Designs, Codes and Cryptography (2023) 91:3457-3525
https://doi.org/10.1007/510623-023-01245-1

®

Check for
updates

Zero-knowledge proofs for set membership: efficient,
succinct, modular

Daniel Benarroch'® - Matteo Campanelli?® - Dario Fiore3 . Kobi Gurkan®>% .

Dimitris Kolonelos?36

Received: 6 July 2022 / Revised: 1 March 2023 / Accepted: 3 May 2023 /
Published online: 1 July 2023
© The Author(s) 2023

Abstract

We consider the problem of proving in zero knowledge that an element of a public set satisfies
a given property without disclosing the element, i.e., for some u, “u € S and P (u) holds”. This
problem arises in many applications (anonymous cryptocurrencies, credentials or whitelists)
where, for privacy or anonymity reasons, it is crucial to hide certain data while ensuring
properties of such data. We design new modular and efficient constructions for this problem
through new commit-and-prove zero-knowledge systems for set membership, i.e. schemes
proving u € S for a value u that is in a public commitment ¢,,. We also extend our results to
support non-membership proofs, i.e. proving u ¢ S. Being commit-and-prove, our solutions
can act as plug-and-play modules in statements of the form “u € § and P(u) holds” by
combining our set (non-)membership systems with any other commit-and-prove scheme for
P (u). Also, they work with Pedersen commitments over prime order groups which makes
them compatible with popular systems such as Bulletproofs or Groth16. We implemented
our schemes as a software library, and tested experimentally their performance. Compared to
previous work that achieves similar properties—the clever techniques combining zZkSNARKSs
and Merkle Trees in Zcash—our solutions offer more flexibility, shorter public parameters
and 3.7x-30x faster proving time for a set of size 264,

Keywords Public-key cryptography - Zero-knowledge proofs - Applications

Mathematics Subject Classification 94A60

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue:
Mathematics of Zero Knowledge”.

B Dimitris Kolonelos

dimitris.kolonelos @imdea.org

Inversed Technologies, Madrid, Spain

Protocol Labs, San Francisco, USA

3 IMDEA Software Institute, Madrid, Spain

4 Universidad Politécnica de Madrid, Madrid, Spain
Geometry Research, London, UK

cLabs, Berlin, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01245-1&domain=pdf
http://orcid.org/0000-0001-6555-0589

3458 D.Benarroch et al.

1 Introduction

The problem of proving set membership—that a given element x belongs to some set
S—arises in many applications, including governmental white-lists to prevent terrorism or
money-laundering, voting and anonymous credentials, among others. More recently, this
problem also appears at the heart of currency transfer and identity systems over blockchains.
In this setting, parties can first publicly commit to sets of data (through the blockchain itself)
and then, by proving set membership, can claim ownership of assets or existence of identity
attributes, while ensuring privacy.

A naive approach to check if an element is in a set is to go through all its entries. The
complexity of this approach, however, is unacceptable in many scenarios. This is especially
true for blockchains, where most of the parties (the verifiers) should run quickly.

How to efficiently verify set membership then? Cryptographic accumulators [6] provide
a nice solution to this problem. They allow a set of elements to be compressed into a short
value (the accumulator) and to generate membership proofs that are short and fast to verify.
As a security guarantee they require it should be computationally infeasible to generate a
false membership proof.

As of today, we can divide constructions for accumulators into three main categories:
Merkle Trees [55]; RSA-based [2, 11, 16, 50]; pairing-based [17, 32, 57, 78]. Approaches
based on Merkle Trees! allow for short (i.e., O (1)) public parameters and accumulator values,
whereas the witness for membership proofs is of size log(n), where n is the size of the set.
In RSA-based constructions (which can be actually generalized to any group of unknown
order [48], including class groups) both the accumulator and the witness are each a single
element in a relatively large hidden-order group G, and thus of constant-size. Schemes that
use pairings in elliptic curves such as [17, 57] offer small accumulators and small witnesses
(which can each be a single element of a prime order bilinear group, e.g., 256 bits) but require
large parameters (approximately O (n)) and a trusted setup.

In anonymous cryptocurrencies, e.g. Zerocash [5] (but also in other applications such
as Anonymous Credentials [22] and whitelists), we also require privacy. That is, parties
in the system would not want to disclose which element in the set is being used to prove
membership. Phrased differently, one desires to prove that u € S without revealing u, or: the
proof should be zero-knowledge [45] for u. As an example, in Zerocash users want to prove
that a coin exists (i.e. belongs to the set of previously sent coins) without revealing which
coin it is that they are spending.

In practice it is common that this privacy requirement goes beyond proving membership.
In fact, these applications often require proving further properties about the accumulated
elements, e.g., that for some element u in the set, property P (u) holds. And this without
leaking any more information about u other than what is entailed by P. In other words, we
desire zero-knowledge for the statement R*(S, u) := “u € S and P(u)".

One way to solve the problem, as done in Zerocash, is to directly apply general-purpose
zero-knowledge proofs for R*, e.g., [46, 61]. This approach, however, tends to be expensive
and ad-hoc. One of the questions we aim to tackle is that of providing a more efficient proof
systems for set membership relations, that can also be modular.

Specifically, as observed in [18], the design of practical proof systems can benefit from
a more modular vision. A modular framework such as the one in [18] not only allows for

1 We can include under this class currently known lattice-based accumulators such as [9, 60].

2 The group G is typically Z*N where N is an RSA modulus. The size of an element in this group for a standard
128-bit security parameter is of 3072 bits.

@ Springer

Zero-knowledge proofs for set membership... 3459

separation of concerns, but also increases reusability and compatibility in a plug-and-play
fashion: the same proof system is designed once and can be reused for the same sub-problem
regardless of the context’; it can be replaced with a component for the same sub-problem at
any time. Also, as [18] shows, this can have a positive impact on efficiency since designing
a special-purpose proof system for a specific relation can lead to significant optimizations.
Finally, this compositional approach can also be leveraged to build general-purpose proof
systems.

In this work we focus on applying this modular vision to designing succinct zero-
knowledge proofs for set membership. Following the abstract framework in [18] we investigate
how to apply commit-and-prove techniques [20] to our setting. Our approach uses commit-
ments for composability as follows. Consider an efficient zero-knowledge proof system I1
for property P (u). Let us also assume it is commit-and-prove, i.e. the verifier can test P (1) by
simply holding a commitment c(u) to u. Such IT could be for example a commit-and-prove
NIZK such as Bulletproofs [13] or a commit-and-prove zkSNARK such as LegoGroth16
from [18] that are able to operate on Pedersen commitments c(-) over elliptic curves. In order
to obtain a proof gadget for set membership, all one needs to design is a commit-and-prove
scheme for the relations “u € S” where both u and S are committed: u through c(u) and S
through some other commitment for sets, such as an accumulator.

Our main contribution is to propose a formalization of this approach and new constructions
of succinct zero-knowledge commit-and-prove systems for set membership. In addition, as
we detail later, we also extend our results to capture proofs of non-membership, i.e., to show
that u ¢ S. For our constructions we focus on designing schemes where c(u) is a Pedersen
commitment in a prime order group G, . We focus on linking through Pedersen commitments
as these can be (re)used in some of the best state-of-the-art zero-knowledge proof systems
for general-purpose relations that offer for example the shortest proofs and verification time
(see, e.g., [46] and its efficient commit-and-prove variant [18]), or transparent setup and
logarithmic-size proofs [13].

Before describing our results in more detail, we review existing solutions and approaches
to realize commit-and-prove zZkSNARKSs for set membership.

1.1 Existing approaches for proving set membership for pedersen commitments

The accumulator of Nguyen [57], by the simple fact of having a succinct pairing-based
verification equation, can be combined with standard zero-knowledge proof techniques (e.g.,
Sigma protocols or the celebrated Groth—Sahai proofs [47]) to achieve a succinct system with
reasonable proving and verification time. The main drawbacks of using [57], however, are
the large public parameters (i.e. requiring as many prime group elements as the elements in
the set) and a high cost for updating the accumulator to the set, in order to add or remove
elements (essentially requiring to recompute the accumulator from scratch).

By using general-purpose zkSNARKS one can obtain a solution with constant-size proofs
based on Merkle Trees: prove that there exists a valid path which connects a given leaf
to the root; this requires proving correctness of about logn hash function computations
(e.g., SHA256). This solution yields a constant-size proof and requires logn-size public
parameters if one uses preprocessing zkSNARKSs such as [46, 61]. On the other hand, often
when proving a relation such as R*(S, u) := “u € S and P(u)” the bulk of the work stems

3 For instance, one can plug a proof system for matrix product C = A - B in any larger context of computation
involving matrix multiplication. This regardless of whether, say, we then hash C or if A, B are in turn the
output of a different computation.

@ Springer

3460 D.Benarroch et al.

from the set membership proof. This is the case in Zcash or Filecoin* where the predicate
P(-) is sufficiently small.

Finally, another solution that admits constant-size public parameters and proofs is the
protocol of [16]. Specifically, Camenisch and Lysyanskaya showed how to prove in zero-
knowledge that an element ¥ committed in a Pedersen commitment over a prime order group
Gy is amember of an RSA accumulator. In principle this solution would fit the criteria of the
gadget we are looking for. Nonetheless, its concrete instantiations show a few limitations in
terms of efficiency and flexibility. The main problem is that, for its security to hold, we need
a prime order group (the commitment space) and the primes (the message space) to be quite
large, for example® ¢ > 23'°. But having such a large prime order group may be undesirable
in practice for efficiency reasons. In fact the group Gy, is the one that is used to instantiate
more proof systems that need to interact and be linked with the Pedersen commitment.

1.2 Our contributions

We investigate the problem of designing commit-and-prove zero-knowledge systems for set
membership and non-membership that can be used in a modular way and efficiently composed
with other zero-knowledge proof systems for potentially arbitrary relations. Our main results
are the following.

First, building upon the view of recent works on composable proofs [1, 18], we define a for-
mal framework for commit-and-prove zkSNARKSs (CP-SNARKSs) for set (non-)membership.
The main application of this framework is a compiler that, given a CP-SNARK CPp,em for
set membership and any other CP-SNARK CPg for a relation R, yields a CP-SNARK CP
for the composed relation “u € S A Jw : R(u, ®)”. As a further technical contribution, our
framework extends the one in [18] in order to work with commitments from multiple schemes
(including set commitments, e.g., accumulators).

Second, we propose new efficient constructions of CP-SNARKS for set membership and
non-membership, in which elements of the accumulated set can be committed with a Pedersen
commitment in a prime order group G,—a setting that, as argued before, is of practical
relevance due to the widespread use of these commitments and of proof systems that operate
on them. In more detail, we propose: four schemes (two for set membership and two for non-
membership) that enjoy constant-size public parameters and are based on RSA accumulators
for committing to sets, and a scheme over pairings that has public parameters linear in the
size of the set, but where the set can remain hidden.

Finally, we implement our solutions in a software library and experimentally evaluate
their performance.

Like the recent works [1, 18], our work can be seen as showing yet another setting—set
membership—where the efficiency of SNARKSs can benefit from a modular design.

1.3 RSA-based constructions

Our first scheme, a CP-SNARK for set membership based on RSA accumulators, supports
a large domain for the set of accumulated elements, represented by binary strings of a given
length 7. Our second scheme, also based on RSA accumulators, supports elements that are

4 https://filecoin.io.

5 More specifically: the elements of a set need to be prime numbers in a range (A, B) such that ¢/2 >
A2 —1> B . 2Pstt2 It aiming at 128 bits of security level one can meet this constraint by choosing for
example A = 2259, g = 2200 and g > 2519,

@ Springer

https://filecoin.io

Zero-knowledge proofs for set membership... 3461

prime numbers of exactly u bits (for a given). Neither scheme requires an a-priori bound
on the cardinality of the set. Both schemes improve the proof-of-knowledge protocol by
Camenisch and Lysyanskaya [16]: (i) we can work with a prime order group G, of “standard”
size, e.g., 256 bits, whereas [16] needs a much larger G, (see above). We note that the size
of G affects not only the efficiency of the set membership protocol but also the efficiency of
any other protocol that needs to interact with commitments to alleged set members; (ii) we
can support flexible choices for the size of set elements. For instance, in the second scheme,
we could work with primes of about 50 or 80 bits,® which in practice captures virtually
unbounded sets and can make the accumulator operations 4-5x faster compared to using
A 256-bits primes as in [16].

Our main technical contribution here involves a new way to link a proof of membership
for RSA accumulators to a Pedersen commitment in a prime order group, together with a
careful analysis showing this can be secure under parameters not requiring a larger prime
order group (as in [16]). See Sect. 4 for further details.

1.4 Pairing-based construction

Our pairing-based scheme for set membership supports set elements in Z,, where g is the
order of bilinear groups, while the sets are arbitrary subsets of Z, of cardinality less than a
fixed a-priori bound n. This scheme has the disadvantage of having public parameters linear in
n, but has other advantages in comparison to previous schemes with a similar limitation (and
also in comparison to the RSA-based schemes above). First, the commitment to the set can
be hiding and untrusted for the verifier, i.e., the set can be kept hidden and it is not needed to
check the opening of the commitment to the set; this makes it composable with proof systems
that could for example prove global properties on the set, i.e., that P(S) holds. Second, the
scheme works entirely in bilinear groups, i.e., no need of operating over RSA groups. The
main technical contribution here is a technique to turn the EDRAX vector commitment [23]
into an accumulator admitting efficient zero-knowledge membership proofs.

1.5 Extensions to set non-membership

We propose extensions of both our CP-SNARK framework and RSA constructions to deal
with proving set non-membership, namely proving in zero-knowledge that u ¢ S with
respect to a commitment c(#) and a committed set S. Our two RSA-based schemes for non-
membership have the same features as the analogous membership schemes mentioned above:
the first scheme supports sets whose elements are strings of length 1, the second one supports
elements that are prime numbers of p bits, and both work with elements committed using
Pedersen in a prime order group and sets committed with RSA accumulators. A byproduct
of sharing the same parameters is that we can easily compose the set-membership and non-
membership schemes, via our framework, in order to prove statements like u € St Au ¢ S>.
Our technical contribution in the design of these schemes is a zero-knowledge protocol for
non-membership witnesses of RSA accumulators that is linked to Pedersen commitments in
prime order groups.

6 When prime representation is suitable for the application, distinct primes can be generated without a hash
fuction (e.g. by using sequential primes).

@ Springer

3462 D.Benarroch et al.

1.6 Implementation and experiments

We have implemented our RSA-based’ schemes for membership and non-membership as a
Rust library which is publicly available [28]. Our library is implemented in a modular fashion
to work with any elliptic curve from libzexe [67] and Ristretto from curve25519-dalek [54].
This choice enables everyone to easily and efficiently combine our CP-SNARKSs in a modular
way with other CP-SNARKSs implemented over these elliptic curves, such as Bulletproofs
[13] and LegoGroth16 [18].

We evaluated our RSA-based constructions and compared them against highly optimized
solutions based on Merkle Trees.® Our schemes achieve significantly better performance in
proving time while slightly compromising on proof size and verification time. Our imple-
mentation is fast, yet we have not heavily optimized it and thus expect the results can be
further improved.

Our solutions supporting sets of arbitrary elements achieve a proving time that is up to’
3.7 x faster for set membership (309 ms vs. 1.14 s) and up to 7 x faster for set non-membership
(325 ms vs. 2.28 5).10

Our solutions where elements of the set are large prime numbers (i.e., of 252-bit size)
offer even better results: our proving time is 4.5x—23.5x faster for membership and 6.8 x—
36x faster for non-membership (depending on the depth of the Merkle tree used in the
comparison). We also show an optimization that, at the price of achieving computational
(instead of statistical) zero-knowledge, is twice faster (see Sect. 7.4). This scenario can for
example capture the case of sets made of hiding commitments that are prime numbers. In
Sect. 8 we discuss how this can be relevant for a slight variant of the Zerocash protocol where
commitments can be made prime numbers.

More details on the implementation and the benchmarks are available in Sect. 7.

1.7 Transparent instantiations

We generalize our building blocks for RSA groups to any hidden-order group (Appendix 4).
By instantiating the latter with class groups and by using a transparent CP-NIZK such as Bul-
letproofs, we obtain variants of our RSA-based schemes with transparent setup. Class groups
are more expensive than traditional RSA groups; in this setting we still obtain performance
(proving time 12s; |T1| = 6.4 kB) outperforming other transparent solution for large Merkle
trees, roughly 264 Jeaves (see [79, Fig. 5] which summarizes performances of transparent
SNARKS used to prove Merkle tree computations using SHA256 as hash). These potential
gains come at the price of a relatively longer verification (compared to other solutions): 6.4 s.

1.8 Other related work

Ozdemir et al. [58] recently proposed a solution to scale operations on RSA accumulators
inside a SNARK. In particular, their approach scales when these operations are batched (i.e.,

7 For the implementation we focused on schemes where the public parameters do not depend on the set size;
hence, we did not implement the pairing-based solutions.

8 For our experiments we consider Merkle Trees using Pedersen Hash over the JubJub curve [49].

9 We stress the proving time for our construction does not vary when the set grows. On the other hand this
time varies for solutions based on Merkle trees.

10 These ratios refer to a comparison against Interval Merkle Trees which require opening two paths to prove
non-membership. When compared against Sparse Merkle Trees, our solutions show similar improvement
ratios.

@ Springer

Zero-knowledge proofs for set membership... 3463

when proving membership of many elements at the same time); for example, they surpass
a 2%%-large Merkle tree when proving batches of at least 600 elements. This approach is
attractive in settings where we can delegate a large quantity of these checks to an untrusted
server as there is a high constant proving cost. In contrast, our approach can achieve faster
proving time than Merkle trees already for a single membership check. It is an interesting
open problem to adapt our techniques for modular set (non-)membership for the case of
batched membership while keeping the tested elements hidden.

1.9 Organization

We give basic definitions in Sect.2. In Sect.3 we formalize commit-and-prove zkSNARKSs
for set (non-)membership. We describe our main constructions based on RSA accumulators
for set membership and non-membership respectively in Sects.4 and 5. We describe our
construction for set membership based on bilinear pairings in Sect. 6. Finally, in Sects.7 and
8 we discuss our implementation, experiments and applications.

1.10 Recent developments

Here we mention recent developments in the area of zero-knowledge proof for set (non-
)membership, following the conference version of this paper published in 2021 [8].

A closely related work is that of Campanelli et al. [19] who present zero-knowledge
protocols for RSA Accumulators with which one can prove membership for any number
of Pedersen-committed elements (a so-called ‘batch proof’). That is the proofs of [19] are
independent both of the size of the set and the number of elements proving membership for.

In the bilinear groups setting, Srinivasan et al. [70], among other improvements on
the functionalities and security properties of the actual pairing-based accumulator, provide
zero-knowledge (batch) proofs for membership and non-membership over the Nguyen accu-
mulator [57].

Another relevant, rapidly developing, line of work has to do with succinct zero-knowledge
lookup arguments. That is, given a committed vecfor of n elements, one proves that a number
m of committed elements are all values of the vector in some hidden position, while retaining
the elements secret. The proofs are succinct in both n and m. This line of work was initiated
by the seminal work of Zapico et al. [74] followed by a number of works improving the
prover’s complexity [35, 42, 62, 75]. All these constructions work over bilinear groups.

Finally, Lipmaa and Parisella [53] (building on [24, 26]) construct succinct set (non-
)membership NIZKs from falsifaible assumptions. That is, the objective of their work is
constructing efficient NIZKs for set (non-)membership that can be proven secure in the
standard model and assuming only falsifiable assumptions.

1.11 Publication note

This article is the long version of the homonymous paper that appeared in the proceedings
of Financial Cryptography and Data Security 2021 [8]. This version additionally contains:

The Sect. 1.10 on recent developments (subsequent to [8] works) in the area.

The full definitional framework of CP-SNARKSs for set (non-)membership (Sect. 3).
The pairing-based construction of Sect. 6.

— Full security proofs of the RSA-based constructions (Sects. 4, 5).

@ Springer

3464 D.Benarroch et al.

— An experimental evaluation of our RSA-based protocols (Sect. 7).

— A (slightly) different variant of our non-membership protocol (Appendix 2).

— A discussion on how to extend our RSA-based protocols to work with any Hidden Order
Group (Appendix 4).

2 Preliminaries

2.1 Notation

We denote the security parameter with A € N and its unary representation with 1*. Throughout
the paper we assume that all the algorithms of the cryptographic schemes take as input 1%,
which is thus omitted from the list of inputs. If D is a distribution, we denote by x < D
the process of sampling x according to D. An ensemble X = {X;},en is a family of
probability distributions over a family of domains D = {D,},cn, and we say that two
ensembles D = {D;}yeny and D' = {D/’\},\eN are statistically indistinguishable (denoted
by D ~; D)) if %ZX |Dy(x) — Dj(x)| < negl(®). If A = {A,} is a (possibly non-
uniform) family of circuits and D = {D, },en is an ensemble, then we denote by A(D) the
ensemble of the outputs of A, (x) when x < D,. We say two ensembles D = {D; },eN
and D’ = {Dj },en are computationally indistinguishable (denoted by D ~. D’) if for every
non-uniform polynomial time distinguisher A we have A(D) ~; A(D’).

We use [n] to denote the set of integers {1, ..., n}, and [0, n] for {0, 1, ..., n}. We denote
by () jef¢) the tuple of elements (uy, ..., ug).

We denote Primes := {e¢ € N : e is prime} the set of all positive integers e > 1 such
that they do not have non-trivial (i.e. different than e and 1) factors. More specifically,
given two positive integers A, B > 0 such that A < B, we denote with Primes(A, B)
the subset of Primes of numbers lying in the interval (A, B), i.e., Primes(A, B) := {e €
Z : eisprime A A < e < B}. According to the well known prime number theorem

[Primes(1, B)| = 0(@) which results to |Primes(A, B)| = 0(@) — 0(@).

