked above.

- 1. Decompose the induced character  $\operatorname{ind}_{W_I}^W(1_{W_J})$  as a sum  $\sum \chi_{\mu}$  of irreducible characters of W, and determine the relevant partitions  $\mu$  of d.
- 2. For each  $\mu$  appearing in Step 1, calculate using Proposition 2.1 the exponent  $e_{\mu} = {d \choose 2} \left(1 + \frac{\chi_{\mu}(r)}{\chi_{\mu}(1)}\right)$  where r is a transposition.
- 3. Calculate the length  $\ell = \binom{e_1}{2} + \binom{e_2}{2}$  of the longest word in  $W_J$ , see below.

4. The eigenvalues of  $\Gamma_{e_1,e_2}$  are now  $\pm q^{e_{\mu}/2-\ell}$  with  $\mu$  determined in Step 1.

This description concurs with that of Algorithm 2 in [6], except that in Step 2, for the output of Algorithm 1 we use buildings of type  $A_{d-1}$  and Proposition 2.1.

*Proof of Proposition* 1.2 Step 1 of Algorithm 2 determines, via Frobenius reciprocity, the irreducible characters of W = Sym(d) that do not vanish when restricted to  $W_J$ . Precisely, we apply Pieri's rule [9, Corollary 6.1.7] to find the decomposition  $\operatorname{ind}_{W_J}^W(1_{W_J}) = \sum_{j=0}^{e_1} \chi_{[d-j,j]}$ . This completes Step 1 of Algorithm 2. For Step 2 of Algorithm 2, we apply Proposition 2.1 to each character  $\chi_{[d-j,j]}$ 

of Sym(d). Write  $\mu = [d - j, j]$  where  $d - j \ge e_1 \ge e_2 \ge j$ . (When j = 0, we identify

 $\mu_2 = [d, 0]$  with  $\mu_2 = [d]$ .) The functions  $a(\mu)$  and  $a^*(\mu)$  in (1) are:

$$a(\mu) = j$$
 and  $a^*(\mu) = \begin{pmatrix} d-j\\ 2 \end{pmatrix} + \begin{pmatrix} j\\ 2 \end{pmatrix}$  for  $0 \le j \le e_2$ .

Hence, by Proposition 2.1,

$$e_{\mu} = \binom{d}{2} + \binom{d-j}{2} + \binom{j}{2} - j = d^2 - d + j^2 - jd - j.$$

This completes Step 2 of Algorithm 2.

In Step 3, the length of the longest word  $\ell$  in  $W_J = \text{Sym}(e_1) \times \text{Sym}(e_2)$  is  $\binom{e_1}{2} + \binom{e_2}{2}$ . Thus  $\ell = \frac{d^2 - d - 2e_1 e_2}{2}$  and, by Step 4, the eigenvalue corresponding to  $\chi_{\mu}$  is  $\pm q^{m_j}$  where

$$m_j = \frac{e_{\mu}}{2} - \ell = \frac{j^2 - jd - j + 2e_1e_2}{2} = e_1e_2 - \frac{j(d+1-j)}{2}.$$

### 3 The Density Bound

We state a version of the expander mixing lemma for regular, bipartite graphs. This is stated in [12, Theorem 5.1] using the language of block designs. Its proof is short, so we include it here. Given a graph  $\Gamma$ , we write  $E(Y_1, Y_2)$  for the number of edges between subsets  $Y_1$  and  $Y_2$  of the set of vertices of  $\Gamma$ .

**Lemma 3.1** Let  $\Gamma$  be a k-regular bipartite graph with vertex set  $X_1 \cup X_2$ . Let  $Y_i \subseteq X_i$ with  $\alpha_i := |Y_i|/|X_i|$  for  $i \in \{1, 2\}$ . Suppose that the eigenvalues of the adjacency matrix of  $\Gamma$  are  $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{|X_1|+|X_2|}$ . Then

$$\left|\frac{E(Y_1, Y_2)}{E(X_1, X_2)} - \alpha_1 \alpha_2\right| \leqslant \frac{\lambda_2}{k} \sqrt{\alpha_1 \alpha_2 (1 - \alpha_1)(1 - \alpha_2)}.$$

Since the graph  $\Gamma$  has  $|X_1|k = k|X_2|$  edges by k-regularity, it follows that  $|X_1| = |X_2|$ . Our proof follows [12] and uses *interlacing*: Recall that the *quotient matrix*  $B = (b_{ij})$  of a partition  $P_1 \cup \cdots \cup P_m$  of the vertex set of  $\Gamma$  into m parts is an  $(m \times m)$ -matrix where  $b_{ij} = E(P_i, P_j)/|P_i|$ . The eigenvalues of B *interlace* those of the adjacency matrix A of  $\Gamma$  by [12, Theorem 2.1], that is if the spectrum of A is  $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$  and the spectrum of B is  $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_m$ , then  $\lambda_i \ge \mu_i \ge \lambda_{n-m+i}$  holds for all  $i \in \{1, \ldots, m\}$ .