2.2 RSA groups

We say that N = pq is an RSA modulus for some primes p, ¢, such that | p| = |gq|. We further
say that N is a strong RSA modulus if there are primes p’, ¢’ suchthat p = 2p'+1, g = 2¢'+
1. We call Z3, for an RSA modulus an RSA group. With ¢ : N — N we denote the Euler’s
totient function, ¢ (N) := |Zj‘\,|. In particular for RSA modulus ¢(N) = (p — 1)(g — 1).
An RSA Group generator N <—s GenSRSAmod(1*) is a probabilistic algorithm that outputs
a strong RSA modulus N of bit-length £(2) for an appropriate polynomial £(-).

For any N we denote by QRy :={Y : 3X € Z}, such that Y = X? (mod N)}, the set of
all the quadratic residues modulo N. QRy is a subgroup (and thus closed under multiplication)
of Z, with order [QRy | = |Z}|/2. In particular for a strong RSA modulus |QRy | = 4177/[1/ =

2p'q’.
2.2.1 Computational assumptions in RSA groups
The most fundamental assumption for RSA groups is the factoring assumption which states

that given an RSA modulus N < GenSRSAmod(1%) it is hard to compute its factors p and
g. We further recall the Discrete Logarithm and strong RSA [2] assumptions:

@ Springer

Zero-knowledge proofs for set membership... 3465

Definition 2.1 (DLOG assumption for RSA groups) We say that the Discrete Logarithm
(DLOG) assumption holds for GenSRSAmod if for any PPT adversary .A:

N <« GenSRSAmod(1*)
G «sZn;x <sZ

Y <« G* (mod N)

x' < A(Z%,G,Y)

Pr| G¥=Y (modN) : = negl(}).

Definition 2.2 (Strong-RSA assumption [2]) We say that the strong RSA assumption holds
for GenSRSAmod if for any PPT adversary .A:

o N < GenSRSAmod(1%)
P B : s 7% = negl(}).
N het1,—1 N 9l
U, e) < A(Zy, G)

2.3 Non-interactive zero-knowledge (NIZK)

We recall the definition of zero-knowledge non-interactive arguments of knowledge (NIZKs,
for short).

Definition 2.3 (NIZK) ANIZK for {R; },.en is a tuple of three algorithms IT = (KeyGen, Prove,
VerProof) that work as follows and satisfy the notions of completeness, knowledge soundness
and (composable) zero-knowledge defined below.

— KeyGen(R) — (ek, vk) takes the security parameter A and a relation R € R;, and
outputs a common reference string consisting of an evaluation and a verification key.

— Prove(ek, x, w) — takes an evaluation key for a relation R, a statement x, and a
witness w such that R(x, w) holds, and returns a proof .

— VerProof (vk, x, m) — btakes a verification key, a statement x, and either accepts (b = 1)
or rejects (b = 0) the proof .

Completeness For any A € N, R € R, and (x, w) such that R(x, w), it holds Pr[(ek, vk) «
KeyGen(R), m <« Prove(ek, x, w) : VerProof (vk, x,7) = 1] = 1.

Knowledge soundness Let RG be a relation generator such that RG, < R,. Il has
computational knowledge soundness for RG and auxiliary input distribution Z, denoted
KSND(RG, Z) for brevity, if for every (non-uniform) efficient adversary A there exists a
(non-uniform) efficient extractor £ such that Pr[Game%gF)Z. Ae = 1] = negl. We say that

IT is knowledge sound if there exists benign RG and Z such that IT is KSND(RG, Z).

KSND
Gameps z 4 = b

(R, auxg) « Rg(lk) ; crs := (ek, vk) < KeyGen(R)
auxz < Z(R,auxg,crs) ; (x,m) < A(R,crs, auxg, auxz)

w <« E(R, crs,auxg, auxy) ; b = VerProof (vk, x, 7) A —R(x, w)

Composable zero-knowledge A scheme IT satisfies composable zero-knowledge for a relation
generator RG if there exists a simulator S = (Skg, Sprv) such that both following conditions
hold.

@ Springer

3466 D.Benarroch et al.

Keys indistinguishability For all adversaries A

(R, auxg) < RG(1*) (R, auxg) < RG(1%")
Pr| crs < KeyGen(R) ~Pr| o (crs, tdy) < Skg(R)
Alcrs, auxg) =1 A(crs, auxg) =1

Proof indistinguishability For all adversaries A = (A, A7)

(R, auxg) < RG(1*)
(crs, tdy) < Syg(R)
Pr| (x,w,st) < Aj(crs,auxg) : R(x, w)

7w < Prove(ek, x, w)

Aor(st,m) =1
(R, auxg) < RG(1*)
(crs, tdy) < Sig(R)

~Pr| (x,w,st) < Aj(crs,auxg) : R(x,w)

7 < Sprv(crs, tdy, x)
As(st,m) =1

Definition 2.4 (zkSNARKs) A NIZK TI is called zero-knowledge succinct non-interactive
argument of knowledge (zkSNARK) if IT is a NIZK as per Definition 2.3 enjoying an addi-
tional property, succinctness, i.e., if the running time of VerProof is poly (A + |x| + log |w])
and the proof size is poly (A + log |w]).

Remark 2.1 (Onknowledge-soundness) In the NIZK definition above we use a non black-box
notion of extractability. Although this is virtually necessary in the case of zkSNARKSs [44],
NIZKs can also satisfy stronger (black-box) notions of knowledge-soundness.

2.4 Type-based commitments

We recall the notion of Type-Based Commitment schemes introduced by Escala and Groth
[36]. In brief, a Type-Based Commitment scheme is a normal commitment scheme with the
difference that it allows one to commit to values from different domains. More specifically,
the Commit algorithm (therefore the VerCommit algorithm also) depends on the domain
of the input, while the commitment key remains the same. For example, as in the original
motivation of [36], the committer can use the same scheme and key to commit to elements
that may belong to two different groups G1, G; or a field Z,. In our work we use type-based
commitments. The main benefit of this formalization is that it can unify many commitment
algorithms into one scheme. In our case this is useful to formalize the notion of commit-and-
prove NIZKSs that work with commitments from different groups and schemes.

More formally, a Type-Based Commitment is a tuple of algorithms Com = (Setup,
Commit, VerCommit) that works as a Commitment scheme defined above with the difference
that Commit and VerCommit algorithms take an extra input t that represent the type of u.
All the possible types are included in the type space 7T.!!

Definition 2.5 A type-based commitment scheme for a set of types 7 is a tuple of algorithms
Com = (Setup, Commit, VerCommit) that work as follows:

11 Normally 7 is finite and includes a small number of type, e.g. 7 = {G1, G, Zp}.

@ Springer

Zero-knowledge proofs for set membership... 3467

— Setup(1*) — ck takes the security parameter and outputs a commitment key ck. This key
includes Vt € T descriptions of the input space D¢, commitment space Ct and opening
space Ok.

— Commit(ck, t, u) — (c, 0) takes the commitment key ck, the type t of the input and a
value u € Dy, and outputs a commitment ¢ and an opening o.

— VerCommit(ck, t, ¢, u, 0) — b takes as a type t, a commitment ¢, a value u and an
opening o, and accepts (b = 1) or rejects (b = 0).

Furthermore, the security properties depend on the type, in the sense that binding and
hiding should hold with respect to a certain type.

Definition 2.6 Let 7 be a set of types, and Com be a type-based commitment scheme for 7.
Correctness, t-Type Binding and t-Type Hiding are defined as follows:
Correctness For all A € N and any input (t, u) € (7, Dt) we have:

Pr[ck < Setup(1*), (¢, 0) < Commit(ck, t, u) : VerCommit(ck, t, ¢, u, 0) = 1] = 1.

t-Type binding Given t € T, for every polynomial-time adversary A:

P ck < Setup(1*) u #u’ A VerCommit(ck, t, ¢, u, 0) = 1 |
r : = negl.
(c,u,o,u’,0) < A(ck, t) A VerCommit(ck, t, c,u’,0') = 1 9

In case Com is t-type bidning for all t € 7 we will say that it is Binding.
t -Type hiding Given at € 7T, for ck < Setup(1*) and every pair of values u, u’ € Dy, the
following two distributions are statistically close: Commit(ck, t, u) ~ Commit(ck, t, u’).
In case Com is t-Type Hiding for all t € 7 we say it is Hiding.

Composing type-based commitments For simplicity we now define an operator that allows
to compose type-based commitment schemes in a natural way.

Definition 2.7 Let C and C’ be two commitment schemes respectively for (disjoint) sets of
types 7 and 7'. Then we denote by C e C’ the commitment scheme C for 7 U 77 such as:

— C.Setup(secpar, secpar’) — ck : compute ck < C.Setup(secpar) and ck’ <«
C’.Setup(secpar’); ck := (ck, ck’).

- C.Commit(& := (ck, ck’), t,u) : If t € T then output C.Commit(ck, t, u); otherwise
return C'.Commit(ck’, t, u).

— C.VerCommit(ck := (ck, ck’), t, ¢, u, 0) : If ¢+ € T then return C.VerCommit(ck, t, c,
u, 0); otherwise return C'.VerCommit(ck’, t, ¢, u, 0).

The following property of e follows immediately from its definition.

Lemma 2.1 Let C and C' be two commitment schemes with disjoint sets of types. For all types
t if Cor C is t-hiding (resp. t-binding) then C @ C' is t-hiding (resp. t-binding).

Remark 2.2 We observe that a standard non type-based commitment scheme with input space
D induces directly a type-based commitment scheme with the same input space and a type
we denote by T[D].

2.5 Commit-and-prove NIZKs

We give the definition of commit-and-prove NIZKs (CP-NIZKs). We start from the definition
given in [7, 18] and we extend it to type-based commitments. The main benefit of such

@ Springer

3468 D.Benarroch et al.

extension is that we can formalize CP-NIZKs working with commitments over different
domains. In a nutshell, a CP-NIZK is a NIZK that can prove knowledge of (x, w) such that
R(x, w) holds with respect to a witness w = (u, w) such that u opens a commitment c,,.
As done in [18], we explicitly considers the input domain D,, at a more fine grained-level
splitting it over £ subdomains. We call them commitment slots as each of the D;-s intuitively
corresponds to a committed element.'? The description of the splitting is assumed part of
R’s description.

In the remainder of this work we use the following shortcut definition. If C is a type-based
commitment scheme over set of types 7, we say that a relation R over (D1 X --- X Dy)
is 7-compatible if for all j € [£] it holds that T[D;] € 7. We say a relation family R is
T -compatible if every R in R is 7-compatible; a relation generator RG is 7 -compatible if
Range(RG) is 7 -compatible.

Definition 2.8 (CP-NIZKs [18]) Let { Ry },.en be a family of relations R over Dy x Dy, X D,
such that D, splits over £ arbitrary domains (D X - - - x Dy) for some arity parameter £ > 1.
Let C = (Setup, Commit, VerCommit) be a commitment scheme (as per Definition 2.5)
over set of types 7 such that {R; },cn is 7-compatible.

A commit and prove NIZK for C and {R },en is a NIZK for a family of relations {’R%}KN
such that:

— every R € RS is represented by a pair (ck, R) where ck € C.Setup(1*) and R € R;

— Ris over pairs (X, W) where the statement is X := (x, (¢;) jefe]) € Dx X Ct, the witness
isw = ((u)jerer, (0j) jefe, @) € Dy X -+ x Dy x 0! x D,,, and the relation R holds
iff

A\ - VerCommit(ck, T[D;1, ¢j, uj, 0;) = L A R(x, (u}) jeqe), @) = 1.
J

We denote knowledge soundness of a CP-NIZK for commitment scheme C and relation
and auxiliary input generators RG and Z as CP-KSND(C, RG, Z).

We denote a CP-NIZK as a tuple of algorithms CP = (KeyGen, Prove, VerProof). For ease
of exposition, in our constructions we adopt the following explicit syntax for CP’s algorithms.

— KeyGen(ck, R) — crs := (ek, vk)

— Prove(ek, x, (¢j) jerer, () jera)s (0) jere), @) =
— VerProof(vk, x, (¢j) jefe), m) = b € {0, 1}

2.6 Commit-and-prove NIZKs with partial opening

We now define a variant of commit-and-prove NIZKs with a weaker notion of knowledge-
soundness. In particular we consider the case where part of the committed input is not assumed
to be extractable (or hidden),'? i.e., such input is assumed to be opened by the adversary.
This models scenarios where we do not require this element to be input of the verification
algorithm (the verifier can directly use a digest to it).

The motivation to define and use this notion is twofold. First, in some constructions
commitments on sets are compressing but not knowledge-extractable. Second, in many appli-
cations this definition is sufficient since the set is public (e.g., the set contain the valid coins).

12 Each of the “open” elements in the D;-s (together with any auxiliary opening information) should also
be thought of as the witness to the relation as we require them to be extractable. On the other hand, the
commitments themselves are part of the public input.

13 This is reminiscent of the soundness notions considered in [39].

@ Springer

Zero-knowledge proofs for set membership... 3469

The definition below is limited to a setting where the adversary opens only one input in
this fashion.!* We will assume, as a convention, that in a scheme with partial opening this
special input is always the first committed input of the relation, i.e. the one denoted by u
and corresponding to D;. We note that the commitment to u; does not require hiding for
zero-knowledge to hold.

Definition 2.9 (CP-NIZK with partial opening) A commit and prove NIZK with partial open-
ing for C and {R; },en is a NIZK for a family of relations {RE} 1N (defined as in Definition
2.8) such that the property of knowledge soundness is replaced by knowledge soundness with
partial opening below.

Knowledge soundness with partial opening Let RG be a relation generator such that
RG, € Ry. IT has knowledge soundness with partial opening for C, RG and auxiliary
input distribution Z, denoted CP-poKSND(C, RG, Z) for brevity, if for every (non-

uniform) efficient adversary A there exists a (non-uniform) efficient extractor £ such that

Pr[GameEPkpggNi ¢ = 1] = negl. We say that IT is knowledge sound for C if there exists

benign RG and Z such that IT is CP-poKSND(C, RG, 2)."

CP-poKSND
GameCRngg — b

ck < C.Setup(1*); (R, auxg) < RG(1"); R:= (ck, R)
crs := (ek, vk) < KeyGen(R)
auxz < Z(R, auxg, crs)

(x, (Cj)je[[]v ui,oq,]T) < .A(R, Crs, auxg, auxz)
(@ jerer ©))jerer. @) < ER, crs, auxg, auxz)
b = VerProof (vk, x, (cj)jereys ™) A

ﬁ(/\jem C.VerCommit(ck, T[D;], ¢j. uj. 0;) = 1 A R(x, () jefe]. @) = 1)

Remark 2.3 (On weaker ZK in the context of partial opening) The notion of zero-knowledge
for CP-NIZKs with partial opening that is implied by our definition above implies that the
simulator does not have access to the opening of the first input (as it is the case in zero-
knowledge for CP-NIZKs in general). Since this first commitment is opened, in principle
one could also consider and define a weaker notion of zero-knowledge where the simulator
has access to the first opened input. We leave it as an open problem to investigate if it can be
of any interest.

Remark 2.4 (Full extractability) If a CP-NIZK has an empty input #| opened by the adversary
in the game above, then we say that it is fully extractable. This roughly corresponds to the
notion of knowledge soundness in Definition 2.3.

14 We can easily generalize the notion for an adversary opening an arbitrary subset of the committed inputs.
15 we point out that, although in the game below we make explicit the commitment opening in the relation,
this is essentially the same notion of knowledge soundness as in CP-NIZKs (i.e. Definition 2.3) where the
only tweak is that the adversary gives explicitly the first input in the commitment slot. We make commitments
explicit hoping for the definition to be clearer. This is, however, in contrast to the definition of CP-NIZKs
where the commitment opening is completely abstracted away inside the relation.

@ Springer

3470 D.Benarroch et al.

Aux®I(17) AuxZ (ck, (crsb,Rmauxg))be{m}) :
(R1, auxg;{n) — RG1 (1Y) aux(Zl) — Z1(ck, Rl,crsl,aux?)
(R2, auxg)) — RG,(17) aux(ZZ) — Za(ck, Rg,chZ,aux?)
return (Rb,auxg>)bg{1,2} return (aux(Zb))be{Lz}
RG-(1Y) - Z*((ck, RR, . r,), (ek™,vk™), (auxg, aux)) :
(b) RG (1A (3“><<zb))be{1,2}
(RluaUXR)bE{l,?} +— Aux (1)

— Aux® ck, crsb,Rb,aux(b> he {10
return (R/ﬁ’,l,RQv (aux(jg))be{l‘z}) (ck, R)16{1’2})

return (aux(Zb) Yoe{1,2}

=z (0 .
@b(lA) : Zy(ck, Ry, crsp, auxy’)

Parse auXr as (Rz_p, (aux'®)
(Royaux® e 1.2y (Rs—v, (auxiy"Jveq1,2})

— Aux™9(1Y)

return (R, mg)

crsz_p < CP3_.KeyGen(ck, R3—p)
(BIJX(Zb))[)E{LQ} — AuxZ(ck, ..

(b)
b ..., (crsp, Ry, auxy’)pe{1,2})
i= (Rs—b, (aux¥)peq1,2))) ,)
Se(P) L (b)
auxy = (crsz—p, (auxy’)peq1,2})

——(b
return aux(Z>

Fig. 1 Relation and auxiliary input generators for AND composition construction

2.6.1 Composition properties of commit-and-prove schemes

In [18], Campanelli et al. show a compiler for composing commit-and-prove schemes that
work for the same commitment scheme in order to obtain CP systems for conjunction of
relations. In this section we generalize their results to the case of typed relations and type-
based commitments. This generalization in particular can model the composition of CP-
NIZKs that work with different commitments, as is the case in our constructions for set
membership in which one has a commitment to a set and a commitment to an element.

We begin by introducing the following compact notation for an augmented relation gen-
erator.

Definition 2.10 (Augmented relation generator) Let RG be a relation generator and F(1*)
an algorithm taking as input a security parameter. Then we denote by RG[F] the relation
generator returning (R, (auxg, outr)) where outr <« F(1*) and (R, auxg) < RG(1").

The next lemma states that we can (with certain restrictions) trivially extend a CP-NIZK
for commitment scheme C to an extended commitment scheme C o C’'.

Lemma 2.2 (Extending to commitment composition) Let C,C' be commitment schemes
defined over disjoint type sets T and T'. If CP is CP-poKSND(C, RG[C.Setup], Z) for
some relation and auxiliary input generators RG,Z. Then CP is CP-poKSND
(Ce C', RG[C.Setup], Z) if RG is T -compatible.

We now define relation generators and auxiliary input generators for our composition
constructions.
The following lemma shows how we can compose CP-NIZKs even when one of them is

fully extractable but the other is not. We are interested in the conjunction Rgsym of relations

@ Springer

Zero-knowledge proofs for set membership... 3471

CPlsym-KeyGen(ck, R, g,) : CP.oym-VerProof (vk*, z1, @2, (¢;) (0,3, ")
(eky,vki) < CPy.KeyGen(ck, R1) bgi) < CP1.VerProof (vki, 21, (co, ¢1,¢3),m1)
(eka, vka) <= CP2.KeyGen(ck, Rz) bii) < CP2.VerProof (vka, z2, (c2, c3), m2)

ek™ = (ekp)veq1,2)
vk™ = (vky)pe 1,23
return (ek”,vk")

return bg? A bf,i)

CP(/I\ﬂym-Prove(ek*‘ T, T2, (CJ)IE[UJS]: (u])_lé[().'d]‘ (0])_7€[0.3]‘Wl -,w2) :

71 < CP1.Prove(eki, z1, (co, c1, ¢3), (wo, u1,u3), (00,01, 03),w1)
72 < CPa.Prove(eka, 2, (2, ¢3), (u2, u3), (02,03), w2)

return 7" := (7)peq1,2}

Fig.2 CP-NIZK construction for AND composition (asymmetric case)

of type Ry (x1, (o, u1, u3), 1) and Ry(x2, (u2, u3), wz) where
Ry (X1, X2, (o, 1, u2, u3), ®1, 2) 1= Ry(x1, (uo, u1, u3), w1) A Ra(x2, (u2, u3), @2).

Lemma 2.3 (Composing conjunctions (with asymmetric extractability)) Let C be a com-
putationally binding commitment scheme. If CPy is CP-poKSND(C, RG1, Z1) and CP, is
KSND(C, RG>, Z;) (where RGy,, Zy, are defined in terms of RGy,, 2 in Fig. 1 forb € {1,2}),
then the scheme CPQSym in Fig.2 is CP-poKSND(C, RG*, Z*) where RG*, Z* are as defined
in Fig. 1.

The following lemma is a symmetric variant of Lemma 2.3, i.e. the CP-NIZKs we are
composing are both secure over the same commitment scheme and support partial open-
ing, that is they both handle relations with and adversarially open input ug. This time

we are interested in the conjunction R}, of relations of type Ry (x1, (uo, u1, u3), w1) and

sym
Ro(x2, (ug, uz, u3), wy) where

Ry (X1, X2, (uo, w1, uz, u3), w1, @2) i= Ry(x1, (uo, uy, u3), 1)

AR (x2, (1o, u2, u3), o).

Lemma 2.4 (Composing conjunctions (symmetric case)) Let C be a (type-based) computa-
tionally binding commitment scheme. If CPy is CP-poKSND(C, RGy,, Z5) (where RGyp, 2y
are defined in terms of RGp, Zp in Fig. 1) for b € {1, 2}, then the scheme CPSAym in Fig.3 is
CP-poKSND(C, RG*, Z*) where RG*, Z* are as defined in Fig. 1.

3 CP-SNARKSs for set membership (and non-membership)

In this section we discuss a specialization of CP-SNARKSs for the specific NP relation that
models membership (resp. non-membership) of an element in a set, formally defined below.

3.1 Set membership relations

Let Dejy be some domain for set elements, and let Dgey € 2Pem be a set of possible sets
over D,. We define the set membership relation Rmem : Delm X Dset as

Rmem(U,u)=1 << ueUl.

@ Springer

3472 D. Benarroch et al.

CP{ym-KeyGen(ck, Ry, g,) : CP{,,n-VerProof (vk*, z1, 22, (¢j) jej0,3, ") :
(eky,vki) < CPy.KeyGen(ck, R1) bgi) < CP1.VerProof (vki, 21, (co, ¢1,¢3),m1)
(eka, vka) <= CP2.KeyGen(ck, R2) bii) < CP2.VerProof (vka, z2, (co, c2, c3), 2)

ek™ = (eks)veq1,2)
vk™ = (vky)pe 1,2}
return (ek”,vk")

return bg? A b(()i)

CPLym-Prove(ek™, z1, 22, (¢;) (0,31, (u5) (0,3, (05)jef0,3) Wi, w2)

71+ CP1.Prove(eky, z1, (co, c1, ¢3), (o, u1,u3), (00, 01,03),w1)
72 4 CP2.Prove(eka, z2, (co, c2, ¢3), (1o, u2,us), (00, 02, 03), w2)

return 7" := (7p)pe 1,2}

Fig.3 CP-NIZK construction for AND composition (symmetric case)

This is the fundamental relation that we deal with in the rest of this work.
The non-membership relation Rymem : Delm X Dset can be defined analogously as

Romem(U,u) =1 < u ¢ U.

3.2 CP-SNARKs for set membership

Intuitively, a commit-and-prove SNARK for set membership allows one to commit to a set
U and to an element u, and then to prove in zero-knowledge that Ryem (U, u) = 1. More
formally, let Rmem : Deim X Dset be a set membership relation as defined above where
T[Deim] = teim and T[Dset] = tset, and let Comgeim be a type-based commitment scheme
for 7 such that teet, tejm € 7. Basically, Comsem allows one to either commit an element
of Dem or to a set of values of Dgjm. Then a CP-SNARK for set membership is a CP-SNARK
for the family of relations {R{"*™} and a type-based commitment scheme Comsem. It is
deduced from definition 2.8 that this is a zZkSNARK for the relation:

R = (ck, Rmem) Over
(x7w) = ((.X,C), (M,O,(,())) = ((@, (CUtcu))a ((U,M), (OU’OM)7 g))a

such that R holds iff:

Rmem (U, u) = 1 A VerCommit(ck, teet, cy, U, 0py) =1
AVerCommit(ck, teim, ¢y, u, 04) = 1.

A commit-and-prove version of Rymem can be defined as a natural variant of the relation
above.

Notice that for the relation Rmem it is relevant for the proof system to be succinct so that
proofs can be at most polylogarithmic (or constant) in the the size of the set (that is part of the
witness). This is why for set membership we are mostly interested in designing CP-SNARKSs.

Proving arbitrary relations involving set (non-)membership

As discussed in the introduction, a primary motivation of proving set membership in zero-
knowledge is to prove additional properties about an alleged set member. In order to make
our CP-SNARK for set membership a reusable gadget, we discuss a generic and simple
method for composing CP-SNARKSs for set membership (with partial opening) with other

@ Springer

Zero-knowledge proofs for set membership... 3473

CP-SNARKSs (with full extractability) for arbitrary relations. More formally, let Rpnem be the
set membership relation over pairs (U, u) € X x D, as R be an arbitrary relation over pairs
(u, w), then we define as R* the relation:

R*(U,u, ®) := Rmem(U, u) A R(u, w).

The next corollary (direct consequence of Lemmas 2.2, 2.3) states we can straightforwardly
compose a CP-SNARK for set membership with a CP-SNARK for an arbitrary relation on
elements of the set.

Corollary 3.1 (Extending relations with set membership) Let Cs, C, be two computationally
binding commitment schemes defined over disjoint type sets Ts and T,. Let CPmem, CPy be
two CP-SNARKs and Rmem, RGy (resp. Zmem, Zu) be two relation (resp. auxiliary input)
generators. If CPmem is CP-poKSND(Cs @ C;;, Rmem, Zmem) and CP, is KSND(C,,, RG,, Z,)
then there exists a CP* that is CP-poKSND(Cs e C,,, RG*, Z*) where RG*, Z* are as defined
in Fig. 1.

In a similar fashion, we can combine an arbitrary relation R with the relation for non-
membership obtaining relation R* defined as:

R*(U, u, ®) := Ramem(U, u) A R(u, w).

The next corollary states we can straightforwardly compose a CP-SNARK for set non-
membership with a CP-SNARK for an arbitrary relation on elements in the universe of the
set.

Corollary 3.2 (Extending relations with set non-membership) Let Cs, C,, be two compu-
tationally binding commitment schemes defined over disjoint type sets Is and T,. Let
CPnmem, CP,, be two CP-SNARKSs and Rnmem, RGy (resp. Znmem, Zu) be two relation (resp.
auxiliary input) generators. If CPnmem is CP-poKSND(Cs e C;;, Rnmem, Znmem) and CP,, is
KSND(Cy, RGy, Z,) then there exists a CP* that is CP-poKSND(Cs e C,,, RG*, Z*) where
RG*, Z* are as defined in Fig. 1.

3.2.1 CP-SNARKs for set membership from accumulators with proofs of knowledge

As discussed in the introduction, CP-SNARKS for set membership are simply a different
lens through which we can approach accumulators that have a protocol for proving in zero-
knowledge that a committed value is in the accumulator (i.e., it is in the set succinctly
represented by the accumulator). To strengthen this intuition in Appendix 2 we formally
show that a CP-SNARK for set membership can be constructed from an accumulator scheme
that has a zero-knowledge proof for committed values. This allows us to capture existing
schemes such as [16, 57].

4 A CP-SNARK for set membership with short parameters

In this section we describe CP-SNARKSs for set membership in which the elements of the
sets can be committed using a Pedersen commitment scheme defined in a prime order group,
and the sets are committed using an RSA accumulator. The advantage of having elements
committed with Pedersen in a prime order group is that our CP-SNARKS can be composed
with any other CP-SNARK for Pedersen commitments and relations R that take set elements

@ Springer

3474 D. Benarroch et al.

as inputs. The advantage of committing to sets using RSA accumulators is instead that the
public parameters (i.e., the CRS) of the CP-SNARKSs presented in this section are short,
virtually independent of the size of the sets. Since RSA accumulators are not extractable
commitments, the CP-SNARKSs presented here are secure in a model where the commitment
to the set is assumed to be checked at least once, namely they are knowledge-sound with
partial opening of the set commitment.

A bit more in detail, we propose two CP-SNARKSs. Our first scheme, called MemCPgsa,
works for set elements that are arbitrary strings of length 7, i.e., Dejyy = {0, 1}7, and for sets
that are any subset of Dgjm, i.€., Dset = 2Dem Qur second scheme, MemCPgsaprm, instead
works for set elements that are prime numbers of exactly u bits, and for sets that are any
subset of such prime numbers. This second scheme is a simplified variant of the first one that
requires more structure on the set elements (they must be prime numbers) but in exchange of
that offers better efficiency. So it is preferable in those applications that can work with prime
representatives.

4.1 An high-level overview of our constructions

We provide the main idea behind our scheme, and to this end we use the simpler scheme
MemCPgsaprm in which set elements are prime numbers in (2/~!, 2#). The commitment to

the set P = {ey, ..., e,} is an RSA accumulator [2, 6] that is defined as Acc = Gneie” ¢
for a random quadratic residue G € QRy. The commitment to a set element e is instead a
Pedersen commitment ¢, = g°h’s in a group G, of prime order g, where g is of v bits and
1 < v. For public commitments Acc and c,, our scheme allows to prove in zero-knowledge
the knowledge of e committed in ¢, such that e € P and Acc = Glaere A public coin
protocol for this problem was proposed by Camenisch and Lysyanskaya [16]. Their protocol
however requires various restrictions. For instance, the accumulator must work with at least
2-bit long primes, which slows down accumulation time, and the prime order group must be
more than 4)-bits (e.g., of 512 bits), which is undesirable for efficiency reasons, especially if
this prime order group is used to instantiate more proof systems to create other proofs about
the committed element. In our scheme the goal is instead to keep the prime order group of
“normal” size (say, 2 bits), so that it can be for example a prime order group in which we can
efficiently instantiate another CP-SNARK that could be composed with our MemCPgsapym-
And we can also allow flexible choices of the primes size that can be tuned to the application
so that applications that work with moderately large sets can benefit in efficiency. In order to
achieve these goals, our idea to create a membership proof is to compute the following:

— An accumulator membership witness W = Gllierva @ , and an integer commitment to
e in the RSA group, C, = G*H", where H € QRy.

— A ZK proof of knowledge CPgoot of a committed root for Acc, i.e. a proof of knowledge
of e and W such that W¢ = Accand C, = G°H".
Intuitively, this gives that C, commits to an integer that is accumulated in Acc (at this
point, however, the integer may be a trivial root, i.e., 1).

— A ZK proof CPmodeq that C, and ¢, commit to the same value modulo g.

— A ZK proof CPrange that ¢, commits to an integer in the range (2/*~1, 21).

From the combination of the above proofs we would like to conclude that the integer commit-
ted in ¢, is in P. Without further restrictions, however, this may not be the case; in particular,
since for the value committed in C, we do not have a strict bound it may be that the integer
committed in c, is another ¢, such e = ¢; (mod q) but e # ¢, over the integers. In fact, the

@ Springer

Zero-knowledge proofs for set membership... 3475

proof CProot does not guarantee us that C, commits to a single prime number e, but only that
e divides [| ¢;ep €i> namely e might be a product of a few primes in P or the corresponding
negative value, while its residue modulo ¢ may be some value that is not in the set—what
we call a “collision”. We solve this problem by taking in consideration that e, is guaranteed
by CPRange to be in (2“’1, 2“) and by enhancing CPgoot to also prove a bound on e: roughly
speaking |e| < 22*%tH for a statistical security parameter Ay. Using this information we
develop a careful analysis that bounds the probability that such collisions can happen for a
malicious e (see Sect. 4.3 for more intuition).

In the following section we formally describe the type-based commitment scheme sup-
ported by our CP-SNARK, and a collection of building blocks. Then we present the
MemCPgsa and MemCPgsaprm CP-SNARKS in Sects. 4.3 and 4.4 respectively, and finally
we give instantiations for some of our building blocks in Sect.4.5.

Remark 4.1 Although we specifically describe our protocols for RSA groups, they generalize
to work over any Hidden Order Group with slight modifications. See Appendix 4 for details.

4.2 Preliminaries and building blocks
4.2.1 Notation

Given a set U = {uy,...,u,} C Z of cardinality n we denote compactly with prod;, :=
[T7_, ui the product of all its elements. We use capital letters for elements in an RSA group
Zy,e.g., G, H € Zj,. Conversely, we use small letters for elements in a prime order group
Gy, e.g., g, h € G,. Following this notation, we denote a commitment in a prime order group
as ¢ € Gy, while a commitment in an RSA group as C € Zj,.

4.2.2 Commitment schemes

Our first CP-SNARK, called MemCPgsa, is for a family of relations Rmem : Delm X Dset
such that Dg = {0, 1}7, Dset = 2Pem, and for a type-based commitment scheme that is
the canonical composition SetComgss e PedCom of the two commitment schemes given
in Fig.4. PedCom is essentially a classical Pedersen commitment scheme in a group G, of
prime order g such that g € (2"~!, 2") and < v. PedCom is used to commit to set elements
and its type is t,;. SetComgsa is a (non-hiding) commitment scheme for sets of 7-bit strings,
that is built as an RSA accumulator [2, 6] to a set of u-bit primes, each derived from an n-bit
string by a deterministic hash function Hprime : {0, 1}7 — Primes (24!, 2/). SetComgsa
is computationally binding under the factoring assumption'® and the collision resistance of
Hprime. Its type for sets is ty.

4.2.3 Hashing to primes

The problem of mapping arbitrary values to primes in a collision-resistant manner has been
studied in the past, see e.g., [14, 29, 43], and in [40] a method to generate random primes is
presented. Although the main idea of our scheme would work with any instantiation of Hprime.,
for the goal of significantly improving efficiency, our construction considers a specific class

16 Here is why: finding two different sets of primes P, P/, P # P’ such that GP4P = Acc = GProdp’
implies finding an integer @ = prod p — prod ps # 0 such that G¥ = 1. This is known to lead to an efficient
algorithm for factoring N.

@ Springer

3476 D.Benarroch et al.

Setup(1*) : Choose a prime order group G, of order Setup(1*,1#) : Let N + GenSRSAmod(1%), F <=s Z},,
q € (2"71,2") and generators g, h s G,. and Hpime < H; compute G + F?mod N €
Return ck := (Gg, g, h) QRy. Return ck := (N, G, Hprime)-

Commit(ck, tq,u) : sample r <= Z,. Commit(ck, ty,U) : compute P := {Hpime(u) | u €
Return (¢,0) := (g“h",r). U}, Acc + GP°P. Return (c, 0) := (Acc, @).

VerCommit(ck, tq, ¢, u,7) : Output 1 if ¢ = g“h"; out- VerCommit(ck, ty, Acc, U, @) : compute P := {Hprime(u)
put 0 otherwise. u € U} and return 1 iff Acc = G*™*7 mod N.

(a) PedCom (b) SetComgsa

Fig.4 RSA accumulator and Pedersen commitment schemes for RSAHashmem

of Hprime functions that work as follows. Let H : {0, 1}7 x {0, 1}* — {0, 1}#~1 be a collision-
resistant function, and define Hprime (1) as the function that starting with j = 0, looks for the
first j € [0, 2* — 1] such that the integer represented by the binary string 1|H(u, j) is prime.
In case it reaches j = 2' — 1 it failed to find a prime and outputs L.'7 We consider two main
candidates of such function H (and thus Hpime):

— Pseudorandom function Namely H(u, j) := F(u, j) where F, : {0, 1}7™ is a PRF with
public seed « and ¢ = [log uA]. Due to the density of primes, the corresponding Hprime
runs in the expected running time O (1) and L is returned with probability < exp(—X) =
negl().!® Under the random oracle heuristic, F can be instantiated with a hash function
like SHA256.

— Deterministic map H(u, j) := f(u)+ j withu > 201 and j € (f(u), f(u+1)), where
fu) :=2(u+2)log,(u + 1)2. The corresponding function Hprime (1) is essentially the
function that maps to the next prime after f (). This function is collision-free (indeed it
requires to take . > 1) and generates primes that can be smaller (in expectation) than the
function above. Cramer’s conjecture implies that the interval (f («), f(u + 1)) contains
a prime when u is sufficiently large.

4.2.4 CP-NIZK for H computation and PedCom

We use a CP-NIZK CPhgasneq for the relation Ryasheq : {0, 1}# x {0, 1} x {0, 1}* defined as
Ruasheq (1, U2,) =1 <= uy = (1|H(u2, »)),

and for the commitment scheme PedCom. Essentially, with this scheme one can prove that
two commitments ¢, and ¢, in G are such that ¢, = g°h’, ¢, = g"h"™ and there exists j
such that e = (1|H(u, j)). As it shall become clear in our security proof, we do not have to
prove all the iterations of H until finding j such that (1|H(u, j)) = Hprime (1) is prime, which
saves significantly on the complexity of this CP-NIZK.

4.2.5 Integer commitments

We use a scheme for committing to arbitrarily large integer values in RSA groups introduced
by Fujisaki and Okamoto [41] and later improved in [31]. We briefly recall the commitment
scheme. Let ZY, be an RSA group. The commitment key consists of two randomly chosen
generators G, H € Z};; to commit to any x € Z one chooses randomly an » < [1, N/2] and

17 For specific instantiations of H, ¢ can be set so that L is returned with negligible probability.
18 We assume for simplicity that the function never outputs L, though it can happen with negligible probability.

@ Springer

Zero-knowledge proofs for set membership... 3477

computes C < G* H"; the verifier checks whether or not C = =G~ H”. This commitment
scheme is statistically hiding, as long as G and H lie in the subgroup of Z3,. This can be
achieved by setting G <— F2, H < J*> € QR(N), where F, J are randomly sampled from
Z3,- Moreover it’s computationally binding under the assumption that factoring is hard in
Zy, - Furthermore, a proof of knowledge of an opening was presented in [31], its knowledge
soundness was based on the strong RSA assumption, and later found to be reducible to the
plain RSA assumption in [25]. We denote this commitment scheme as IntCom.

4.2.6 Strong-RSA accumulators

As observed earlier, our commitment scheme for sets is an RSA accumulator Acc computed on
the set of primes P derived from U through the map to primes, i.e., P := {Hprime(s)|s € U}.
In our construction we use the accumulator’s feature for computing succinct membership wit-
nesses, which we recall works as follows. Given Acc = Gn"i er € .— GgProdp the membership

witness for e is Wy = Glleierven ¢ which can be verified by checking if W,fk = Acc.

4.2.7 Argument of knowledge of a root

‘We make use of a zero-knowledge non-interactive argument of knowledge of a root of a public
RSA group element Acc € QRy. This NIZK argument is called CPgroot. More precisely, it
takes in an integer commitment to a e € Z and then proves knowledge of an e-th root of Acc,

i.e.,of W = Accfli. More formally, CPgoot is a NIZK for the relation Rpoet : (Z*N x QRy x
N) x (Z x Z x Z,) defined as
RROOt ((Ce» ACC? M)a (ev r, W)) =1 lffa

C,==+G°H mod N A Wé =Accmod N A |e| < 2*ethstut2

where A, and A, are the statistical zero-knowledge and soundness security parameters respec-
tively of the protocol CPreot. CPRroot is obtained by applying the Fiat-Shamir transform to
a public-coin protocol that we propose based on ideas from the protocol of Camenisch and
Lysysanskaya for proving knowledge of an accumulated value [16]. In [16], the protocol
ensures that the committed integer e is in a specific range, different from 1 and positive.
In our CPgeet protocol we instead removed these constraints and isolated the portion of the
protocol that only proves knowledge of a root. We present the CProot protocol in Sect.4.5; its
interactive public coin version is knowledge sound under the RSA assumption and statistical
zero-knowledge. Finally, we notice that the relation Rgoot is defined for statements where
Acc € QRy, which may not be efficiently checkable given only N if Acc is adversarially
chosen. Nevertheless CProot can be used in larger cryptographic constructions that guarantee
Acc € QRy through some extra information, as is the case in our scheme.

4.2.8 Proof of equality of commitments in Zy, and G,

Our last building block, called CPpodeq, proves in zero-knowledge that two commitments, a
Pedersen commitment in a prime order group and an integer commitment in an RSA group,
open to the same value modulo the prime order ¢ = ord(G). This is a conjunction of a classic
Pedersen X-protocol and a proof of knowledge of opening of an integer commitment [31],
i.e. for the relation

@ Springer

3478 D.Benarroch et al.

KeyGen(ck, R€) : parse ck := ((NV, G, Hpime), (Gq, g, h)) as the commitment keys of SetComgsa and PedCom
respectively. Sample a random generator H.
Generate Crspasheq <5 CPHasheq-KeyGen((Gy, g, h), RHasheq), & crs for CPasheq-
Return crs := (N, G, H, Hprime, Gq, g, v, CrSHashEq) -
Given crs, one can define crsgoot := (N, G, H), CrSmodeq := (N, G, H,Gq, g, h).

Prove(crs, (Cu, cu), (U, u), (@,714)) : € < Hprime(uw) = (1|H(u, 5)), (ce,7q) < Comi.Commit(ck, tq, €).
(Ce,r) < IntCom.Commit((G, H),e); P < {Hprime(u) :u € U}, W = Glleseryey i,
TRoot — CPRoot.Prove(crsroct, (Ce, Cu,), (e,7, W))
Tmodeq <~ CPmodeq-Prove(crsmodeq; (Ce, ce), (e, €,7,74))
THashEq <— CPHasheq-Prove(crspasneqs (Ce, cu), (€,), (1, 7u), j)
Return 7 := (Ce, Ce, TRoot, TmodEqs THashEq) -

VerProof (crs, (Cu,cy),m) : Return 1 iff CProot.VerProof (crsroot, (Ce, Cury 1), TRoot) = 1 A
CPrmodeq-VerProof (crsmodeq, (Ce, Ce), Tmodeq) = 1 A CPHasheq-VerProof (Crshasheq, (Ce,y Cu)y THasheq) = 1.

Fig.5 MemCPgsa CP-SNARK for set membership

Remodeq ((Ces co). (e, eq.7,14)) = Liff e
=e;modg AC, =+G°H mod N Ac, = g% mod g j,rg mod g

We present CPpodeq in Sect. 4.5.

4.3 Our CP-SNARK MemCPgsp

We are now ready to present our CP-SNARK MemCPgspa for set membership. The scheme
is fully described in Fig.5 and makes use of the building blocks presented in the previous
section.

The KeyGen algorithm takes as input the commitment key of Com; and a description
of Rmem and does the following: it samples a random generator H <—s QR so that (G, H)
define a key for the integer commitment, and generate a CRS Crspasheq Of the CPhasheg
CP-NIZK.

For generating a proof, the ideas are similar to the ones informally described at the begin-
ning of Sect.4 for the case when set elements are prime numbers. In order to support sets
U of arbitrary strings the main differences are the following: (i) we use Hpyime in order to
derive a set of primes P from U, (ii) given a commitment ¢, to an element u € {0, 1}", we
commit to e = Hprime (1) in c; (iii) we use the previously mentioned ideas to prove that c,
commits to an element in P (that is correctly accumulated), except that we replace the range
proof 7range With a proof myasheq that ¢, and ¢, commits to u and e respectively, such that
3j re= (1IH(, j)).

Remark 4.2 (On the support of larger 1) In order to commit to a set element u € {0, 1}"
with the PedCom scheme we require 7 < v. This condition is actually used for ease of
presentation. It is straightforward to extend our construction to the case n > v, in which case
every u should be split in blocks of less than v bits that can be committed using the vector
Pedersen commitment (Fig. 4).

The correctness of MemCPgsa can be checked by inspection: essentially, it follows from
the correctness of all the building blocks and the condition that , u© < v. For succinctness,
we observe that the commitments Cy/, ¢, and all the three proofs have size that does not
depend on the cardinality of the set U, which is the only portion of the witness whose size is
not a-priori fixed.

@ Springer

Zero-knowledge proofs for set membership... 3479

4.3.1 Proof of security

Recall that the goal is to prove in ZK that ¢, is a commitment to an element u € {0, 1}"
that is in a set U committed in Cy . Intuitively, we obtain the security of our scheme from
the conjunction of proofs for relations RRroot, Rmodeq and Ruasheq: (1) THasheq gives us that
ce commits to e; = (1|H(u, j)) for some j and for u committed in ¢,. (ii) Tmodeq gives
that C, commits to an integer e such that ¢ mod ¢ = e, is committed in c,. (iii) 7TRoot
gives us that the integer e committed in C, divides prodp, where Cy = GP™9r with
P = {Hprime(u;) : u; € U}.