*Proof of Lemma 3.1.* If  $\alpha_1 = 0$ , then  $Y_1$  is empty. Hence  $E(Y_1, Y_2) = 0$  and the bound holds with equality. If  $\alpha_1 = 1$ , then  $Y_1 = X_1$  and by k-regularity

$$\frac{E(Y_1, Y_2)}{E(X_1, X_2)} = \frac{k|Y_2|}{k|X_2|} = \alpha_2,$$

and again the bound holds with equality. Similar arguments show that the bound holds for  $\alpha_2 \in \{0, 1\}$ . Henceforth assume that  $0 < \alpha_1, \alpha_2 < 1$ .

Write  $D := E(X_1, X_2)$  and  $E := E(Y_1, Y_2)$ . Let  $B = (b_{i,j})$  be the quotient matrix relative to the partition  $Y_1 \stackrel{.}{\cup} (X_1 \setminus Y_1) \stackrel{.}{\cup} Y_2 \stackrel{.}{\cup} (X_2 \setminus Y_2)$  of the vertex set of  $\Gamma$ . Then

$$b_{1,3} + b_{1,4} = \frac{E(Y_1, X_2)}{|Y_1|} = k, \ b_{1,3} = \frac{E(Y_1, Y_2)}{|Y_1|} = \frac{E}{\alpha_1 |X_1|}, \text{ and similarly}$$
  

$$b_{2,3} + b_{2,4} = \frac{E(X_1 \setminus Y_1, X_2)}{|X_1 \setminus Y_1|} = k,$$
  

$$b_{2,3} = \frac{E(X_1 \setminus Y_1, Y_2)}{|X_1 \setminus Y_1|} = \frac{E(X_1, Y_2) - E}{(1 - \alpha_1) |X_1|} = \frac{\alpha_2 D - E}{(1 - \alpha_1) |X_1|}.$$

Thus

$$B = \begin{pmatrix} 0 & 0 & \frac{E}{\alpha_1 |X_1|} & k - \frac{E}{\alpha_1 |X_1|} \\ 0 & 0 & \frac{\alpha_2 D - E}{(1 - \alpha_1) |X_1|} & k - \frac{\alpha_2 D - E}{(1 - \alpha_1) |X_1|} \\ \frac{E}{\alpha_2 |X_2|} & k - \frac{E}{\alpha_2 |X_2|} & 0 & 0 \\ \frac{\alpha_1 D - E}{(1 - \alpha_2) |X_2|} & k - \frac{\alpha_1 D - E}{(1 - \alpha_2) |X_2|} & 0 & 0 \end{pmatrix}.$$
 (2)

Set  $\delta = |X_1||X_2|\alpha_1\alpha_2(1-\alpha_1)(1-\alpha_2)$ . Using a computer, we find that  $\det(tI-B) = (t^2 - k^2)(t^2 - \gamma^2/\delta)$  where  $\gamma = E - D\alpha_1\alpha_2$ .

As  $|X_1| = |X_2|$ , the eigenvalues  $\mu_1 \ge \mu_2 \ge \mu_3 \ge \mu_4$  of B equal  $\pm k, \pm \mu$  where

$$\mu := \frac{|E - D\alpha_1 \alpha_2|}{|X_1| \sqrt{\alpha_1 \alpha_2 (1 - \alpha_1)(1 - \alpha_2)}}$$

However,  $\Gamma$  is k-regular, so its largest eigenvalue  $\lambda_1$  is k by [4, Proposition 1.3.8]. It follows from interlacing that  $\mu_1 = k$  and  $\mu_2 = \mu$ . In addition, interlacing implies that  $\mu_2 \leq \lambda_2$ , that is

$$\frac{|E(Y_1, Y_2) - E(X_1, X_2)\alpha_1\alpha_2|}{|X_1|\sqrt{\alpha_1\alpha_2(1 - \alpha_1)(1 - \alpha_2)}} \leqslant \lambda_2$$

Using  $|X_1| = E(X_1, X_2)/k$  proves the assertion.