By combining these three facts we would like to conclude that e, € P that, together with
THashEq» should also guarantee u € U. A first problem to analyze, however, is that for e we do
not have guarantees of a strict bound in (2“’1, 2"); so it may in principle occur that e = ¢,
(mod g) but e # e, over the integers. Indeed, the relation Rroot does not guarantee us that e
is a single prime number, but only that e divides the product of primes accumulated in Cy;.
Assuming the hardness of Strong RSA we may still have that e is the product of a few primes
in P or even is a negative integer. We expose a simple attack that could arise from this: an
adversary can find a product of primes from the set P, let it call e, such thate = ¢, (mod q)
but e # e, over the integers. Since e is a legitimate product of members of P, the adversary
can efficiently compute the e-th root of Cy and provide a valid 7geot proof. This is what
we informally call a “collision”. Another simple attack would be that an adversary takes a
single prime e and then commits to its opposite e; <— —e mod g in the prime order group.
Again, since e € P the adversary can efficiently compute the e-th root of Cyy, W¢ = Cyy, and
then the corresponding —e-th root of Cy, (W’l)_e = Cy. This is a second type of attack
to achieve what we called “collision”. With a careful analysis we show that with appropriate
parameters the probability that such collisions occur can be either O or negligible.

One key observation is that Rpeot does guarantee a lower and an upper bound,
—Detrstud2 apd preTAs A2 respectively, for e committed in C,. From these bounds (and
that e | prod p) we get that an adversarial e can be the product of ar mostd = 1+ L%ﬁzj
primes in P (or their corresponding negative product). Then, if 29* < 2'72 < ¢, or
dp + 2 < v, we get that e < 2dm ~ q. In case ¢ > 0 and since ¢ is prime,
e = e,modg A e < g implies that e = e, over Z, namely no collision can occur
at all. In the other case ¢ < O we have e > —29 and ¢ = e, (mod g) implies
e=—q+e < 271424 < —2v71 4 2v=2 = _2v=2 Therefore, -2 < —2"72,
which is a contradiction since we assumed du + 2 < v. So this type of collision cannot
happen.

If on the other hand we are in a parameters setting where du > v — 2, we give a concrete
bound on the probability that such collisions occur. More precisely, for this case we need to
assume that the integers returned by H are random, i.e., H is a random oracle, and we also
use the implicit fact that Ryasheq guarantees that e, € (2“_1, 2/‘). Then we give a concrete
bound on the probability that the product of d out of poly(2) random primes lies in a specific
range (2“_l , 2“), which turns out to be negligible when d is constant and 2#~" is negligible.

Since the requirements of security are slightly different according to the setting of param-
eters mentioned above, we state two separate theorems, one for each case.

Theorem 4.1 Let PedCom, SetComgsa and IntCom be computationally binding commit-
ments, CProot, CPmodeq @nd CPhasheq be knowledge-sound NIZK arguments, and assume
that the Strong RSA assumption holds, and that H is collision resistant. If du + 2 < v, then
MemCPgsp is knowledge-sound with partial opening of the set commitments Cy.

@ Springer

3480 D.Benarroch et al.

Theorem 4.2 Let PedCom, SetComgsa and IntCom be computationally binding commit-
ments, CProots CPmodeq @nd CPhasheq be knowledge-sound NIZK arguments, and assume
that the Strong RSA assumption hold, and that H is collision resistant. If du + 2 > v,
d = O0(1) is a small constant, 2"~V € negl(L) and H is modeled as a random oracle, then
MemCPgsp is knowledge-sound with partial opening of the set commitments Cy;.

Remark 4.3 1t is worth noting that Theorem 4.2 where we assume H to be a random oracle
requires a random oracle assumption stronger than usual; this has to do with the fact that
while we assume H to be a random oracle we also assume that CPoqeq can create proof about
correct computations of H. Similar assumptions have been considered in previous works, see,
e.g, [71, Remark 2].

Finally, we state the theorem about the zero-knowledge of MemCPgsa.

Theorem 4.3 Let PedCom, SetComgsa and IntCom be statistically hiding commitments,
CProot, CPmodeq and CPuasheq be zero-knowledge arguments. Then MemCPgrsp is zero-
knowledge.

Proof (Sketch) The proof is rather straightforward, so we only provide a sketch. We define
the simulator S that takes as input (crs, Cy, ¢,,) and does the following:

— Parses crs := (N, G, H, Hprime, Gy, g, I, CrSHashiq), from which it computes the corre-
sponding Crspoot := (N, G, H) and Crsmodeq := (N, G, H, Gy, g, h).

— Samples at random C; <—sZj; and ¢} <= Gy.

— Invokes SRoot (CrSRoot; sz Cy), Smoqu (Crsmoquv C:, C:) and SHasth (CrSHasth’ CZ, Cu)
the corresponding simulators of CProot, CPmodeq and CPHasheq respectively. They output

simulated proof g, ., 7% odEq and nljasth respectively.

— Soutputs (CJ, ¢}, Wiy n;oqu, rr;lkasth).

Let 7w := (Ce, Ce, TRoot> TmodEq: THashEq) < Prove(crs, (Cy, cy), (U, u), (<, ry)) be the
output of a real proof. Since IntCom and PedCom are statistically hiding C} and ¢} are
indistinguishable from C, and c, resp. Finally, since CProot, CPmodeq and CPpasheq are zero
knowledge arguments 7y ., 7 odEq and nljasth are indistinguishable from 7Root, TmodEq
and THasheq resp. O

4.3.2 Notation

We introduce some notation that eases our proofs exposition. Let U = {uy, ..., u,} C Zbe
a set of cardinality n. We denote as prod a product of (an arbitrary number of) elements of
U, prod = [, ui, for some I C [n]. Furthermore, [Ty = {prody, ..., prod:_;} is the

set of all possible products and more specifically [Ty 4 € Iy denotes the set of possible
products of exactly d elements of U, |I| = d, while for the degenerate case of d > n we define
Iy ¢ = @. Wenote that |[TTy 4] = (g) (except for the degenerate case where |1y 4| = 0). For
convenience, in the special case of prod € Iy |y, i.e. the (unique) product of all elements
of U, we will simply write prod;,. Finally, fora J € [n] we let 1y ; = Uje; Iy, j; for
example Iy 1,41 = U‘jzl [Ty, is the set of all possible products of up to d elements of U.
For all of the above we also denote with "—" the corresponding set of the opposite element,
e.g. —IIy = {—prody, ..., —prod,._;}

Proof of Theorem 4.1 Let a malicious prover P*, a PPT adversary of Knowledge Soundness
with Partial Opening (see the definition in Sect. 2.6) that on input (ck, Rmem, CrS, auxg, auxz)

@ Springer

Zero-knowledge proofs for set membership... 3481

outputs (Cy, ¢y, U, m) such that the verifier V accepts, i.e. VerProof(crs, Cy, ¢,), w) = 1
and VerCommit(ck, ty, Cy, U, @) = 1 with non-negligible probability ¢. We will con-
struct a PPT extractor £ that on the same input outputs a partial witness (u, r4) such that
Rimem (U, u) =1 A VerCommit(ck, ty, ¢y, u, rg) = 1.

For this we rely on the Knowledge Soundness of CProot, CPmodeq and CPasheq proto-
cols. £ parses 7 := (Ce, Ce, TRoot» TmodEq» THashEq) and crs := (N, G, H, Hprime, Gy, g, 1,
CrSHashEq)> from which it computes the corresponding Crsgoot := (N, G, H) and Crsmodeq :=
(N,G, H,Gy, g, h). Then constructs an adversary Agoot for CProot Knowledge Soundness
that outputs (C., Cy, i, TRoot)- It is obvious that since V accepts 7w then it also accepts
TTRoots 1.€., CPRroot.VerProof (crspoot, (Ce, Cu, i), Troot) = 1. From Knowledge Sound-
ness of CProot We know that there is an extractor Epeot that outputs (e, r, W) such that
C.==+G*H" (mod N)AW® = Cy (mod N)Ale| < 2*H*+1+2 Similarly, £ constructs
adversaries Amodeq and AHasheq Of protocols CProgeq and CPhasheq respectively. And sim-
ilarly there are extractors Emodeq and Epasheq that output (¢, ey, ', r4) such that ¢’ = ¢,
(mod ¢) ACy = £G¢ H" (mod N)Ac,, = g ™4 9h's ™4 d and (e}, u, r}. 7y, j) such

that ¢, = ge; B A ey = (1|H(u, j)) respectively.

From the Binding property of the integer commitment scheme we get that ¢ = ¢’ and
r = r' (over the integers), unless with a negligible probability. Similarly, from the Binding
property of the Pedersen commitment scheme we get that e, = e; (mod ¢) and r; = r(’l
(mod g), unless with a negligible probability. So if we put everything together the extracted

values are (e, r, W, eq, ry, u, ry, j) such that:
We¢=Cy (mod N)Ale| <24t F2 Ao =¢, (mod q) A e, = (1H(u, j)),
and additionally
C,==xG°H ANc, = g% mod g pyrg mod g\ VerCommit(ck, ty, cu, u, ry) = 1.

From VerCommit(ck, ty, Cy, U, @) = 1 we infer that Cy = GP™9r where P :=
{Hprime () | u € U}. From the strong RSA assumption since W¢ = Cy = GPdr (mod N)
we get e € I1p or e € —I1p, unless with a negligible probability (see Appendix 2).

Since, all the elements of P are outputs of Hpime they have exactly bitlength w, that is
21—l < ¢; < 2M for each ¢; € P. This means that e is a () product of u-sized primes. Let

le| be a product of £ primes, meaning that 264~ < |e| < 2t andd := LWJ.From

,,,,,

ore e —Ilp 1, 4 (i.e. eis a(£) product of at most d primes).

First we show that e € Tlp, i.e., that e cannot be negative. Lete € —I1p [1,. 4). We use
the fact thate = ¢, (mod g),s0e < —q + ¢, < —ov=l o vl 4 gv=2 — _pv-2
Since —29" < ¢ this leads to —29%* < —2"~2 which contradicts the assumptiondp +2 < v
(we used the fact that e, = (1|H(u, j)) to conclude that o=l o eq < 21, which comes from
the definition of H). Soe > Oore € Ip (1, 4].

Recall that e < 29%*. From the assumption dpu 4+ 2 < v which means that e < 2dn
272 < g = e < q.Since e = e, (mod g) and e < g this means that e = ¢, over the
integers. Again we are using the fact that e, = (1|H(u, j)) to conclude that =l eq < 2H,
which comes from the definition of H, and combined with e = ¢, we get that M=l o <21,
The last fact means that e € ITp j1) (i.e. e is exactly one prime from P) otherwise it would
exceed 2#,s0e € P.

Finally, e = e; = (1|H(, j)) = Hprime(®) € P = {Hprime (1), ..., Hprime ()}, where
U :={uy, ..., u,}. Thismeans that there is an such that Hpime (#) = Hprime (#;). From colli-

@ Springer

3482 D.Benarroch et al.

sion resistance of Hprime We infer that u = u;. So we conclude thatu € U or Rmem(U, u) =1
and as shown above VerCommit(ck, t,, c,, u, r,) = 1. O

4.3.3 Collision finding analysis

For the second theorem we cannot count on the formula du 4+ 2 < v that ensures that
the extracted integer e lies inside [0, g — 1]. As explained above, we can only rely on the
randomness of each prime to avoid the described “collisions”. First, we formally define what
a “collision” is through a probabilistic experiment, CollisionFinding, and then we compute
a concrete bound for the probability that this event happens, i.e. the experiment outputs 1.
Finally, we state a theorem that shows this probability is asymptotically negligible under the
assumption that 2#~" is a negligible value (and d is a constant).

CollisionFinding(u, d, G4, n)

Let P C Primes (2#~!, 2#) be a randomly chosen set of cardinality n, i.e. each e € P
is chosen uniformly at random, e; <—s Primes (2“_1 , 2“) meaning that:
1. e; is prime.
2. 207 < gy < 2M
3. Prle; = x] = 47 + negl(}) for each x € Primes (2n=1,21)
The output of the experiment is 1 iff there exists prod € (Ip (2,4 U —T1p 2,47) such
that (prod mod ¢q) € (2471, 2#)

Lemma 4.1 Let G, be a prime order group of order q € (2”_1, 2”) and | such that < v
.. L d ("{)2(/+1)M—j—1)(2j_1)
then Pr[CollisionFinding(u, d, G,,n) =1] <2 Zj=2 s e

Jjn—j n

(2;4—1)’ 7(/)

Proof First we will prove it for positive products, that is we bound the probability
Pr[CollisionFinding(u, d, G, n) = 1|prod € I1p |2 41]. Let prod = g;...q; be aproduct

of exactly j primes for a2 < j < d. Since ¢; € (2“7!,2%) we get prod = q...q; €

(2j“_j, 2/“). Also Z;; is cyclic so we know that at most

P(zm—j, 21#)“‘ _ [21‘# — 21’#1’“ _ [zjuj (2 = 1)“ < pinivil (2].),
q q q

integers in (2/#7/, 2/1) are equal to ¢ modulo ¢, for any ¢ € {0, 1, ..., ¢ — 1}.

We are interested in the interval (2“_] , 2“) modulo ¢g. From the previous we get that at
most 2/ #—Jj—v+1 (27 =1)- | (zu—l , 2#) | — Jjmn—j—v+l (20— 1).2M—1 — 2(j+1)u—./'—V(2j -1
integers in the range of (21 w=i i “) are “winning” integers for the adversary, meaning that
after modulo ¢ they are mapped to the winning interval (2“_1, 2“).

From the distribution of primes we know that the number of primes in (2“_1, 2") is

2#—1)/ _ ojn—i
u=l) = (u=1)J

approximately iﬂ%ll So there are (approximately) (
primes from Primes (2“*1, 2“) in (2j“*d, 2”).

This leads us to the combinatorial experiment of choice of B =

different products of j

Zjﬂ‘f « s .
Y balls”, with

T =2U+hr=i=v(2J _ 1) “targets” and X = (;‘) “tries” without replacement, where “balls”

@ Springer

Zero-knowledge proofs for set membership... 3483

are all possible products, “targets” are the ones that go to (2“’1, 2“) modulo ¢ (the winning
ones) and tries are the number of products (for a constant j) that the adversary can try. The
“without replacement” comes from the fact that all products are different. The final winning
probability is:
T T T T
Prlprod mod g € (2“1, 2") Aprod e Tp ;1< — 4+ —— + —— +...
rlprod mod g € ()AP Pl g+t 5Tt 5 x
T
B-X
D iy mi
(’})2(1+ Im—j=vi — 1)

o= ()

<X

By applying the union bound for all j’s we get:

d_(MU+hr—j—vi _ 1)
Prlprod mod g € (2“1, 2%) Aprod € Tp p.a)] < Z (]) S -

j=2 (w—1J (J)

By using the same arguments for negative products we would conclude that

d (4)2(j+1)u—,/'—V(21 -1
Pr{prod mod g € (2“_1, 2") Aprod € —Ip 2.1l < Z J Y= -)
Jj=2 (=17 (])

Therefore
Pr[CollisionFinding(u, d, Ge, n) = 1]
= Pr[CollisionFinding(u, d, G., n) = 1 A prod € I p 2. 411+
+ Pr[CollisionFinding(u, d, G, n) = 1 Aprod € —Ip 411 =
d (M(j+Du—j—vmj _
(7)2 2 1).

<2. Z __
= 2jn—j
ji

= (n—17 — ('11)

m}

Theorem 4.4 Let G, be a prime order group of order q € (2"_],2"), W such that
2K~V € negl(A), d constant and n = poly(r) then Pr[CollisionFinding(u, d, G4, n) =
1] € negl(»)

Proof Now n = poly(1) so the set P is polynomially bounded. Due to Lemma 4.1 it is

d (’;)Z(HI)#*J’*V(QJ',U

=2 2
(u—1)J _(j)

straightforward that Pr[CollisionFinding(u, d, G4, n) = 1] < Y

Since d is constant, for any j € [2, d] (;’) = O(n') and we get:

' (;{)2(}+ IM=j=v(2J — 1) s O (n/)2U+Du—ji=v2j — 1)

2in—j n - 2in—j :
- — () 7 — 0w
5 oOm)(2) — D(n— 1)/
T e O (u—1)J
2G+Dp=j—v — GFDu—j-v
. . : Nw—1)4 jn—J —
On) (2 —1)(u—1)/ = poly(x) and LEHL=D" = negl(1). Also 525—— = 2"~

therefore for j we get a probability bounded by 5 poly()2"

ToneglG2i= = negl(i) by assumption.

@ Springer

3484 D.Benarroch et al.

Setup(1*,1#) : Sample an RSA modulus N + GenSRSAmod(1%), a random group element F' <s Z}, compute
G < F? mod N € QRy. Return ck := (N, G).

Commit(ck, trr,U) : compute Acc < GP®*P. Return (¢, 0) := (Acc, @).

VerCommit(ck, ty, Acc, U, @) : Return 1 if for all e; € P e; € Primes (2"71,2") and Acc = GP°*? mod N, and 0
otherwise.

Fig.6 SetCompgs/ commitment to sets

Finally, Pr[CollisionFinding(u, d, G4, n) = 1] < (d — 1) - negl(A) = negl(}). O

Remark 4.4 For the sake of generality, in CollisionFinding we do not specify how the random
primes are generated. In practice in our scheme they are outputs of the hash function Hpyime
that we model as a random oracle.

Now we are ready to give the proof of Theorem 4.2:

Proof of Theorem 4.2 The proof is almost the same as the one of Theorem 4.1 except for the
next-to-last paragraph, i.e. the justification of e € Ilp 1). Since dju + 2 > v we cannot use
the same arguments to conclude to it. However, still e € (H pi,..aqgY—=Ip, .., d]).

Lete € (1'[P.l,...dY—=Tlp 1 d]), it is straightforward to reduce this case to the the
collision finding problem. Assume that the adversary P* made gy random oracle queries
to H and let Qn be the set of answers she received. Further assume that exactly gu,. of
the them are primes and let Qn,,,. be the set of them. We note that P Oy, unless a
collision happened in H.

Now let Q. be the set of the CollisionFinding (i, d, G, | QHpyime |) experiment. It sat-
isfies all three conditions since each e; € QHprime is an output of Hprime. Therefore ¢; is prime,

.....

21—l < ¢ < 2M and since H is modeled as arandom oracle the outputs of Hprime are uniformly
distributed in Primes (2“_1, 2“). Then for the extracted e, we know that e = ¢, (mod q) €
(2“_1 , 2“) and from the assumption e € (H Pl,...d Y —Hp,[l,__.,d]), which (as noted above)
means that e € (l'[OHorime: (2

|QHorimel) = 1. Since the adversary is PPT |Qn,,..| = poly(d). Also, d = O(1) and
2*7Y € negl(1) (from the assumptions of the theorem) so the previous happens with a neg-

ligible probability according to theorem 4.4. So we conclude that, unless with a negligible
probability, e € Tp (1;. O

4.4 Our CP-SNARK for set membership for primes sets

In this section we show a CP-SNARK for set membership MemCPgsaprm that supports set
elements that are prime numbers of exactly u bits, i.e., Deim = Primes(24~1, 21), and
Dset = 2Peim . MemCPgsaprm works for a type-based commitment scheme Com; that is the
canonical composition SetComgsa e PedCom where SetComgsa; is in Fig. 6 (it is essentially
a simplification of SetComgspa since elements are already primes).

The scheme MemCPgsaprm is described in Fig. 7. Its building blocks are the same as the
ones for MemCPgsa except that instead of a CP-NIZK for proving correctness of a map-to-
prime computation, we use a CP-NIZK for range proofs. Namely, we let CPrange be a NIZK
for the following relation on PedCom commitments ¢ and two given integers A < B:

RRange ((ce, A, B), (e, rq)) =1iff c=g°h"" A A<e;<B

@ Springer

Zero-knowledge proofs for set membership... 3485

KeyGen(ck, R€) : parse ck := ((N,G),(Gq,g,h)) as the commitment keys of SetComgsas and PedCom respec-
tively. Sample a random generator H.
Generate Crsrange <5 CPRrange.KeyGen((Gy, g, h), Rrange), a crs for CPrange.
Return crs := (N, G, H, Gy, g, h, CrSRange)-
Given crs, one can define crsroot := (N, G, H), CrSmodeq := (N, G, H,Gq, g, h).
Prove(crs, (Cp,ce), (P,e),(D,7q)) :
(Ce,) < IntCom.Commit((G, H), e)
W = Gleieprey @i,
TRoot <= CPRroot.Prove(crsgoot, (Ce, Cp, 1), (€,7, W))
Tmodeq <— CPmodeq.Prove(crsmodeq, (Ce, ce), (e, €,7,74))
TRange < CPRange-Prove(crsrange, (27, 21), ce, e, 7q)
Return 7 := (Ce, TRoots TmodEq, TRange)-

VerProof(crs, (Cp, cc),n) : Return 1 iff

CPRroot-VerProof (crsroot, (Cey Cpy 1), TRoot) = 1 A CPrmodeq.VerProof (crsmodeq, (Ce, Ce)y Tmodeq) = 1 A
CPRange-VerProof (crsrange; Ce; TRange) = 1.

Fig.7 MemCPgsaprm CP-SNARK for set membership

The idea behind the security of the scheme is similar to the one of the MemCPgsa scheme.
The main difference is that here we rely on the range proof 7range in order to “connect” the
Pedersen commitment c, to the accumulator. In particular, in order to argue the absence of
possible collisions here we assume that du + 2 < v holds, namely we argue security only
for this setting of parameters. It is worth noting that in applications where Dg, is randomly
chosen subset of Primes (2“_1, 2“), we could argue security even when dpu +2 > v, ina
way similar to Theorem 4.2. We omit the analysis of this case from the paper.

Theorem 4.5 Let PedCom, SetComgsar and IntCom be computationally binding commit-
ments, CProot, CPmodeq and CPrange be knowledge-sound NIZK arguments, and assume that
the Strong RSA assumption hold. If dju+2 < v, then MemCPgsaprm is knowledge-sound with
partial opening of the set commitments c p. Furthermore, ifPedCom, SetComgsa’ and IntCom
are statistically hiding commitments, and CProot, CPmodeq and CPrange be zero-knowledge,
then MemCPrsaprm is zero-knowledge.

Proof of Theorem 4.5 Knowledge soundness with partial opening of Cp: the proof is similar
to the one of Theorem 4.1 except for some minor parts.

Let a malicious prover P*, a PPT adversary of Knowledge Soundness with Partial
Opening (see the definition in Sect. 2.6) that on input (ck, Rmem, Crs, auUXg, auxz) out-
puts (Cp, ce, P,) such that the verifier V accepts, i.e. VerProof(crs, Cp,c.),7) = 1
and VerCommit(ck, ty, Cp, P, @) = 1 with non-negligible probability ¢. We will con-
struct a PPT extractor £ that on the same input outputs a partial witness (e, r) such that
Riem (P, e) =1 A VerCommit(ck, ty, ce, e, 7) = 1.

For this we rely on the Knowledge Soundness of CProot, CPmodeq and CPRange protocols. £
parses 7 := (Ce, TRoot> TmodEq: TRange) and crs := (N, G, H, Hprime, Gy, &, h, CrSRange);
from which it computes the corresponding Crsgoot := (N, G, H) and CrSmodeq =
(N,G, H,Gy, g, h). Then constructs an adversary Agoot for CProot Knowledge Soundness
that outputs (C., Cp, i, TRoot). It is obvious that since V accepts 7w then it also accepts
TRoot»> 1-€., CPRoot-VerProof (crsroot, (Ce, Cp, 1), TRoot) = 1. From Knowledge Sound-
ness of CProot We know that there is an extractor Epeot that outputs (e, r, W) such that
C.==+G*H" (mod N) A W¢ =Cp (mod N) A e < 2*FrT1+2 Similarly, £ constructs
adversaries Amodeq and Apange of protocols CPyodeq and CPrange respectively. And sim-
ilarly there are extractors Emodeq and Erange that output (¢, e4, 7', ry) such that ¢’ = ¢,

@ Springer

3486 D.Benarroch et al.

(mod g) A Cp = £GH" (mod N) A ¢, = g ™4 4p"s ™44 and (e}, r}) such that
ce = g%1h"s A2HT < e, < 2" respectively.

From the Binding property of the integer commitment scheme we get that ¢ = ¢’ and
r = r’ (over the integers), unless with a negligible probability. Similarly, from the Binding
property of the Pedersen commitment scheme we get that e, = e; (mod ¢) and ry, = r[/]
(mod ¢g), unless with a negligible probability. So if we put everything together the extracted

values are (e, 7, W, ey,) such that:
W¢=Cp (mod N)Ae<2kFhtiF2 o —¢, (mod g) A2/ ! < e, <2V,
and additionally
Co=+G°H" N, = glamodaprgmedq

From VerCommit(ck, ty, Cp, P, @) = 1 we infer that Cp = GP™9dr where for each
e; € P it holds that e € Primes (2“_1, 2“). From the strong RSA assumption since W¢ =
Cp = GP™dr (mod N) we get e € I1p, unless with a negligible probability (see Appendix
2).

The rest of the analysis that justifies e € P is identical to the one of the proof of Theorem
4.1.So e € P and as shown above VerCommit(ck, t;, cc, e4, ry) = 1.

Zero knowledge For the Zero Knowledge Property we rely on similar techniques with the
ones of the proof of Theorem 4.3 except for the use of Spasheq. Here we use instead the
simulator of the CPrange protocol, Srange- O

4.5 Proposed instantiations of protocols for Rgoot and Rnodeq
4.5.1 Protocol CPRoot

We first give a protocol CPgoop for a simpler version of the Root relation in which the upper
bound on e is removed; let us call Rgooy this relation.
Below is an interactive ZK protocol for Rgoot:

1. Prover computes a W such that W¢ = Acc and Cw = WH", C, = G H"? and sends
to the verifier:
P—=V:Cw,C,

2. Prover and Verifier perform a protocol for the relation:
R((C,, Cy, Cw, Acc), (e,r, 12,13, B,8)) = 1iff

e I e l ﬂ e 1 ’ 1 ﬂ
Co=GH ANC, =G?H* NAcc=Cy (=) A1=C/ | = —
H H G

Let A, be the size of the challenge space, X, be the statistical security parameter and p
the size of e.

— Prover samples:

Te <5 (_2)Lz+}\5+#, 2)‘Z+)‘5+M)
FroTrys Fry <= (— [N /4] 2% ([N /4] 2% ts)
rp.rs <= (— LN /4] 2% TRtl | N j4] 20 thati)

@ Springer

Zero-knowledge proofs for set membership... 3487

Root protocol

On common reference string crs = (Zy, G, H)

Prove(crs, (Ce, Acc), (e,r,w)) :

1. samples ra, 73 <= (— [N/4], [N/4]) and computes Cw < WH"™,C, «- G H".

2. Computes the non-interactive version of the above protocol
Te 48 (=20 At QAR RY e s (< [N/A) 22T | N4 23 A
T8, Ts < (7 L‘V/'ij 2)\:‘#)\,;*”) U\'/4J 2)\z+)\s+u)
a1 G H™ az + G2 H"3 a3 + Ci (ﬁ)m ,Q — C,'"(%)'é (%)T‘3
¢+ H(a1, a2, as, as, Ce, Acc)
Se 4= Te — €€, Sy 4= T'r — CT, Spy 4= Tpy — CT2, Spy < T'ry — CT'py, Sg 4— T'g — CET2, S5 < TI's — CET3

Returns 7 < (Cw, Cr, a1, a2, a3, 4, Se, Sr, Sryy Sry, S8, S5)

VerProof (crs, (Ce, Acc),) : returns 1 iff a1 = CEG**H" A ag = CY G2 H*'3 N ag = Acc®Chg (%)S‘H Aoy =

Cf." (%)w (é)w’s Ase € [72A+>\5-n-17 2>\+A:+u+1]

Fig.8 Description of the Root protocol

and computes:

Gr HV GrZHr3 CV 1 " Cr (1)7‘5 1 "

o] = e r’ oy = T r s o = e J— s oy = e(_— J—

1 2 3 w H 4 = G
P> V:(ar, a2, a3, 04)

— Verifier samples the challenge ¢ < {0, 1} V — P : ¢

— Prover computes the response:

Se = Fe — CE€
Sp =Ty —Cr, Sy =Ty —CIr2, Spr3 =7F3 —CI'n

sg=rpg—cery, Ss=rs5—cer3

P =V (SesSrsSrys Sras 85 55)
— Verifier checks if:

N
? ? ? 1*”
a1 =CG*H, ay=C;G"H", a3z= AccCC€{“’, <—> ,

H
7 s 1\% 1\°%
iCe R i
e () (o)

Theorem 4.6 Let 7}, be an RSA group where strong-RSA assumption holds, then the above
protocol is a correct, knowledge sound and honest-verifier zero knowledge protocol for Rpoot
(Fig. 8).

The proof of the above is similar to the one of [16] where the more specific protocol was
introduced, but implicitly was including a protocol for Rreor . Before proceeding to the proof
we recall some properties related to RSA groups. First we expose two standard arguments.
The first is that obtaining a multiple of ¢ (V) is equivalent to factoring N. This directly allows
us to argue that for any G € Z7,, if one is able to find an x € Z such that G* =1 (mod N)
then under the factoring assumption x = 0, otherwise x is a multiple of ¢ (N). Secondly,
finding any non-trivial solution of the equation > = 1 (mod N) in 7, (non-trivial means
n # %1) is equivalent to factoring N.

Remark 4.5 In 2017 Couteau et al. proved that in fact knowledge soundness for the protocol
of opening an integer commitment can be reduced to (plain) RSA problem [25]. This could

@ Springer

3488 D.Benarroch et al.

be inherited to our protocol too. However, the relation itself assumes strong RSA’s hardness,
otherwise finding a root would be computable in polynomial time. Additionally, in the reduc-
tion to (plain) RSA, the extractor’s probability of success is cubic, while in the reduction to
strong RSA linear, in the adversary’s probability of success.

Proposition 4.1 Let Z}, be an RSA group with a modulus N and QRy the corresponding
group of quadratic residues modulo N.

1. Let G, H < QRy two random generators of QRy and a PPT adversary A outputting
a, B € Zy, such that G* H B = 1 then under the assumption that DLOG problem is hard
in QRy it holds thata = B = 0.

2. Let A, B € Z, and a PPT adversary A outputting x,y € Zy, such that A = B* and

y | x then under the assumption that factoring of N is hard it holds that A = £B 5.

Proof 1. Since G, H € QRy there is an x € ZY, such that G = H* (mod N) which leads
to H**T# = 1. As we discussed above under the assumption that factoring of N is hard,
xa+ B =0.Ifao # 0then x « —g is a discrete logarithm of H, so assuming that
DLOG is hard o = 0. Similarly, there is an y € Z}, such that G = H (mod N) and
with a similar argument we can conclude that § = 0.

2. We discern two cases, y = p is odd or y = 2Vp is even (for an odd p). In case y
is odd then it is co-prime with ¢(N) = p’q’ (otherwise if y = p’ or y = ¢’ we
would be able to factor N), so y~! (mod ¢ (N)) exists and A = BY.If y = 2Vp then

X\ Y x\2'p x\2"
(A*IB.V) =1= (A*IBy> =1= (A*IB«V) = 1. From the second fact that
v—1

\2
we discussed above under the factoring assumption (A’l B y) = =£1. However for
v > 1 the left part of the equation is a quadratic residue so it cannot be —1, therefore

X v—l
(A*IB?) = 1. Using the same facts repeatedly we will eventually conclude that

X 2 X X
@4Bﬁ — 1, hence A~'BY = +1 = A = £B".
O

Proof of Theorem 4.6 Correctness is straightforward. Honest-verifier zero knowledge can be
shown with standard arguments used in X-protocols and the fact that the commitments
to C,, Cw, C, are statistically hiding. That is the simulator S on input (C,, Acc) samples
Cyy <sZy and C} < Z};. Then samples

S: s (_2)\,Z+)\~A\'+Ht _ 2)»Z+M’ 2)\2"{‘)\4.\"‘1‘# + 2)»2-"-11.) ,

SEosh s s (= LN/4) 2% R — | NJ4) 20 [N j4) 20 4 N4 2

shos; < (= LN/4J 2Rt — [N J4] 201 | N 4] 2Rt | N 4] 20

Finally it samples ¢* < {0, 1}*s. Then it sets af <« CSG*H*, o} < CSG*2H3,

- ~Se [1\5B ? Se (1\% [1\5B
ay < Acc’Cyy (ﬁ) and af = Cf‘ (ﬁ) ' (5) .‘?(?utpu'ts 7* < (Cy,, CF,af, a5, a3,
oy, sy sk, sk, s sg, s3). The distribution of 7r* is identical to the one of a real proof 7.

nvr3’
For the knowledge soundness, let an adversary of the knowledge soundness A that is able
to convince the verifier V with a probability at least e. We will construct an extractor £ that

extracts the witness (e, r, r2, 13, B, 8). Using rewinding £ gets two accepted transcripts

(Cw, Cr,a1, 02,03, 04, C, Se, Sy, Sry» Sy, S, 58)

/ / / / / / /
and (Cw, Cr, o1, @2, 003, 04, €', Sy, Sps Spy Spys S S5)s

@ Springer

Zero-knowledge proofs for set membership... 3489

on two different challenges ¢ and ¢’. £ aborts if it cannot get two such transcripts (abortl).

We denote Ac = —c, Ase := 5o — 5, Asp 1= 5 — 5], Asy, = Sy, — ,2, Aspy =
Sy — ,3, Asg 1= sp — sﬁ, Asg = 855 — ss then
1 Asp
CeAC — GASPHAS'., CrAC — GAS,-Z HAX@, ACCAC — C‘?/Se <7> s
H
S As,
1 Ass 1 B
Ase
1=c2 (— —) .
H G
Define the (possibly rational) numbers é = 4% 7 := 4% 2 .— Ay o= A
p y = Aot T A2 = A3 A

In case Ac doesn’t divide As, and As,, £ aborts (abort 2a). Similarly, in case Ac doesn’t
divide As,, and As,,, £ aborts (abort 2b). Therefore, since AtheAabove aborts digin’tAhappen
and according to second point of Proposition 4.1, C, = £G*H" and C, = £G"2H'"3.

Now if we replace C, in the fourth equation we get 1 = (£1)4% G245 f734s. (%)Ass

(L) or (£1)As% Gradse=—As fradse=As — | However, (£1)4% = 1 otherwise if
(£1)4% = —1 then — G2 A% Asp i3 Ase= 455 would be a non-quadratic residue (since G, H

arebothin QRy and QRy is closed under multiplication) equal to 1 whichis a quadratic residue
and this would be a contradiction, hence G245~ 4sp fr3dse—Ass — | According to the first
point of Proposition 4.1, under the factoring assumption 7> As, — Asg = r3As, — Ass =0,
50 P2 Ase = Asg.

Finally we replace Asg in the third equation and we get AccA¢ = Cp™ (%)rzme

Ase
Acch¢ = (%) . As stated above Ac divides As, so according to the second point of

Ase ~
e
Proposition 4.1 Acc = + (CW) a =4 () . We discern three cases:

H" H"
Ase
_ Cw Asy ~ A . As
— Acc =+ (Hrz) Ao I < 7= 5 as above.
It is clear that Acc = W¢ and as stated above C, = G°H'.
Ase
- Acc=— (CW) ‘ ndﬂodd:Thengsets W —SW andé « 6:= Bej =
H"™ H"2 Ac
AAS’ as above. It is clear that Acc = W¥¢ and as stated above C, = G°H' .
Ase
- Acc=— (2%) * and AAS; even: this means that Acc is a non-quadratic residue, which

is a contradiction since in the Rpqor relation we assume that Acc € QRy.

Finally the £ outputs (e, 7, W).

Now we show that the probability the extractor terminates with outputting a valid witness
is O (¢). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O (¢) (for the probabilistic analysis
we refer to [31]). Thus Pr[abortl] = 1 — O(¢). For the second type of aborts (abort 2a
and abort 2b), they happen with negligible probability under the strong RSA assumption.
For the details see Lemma 4.2 below, which was proven in [31]. Putting them together the
probability of success of £ is at least O (¢) — negl(Ay).]

Lemma 4.2 ([31]) Given that abort2a occurs a PPT adversary B can solve the strong RSA
problem with probability at least % — 27,

@ Springer

3490 D.Benarroch et al.

From the above we get Pr[3 solves sRSA] > (1 —27*) Pr[abort2a], so we conclude
to Pr[abort2a] < < L__ pr[Bsolves sRSA] = negl(As). The same lemma holds for

3—27s
abort 2b.
Notice in the above protocol that

_2)Lz+}\‘r+ll — 2)Ls+ll <s, < 2}\z+)\s+ﬂ + 2}~5+M =
_2)LZ+)‘J+IL+1 <s, < 2)\z+)\s+l"+l =
_2)"Z+)\J+/L+2 < Ase < 2)Lz+)\s+/ﬁ+2 =
_2)”z+}‘.r+l/«+2 < é < 2)\z+}~s+ﬂ+2
so if we impose an additional verification check of honest s, size, i.e., s, € [—ZAZM“""“H ,

2*aths] we get that [e] < 2% A FH+2 The verifier performs an extra range check

? . .
se € [—2rethotutl prthstutl] and the resulting protocol is the CPgoot that except for
proving of knowledge of an e-th root also provides a bound for the size of |e|:

Rroot ((Ce, Acc,), (e,r,W)) = 1iff C, = £G°H" (mod N) A W¢ = Acc
(mod N) A |e| < 2*e+hstu+2,

4.5.2 Protocol CPyodeq
Below we describe the public-coin ZK protocol for Ryedeq- In Fig. 9 we summarize the
corresponding NIZK obtained after applying the Fiat—Shamir transform to it.
1. Prover samples:
Fe < (

1 < (= [N /4] 2% (| N 4] 2t
<~ Ly,

_2)‘14’)\: +u 2)‘z+)hs +N’)

I"rq

and computes:
) = G'e Hr,-’ oy = gr(, (mod p)hr,-q)

P—>V: (Oll,otg).
2. Verifier samples the challenge ¢ < {0, 1}*s.paraV — Pc.
3. Prover computes the response:

Se =T, — Ce
Sy =1, —Cr
Sy, =Tr, —Clyg (mod g).

P—=V: (S, S, srq)-
4. Verifier checks if:

))
o) = :IZCSGSF' H (mod N), o = cgq gSe (mod q)hsrq .

Theorem 4.7 Let Zy, be an RSA group where strong-RSA assumption holds and G be a prime
order group where DLOG assumption holds then the above protocol is a correct, knowledge
sound and honest-verifier zero knowledge protocol for Rmodeq-

The proof is quite simple and is omitted.

@ Springer

Zero-knowledge proofs for set membership... 3491

modEq protocol

On common reference string crs = (Zy, G, H,G, g, h)

Prove(crs, (Ce, ¢,), (€, €q,7,7q)) :
e 48 (72>\z+3\‘+u.2kz+>\»+u) (s (= [N/A) 225 | Nja 22 s 2,

a1 GreH™ g 4 g'e mod D pr
¢+ H(a1,az2,Ce,ce,)
Se 4= Te = €€, 8y 4= Ty — CT, 8 4= Ty — €Tq (Mod q)

Returns 7 <= (a1, a2, se, 57, 5r,)

VerProof (crs, (Ce, ce,), 7) : returns 1iff an = £CEG™ H™ (mod N) A az = c¢, g™ (mod a)pysrg

Fig.9 Description of the modEq protocol

4.6 Instantiations

We discuss the possible instantiations of our schemes MemCPgrsa and MemCPgsaprm that
can be obtained by looking at applications’ constraints and security parameters constraints.
Parameters for diu+2 < v and u < v — 2. First we analyze possible parameters that satisfy
the conditions dyu +2 < v A u < v — 2 that is used in Theorems 4.1 and 4.2; we recall
d=1+ LMJ , where A, and A, are statistical security parameters for zero-knowledge
and soundness respectively of CProot-

If the prime order group G, is instantiated with (pairing-friendly) elliptic curves, then the
bitsize v of its order must be at least 2A. And recall that for correctness we need ;& < v.

Considering these constraints, one way to satisfy du 4+ 2 < v is to choose p such that
v—1> u > A; + Ay + 2. More specifically, a choice that maximizes security is v = 24,
w=2r—2and X, = XA — 3, Ay, = A — 2. For the case of the MemCPgsp scheme, this
choice yields an instantiation with nearly X bits of security and where the function H does
not necessarily need to be a random oracle (yet it must be collision resistant).

Because of the constraint 1 > A, + Ay + 2, we the choice above implies the use of
large primes. This would be anyway the case if one instantiates the scheme with a collision-
resistant hash function H (e.g., SHA256 or SHA3), e.g., because set elements are quite
arbitrary. If on the other hand, one could support more specific set elements, one could use
instead a deterministic map-to-primes or even use our scheme MemCPgsaprm in which set
elements themselves are primes. In this case one may wonder if it is possible to choose
values of © smaller than 2A; for example p =~ 30, 60, 80. The answer is positive although
the characterization of such u’s require an involved analysis.

Let us fix v = 2A, and say that the statistical security parameters A, Ay are such that
Az +As +2 =21 — 2 — ¢ for some constant ¢ (for example c = 4if A, = Ay = A —4). We
are essentially looking for p such that

20 —2 c
nU=<2r—2—cand u+ p —— | <2x-2
"
2.—-2 ¢ 20 —2
<— u=<2A-—2-—cand —— | < —1.
w w w

From the factx mod y=x —y L’}%J, we can reduce the above inequality into
nu<2—2—-—cand2X -2 —cmod u > u —c,

that can admit solutions for ¢ > 2.

@ Springer

3492 D.Benarroch et al.

For instance, if A = 128 and ¢ = 4, then we get several options for u, e.g., u =
32,42, 63, 84, 126, 127.
Parameters for di + 2 > v. This case concerns only MemCPgsa and Theorem 4.2 in
particular. In this case, if one aims at maximizing security, say to get a scheme with A-bits
of security, then would have to set i & 2 for collision resistance, and consequently select
the prime order group so that v > 3. This choice however is costly in terms of performance
since the efficiency of all protocols that work in the prime order group degrades.

5 A CP-SNARK for set non-membership with short parameters

Here we describe two CP-SNARKS for set non-membership that work in a setting identical to
the one of Sect. 4. Namely, the set is committed using an RSA accumulator, and the element
(that one wants to prove not to belong to the set) is committed using a Pedersen commit-
ment scheme. As in the previous section, we propose two protocols for non-membership,
called NonMemCPgsp and NonMemCPgsaprm, in complete analogy to MemCPgsa and
MemCPgsaprm- In the former, the elements of the set are arbitrary bit-strings of length 7,
Deim = {0, 1}7, while in the latter the elements are primes of length p. The schemes are
fully described in Figs. 10 and 11.

5.1 An high-level overview of the constructions

The main idea of NonMemCPgsp is similar to the one of the corresponding membership
protocol, MemCPgsa. It uses in the same modular way the modEq and HashEq protocols.
The only difference lies in the third protocol: instead of using Root it uses a new protocol
Coprime. In a similar manner, NonMemCPgsaprm uses modEq, Range and Coprime.

Let us explain the need of the Coprime protocol and what it does. First, recall how a
non-membership proof is computed in RSA Accumulators [50]. Let P be a set of primes
to be accumulated and prod the corresponding product. For any prime element ¢ ¢ P it
holds that ged(e, prod) = 1, while for any member e € P it is gcd(e, prod) = e # 1.
Thus, proving that gcd(e, prod) = 1 would exhibit non-membership of e in P. Recall,
also, that using the extended Euclidean algorithm one can efficiently compute coefficients
(a,b) such that a - e + b - prod = gcd(e, prod). A non-membership proof for an element
e w.r.t. an accumulator Acc = GP™9 consists of a pair (D = G4, b), where a, b are such
that a - e + b - prod = 1. The verification is D¢Acc® = G, which ensures that e and prod
are coprime, i.e. gcd(e, prod) = 1. Therefore, the goal of the Coprime protocol is to prove
knowledge of an element e committed in an integer commitment C, that satisfies this relation.
A more formal definition of Coprime is given below and an instantiation of this protocol is
in Sect.5.4.