Proof of Proposition 1.3 For  $i \in \{1, 2\}$ , let  $X_i$  denote the set of  $e_i$ -subspaces of V. It follows from Proposition 1.2 that  $\lambda_1 = q^{e_1 e_2} = k$  and  $\lambda_2 = q^{e_1 e_2 - d/2}$ . Taking  $\Gamma = \Gamma_{e_1, e_2}$  in Lemma 3.1 gives

$$\frac{E(Y_1, Y_2)}{E(X_1, X_2)} \ge \alpha_1 \alpha_2 - \sqrt{\alpha_1 \alpha_2 (1 - \alpha_1) (1 - \alpha_2)} q^{-\frac{d}{2}}.$$

Since  $E(X_1, X_2) = k \cdot |X_1|$ , we have

$$\frac{E(Y_1, Y_2)}{|Y_1| \cdot |Y_2|} = \frac{|X_1|^2}{|Y_1| \cdot |Y_2|} \cdot \frac{E(Y_1, Y_2)}{|X_1|^2} = (\alpha_1 \alpha_2)^{-1} \cdot \frac{k}{|X_1|} \cdot \frac{E(Y_1, Y_2)}{E(X_1, X_2)} \\
\geqslant \frac{k}{|X_1|} \cdot \left(1 - \sqrt{\frac{(1 - \alpha_1)(1 - \alpha_2)}{\alpha_1 \alpha_2}} q^{-\frac{d}{2}}\right) \\
= \frac{k}{|X_1|} \cdot \left(1 - \sqrt{(\frac{1}{\alpha_1} - 1)(\frac{1}{\alpha_2} - 1)} q^{-\frac{d}{2}}\right).$$

The first claimed inequality follows by rewriting  $k/|X_1|$  because

$$\frac{k}{|X_1|} = \frac{q^{e_1e_2}}{\binom{d}{e_1}_q} = \frac{\omega_q(e_1)\omega_q(e_2)}{\omega_q(e_1 + e_2)} > \omega_q(e_2).$$

The second inequality now follows from  $\sqrt{(\frac{1}{\alpha_1}-1)(\frac{1}{\alpha_2}-1)} \leq \frac{1}{\alpha}-1$ .

Corollary 3.2 The second bound in Proposition 1.3 implies that

$$\frac{|\{(S_1, S_2) \in Y_1 \times Y_2 : S_1 \cap S_2 = 0\}|}{|Y_1| \cdot |Y_2|} > \left(1 - \frac{3}{2}q^{-1}\right) \left(1 - \left(\frac{1}{\alpha} - 1\right)q^{-d/2}\right).$$

Proof Since  $\omega_q(\infty) > 1 - q^{-1} - q^{-2}$  by [15, Lemma 3.5], it follows that

$$\omega_q(e_2) > \omega_q(\infty) > 1 - q^{-1} - q^{-2} \ge 1 - \frac{3}{2q}$$

The result now follows from Proposition 1.3.

### 4 Proof in the orthogonal case

In this section, we prove the orthogonal bound in Theorem 1.1.

**Theorem 4.1** Suppose that  $e_1, e_2 \ge 2$  are even and  $V = (\mathbb{F}_q)^{e_1+e_2}$  is an  $(e_1 + e_2)$ dimensional vector space equipped with a non-degenerate quadratic form of type  $\varepsilon \in \{-,+\}$ . For  $i \in \{1,2\}$  and for  $\sigma_i \in \{-,+\}$ , let  $Y_i$  denote the set of all non-degenerate  $e_i$ -spaces of type  $\sigma_i$ . The proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  for which  $S_1 \cap S_2 = \{0\}$  is at least  $1 - \frac{3}{2q}$  for all  $e_1, e_2 \ge 2$ ,  $\varepsilon, \sigma_1, \sigma_2 \in \{-,+\}$  and all prime-powers  $q \ge 2$ .

Proof Let  $e_1 = 2m_1$ ,  $e_2 = 2m_2$  and let  $V = (\mathbb{F}_q)^d$  be a non-degenerate orthogonal space of type  $\varepsilon \in \{-, +\}$  where  $d = e_1 + e_2$ . We will assume, without loss of generality, that  $e_2 \leq e_1$  and hence that  $m_2 \leq m_1$ . Denote the isometry group of V by  $\mathrm{GO}_d^{\varepsilon}(q)$ . We use the formula for  $|\mathrm{GO}_{2m}^{\sigma}(q)|$  in [17, p. 141], where  $\sigma \in \{+, -\}$  is identified with 1, -1, respectively. Since  $q^{2m} - 1 = (q^m - \sigma)(q^m + \sigma)$ , we have

$$|\mathrm{GO}_{2m}^{\sigma}(q)| = 2q^{m(m-1)}(q^m - \sigma) \prod_{i=1}^{m-1} (q^{2i} - 1) = \frac{2q^{m(2m-1)}}{1 + \sigma q^{-m}} \prod_{i=1}^m (1 - q^{-2i}).$$

Hence  $|\operatorname{GO}_{2m}^{\sigma}(q)| \sim 2q^{m(2m-1)}$  as  $q \to \infty$ . Recall that  $\omega_{q^2}(m) = \prod_{i=1}^m (1-q^{-2i})$ .

Let  $Y_1$  denote the set of non-degenerate  $e_1$ -spaces in V of type  $\sigma_1$ . The stabilizer of  $S_1 \in Y_1$  in  $\mathrm{GO}_d^{\varepsilon}(q)$  is  $\mathrm{GO}_{e_1}^{\sigma_1}(q) \times \mathrm{GO}_{e_2}^{\varepsilon\sigma_1}(q)$  since  $S_1^{\perp}$  has type  $\varepsilon\sigma_1$  by [14, Lemma 2.5.11(ii)]. It follows from the Orbit-Stabilizer Lemma that

$$|Y_1| = \frac{|\mathrm{GO}_d^{\varepsilon}(q)|}{|\mathrm{GO}_{e_1}^{\sigma_1}(q) \times \mathrm{GO}_{e_2}^{\varepsilon\sigma_1}(q)|} = \frac{q^{e_1e_2}(1+\sigma_1q^{-m_1})(1+\varepsilon\sigma_1q^{-m_2})}{2(1+\varepsilon q^{-m_1-m_2})} \frac{\omega_{q^2}(m_1+m_2)}{\omega_{q^2}(m_1)\omega_{q^2}(m_2)}$$

Hence  $|Y_1| \sim \frac{1}{2}q^{e_1e_2}$  as  $q \to \infty$ . We shall write

$$\begin{bmatrix} d \\ e_1 \end{bmatrix}_q = \frac{q^{e_1 e_2}}{B_q(e_1, e_2)} \quad \text{where} \quad B_q(e_1, e_2) := \frac{\omega_q(e_1)\omega_q(e_2)}{\omega_q(e_1 + e_2)}.$$

Then

$$|Y_1| = \frac{q^{e_1 e_2} \lambda(\sigma_1, \varepsilon)}{B_{q^2}(m_1, m_2)} \quad \text{where} \quad \lambda(\sigma_1, \varepsilon) = \frac{(1 + \sigma_1 q^{-m_1})(1 + \varepsilon \sigma_1 q^{-m_2})}{2(1 + \varepsilon q^{-m_1 - m_2})}$$

9

Hence

$$\alpha_1 = \frac{|Y_1|}{\begin{bmatrix} d\\ e_1 \end{bmatrix}_q} = \frac{\lambda(\sigma_1, \varepsilon)B_q(e_1, e_2)}{B_{q^2}(m_1, m_2)}$$

Proposition 1.3 gives the lower bound

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_q(e_1, e_2) \left(1 - \sqrt{\left(\frac{1}{\alpha_1} - 1\right)\left(\frac{1}{\alpha_2} - 1\right)}q^{-d/2}\right)$$

A computer program [13] checks that the above bound is greater than  $1 - \frac{1.5}{q}$  for all  $q \leq 5$  and  $1 \leq m_2 \leq m_1 \leq 6$  except when  $q \leq 5$  and  $m_1 = m_2 = 1$ , or  $(q, m_2, m_1)$  equals (2, 1, 2), (2, 1, 3), (2, 2, 2). For these seven exceptions, we used the GAP package FINING [1] to do an exact count. The GAP/FINING code [13] verifies that the lower bound  $1 - \frac{1.5}{q}$  holds in these cases. Thus when  $q \leq 5$ , we will henceforth assume that  $m_1 + m_2 \geq 7$ , and hence that  $d = 2m_1 + 2m_2 \geq 14$ .

Observe now that  $\lambda(\sigma_1, \varepsilon) \ge \lambda(-, +)$ . Take a lower bound  $\alpha_1 \ge \alpha$  and  $\alpha_2 \ge \alpha$ where  $\alpha := \lambda(-, +)B_q(e_1, e_2)B_{q^2}(m_1, m_2)^{-1}$ . Proposition 1.3 gives the lower bound

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_q(e_1, e_2) \left(1 - \left(\frac{1}{\alpha} - 1\right)q^{-d/2}\right) 
= B_q(e_1, e_2) \left(1 + q^{-d/2}\right) - \lambda(-, +)^{-1} B_{q^2}(m_1, m_2)q^{-d/2}.$$
(3)

We next consider the case  $q \leq 5$  and  $m_1 + m_2 \geq 7$ . Since  $B_{q^2}(m_1, m_2)$  is a decreasing function of  $m_2$ , it follows that

$$B_{q^2}(m_1, m_2) \leq B_{q^2}(7 - m_2, m_2) \leq B_{q^2}(1, 6)$$

Furthermore,  $B_q(e_1, e_2) \ge \omega_q(e_1) > \omega_q(\infty)$  and  $1 + q^{-d/2} > 1$  so