5.2 Argument of knowledge for a coprime element

We make use of a non-interactive argument of knowledge of a non-membership witness of an

element such that the verification equation explained above holds. More formally CPcoprime.

is a NIZK for the relation: Rcoprime : (Zy x QRy) x (Z x Z x QRy x Z) defined as
Rcoprime ((Ce, AcC), (e, r, D, b)) = 1iff

Co==4G°H mod N A D°Acc” = G A |e| < 22T tht2,

@ Springer

Zero-knowledge proofs for set membership... 3493

KeyGen(ck, R€) : parse ck := ((NV, G, Hprime), (Gq, g, h)) as the commitment keys of SetComgsa and PedCom
respectively. Sample a random generator H.
Generate Crspasheq <5 CPHasheq-KeyGen((Gy, g, h), RHashgq), & crs for CPHasheq-
Return crs := (N, G, H, Hprime, Gq, g, I, CrSHashEq) -
Given crs, one can define crscoprime := (N, G, H), CrSmodeq := (N, G, H,Gq, g, h).

Prove(crs, (Cu, cu), (U,u), (@,714)) : € < Hprime(uw) = (1|H(u, 5)), (ce,7q) < Comi.Commit(ck, tq, €).
(Ce,7) « IntCom.Commit((G, H), €); P < {Hprime(u) : w € U}, compute a,bs.t. a-e+b][, cpei =1and
set D = G°.
Toprime $— CPCoprime. Prove(crscoprime, (Ce, Cu, 1), (e, 7, D, b))
Tmodeq <— CPmodeq-Prove(crsmodeq; (Ce, ce), (e, €,7,74))
THashEq $— CPHashEq-Prove(crshasheq, (Ce, cu), (e,u), (rq,7u), J)
Return 7 := (Ce, Ce, TRoot, TmodEqs THashEq) -

VerProof (crs, (Cu, cu), m) : Return 1 iff CProot.VerProof (crscoprime; (Cey Cuy 1), Tcoprime) = 1 A
CPrmodeq-VerProof (crsmodeqs (Ce, e), Tmodeq) = 1 A CPHasheq-VerProof (crshasheq, (Ces Cu)s THasheq) = 1.

Fig. 10 NonMemCPgsa CP-SNARK for set non-membership

KeyGen(ck, R€) : parse ck := ((N, G, Hpime), (Gq,g,h)) as the commitment keys of SetComgsas and PedCom
respectively. Sample a random generator H.
Generate crsrange <8 CPRrange.KeyGen((Gy, g, h), Rrange), a crs for CPRrange.
Return crs := (N, G, H, Hyrime, Gq, g, I, CrSRange) -
Given crs, one can define crscoprime := (N, G, H), CrSmodeq := (N, G, H, G4, g, h).

Prove(crs, (Cp,ce), (P,e),(@,re)) : (Ce,r) < IntCom.Commit((G, H), e); , compute a, b s.t. a-e+b4HﬁL€P e =1
and set D = G°.
TCoprime <— CPcoprime-Prove(crscoprime, (Ce, Cp, 1), (€,7, D, b))
Tmodeq <— CPmodeq.Prove(crsmodeq, (Ce, ce), (e, €,7,74))
TRange <~ CPRange.Prove(crsrange, (2"’1,2"'),0{.,)T
Return 7 := (Ce, Ce, TCoprimes TmodEq, TRange) -

VerProof(crs, (Cp,ce),m) : Return 1 iff CPcoprime.VerProof (crscoprime, (Ce, Cp, f1), Tcoprime) = 1 A
CPmodeq-VerProof (crsmodeq, (Ce, Ce), Tmodeq) = 1 A CPRange.VerProof (crsrange, Ce, Range) = 1.

Fig. 11 NonMemCPgsaprm CP-SNARK for set non-membership

We propose an instantiation of a protocol for the above relation in the Sect.5.4.

5.3 Our constructions of NonMemCPgsp and NonMemCPgsaprm

In Figs. 10 and 11 we give a full description of the schemes.

The security of these schemes follow very closely the one of the corresponding member-
ship schemes given in Sect. 4. Below we give the Theorems that state their security. The proofs
are omitted since they are almost identical to the corresponding proofs for the membership
schemes.

Theorem 5.1 Let PedCom, SetComgsa and IntCom be computationally binding commit-
ments, CPcoprimes CPmodeq and CPHasheq be knowledge-sound NIZK arguments, and assume
that the Strong RSA assumption hold, and that H is collision resistant.

Ifdpu+2 <v, A+ 1 < pand Ay < log(N)/2 then NonMemCPgsa is knowledge-sound
with partial opening of the set commitments Cy.

Theorem 5.2 Let PedCom, SetComgsa and IntCom be computationally binding commit-

ments, CPcoprimes CPmodeq and CPHasheq be knowledge-sound NIZK arguments, and assume
that the Strong RSA assumption hold, and that H is collision resistant.

@ Springer

3494 D.Benarroch et al.

Ifdu+2 > v, As+1 < u, Ay < log(N)/2,d = O(1) is a small constant, 2~ € negl())
and H is modeled as a random oracle, then NonMemCPgsp is knowledge-sound with partial
opening of the set commitments Cy.

Theorem 5.3 Let PedCom, SetComgsar and IntCom be computationally binding commit-
ments, CPcoprime» CPmodeq @nd CPrange be knowledge-sound NIZK arguments, and assume
that the Strong RSA assumption hold. If diu +2 < v, As + 1 < p and Ay < log(N)/2
then NonMemCPgrsaprm is knowledge-sound with partial opening of the set commitments
cp. Furthermore, if PedCom, SetComgsa’ and IntCom are statistically hiding commitments,
and CPcoprime, CPmodeq @nd CPrange be zero-knowledge, then NonMemCPgrsaprm is zero-
knowledge.

5.4 Proposed instantiations of protocol for Rcoprime

Below we propose an interactive ZK protocol for Rcoprime- As the relation indicates, we
need to prove knowledge of (D, b) such that D¢Acc? = G, for a committed e. Proving
opening of C, to e is straightforward, so the main challenge is to prove the non-membership
equation. For this the prover should send D and Acc? to the verifier so that she can check that
D¢Acc? = G herself. Of course, there are two caveats. The first one is that D and Acc? cannot
be sent in the plain as we require zero-knowledge; we solve this by sending them in a hiding
manner, i.e., C, = DH"™ and Cz = Acc? HP5 for random values ry, pp. Consequently,
the verification now should work with the hiding elements. Secondly, the verifier should be
ensured that Acc” is indeed an exponentiation of Acc with a known (to the prover) value b,
otherwise soundness can be broken. More specifically we require extraction of b, pp such
that Cy = Acc? HP5 . This is done using the partial opening of Acc to the set represented by
prod, i.e., the protocol assumes that Acc = GP™ is a common knowledge.
Below we present our protocol in full details.

1. Prover computes C, = DH'*, C,, = G”‘Hrt/r, Cp = Acc’HPs, Cpp = GP® HPB and
sends to the verifier:
P—=V:C4Chp,Cp, Cpy.

2. Prover and Verifier perform a protocol for the relation: R((Acc, C,, Cy4, Cr,, Cp, Cpp),
(e,b,r,rq, 1, pB, Py, B, 8)) = Liff

1*# 1\ /1*
Ce=G°H AC, =GH" Nce=Cly (=) rn1=ct(=) (=) .
H H G

Let A be the size of the challenge space, A, be the statistical security parameter and p
the size of e.

— Prover samples:
Py To <8 (_ZAZ+AS+M’ 2Az+xs+u)
Foms Trs Trgs Trips Tty <5 (= LN /41 220 | N j4] 24tHs)
rp.rs <= (— LN /4] 2%TRth | N 4] 2hethatit)
and computes:
ay=Acc?H'?s, a3=G"H", a4=G"H",
as = CleH™, ag=CrGPH™, a;=G"rsH 5.

P—=V: (a2, 03,04, 05,06, 0t7)

@ Springer

Zero-knowledge proofs for set membership... 3495

Coprime protocol

On common reference string crs = (Zy, G, H)

Prove(crs, (Ce, Acc), (e, r, (D, b))) :
1. samples ra,7ar,pp,ppr s (— |N/4|,|N/4]) and computes C, = DH™ C,, = GH",Cp =
Acc’HP,C,yy = GPBHPB.
2. Computes the non-interactive version of the above protocol
Ty re 8 (—2A= At gheFAatn
TppsTrs Tras Trty s Ty, <8 (= [N/4] 22: e | N/4] 2R HAe)
7,75 s (= |N/4] 23 Hhetn | /| 9detAe i)
ay=Acc"H™"8 03 = G™H'" ,ous = G H'"a oz = Coe H™8 g = CleGTPH™ Jar = G™v H'5
¢+ H(az, a3, a4, as, as, ar, Ce, Acc)
$b =T — cb,Sc = Te = CE;Spp = Tpp — CPB,Sr = Tr — CTI, S, = T'ry — CTa, Sy, = Tyy — CTry, Sy =
Tply = cpp,sp =15+ clera + pB), 55 = 15 + clery + pp)
Returns 7 <= (Co, Cr,, CB, Cpp, a2, a3, 0t 5, 006, 07, b, Se, Srys Spp 15 St Srt s Splys 58 ss)
VerProof (crs, (Ce, Acc),) : returns 1 iff ao = CpAcc®™ H*?8 Nz = CEG™H™™ Ny = Cp, G*a H"o Aas =
CocHW GO N = Cre HY GPe Cpf N = Cf G*vs H5 A Ase € [-2M At gArAstutl]

Fig. 12 Description of the Coprime protocol

— Verifier samples the challenge ¢ < {0, sy > Pe.
— Prover computes the response:

sp=rp—ch,s. =r, —ce
/ /
Spp =Tpp — CPBsSr =TIy — CT'y Spy = Iry = Clay Sy, = I'r) = Ty, Syl =Tyl —CPp
/ /
sg=rg+clera + pp), ss=rs+cler,+ pp).

P—->V: (Sb5 Ses Spps Srs Srys SrI/J’ Sp};a SB, S(S)
— Verifier checks if:

? ? ? S
ay = CzAcC® H's, a3 =CiG*HY, ay=Cy G H",
? — ? — ? S
as = Ci HPGCy°, ag=ClHYGC,f, a7=C; G H"5,
?
Se € [_2)‘Z+)\s+ﬂ+1 , 2)‘z+)\5+lj«+l] 3

5.4.1 Correctness

Here we show the correctness of the protocol (Fig. 12).

oy = Acc H'vs = Acc™ el HSp+PB — Acc®s HY5 (Acc? HPB)C

= Acc® H*»5 C§
a3 = Grg Hr, — ng+ceHs,+cr — Gse Hs, (GeHr)c
= G“H" C}
as = G B = GSa e g — G o (G Hw)®
S/ ~
= Gsm H'ra C;a
os = Cze H'F = Cée+C€H~\'ﬁ*U(€Va+PB) — CZ() H (DeHer,,)chc(eraerB)
Se 7S - _ Se IS —b ry— _
= CSH%(D*H ") = C3H'* (GAcc "H™P#)¢ =
= CYH¥ G C*
g = C:: G'BH" = C§;+ceGs,e—c(er,,+p3)Hsa—c(er[’z—}—p’B)

@ Springer

3496 D.Benarroch et al.

— Cis G8 1% (Gr“ Hrt’l)cerc(eraquB)ch(er{;er;g) — C;“: G*# % G—¢PB chp;?
= RGP HYCE

’ +ch

a7 = G'r8 H'Ps = G*0ptePB [0 — G H'"5 (GPB HPB)*

=G5 H"s Cpp

5.4.2 Security

Security of our scheme holds with the partial opening of Acc, i.e., when it is ensured outside
the protocol that Acc is a valid commitment of the set. The proof is similar to the one
of Theorem 4.6. The main technical difference is in the extraction of the opening of Cp,
because Acc is not a random generator sampled at the setup phase. However, from partial
opening we know that it is Acc = GP™9 for a random generator G. This will allow us to state
an alternative to Lemma 4.2 to justify the extraction of the opening of Cp.

Theorem 5.4 Let Z, be an RSA group where strong-RSA assumption holds, then the above
protocol is honest-verifier zero knowledge protocol and, also, if Ay + 1 < p and Ay <
log(N)/2, is knowledge sound with partial opening of AcC for Rcoprime-

Proof Zero-Knowledge can be proven with standard techniques, similar to the ones in the
proof of Theorem 4.6 and is therefore omitted.

For the knowledge soundness, let an adversary of the knowledge soundness .4 that is able
to convince the verifier V with a probability at least e. We will construct an extractor £ that
extracts the witness (e, r, r2, 13, B, §). Using rewinding £ gets two accepted transcripts

(Ca, Cr,y, Cp, Cppo 2, 03, 04, U5, A6, A7, C, b Ses Spp > Srs Srgs Srls Sl > 5B+ 55)

/ /
(Ca. Cr,. Cp, Cpy 02, 03, 4, 05, 0, 07, €', Sy S S Sy Sy Sy14 8Ty ,S,g,85)

on two different challenges ¢ and ¢’. £ aborts if it cannot get two such transcripts (abort1).

We denote Ac 1= ¢’ —c, Asp i= 5p— S5}, ASe i= Se —S,, ASpy = Spy —s;)B, Asy =5, —
/ P I o— I o— / . / —— /
S, Asp, =5y, =S As,; =Sy _Sr;’ Asp}3 =y —sp},g, Asg = sg —Sg. Ass 1= 5§ — S
then
CA¢ = Acc® HA = Cp = +Acc’ HP®, 1)
CL° = GAH™ = C,=+G°H', o))
. . A A W
CA* = GAH™ = C,, = £G“H", 3)
Ase 17 Asg ~—Ac ~A
1 =CrH@PG2°C°,)
_ (Ase iy Ass (- Asp ~Ac
1=C *H™G CPB, 5)
As A Y
C?BC — G H P8 = Cp, = +GPEHPE, 6)
: : P Asy s Ase p._ As a . Asy, 5. Asy
define the (possibly rational) numbers b := S €= ZE, 7= FLorg =) = L,
Ao Aspp - E
PB = Ac ° pB .

£ aborts in case Ac doesn tdivide: As, and As,(abort2a), As,, and As, (abort2b), As,,
and As %(abort 2c¢). And finally, £ aborts if Ac doesn’t divide As; and AspB (abort 2d).

@ Springer

Zero-knowledge proofs for set membership... 3497

Therefore, after these aborts didn’t happen we can infer the equivalent equalities on the right
of Egs. 2,3, 6 and 1.

~ 5 Ase N 5\ Ac
If wereplace Eqs. 3and 6inEq. Sweget 1 = (j:G’” H’a) HA28 GAs (j:GpB H"’B)
or 1 = (d1)8% (d1)Ac Gradsetis ActAsy griAse+opAc+Asy Since G, H, 1 are quadratic
residues then (£1)4% (£1)4¢ = 1, hence 1 = GradsetppActAsp fraAse+ppActAsp Then
under the DLOG assumption 7, As, + ppAc + Asg = 0 = r) As, + pAc + Asg, which
gives us that
Asg = —ryAs, — ppAc. 7
Finally, we replace Eqs. 1 and 7 in Eq. 4 we get 1 = C‘,As"H"Z’ASL'_"ABACG_AC
~ ~\ Ac A R A Ac
(j:Acc”HpB) or 1 = (x£1)AccAsepcchAeG-Acg—radse o (j:Acch_l) -
(Ca_lH’“)AS". But as noted above Ac divides As, so :l:Acch_1 = =+ (Ca_lHr“)é =
. \é P .
AcctG' =+ (Ca_lH’"> = (Cq) Acc? = +£G. We discern two cases:

H'a
o \é pech _) ;S Ca 3 A Ase = A . As,
_ (H»-;) Acc’ = +G: Then & sets D <« H—é,e — e = Z¢F < 7= 5 and
b« b= A%
b« bA = 2.
& .
- (15;121> Acc’ = —G: Then é should be odd otherwise if é = 2p then G =
€\ pih : . A Ca 5. »._ 4s
— (Hfu) Acc” would be anon-quadratic residue. So € sets D <— — T € < e= Z,
F7:= AASC" and b « b := %. It is clear that D°Acc® = G.

Finally the £ outputs (e, 7, D, l;).

Now we show that the probability the extractor terminates with outputting a valid witness is
O (¢e). If the extractor does not abort then it clearly outputs a valid witness (under the factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O (¢) (for the probabilistic analysis
wereferto[31]). Thus Pr[abortl] = 1— O (¢). For the aborts abort 2a, abort 2b and abort 2¢
they happen with negligible probability (< 1_27% Pr[B solves s RSA] each, for any PPT
adversary B) under the strong RSA assumption according to Lemma 4.2. For abort 2d we
cannot directly use the same lemma as Acc is not a random generator that is part of the crs.
However, with a similar argument and using partial extractability we show below that the
probability for this abort is the same. Putting them together the probability of success of £ is
at least O (¢) — 1_zfﬁPr[B solves sRSA] = O(¢) — negl(Ay).

For Eq. 1, we get from partial opening that Acc = GP™97 where P := {Hprime) | u €
U}, so

ClA;C — GnueU Hprime (4)-Asp HAS/’B .

We use a similar to [31] argument to prove that Ac divides Asp, and As,, under the strong
RSA assumption, given that A; + 1 < . Then

Cp = +Acc? HPB . (8)

Lemma5.1 Let Ay + 1 < p and Ay < log(N)/2 then Ac divides Asy, and As,, under the
strong RSA assumption.

@ Springer

3498 D.Benarroch et al.

Proof An adversary against the strong RSA assumption receives H € QRy and does the
following: sets G = HT for v <0, 2*s N2] and sends (G, H) to the adversary .A which
outputs a proof 7coprime. Then we rewind to get another successful proof néoprim o and we

use the extractor as above to get C4¢ = Glluev Horime (045 pAsop o

Cgc —HT [Tucw Hprime (w)-Asp+Asy)

We can exclude the case that Ac divides [], .y Hprime (1), since Ac is smaller than the
domain of the hash function Hpfime, i.6. Ac < Hprime (1) for each u € U, which comes from
As + 1 < p. Assume that Ac { Asp V Ac f Asp,. we discern two cases:

— Ac doesn’t divide T [],y Hprime (1) - Asp + Aspp: then ged(Ac, T[],y Hprime (1) -
Asp+As,,)=g and thereare x, suchthatxﬂc—l—lﬁ(r l_[ueU Horime (&) - Asp + AspB)
= g. Thus

HS = HX‘AL'+'//'(T [Tuev Hprime 0)-Asp+As,5) HrAc CgAC = (HX ’ Cg>AC.

Ac
Since g divides Ac we get H = =+ (HX . Cg) * . However H is a quadratic residue
Ac
(thus Cp is so0), meaning that H = (HX . Cg) ¢ thus (HX - Cg, %) is a solution to
the strong RSA problem.

— Acdivides 7 [[,c;y Hprime (1) - Asp 4 Aspp: let q‘Z be the maximal g-power that divides
Ac (i.e. ¢* is a factor of A) and doesn’t divide at least one of Asj; and As,,, where g is
prime. Such a g¢ should exist otherwise Ac would divide both As; and Aspp, which we
assumed it doesn’t. Notice that if ¢¢ divided As, then it would also divide Aspp, as q*

divides 7 [[,,cy Hprime () - Asp + As; (from assumption), so q‘Z t Asp.

qe | <1: l_[Horime (@) - Asp + Asp3> =T l_[Horime (@) - Asp + Aspp, =0 (mod qz).
uel uel

We can write T := 1] + 12 ord(H). Notice that 1, is information theoretically hidden
to the adversary and thus is uniformly random in [0, 2*s N 2 Jord(H)] D [0, 2* N in its

view.
= 71 [| Hprime(w) - Asp + 120rd(H) [| Hprime () - Asp, + As,y =0 (mod ¢°)
uel uelU
=17 Asp = (—11 1_[Horime (@) - Asp — AspB)
uel

-1
-(1‘[Hpnme(m) -(ord(H))™" (mod ¢).

uelU

To see that]_[ueU Hprime (1) has an inverse modulo qe note that since Ac < Hprime ()
implies ¢° < Hprime (), 50 ged([T,cy Hprime (), ¢%) = 1. For the inverse of ord(H)
notethat H € QRy soord(H) € {q1, g2, q192}, where N = (2q1+1)(2g2+1) isthe RSA
modulus. Then from A; < log(N)/2 we get Ac < q1, g2 and thus ged(ord(H), gt = 1.
As noted above, 1, is uniformly random in a superset of [0, 2% N]. But g¢ < Ac <
N, so 2*s N is at least 2% larger than ¢°. Thus 1 is statistically close to uniform in
{0,1,...,q% — 1} (with 27 error), Pry,[1p = C (mod qH] ~ qié. Furthermore, for

@ Springer

Zero-knowledge proofs for set membership... 3499

any Asp, Pro,[12 - Asp, = C (mod ¢%)] =~ ;7 - ged(qt, Asp) < q‘—g - g* ! (since ¢*

doesn’t divide Asjp). This is because for variable 1, the equation 70 As, = C (mod q‘z)
has gcd(g¥, Asp) solutions.
In conclusion, the probability that the above equation holds is at most é 427 < % 427,

To summarize we showed that the probability to fall in the second case is at most % +27 %,
So with probability to fall in the first case, and thus solve the strong RSA problem, is at least
1 —2
= — DA, O
2

By a simple argument identical to the one of section 4.5, we can also conclude about the

? . . R
range of the extracted é: s, € [—ZAZM»“""‘H, 2)“1"')\“""““] implies —2*:HAstu+2 < 5 <
2AZ+AS+M+2. 0

6 A CP-SNARK for set membership in bilinear groups

In this section we propose another CP-SNARK, called MemCPyc, for the set membership
relation that works in bilinear groups. Unlike the schemes of Sect.4, the CP-SNARK given
in this section does not have short parameters; specifically it has a CRS linear in the size of
the sets to be committed. On the other hand, it enjoys other features that are not satisfied by
our previous schemes (nor by other schemes in the literature): first, it works solely in Bilinear
Groups without having to deal with RSA groups; second, it allows to commit the set in an
hiding manner and, for the sake of soundness, does not need to be opened by the adversary.
This is possible thanks to the fact that the set is committed in a way that (under a knowledge
assumption) guarantees that the prover knows the set.