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > \omega_q(\infty) - \lambda(-, +)^{-1} B_{q^2}(1, 6) q^{-7}.$$

Similar reasoning gives

$$\lambda(-,+)^{-1} = \frac{2(1+q^{-m_1-m_2})}{(1-q^{-m_1})(1-q^{-m_2})} \leqslant \frac{2(1+q^{-7})}{(1-q^{-m_1})(1-q^{-(7-m_1)})} \\ \leqslant \frac{2(1+q^{-7})}{(1-q^{-1})(1-q^{-6})}.$$

Using the more accurate lower bound  $\omega_q(\infty) > 1 - q^{-1} - q^{-2} + q^{-5}$  from [15, Lemma 3.5], one can check by computer that

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > 1 - q^{-1} - q^{-2} + q^{-5} - \frac{2(1 + q^{-7})}{(1 - q^{-1})(1 - q^{-6})} B_{q^2}(1, 6)q^{-7} > 1 - \frac{3}{2q}$$

holds for  $q \leq 5$ .

Finally, suppose that  $q \ge 7$  and  $1 \le m_2 \le m_1$  holds. When  $m_1 = m_2 = 1$ , it follows from (3) and  $1 + q^{-d/2} > 1$  that

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > \frac{1}{(1+q^{-1}+q^{-2})(1+q^{-2})} - \frac{2q^{-2}}{(1-q^{-1})^2}.$$

This is bound is dominated by the first term and is a decreasing function of q. Hence the bound is greater than  $1 - \frac{1.5}{q}$  for all  $q \ge 7$ . It remains to consider the case  $m_1 + m_2 \ge 3$  and hence  $d \ge 6$ . Arguing as above, and using  $q \ge 7$ , gives

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > 1 - q^{-1} - q^{-2} + q^{-5} - \frac{2(1+q^{-3})}{(1-q^{-1})(1-q^{-2})} B_{q^2}(1,2)q^{-3} > 1 - \frac{3}{2q}.$$

Thus in all cases the bound  $1 - \frac{3}{2q}$  holds, as claimed.

### 5 Proof in the symplectic and unitary cases

In this section, we prove the symplectic and unitary bounds in Theorem 1.1.

**Theorem 5.1** Suppose that  $e_1, e_2 \ge 2$  are even and  $V = (\mathbb{F}_q)^{e_1+e_2}$  is an  $(e_1 + e_2)$ dimensional symplectic space. For  $i \in \{1, 2\}$  let  $Y_i$  denote the set of all non-degenerate  $e_i$ -spaces of V. The proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  for which  $S_1 \cap S_2 = \{0\}$ is at least  $1 - \frac{10}{7q}$  for all  $e_1, e_2$  and all prime-powers  $q \ge 2$ .

Proof Let  $e_1 = 2m_1$ ,  $e_2 = 2m_2$  and let  $V = (\mathbb{F}_q)^d$  be a non-degenerate symplectic space where  $d = e_1 + e_2$ . As before, we shall assume, without loss of generality, that  $2 \leq e_2 \leq e_1$  and hence that  $1 \leq m_2 \leq m_1$ . Let  $m = m_1 + m_2$ . The isometry group  $\operatorname{Sp}_{2m}(q)$  of V has order  $q^{m^2} \prod_{i=1}^m (q^{2i} - 1) = q^{2m^2 + m} \omega_{q^2}(m)$  by [17, p. 70]. Let  $Y_i$  denote the set of non-degenerate  $e_i$ -spaces in V. Clearly  $|Y_1| = |Y_2|$ . The

stabilizer of  $S_1 \in Y_1$  in  $\operatorname{Sp}(V)$  is  $\operatorname{Sp}(S_1) \times \operatorname{Sp}(S_1^{\perp})$ . Therefore

$$\begin{aligned} |Y_2| &= |Y_1| = \frac{|\mathrm{Sp}_{e_1+e_2}(q)|}{|\mathrm{Sp}_{e_1}(q) \times \mathrm{Sp}_{e_2}(q)|} = \frac{q^{e_1e_2}\omega_{q^2}(m_1+m_2)}{\omega_{q^2}(m_1)\omega_{q^2}(m_2)} \\ &= \frac{q^{e_1e_2}}{B_{q^2}(m_1,m_2)} \quad \text{where } B_q(e_1,e_2) = \frac{\omega_q(e_1)\omega_q(e_2)}{\omega_q(e_1+e_2)}. \end{aligned}$$

Since  $|X_1| = \begin{bmatrix} d \\ e_1 \end{bmatrix}_a = \begin{bmatrix} d \\ e_2 \end{bmatrix}_a = |X_2| = q^{e_1 e_2} / B_q(e_1, e_2)$ , we have

$$\alpha_1 = \frac{|Y_1|}{|X_1|} = \frac{q^{e_1e_2}}{B_{q^2}(m_1, m_2)} \cdot \frac{B_q(e_1, e_2)}{q^{e_1e_2}} = \frac{B_q(e_1, e_2)}{B_{q^2}(m_1, m_2)}$$

Proposition 1.3 gives the lower bound

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_q(e_1, e_2) \left( 1 - \left(\frac{1}{\alpha_1} - 1\right) q^{-d/2} \right)$$
$$\ge B_q(e_1, e_2) - \left( B_{q^2}(m_1, m_2) - B_q(e_1, e_2) \right) q^{-d/2}$$
$$> B_q(e_1, e_2) - B_{q^2}(m_1, m_2) q^{-d/2}.$$

Note that  $B_q(e_1, e_2) \ge \omega_q(e_1) > \omega_q(\infty) > 1 - q^{-1} - q^{-2}$  by [15, Lemma 3.5]. Also,  $1 > B_{q^2}(m_1, m_2)$  and  $d = e_1 + e_2 \ge 4$ . If  $q \ge 5$ , we have

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge 1 - q^{-1} - q^{-2} - q^{-2} > 1 - \frac{10}{7}q^{-1}.$$

For  $q \in \{2, 3, 4\}$  we have  $\omega_2(\infty) > 0.288$ ,  $\omega_3(\infty) > 0.56$  and  $\omega_4(\infty) > 0.688$ . Thus when  $q \in \{2, 3, 4\}$  and  $d \ge 20$ , we have

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge \omega_q(\infty) - q^{-10} > 1 - \frac{10}{7}q^{-1}.$$

Finally, if  $q \in \{2, 3, 4\}$  and  $d = e_1 + e_2 < 20$ , then a computer program shows that the last inequality below is satisfied

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_q(e_1, e_2)(1 + q^{-d/2}) - B_{q^2}(m_1, m_2)q^{-d/2} > 1 - \frac{10}{7}q^{-1}.$$

**Theorem 5.2** Suppose  $V = (\mathbb{F}_{q^2})^{e_1+e_2}$  is an  $(e_1+e_2)$ -dimensional hermitian space where  $e_1, e_2 \ge 1$ . For  $i \in \{1, 2\}$ , let  $Y_i$  denote the set of all non-degenerate  $e_i$ -spaces of V. The proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  for which  $S_1 \cap S_2 = \{0\}$  is at least  $1 - \frac{c}{q^2}$  where c = 2 when  $(e_1, e_2, q) = (1, 1, 2)$ ,  $c = \frac{3}{2}$  when  $\min\{e_1, e_2\} = 1$  and  $(e_1, e_2, q) \ne (1, 1, 2)$ , and c = 1.26 otherwise.

Proof Let  $V = (\mathbb{F}_{q^2})^d$  be a non-degenerate unitary space where  $d = e_1 + e_2$ . Let  $\operatorname{GU}_d(q)$  denote the isometry group of V. We have  $|\operatorname{GU}_d(q)| \sim q^{d^2}$  as  $q \to \infty$ , more precisely  $|\operatorname{GU}_d(q)| = q^{d(d-1)/2} \prod_{i=1}^d (q^i - (-1)^i) = q^{d^2} \omega_{-q}(d)$  by [17, p. 118] where

$$\omega_{-q}(d) = \prod_{i=1}^{d} (1 - (-q)^{-i}).$$

The proportion of pairs  $(S_1, S_2) \in Y_1 \times Y_2$  for which  $S_1 \cap S_2 = \{0\}$  is unchanged if we swap the subscripts. Thus we can henceforth assume that  $1 \leq e_2 \leq e_1$ . Proposition 1.3 gives poor bounds when  $e_2 = 1$ . When  $e_2 = 1$ , it turns out to be simple to overestimate the complementary proportion using ideas in the proof of [10, Theorem 4.1]. The proportion of non-degenerate  $e_1$ -subspaces (where  $e_1 = d - 1$ ) that contain a given 1-subspace is at most  $c_1/q^2$  where  $c_1 := \frac{1+q^{-e_1}}{1-q^{-1-e_1}}$  by [10, p. 9]. This equals  $\frac{2}{q^2}$  if  $(e_1, e_2, q) = (1, 1, 2)$ . If  $e_1 \ge 2$ , we have  $c_1 \le \frac{1+2^{-2}}{1-2^{-3}} < \frac{3}{2}$ , and if  $q \ge 3$  we have  $c_1 \le \frac{1+q^{-1}}{1-q^{-2}} = \frac{1}{1-q^{-1}} \le \frac{3}{2}$ . Thus when  $e_1 \ge 2$  and  $e_2 = 1$  the complementary proportion is at most  $\frac{3}{2q^2}$ . This proves the claim when  $e_2 = 1$ . We henceforth assume that  $2 \le e_2 \le e_1$ .