More in detail, MemCPyc is a CP-SNARK for set membership where set elements are
elements from the large field F = Z,; where ¢ is the order of bilinear groups. So Dejm = .
In terms of set it supports all the subsets of 2Pem of cardinality bounded by 1, Dset = {U €
2Dem . #U < n}, which we denote by S, # symbol denotes the cardinality of a set. So U
has elements in IF and is a subset of S,,.

6.1 Preliminaries and building blocks
6.1.1 Bilinear groups

A bilinear group generator BG(1*) outputs (¢, Gy, G, Gr, e), where G, Gy, Gr are
additive groups of prime order ¢, and e : G; x G, — Gr is an efficiently computable,
non-degenerate, bilinear map. For ease of exposition we present our results with Type-1
groups where we assume that G| = Gy. Our results are under the (£ 4+ 1)d-Strong Diffie
Hellman and the (d, £)-Extended Power Knowledge of Exponent assumptions, for which we
refer the reader to [77].

6.1.2 A polynomial-pedersen type-based commitment scheme

First we present PolyCom, a type-based commitment scheme which was introduced in [18]
extracted from the verifiable polynomial delegation scheme of [77]. The scheme has two
types: one for £-variate polynomials f : F — I over IF of variable degree at most d, and
one which is a standard Pedersen commitment for field elements. Let W, 4 be the set of all

@ Springer

3500 D. Benarroch et al.

Setup(1*,£,d) : samples a bilinear group of order ¢, bp := (q,9,G1,Gr,e) < BilGen(1*), samples
a,B,s1,...,50 < F. Computes prk < {gH'EW S Woe We,d} and prk® < {g“'nﬂew W e W@Yd}. Fi-
nally samples an s;11 <$F and computes h + ¢g*+! and h®.

Return ck « (bp, prk, prk®, g%, g%, h, h*, h?)

Commit(ck, tg(q), f) : parses ck := (bp, prk, prk®, g%, g% h, h®, h?) and uses prk := {gH?EWS‘ We We,d} and
prk® := {g"'H'EW W e W@\d} to compute g/ ® and ¢g®/(®) respectively. Then samples a random ry s
and computes cy1 g7 OR" and cj o+ g™ (R)s
Return (c,0) < ((cf,1,¢5,2),75))

Commit(ck, tq,y) : parses ck := (bp, prk, prk®, g%, ¢°, h, h®, h?) and samples r s F. Computes ¢, gh" and
cy2 < (¢%)Y(h?)" and return (c,0) := ((cy,1,¢y,2),7)-

VerCommit(ck, tgq), ¢, f,0) : parses ck := (bp, prk, prk®, g%,9%, h, h®, hP) and uses prk := {gHIEW S Woe Wg,d}
to compute g/(®). Parses ¢ := (cs,1,¢y,2). Output 1iff ¢z = g/ ©h° Ae(era,9%) = e(cs2, g).

VerCommit(ck, tq, ¢,y,0) : parses ck := (bp, prk, prk®, g%, g%, h, k%, h?). Parses ¢ := (cy.1,¢y,2) Output 1iff ¢, =
g¥h" Aeley1,9%) = e(ey2, 9).

Fig. 13 PolyCom commitment scheme

multisets of {1, ..., ¢} where the cardinality of each element is at most d. The scheme is
described in Fig. 13.

Theorem 6.1 Under the (¢ + 1)d-Strong Diffie Hellman and the (d, £)-Extended Power
Knowledge of Exponent assumptions PolyCom is an extractable trapdoor commitment
scheme.

For the proof we refer to [18, 77].

6.1.3 Input-hiding CP-SNARK for polynomial evaluation

The main building block of our main protocol is a CP-SNARK CPpojygya for the type-based
commitment PolyCom. Loosely speaking the idea is to commit to the input # and the output
y of a polynomial (with a Pedersen commitment), further commit to the polynomial f
itself (with a polynomial commitment) and then prove that the opening of the committed
polynomial evaluated on the opening of the committed input gives the committed output.
The relation of the protocol is Rpolyeval ((tk)kefe)s > ¥)) = Liff f(t1, ..., t) = y:

R = (ck, Rpolyeval) Where R is over

(x’ w) = (()C,))s (M, o, (U)) = ((®9 (7)’) (’tk)kE[ZL sf)) ’ ((ys (fk)ke[lb f)7
(ry, (riketer. 7). D)).

We will present a CP-SNARK for this relation, CPpojygyal, in Sect. 6.3. CPpgygyal is based
on a similar protocol for polynomial evaluation given in [18] which was in turn based on the
verifiable polynomial delegation scheme of zk-vSQL [77]. In those protocols, however, the
input t is public whereas in ours we can keep it private and committed.

6.1.4 Range proof CP-NIZK

We make use of CPrange, a CP-NIZK for the following relation on PedCom commitments ,
and two given integers A < B:

Rrange (e . A, B), (e,rg)) =1 iff ,=g°h"s A A <e, < B.

CPRange can have various instantiations such as Bulletproofs [13].

@ Springer

Zero-knowledge proofs for set membership... 3501

Setup(1*,£) : executes ck PolyCom. Setup(1*,£,1)

Commit(ck, ty,U) : computes U« L(U) and then the corresponding multilinear extension of U fo. Returns
(¢,0) < PolyCom.Commit(ck, tr(s, f3)-

Commit(ck, tq,y) : returns (c,0) < PolCom Commit(ck, tq,y)

VerCommit(ck, tu, ¢,U,0) : computes U < L(U) and then the corresponding multilinear extension of U fo-
Outputs PolyCom.VerCommit(ck, tgq], ¢, f3,0).

VerCommit(ck, tq, ¢, y,0) : outputs PolyCom.VerCommit(ck, tq, ¢, y, 0).

Fig. 14 Craraxped

6.1.5 Multilinear extensions of vectors

Let F be a field and n = 2¢. The multilinear extension of a vector @ = (ag, . .., dy—;) in F
is a polynomial f, : F¢ — F with variables x, . . ., x¢ defined as

Ja(xy, ..o x0) = Za, l_[select;, (xx),
=0

. . . . Xk, ifiy =1
where igi¢—1 .. .i2i1 is the bit representation of i and select;, (x) = k] .k
1 —x, ifip =0.
A property of Multilinear extension of a is that f, (i, ..., i;) = a; foreachi € [n].

6.1.6 The type-based commitment scheme of MemCPy¢

We define the type-based commitment Cggyqx peq for our CP-SNARK MemCPy,c. We recall
we need a commitment that allows one to commit to both elements and sets. We build this
based on a hiding variant of EDRAX Vector Commitment [23], which in turn relies on a
polynomial commitment. Therefore, we use a special case of PolyCom for polynomials of

maximum variable degree d = 1. Let £ := [log(n)—‘ and 2[¢1 be the powerset of [£] =

{1, ..., £} then Wy 1 = 2[€1 Furthermore, for anyn’ <nletl : S, — F" be a function
that maps a set of cardinality n’ to its corresponding vector according to an ordering. The
description of the scheme can be found in Fig. 14. Essentially the idea is to take the set,
fix some ordering so that we can encode it with a vector, and then commit to such vector
using the vector commitment of [23], which in turn commits to a vector by committing to its
multilinear extension polynomial.

6.2 CP-SNARK for set membership using EDRAX vector commitment

Here we present a CP-SNARK for set membership that uses a Vector Commitment—an
EDRAX [23] variant—to commit to a set. The idea is to transform a set to a vector (using
for example lexicographical order) and then commit to the vector with a vector commitment.
Then the set membership is proven with a zero knowledge proof of opening of the corre-
sponding position of the vector. However to preserve zero knowledge we additionally need to
hide the position of the element. For this we construct a zero knowledge proof of knowledge
of an opening of a position that does not give out the position. Finally, since the position is
hidden we additionally need to ensure that the prover is not cheating by providing a proof
for a position that exceeds the length of the vector. For this we, also, need a proof of range
for the position, i.e. thati < n.

@ Springer

3502 D. Benarroch et al.

CP-SNARK for Rvcmem

KeyGen(ck, Rvcmem) : computes (eki,vki) “— CPpolyeval. KeyGen(ck, Rpoyeval) and (eka, vkz) “—
CPRange-KeyGen(ck, Rrange)

Return (ek, vk) < ((eki,eka), (vki,vka))

Prove(ek, #U, (cy, (ciy ke, cv)s (U, (ik)rere), U), (ry, (Tiy Jker, 7v), @) parses ek := (eki,ek:) and com-
putes m1 < CPpoyeval.Prove (eki, @, (cy, (¢iy)keie), cv), (U, (ir)ree, U), (Ty, (i kel Tv), @). Parses ck :=
(bp, prk, prk®, g%, ¢° h,h*,h?) and further bp := (q,9,G1,Gr,e) to get (g,h), then computes i <«
Zf:lik?ul and r; <+ Ei:l 73,2871 and the corresponding commitment ¢; < g‘h"i. Notice that ¢; is
a commitment to ¢ with o = r;. Computes 72 <~ CPRrange.Prove (eki, (1, #U), ¢i,i,7i, @)

Return 7 = (71, m2)

VerProof (vk, #U, (¢y, (i, ke, cu),) : parses vk := (vki,vka) and 7 := (71, 72). Then computes homomorhi-
cally ¢i1 Hi,:l(clk‘l)‘2 " and Cio Hizl(cmg)fﬂ.

Return b < CPpolyval-VerProof (vki, &, (¢y, (¢iy,)refe)), cv), 1) A CPRange.VerProof (vka, (1, #U), ci, @)

Fig. 15 MemCPyc

In this section the domain of the elements is a field, Dgj, := F, and the domain of the set
is all the subsets of 2Pm of cardinality bounded by 1, Dset = {U € 2Pem : #U < n}, which
we denote by S, (the # symbol denotes the cardinality of a set). So U has elements in F and
is a subset of S,,.

The type-based commitment of our scheme is Cggrqx peqd (Fig. 14) that is presented in the
previous section, and the relation is

R = (ck, Rycmem) where R is over

(x7 w) = ((x7 C)» (I/l, 0, LU)) = ((#Uv (7)’ ’ (7ik)ke[é], sU)) ’
(s Grerers U, (ry, (rikerer rv). D)) -

Rucmem B#U, (, (ikerer, U)) = Liff y = LA AT < #U Ai =Y 5_ ix2"

Note that in the above the prover should normally give exactly £ = ’Vlog(#U)—‘ com-

mitments. In case £ < [log(#U)—‘ the position is not fully hiding since it is implicit that

i < 2¢=1 50 the verifier gets a partial information about the position.

For this we will compose a CP-SNARK CPpojygyal and a CP-NIZK CPgrange for the relations
Rpolyeval ((ikerer, f5¥)) = Viff (i1, ..., i) = y and Rrange(T, (i)kere) = 1iffi < T
respectively and the commitment scheme Cggrqxped- SO CPycmem 1S @ conjuction of the
former, where the common commitments are (,;,)kefe) (Fig. 15).

Theorem 6.2 Let CPpoiygval and CPrange be zero knowledge CP-SNARKs for the relations
Rpolykval and RRrange respectively under the commitment scheme PolyCom then the above
scheme is a zero knowledge CP-SNARK for the relation Rycmem and the commitment scheme
CEdraxPed- Further it is a CP-SNARK for Rmem under the same commitment scheme.

Proof Zero Knowledge comes directly from the zero knowledge of CPpoyeyal and CPpojygval-

For Knowledge Soundness, let an adversary A(R, crs, auxg, auxz) outputting (x, ,) :=
(#U, (y. Gig dkeres »u)) and 7 such that VerProof (vk, #U, (,y , (i kefer v),) = L.
We will construct an extractor £ that on input (R, crs, auxg, auxz) outputs a valid witness
w = ((y, (kerer, U), (ry, (rikere)s rv), D).

@ Springer

Zero-knowledge proofs for set membership... 3503

€ uses the extractors of Epolyeval, ERange Of CPpolyeval and CPrange. Epolyeval OUtputs
(y, (ik)ke[l]’ f), (ry, (r,'k)ke[[]» rf) such that f(il, ey ig) =YyA PonCom.VerCommit(ck,
trsy, »u s forp) = 1A

PolyCom.VerCommit(ck, t;, ,,,y,ry) = 1 /\i:] PolyCom.VerCommit(ck, ty, ,;, ,
ix, ri,) = 1. Further, from the Extended Power Knowledge of Exponent assumption we
know that f is an £-variate polynomial of maximum variable degree 1. Therefore it corre-
sponds to a multilinear extension of a unique vector U, which is efficiently computable. The
extractor computes the vector U from f and the corresponding set U. It is clear that, since
f is the multilinear extension of the U and PolyCom.VerCommit(ck, tr(s), v, f,7f) = 1,
CEdraxpea-VerCommit(ck, ty, ,u , U, ry) = 1. CEaraxpeqa-VerCommit(ck, ty, .y, ¥, 7y) =
1 /\izl CEdraxpea-VerCommit(ck, t,, ,;, , ik, ri,) = 1 is straightforward from the definition
of the Cggrax pea commitment scheme for field elements type.

& uses the extractor of the commitment scheme PolyCom, Epgycom, that outputs for
each k = 1,...,¢ ix,r; such that ¢; 1 = g*h'k A e(ci1,8") = elcin,8) or
CEdraxpea-VerCommit(ck, ty, ,i, » 7i,) = 1. Erange outputs (i, r;) such that i < #U A
PolyCom.VerCommit(ck, t,, ,; , i, ;) = 1 which means that ,; | = g'h"". Since the proof
is verified then ,; | =]_[ﬁzl(,,-k,l > or gini = gzﬁzl #2712 From the binding
property of the Pedersen commitment we get thati = Zﬁ:l 25 landr; = Zﬁ:l ri 281

Putting them together the extractor outputs ((y, @dkerer, U, (ry, (rigkerer> T#), @) such
that Cggrax pea . VerCommit(ck, t;, ,y, ry) = 1/\f:1 CEdraxpea-VerCommit(ck, ty, ,;, , i)
= 1A Cgdraxpea-VerCommit(ck, ty,, s, U,ry) = 1 and further y = L(U)[i] A i <
#U NiT = Zi:l i 261 1t is straightforward that y = L(U)[i] A i < #U means that
y € U which leads to Rpem(y, U) = 1. O

6.3 Input-hiding CP-SNARKSs for polynomial evaluation

Here, we present an instantiation of a a zero knowledge CP-SNARK for the relation Rpoyeval
presented in Sect. 6.1.

To give an intuition of the protocol we recall that zk-vSQL uses Lemma 6.1 to prove the
correct evaluation of the polynomial, that we recall below.

Lemma6.1 ([59]) Let f : F¢ — T be a polynomial of variable degree d. For all t :=
(11, 1) € F¢ there exist efficiently computable polynomials q1, . . ., q¢ such that: f(z) —
O =Y G —)4).

With this one can verify in time linear in the number of variables that f(¢) = y by
checking iff g/ ®g=Y =]_[f=1 e(g%, w;), given the values g/ {g% }le, {w; = gq"(s)}f:1
We are interested in the committed values of f, y = f(¢) and ¢, ,r,,y, ,, respectively, that
hide them. For this we will use instead the equation below for verification:

(f@ +rrzem) = (FO) + ryzes)
¥4

= Z(Zk —t1)qk(2) + ze+1(rp —1ry)
k=1

¢ ¢
= Z(Zk — 1)k () + 1eze+1) + 2o+ (rf —Try — Z”k(zk — tk))

k=1 k=1

@ Springer

3504 D. Benarroch et al.

CP-SNARK for Rpelyval

KeyGen(ck, Rpolyeval) : parses ck := (bp, prk, prk®, g%, g%, h, h®, h%) and computes vrk « {g°*, ..., g%t}
Return (ek, vk) + ((bp, prk, prk®, g%, ¢° h, h“‘h‘j) s (bp‘vrk,y“,gj,h))

Prove(ek, @, (cy, (et Jeie)s) (4, (tr)retes £y (rys (rey Jregasm5), @) : let ck := (bp, prk, prk®, g%, g%, h, A%, h?) i=
((%9“@1,@7»6) {9“'5""”' W ew, d} {{/“'H’EW W oe Wz/,d} »!/u>9319”“>9M“]19ﬁ"“) and

1. Sample 71, ...,7¢ + F and compute qi,..., q¢ such that

(f(2) +rrzeen) = (f(8) + ryze) =

3 £ 3
S ek — (b + regzenn)] - g (2) + rezesa] + 2o (Tf —ry = Y ez —te) + Y [ak(2) + rm+1]>
k=1 k=1 k=1

By using prk := {gntﬁ"" iiWe Wg‘d} and h compute wy = g+ k541 for each k = 1,...,¢ and
Weps = gt~ She Pkt Sy e fan (@ rsi]
2. By using prk® := {g“ﬂl?w W e W[.,l} and h® compute wj, = g* (ar()+rese1) for each k=1, ... N4

and w2+1 — y“’(r/“‘ufziﬂ T (sk—ti)+hmy ey [an(8)+rrses1])

Return m = {wi, ..., We, Weg1, W, ooy W, Wiy
VerProof (vk, @, (¢y, (¢t)repe, ¢f),) : parse m := {wi, ..., we, Wey1, WY, .oy Wh, Wigq }, VK (bp,vrk,g‘ﬂg‘”,h)
and ¢y = (¢y,1,¢y,2), €ty i= (Cep 1, ey 2) for each k=1,... 0] and ¢f := (cp1,cp2)

Return 1 iff
L e(ey1.9”) = eley2.9)

2. e(era,9%) = elcr2, 9)

3. ect1.9”) = elcry,2,9) forall k=1,...¢

1. e(wg 1]“)76(11/;”\}) forallk=1,...0,0+1

5. e(cr-cy' g) = szlf’ (9 squ .11,k) e(g° weq1)

Fig. 16 Description of the CP-SNARK for polynomial evaluation

¢
=Y [a — @ +ryzesn)] - (@ + rezen 1+
k=1
¢ ¢
taepr |\ rp—ry = D omr —)+ Yy [ak (@ + rezer]
k=1 k=1

The equation indicates us how to construct the protocol which we present in Fig. 16.

Theorem 6.3 Under the (£ + 1)d-Strong Diffie Hellmann and the (d, £)-extended power
knowledge of exponent assumptions, CPpoiyeval is a Knowledge Extractable CP-SNARK for
the relation Rpolykval and the commitment scheme PolyCom.

Proof Below is a proof sketch, which however is quite similar to the one of CPpojy in [18].
Knowledge soundness The proof comes directly from Evaluation Extractability of vSQL

(see [77]) with the difference that here #; for each k € [£] should also be extracted. However,

its extraction is straightforward from the extractability of the commitment scheme.
Zero-knowledge Consider the following proof simulator algorithm

Sprv(td, o Gy kele] Yy):

— Use td to get o and s¢41.
— Fork = 1to £, sample & <sZ, and sets wy < g&k.

Compute w4y such that e (,f 1 L) [Tici e (g% wi) - e (8%, wer)

holds. That is: we| < (,f T (g%)sk) o
— Use a to compute w;, = w{ forallk € [£ + 1].

@ Springer

Zero-knowledge proofs for set membership... 3505

— Return {wy, ..., we, wegr, Wy, ..., wp, wéH}

It is straightforward to check that proofs created by Spry are identically distributed to the
ones returned by CPpojyeyal.Prove. (wi)iefe)’s are uniformely distributed in both cases. For
wey there is a function W such that wer1 = WG r1.,y,1, VK, G, 1)kelel, (Wikere)) in
both cases. Since the inputs are either identical or identically distributed, the outputs wy41
are also identically distributed in the case of of Spry and CPpoygyal.Prove. O

7 Experimental evaluation

We implemented all our RSA-based CP-SNARKS for set-membership and non-membership
as a Rust library cpsnarks-set[28]. Our library is implemented in a modular fashion such that
any elliptic curve from libzexe[67] and Ristretto from curve25519-dalek[54] can be used. In
particular, this means that our CP-SNARKS can be easily (and efficiently) used in combination
with other CP-SNARKSs implemented over these elliptic curves, such as Bulletproofs [13]
and LegoGroth1619 [18].

In this section, we provide details on the implementation, we present experimental results
to validate the concrete efficiency of our solutions and we compare with existing approaches.

7.1 Implementation of cpsnarks-set

Our cpsnarks-set library includes implementations of the schemes MemCPgsa, MemCPgrsaprm,
NonMemCPgsa, and NonMemCPgsaprm- In all the schemes, the RSA accumulator imple-
mentation is a modification of accumulator[15], and the internal protocols are implemented
as interactive and are made non-interactive with the use of Merlin[33]. For MemCPgsa and
NonMemCPgsp—where we recall set elements can be binary strings and the protocol encodes
them into primes—we used our implementation of LegoGroth16 [66] on top of libzexe to
provide efficient instantiations of CPhasheq. For MemCPgsaprm and NonMemCPrsaprm—
where set elements are already primes and one needs to verify a claim about ranges—we
implemented two instantiations of CPgange: one based on LegoGrothl16 and one based on
Bulletproofs.

Each of the protocols Root, Coprime, modEq, HashEq and the different instantiations of
Range are implemented individually and are further composed into the higher level member-
ship and non-membership protocols. The higher level protocols are modular: they can use any
hash-to-prime proof—or range proof in the prime elements case—as long as it implements
the appropriate interface.

We benchmark the implementation on a desktop machine having a 3.8 Ghz 6-Core Intel
Core i7 processor and 32GB RAM. The benchmarks code is available on [27, 28].

7.2 CP-SNARKSs for set membership

For the problem of set membership, we tested the following instantiations of our solutions
using the RSA-2048 [65] modulus: 1. MemCPgsa with LegoGrothl16 for CPpasheq and a

Blake2s-based hash-to-prime mapping to 252-bit primes (MemCPkgA); 2. MemCPgrsaprm
with LegoGroth16 on the BLS12-381 curve for CPrange (MemCPFLgAPrm), and: (a) 252-bit

19 we implemented this scheme in Rust on top of /ibzexe as part of this work [66].