The stabilizer of 
$$S_1 \in Y_1$$
 in  $\mathrm{GU}(V)$  is  $\mathrm{GU}(S_1) \times \mathrm{GU}(S_1^{\perp})$ . Hence  
 $|Y_1| = |Y_2| = \frac{|\mathrm{GU}_{e_1+e_2}(q)|}{|\mathrm{GU}_{e_1}(q) \times \mathrm{GU}_{e_2}(q)|} = \frac{q^{2e_1e_2}\omega_{-q}(e_1+e_2)}{\omega_{-q}(e_1)\omega_{-q}(e_2)} = \frac{q^{2e_1e_2}}{B_{-q}(e_1,e_2)}.$ 

Replacing q with  $q^2$  shows that  $|X_1| = |X_2| = (q^2)^{e_1 e_2} / B_{q^2}(e_1, e_2)$ , and hence

$$\alpha_1 = \frac{|Y_1|}{|X_1|} = \frac{B_{q^2}(e_1, e_2)}{B_{-q}(e_1, e_2)}$$

Proposition 1.3, with q replaced with  $q^2$ , gives the lower bound

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_{q^2}(e_1, e_2) \left( 1 - \left(\frac{1}{\alpha_1} - 1\right) q^{-d} \right) 
= B_{q^2}(e_1, e_2)(1 + q^{-d}) - B_{-q}(e_1, e_2)q^{-d} 
> B_{q^2}(e_1, e_2) - B_{-q}(e_1, e_2)q^{-d}.$$
(4)

Note that  $B_{q^2}(e_1, e_2) \ge \omega_{q^2}(e_1) > \omega_{q^2}(\infty) > 1 - q^{-2} - q^{-4}$  by [15, Lemma 3.5]. To find an upper bound for  $B_{-q}(e_1, e_2) = \prod_{i=2}^{e_2} \frac{(1 - (-q)^{-i})}{(1 - (-q)^{-i})}$ , we will use

To find an upper bound for 
$$B_{-q}(e_1, e_2) = \prod_{i=1}^{e_2} \frac{(1-(-q))^{-1}}{(1-(-q)^{-e_1-i})}$$
, we will use

$$(1 - q^{-2i})(1 + q^{-(2i+1)}) < 1 < (1 + q^{-(2j-1)})(1 - q^{-2j}).$$
(5)  
m (5) that  $\Pi^{e_2}$   $(1 - (-q)^{-i}) < 1 + q^{-1}$  for all  $q_2 > 1$  and

It follows from (5) that  $\prod_{i=1}^{e_2} (1 - (-q)^{-i}) \leq 1 + q^{-1}$  for all  $e_2 \geq 1$  and

 $\prod_{i=1}^{e_2} (1-(-q)^{-e_1-i}) \geqslant \begin{cases} 1 & \text{if } e_1 \text{ even, } e_2 \text{ even,} \\ 1+q^{-e_1-e_2} & \text{if } e_1 \text{ even, } e_2 \text{ odd,} \\ 1-q^{-e_1-1} & \text{if } e_1 \text{ odd, } e_2 \text{ even,} \\ (1-q^{-1-e_1})(1-q^{-e_1-e_2}) & \text{if } e_1 \text{ odd, } e_2 \text{ odd.} \end{cases}$ 

Hence the above product is greater than or equal to  $(1 - q^{-4})(1 - q^{-6})$  for all  $2 \leq e_2 \leq e_1$ . Therefore  $B_{-q}(e_1, e_2) \leq \frac{1+q^{-1}}{(1-q^{-4})(1-q^{-6})}$ .

Since  $d \ge 4$ , it follows from (4) that

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > 1 - q^{-2} - q^{-4} - \frac{(1+q^{-1})q^{-4}}{(1-q^{-4})(1-q^{-6})}$$

This is greater than  $1 - \frac{1.26}{q^2}$  for all  $q \ge 4$ .

Suppose now that  $q \in \{2, 3\}$  and  $d \ge 10$ . Then

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} > \omega_{q^2}(\infty) - \frac{(1+q^{-1})q^{-10}}{(1-q^{-4})(1-q^{-6})}$$

and since  $\omega_4(\infty) > 0.6885$ ,  $\omega_9(\infty) > 0.876$ , the above bound is greater than  $1 - \frac{1.26}{q^2}$  for  $q \in \{2, 3\}$ . It remains to consider  $q \leq 3$  and  $2 \leq e_2 \leq e_1$  where  $e_1 + e_2 < 10$ . In this case, a simple computer program verifies that

$$\frac{E(Y_1, Y_2)}{|Y_1||Y_2|} \ge B_{q^2}(e_1, e_2)(1 + q^{-d}) - B_{-q}(e_1, e_2)q^{-d} > 1 - \frac{1.26}{q^2}.$$

## 6 Future Work

A more general problem when  $e_1 + e_2 < d$  is considered in [11]. Here  $V = \mathbb{F}^d$  is a finite non-degenerate classical space and a lower bound of the form  $1 - \frac{c}{|\mathbb{F}|}$  is sought for the proportion of non-degenerate pairs  $(S_1, S_2)$  satisfying  $\dim(S_i) = e_i$  and  $S_1 \cap S_2 = \{0\}$ . The bound given in [11, Theorem 1.1] has the form  $1 - \frac{c}{|\mathbb{F}|}$  in the symplectic case, and the orthogonal case for q > 2, but only  $1 - \frac{c}{|\mathbb{F}|^{1/2}}$  in the unitary case. If one could compute the second eigenvalue  $\lambda_2$  of the bipartite graph  $\Gamma_{d,e_1,e_2}$  when  $e_1 + e_2 < d$ , *c.f.* Proposition 1.2, then it may be possible to obtain sharper lower bounds of the form  $1 - \frac{c}{|\mathbb{F}|}$  via Lemma 3.1, in all cases.

#### Acknowledgment

We thank the referee for their very helpful comments. The first author is supported by the Australian Research Council Discovery Grant DP190100450. The second author is supported by a postdoctoral fellowship of the Research Foundation – Flanders (FWO).

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

### References

 J. Bamberg, A. Betten, J. De Beule, P. Cara, M. Lavrauw and M. Neunhöffer, FINING, Finite Incidence Geometry, Version 1.4.1, 2018. Refereed GAP package.

- 14 The proportion of non-degenerate complementary subspaces
  - [2] A. Blokhuis, A. E. Brouwer and T. Szőnyi, On the chromatic number of q-Kneser graphs, Des. Codes Cryptogr. 65 (2012) 187–197.
  - [3] A. E. Brouwer, The eigenvalues of oppositeness graphs in buildings of spherical type, In *Combinatorics and graphs*, volume **531** of Contemp. Math., pp. 1–10. Amer. Math. Soc., Providence, RI, 2010.
  - [4] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.
  - [5] H. Cai, J. Chrisnata, T. Etzion, M. Schwartz and A. Wachter-Zeh, Network-coding solutions for minimal combination networks and their sub-networks, *IEEE Trans. Inform. Theory* 66(11) (2020) 6786–6798.
  - [6] J. De Beule, S. Mattheus and K. Metsch, An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings, J. Combin. Theory Ser. A 192 (2022), paper no. 105657, 33 pp.
  - [7] P. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20 (1976) 230–243.
  - [8] J. Eisfeld, The eigenspaces of the Bose-Mesner algebras of the association schemes corresponding to projective spaces and polar spaces, *Des. Codes Cryptogr.* 17 (1999) 129–150.
  - [9] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, vol. 21 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000.
- [10] S. P. Glasby, A. C. Niemeyer and C. E. Praeger, The probability of spanning a classical space by two non-degenerate subspaces of complementary dimensions, *Finite Fields Their Appl.* 82 (2022), paper no. 102055.
- [11] S. P. Glasby, A. C. Niemeyer and C. E. Praeger, Random generation of direct sums of finite non-degenerate subspaces, *Linear Algebra Appl.* Linear Algebra Appl. 649 (2022), 408–432.
- W. H. Haemers, Interlacing eigenvalues and graphs, *Linear Algebra Appl.* 226–228 (1995) 593–616.
- [13] F. Ihringer, GAP/FINING code for the small orthogonal cases in Theorem 4.1, https://stephenglasby.github.io/publications/
- [14] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.

- [15] P. M. Neumann and C. E. Praeger, Cyclic matrices over finite fields, J. London Math. Soc. 52(2) (1995), 263–284.
- [16] S. Suda and H. Tanaka, A cross-intersection theorem for vector spaces based on semidefinite programming, *Bull. London Math. Soc.* 46 (2014) 342–348.
- [17] D. E. Taylor, The Geometry of the Classical Groups, Heldermann, Berlin, 1992.