@ Springer

3506 D. Benarroch et al.

Table1 Setmembership asymptotic complexity and benchmarks—our RSA schemes (|x|: size of set elements)

Solution Pime Viime |crs| |TT]
MemCPLS, O(|x|log |x| + &) O(lx| + 1) O(x| + 1) O(lx| + 1)
MemCPLS, o O(|x|log |x| + 1) O(Ix| + 1) O (x| + 1) O(lx| + 1)
MemcCPBP, o O(Ix| + 1) O(x| + 1) o) O(x| +)
Solution x| Ptime Vtime [crs| (1] Pmemory
MemCPLS, 252 309.10 31.44 6852 44 45
MemCPLS, 252 48.14 29.10 86 44 5
MemCPLS, o 63 4391 27.492 86 44 5
MemcPBF o 250 62.69 25.46 8 5.0 5
MemcCPEF o 62 38.04 21.97 2 5.0 5
bits ms ms KB KB MB

All the metrics of our protocols are independent of the number of elements in the set

Table 2 Set membership asymptotic complexity and benchmarks—Merkle trees through [46] zkSNARK (n:
number of elements in the set)

Depth Hash Piime Viime |ers| [
logn Pedersen O(Alogrlognloglogn) O(A) O(Alogn) O(\)
logn SHA256 O(Alogrlognloglogn) O(\) O(M\logn) O(\)
Depth Hash Ptime Viime |crs| [T Pmemory
8 Pedersen 216 2.8 2512 0.192 22
16 Pedersen 356 2.8 5023 0.192 35
32 Pedersen 607 2.8 10047 0.192 49
64 Pedersen 1135 2.8 20094 0.192 79
8 SHA256 1333 2.8 41276 0.192 93
16 SHA256 2563 2.8 82430 0.192 196
32 SHA256 5066 2.8 164737 0.192 423
64 SHA256 10005 2.8 329352 0.192 913

ms ms KB KB MB

primes, (b) 63-bit primes; 3. MemCPgsaprm With Bulletproofs on the Ristretto curve for
CPRange (MemCPBE,), and: (a) 250-bit primes; (b) 62-bit primes.
The results of our experiments are summarized in Fig. 1.

7.2.1 Comparison with Merkle-tree approach
We compare our solutions against one based on proving a valid opening of a Merkle Tree
in a SNARK. Specifically, we ran experiments for Merkle trees with maximum capacities

of {28, 216 732 264} elements, using the Groth16 SNARK [46] over the BLS12-381 curve,
with the following hash functions: 1. Pedersen Hash over the Jubjub curve, a curve defined

@ Springer

Zero-knowledge proofs for set membership... 3507

over the scalar field of the BLS12-381 G group.?® 2. SHA256. The Merkle tree benchmark
code is based on the production Zcash code from [76]. The results of the experiments are in
Fig. 2. We recall that proofs in this solution are of 192 bytes.

As one can see from the results, our solutions are highly attractive in terms of proving
time and CRS size. For instance, compared to an optimized solution based on a Pedersen-
Hash-based Merkle tree containing up to 23% elements, our MemCPgsa scheme for arbitrary
elements enjoys a sub-second proof generation on a commodity laptop, it is more than twice
faster and requires a shorter CRS. A price to pay in our solution is a larger proof size (4.4
kilobytes vs. 192 bytes) and higher verification time (31 ms vs. 2.8 ms). Nevertheless, these
values stay within practical reach. When comparing to less optimized solutions based on
Merkle trees (e.g., using SHA256, something common in lack of specialized elliptic curves),
we achieve up to 32x faster proving time and a 48 x shorter CRS.

In addition to the aforementioned gains in prover efficiency, our solutions can benefit from
the use of RSA accumulators to succinctly represent sets in comparison to using Merkle trees.
In particular, the algebraic properties of RSA accumulators yield simple and efficient methods
to add (resp. delete) elements to (resp. from) the set.

For instance, we can insert an element in an RSA accumulator in O (1) time and space,
and with the same complexity we can update each existing membership and non-membership
witness. This means that, once having an updated witness, our zero-knowledge proofs can
also be recomputed in O (1) time and space. With respect to deleting elements, this can also
be done in constant time and space by a party who holds a valid membership witness.

Insertion and deletion in ordinary Merkle Trees may require O(n) time by rebuilding
the tree from scratch from the whole set (thus also requiring O (n) storage). A more effi-
cient method for insertion requires clients to store a “frontier” of size @ (log(n)) of internal
hashes which lowers the time complexity to O (log(r)). One can also lower deletion times to
O (log(n)) by using other techniques, e.g., [63], but at the expense of keeping O (n) storage.
Updating a Sparse Merkle Trees requires O(n) time and space during updates. Inserting
and deleting elements in Interval Merkle trees requires keeping the elements contiguous and
sorted. This brings the time/storage complexity to O (n) for insertion and deletion, since we
may need to rebuild substantial portions of the tree from scratch.

7.3 CP-SNARKs for set non-membership

For set non-membership, we tested the following instantiations of our solutions using
the RSA-2048 [65] modulus: 1. NonMemCPgsa with LegoGroth16 for CPhasheq and a
Blake2s-based hash-to-prime mapping yielding primes of 252 bits; 2. NonMemCPgsaprm with
LegoGroth16 on the BLS12-381 curve for CPrange, and 252-bit primes; 3. NonMemCPrsapym
with Bulletproofs on the Ristretto curve for CPrange, and 250-bit primes.

The results of our experiments are summarized in Fig. 3.

7.3.1 Comparison to other approaches for non-membership

Non-membership proofs are usually a more computationally intensive task in SNARKSs. There
are two common approaches to deal with this problem using Merkle trees: sparse Merkle trees
and interval Merkle trees. We did not test these solutions experimentally. However, as we
detail below, creating a zero-knowledge proof for one of these solutions would not be more

20 This is the Bowe-Hopwood variant of a Pedersen hash, as described in [49].

@ Springer

3508 D. Benarroch et al.

Table 3 Set non-membership benchmarks—our RSA schemes (]x|: size of set elements)

Solution Piime Viime |crs| |TT]
NMemkS, O(|x|log x| +) O(x| + 1) O(lx| + 1) O(lx| + 1)
NMemkS,, O(|x|log x| +) O(x] + 1) O(lx| +2) O(lx| +2)
NMemgP . O(x| + 1) O(x| + 1) 0 O(x| +)
Solution |x] Ptime Viime |crs| [TT| Pmemory
NMemkS, 252 324.90 40.37 6852 6.1 45
NMemkS, ., 252 63.39 38.12 86 6.1 5
NMemgP . 250 79.46 34.58 8 6.6 5
bits ms ms KB KB MB

efficient than proving one Merkle tree path. Therefore, our solutions for non-membership
achieve at least the same improvement as in the previous section.

Sparse Merkle trees for a set S are built through an ordinary Merkle Tree T on the universe
U of elements (we assume there is some conventional way to index the elements). For each
element x not in the set S we store a dummy element in 7 corresponding to the index of
x. For each element in the S we store that particular element at the corresponding index. In
order to prove that x ¢ S we provide an opening path of a Merkle tree whose leaf is a dummy
value at the right index. Although there are efficient techniques to build or update a sparse
Merkle Tree [4, 30], the main drawback with this technique is the opening size, which is
©(log(|U))) instead of @ (log(|S])). If we perform the opening inside a SNARK, we have
to pay a higher proving time. For example, consider if we use SHA256 to index elements
in a set with a roughly 32 bit-representations. This would require a tree of size 2256 which
typically implies at least a 256/32 = 8 x slowdown.

Interval Merkle trees work by sorting the leaves on each insertion and storing a pair of
adjacent elements in each leaf, signifying intervals that don’t contain elements in the set.
The depth of an Interval Merkle Tree is the same as in an ordinary Merkle Tree. Nonetheless
it has the following performance overheads: (i) opening requires two opening paths instead
of only one (typically doubling the proving time); (ii) insertion requires sorting all leaves,
which may be computationally demanding if the set is large.

Unlike either of the approaches above, the size of the set does not impact proving time
in our constructions. Moreover, both insertions and non-membership witness updates are
efficient to compute.

7.4 Improving running times: from statistical ZK to computational ZK

The schemes described in this section use statistically hiding commitments to achieve sta-
tistical zero-knowledge. We can improve our running times switching to computationally
hiding commitments and thus computational zero-knowledge. This optimization has con-
crete benefits as it can cut running times by approximately half. Specifically, it reduces by
50%:

— verification time in constructions MemCPgsa, MemCPgrsaprm, NonMemCPgsp and
NonMemCPRSAprm;

@ Springer

Zero-knowledge proofs for set membership... 3509

Table 4 Set membership

benchmarks—our RSA schemes Solution ol Pime Viime fors| I
with the computational ZK MemCPLG 252 292 17.6 6852 3
optimization (|x|: size of set RSA
elements) MemCPLS,, 252 26.11 1512 86 3
LG
MemCPLS,, 63 2195 1361 86 3
BP
MemcPBP . 250 4153 1121 8 3.6
BP
MemCPRSAPrm 62 16.26 7.83 2 3.6
bits ms ms KB KB
Table 5 Set non-membership . . .
benchmarks—our RSA schemes Solution ol Pime Viime fers| I
with the computational ZK NMem:S, 252 301 241 6852 42
optimization (|x|: size of set S
elements) NMemk&,, 252 30.26 17.99 86 42
BP
NMemRSAPrm 250 45.23 14.33 8 4.7
bits ms ms KB KB

— proving time in constructions MemCPgsaprm and NonMemCPgsapim-

The results of our experiments for membership and non-membership are summarized in
Figs.4 and 5 respectively.

Here are more details about the optimization. Our protocols, as originally described, make
use of the integer commitment of Damgard and Fujisaki [31] as described in Sect. 4.2. In this
scheme we hide the value by uniformly sampling an integer » from a large set. Its size should
be at least around the order of the group; for RSA groups, for example, this is equivalent to
sampling r <=s[1, N /2]. Performing exponentiations with such a large integer—on average
N /4 in the RSA case—is expensive.

To overcome this problem, we propose a computationally hiding integer commitment
variant of the above, in which r is picked from a smaller set; we sample itas r <s[1, 2%*]. The
scheme is hiding under the assumption that {G™" : r| <= [1, N/2]}and {G"? : rp <1, 22’\]}
are computationally indistinguishable.?! This assumption can be justified in the generic group
model. Similar assumption related to non-uniform distributions over [1, ord(G)] have been
proven secure in GGM by Bartusek et al. [3]. This approach makes exponentiations by r
faster on average since N > 2%*.

8 Applications

In this section, we discuss applications of our solutions for proving set (non-)membership in
a succinct and modular way.

As one can note, in our solutions the set of committed elements is public and not hidden
to the verifier. Nevertheless, our solutions can still capture some applications in which the
“actual” data in the set is kept private. This is for example the case of anonymous cryptocur-
rencies like Zerocash. In this scenario, the public set of elements to be accumulated, U, is
derived by creating a commitment to the underlying data, X, e.g., u = COM M (x). To sup-

21 pueto generic lower bounds on the DLOG problem [69], [1, 2*1 would not be enough.

@ Springer

3510 D. Benarroch et al.

port this setting, we can use our solutions for arbitrary elements (so supporting virtually any
commitment scheme). Interestingly, though, we can also use our (more efficient) solution for
sets of primes if commitments are prime numbers. This can be done by using for example the
hash-to-prime method described in Sect.4.2 or another method for Pedersen commitments
that we explain below in the context of Zerocash.

We now discuss concrete applications for which our constructions are suitable, both for
set-membership and set non-membership. In particular these are applications in which: (1)
the prover time must be small; (2) the size of the state (i.e.: the accumulator value and
commitments) must be small (potentially constant); (3) the verifier time should be small; and
(4) the time to update the accumulator—adding or deleting an element—should be fast. As
we discuss below, our RSA-based constructions are suitable candidate for settings with these
constraints.

8.1 Zerocash

Zerocash [5] is a UTXO-type (Unspent Transaction Output) cryptocurrency protocol which
extends Bitcoin with privacy-preserving (shielded) transactions. When performing a shielded
transaction users need to prove they are spending an output note from a token they had
previously received. Users concerned with privacy should not reveal which note they are
spending, else their new transaction could be linked to the original note that contained the note
commitment. This would reveal information both to the public and the sender of the initial
transaction, and hence partially reveal the transaction graph. In order to keep transactions
unlinkable, the protocol uses zZkSNARKS to prove a set membership relation, namely that a
note commitment is in a publicly known set of “usable” note commitments.

Zcash is a full-fledged digital currency using Zerocash as the underlying protocol. In its
current deployment, Sapling [49], it employs Pedersen commitments of the notes and makes
a zero-knowledge set membership proof of these commitments using a Pedersen-Hash-based
Merkle tree approach. This is the part of the protocol that can be replaced by one of our RSA-
based solutions in order to obtain a speedup in proving time. In particular, we could slightly
modify the note commitments in order to enable the use of our scheme MemCPgsaprm for sets
of prime numbers, which gives the best efficiency. We can proceed as follows. Let us recall
that the note commitments are represented by their x coordinates in the underlying elliptic
curve group. We can then modify them so that the sender chooses a blinding factor such that
the commitment representation of a note is a prime number, and we can add a consensus
rule that enforces this check. With this change, we can achieve a solution that is significantly
more efficient than that currently used in Zcash. Currently Zcash uses a Merkle Tree whose
depth is 32. In this setting, we would be able to reduce proving time of set-membership
from 1.12s to 54.51 ms, trading it for larger proof sizes. We note that in this application,
the set-membership proof about # € § is accompanied by another predicate P (u). In the
proof statement of the Zcash protocol, proving that P (u) is satisfied takes considerably less
time than the membership proof, hence this is why our solution would improve the overall
proving time considerably, albeit the proof having more components. Another interesting
comment is that our solution significantly reduces the size of the circuit, hence the need of a
succinct proof system is reduced and one may even consider instantiations with other proof
systems, such as Bulletproofs, that would offer transparency at the price of larger proofs and
verification time.

@ Springer

Zero-knowledge proofs for set membership... 3511

8.2 Asset governance

In the context of blockchain-based asset transfers protocols, a governance system must be
established to determine who can create new assets. In many cases these assets must be
publicly traceable (i.e., their total supply must be public), yet in others, where the assets can
be issued privately, validators still need to verify that the assets were issued by an authorized
issuer. Specifically, there may be a public set of rules, X (where a rule = (pk, [a, b])),
defining which entities (public keys) are allowed to issue which assets (defined by a range
of asset types), forming an “issuance whitelist”. When one of those issuers wants to issue
a new asset, they need to prove (in zero knowledge) that their public key belongs to the
issuance whitelist, which entails set membership, as well as prove that the asset type they
issued is within the allowed range of asset types (as defined in the original rule). In this case,
the accumulated set of rules is public to all, and this public information may also include
a mapping between rules and prime numbers. Our RSA-based scheme for sets of primes
(Sect.4.4) can suit this scenario.

8.3 Anonymous broadcast

In a peer-to-peer setting, anonymous broadcast allows users in a group to broadcast a message
without revealing their identity. They can only broadcast once on each topic. One approach
described in [64] works by asking users to put down a deposit which they will lose if they try
and broadcast multiple messages on the same topic. In this approach users joining a group
deposit their collateral in a smart contract. Whoever has the private key used by the client
for the deposit can claim the sum. The approach in [64] makes sure that the key is leaked if
one broadcasts more than one message. To enforce this leakage we require that at broadcast
time users (i) derive an encryption key K that depends on their private key and the topic, and
(ii) compute an encryption of the private key by the newly derived K. Then the users publish
both the ciphertext and a secret share of the encryption key K, and prove (in zero-knowledge)
their public key is part of the group and that (i) and (ii) were performed correctly. Which
specific share needs to be revealed depends on the broadcasted message, thus making it likely
two different shares will be leaked for two different messages.

This way, broadcasting multiple messages on the same topic reveals the user’s private
key, allowing other users to remove them from the group by calling a function in the smart
contract and receive part of the deposit.

A particularly interesting use case for anonymous broadcast is that in which the group
is comprised of validators participating in a consensus algorithm, who would like to broad-
cast messages without exposing their node’s identity and thus prevent targeted DoS attacks.
This setting requires proofs to be computed extremely fast while verification performance
requirements are less strict. Our MemCPgsaprm can satisty these performance requirements
trading for a modest increase in proof size.

8.4 Financial identities

In the financial world, regulations establish that financial organizations must know who their
costumers are [38]. This is called a KYC check and allows to reduce the risk of fraud. Some
common practices for KYC often undermines user privacy as they involve collecting a lot of
personal information on them. Zero-knowledge proofs allow for an alternative approach. In
modern systems, one can expect that individuals or companies will be able to prove that they

@ Springer

3512 D. Benarroch et al.

belong to a set of accepted or legitimate identities. A privacy-preserving KYC check would
then be reduced to generating a set-membership proof in zero-knowledge. Often some further
information is required, e.g. the credit score of the individual. In such cases our CP-SNARK
for set membership can be combined with one proving an additional predicate P (id) on the
identity in a modular fashion.

Regarding applications of non-membership proofs, we expand on the well-known concept
of “blacklists”, where identities (or credentials) must be shown to not belong to a certain
set of identities (or credentials). As an example, in the context of financial identities, anti-
money laundering regulations (AML) [68] require customers not to be in a list of fraudulent
identities. Here one can use our non-membership construction to generate a proof that the
customer does not belong to the set of money launderers (or those thought to be). Because,
as in the set-membership case, a user may have to prove additional information about their
identity, here we can also benefit from a modular framework. Furthermore, modularity allows
us to cheaply prove both membership and non-membership (at the same time) for the same
identity id together with some additional information P (id): holding commitment , (id) one
can produce the following tuple of proofs: (1) a membership proof (id € S); (2) a non-
membership proof (id ¢ S'); (3) a CP-SNARK proof that includes the statement to be proven
on that identity (P (id)).

We note that in some cases, a central authority, who controls the white and black lists,
is trusted to ensure the integrity of the lists. This means that the identities can be added or
removed from the lists, which means that our RSA-based construction is ideal given the
comparatively reduced cost of updating the dynamic accumulator.

8.5 Zerocoin vulnerability

Another specific application of our RSA-based constructions is that of solving the security
vulnerability of the implementation of the Zerocoin protocol [56] used in the Zcoin cryp-
tocurrency [73]. The vulnerability in a nutshell: when proving equality of values committed
under the RSA commitment and the prime-order group commitment, the equality may not
hold over the integers, and hence one could easily produce collisions in the prime order
group. Our work can provide different ways to solve this problem by generating a proof of
equality over the integers.

Acknowledgements Research leading to these results has been partially supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project
PICOCRYPT (Grant Agreement No. 101001283), by research grants from Protocol Labs, and from Nomadic
Labs and the Tezos Foundation, by the Spanish Government under Projects SCUM (RTI2018-102043-B-100),
CRYPTOEPIC (ERC2018-092822, EUR2019-103816), PRODIGY (TED2021-132464B-100), and RED2018-
102321-T, and by the Madrid Regional Government under Project BLOQUES (S2018/TCS-4339). The last
five projects are co-funded by European Union EIE, and NextGenerationEU/PRTR funds. Most of this work
was done while the first author was at QEDIT. Most of this work was done while the second author was at
IMDEA Software Institute and part of the work while he was at Aarhus University.

Declarations

Conflict of interest The authors have no conflicts interests to declare that are relevant to the content of this
article, besides the funding that we already state and our affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

@ Springer

Zero-knowledge proofs for set membership... 3513

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Accumulator definitions

Below is the definition of Accumulators, following the definition of [37]. We insist on public
key accumulators, meaning that after the key generation phase no party has access to the
secret key.

Definition A.1 (Accumulators) A static (non-Universal) Accumulator with domain X is a
tuple of 4-algorithms, Acc = (Gen, Eval, Witness, VerWit)

Gen(1*, 1) — (sk, ek, vk) is a (probabilistic) algorithm that takes the security parameter
A and a parameter ¢ for the upper bound of the number of elements to be accumulated.
If t = oo there is no upper bound. Returns a secret key sk, an evaluation key ek and a
verification key vk.

Eval(ek, X) — (accx, aux) takes the evaluation key and a set X and in case X C X
outputs the accumulated value accy and some auxiliary information aux. If X Q X
outputs L.

Witness(ek, x, aux) — wit, takes the evaluation key ek, the value x and the auxiliary
information aux and outputs either a witness wit, of x € X or Lif x ¢ X.

VerWit(vk, accy, x, w) — b takes the verification key vk, the accumulation value acc v,
a value x and a witness w and outputs 1 if wit, is a witness of x € X and 0 otherwise.

Further, we give the definition of Dynamic Accumulators, a notion that was introduced
by Camenisch and Lysyanskaya [16]. Dynamic Accumulators are Accumulators that addi-
tionally provide the ability to update the accumulated value and the witnesses when the set
is updated, either on addition of a new element or on deletion.

Definition A.2 (Dynamic accumulators) A Dynamic Accumulator Acc with domain X is a
static Accumulator that additionally provides three algorithms (Add, Delete, WitUpdate).

Add(ek, accy, y,aux) — (accys, aux’) takes the evaluation key ek, the accumulated
value accy, the value to be added to the set y and the auxiliary information aux. If
y ¢ X Ay € Xoutputs the new accumulation value for X’ = X U {y}, accyr and a new
auxiliary information aux’. In case y € X or y ¢ X outputs L.

Delete(ek, accy, y, aux) — (accys, aux’) takes the evaluation key ek, the accumulated
value acc x, the value to be deleted from the set y and the auxiliary information aux. If
y € X Ay € X outputs the new accumulation value for X’ = X \ {y}, accy and a new
auxiliary information aux’. In case y ¢ X or y ¢ X outputs L.

WitUpdate(ek, wit,, y, aux) — wit)/(takes the evaluation key ek, a witness wit, to be
updated, the value y that was either added or deleted from X and the auxiliary information.
In case x € X’ outputs the updated witness wir)., otherwise outputs L.

Normally, we demand that update algorithms, Add and Delete are more efficient than recom-
puting the accumulation value from scratch with Eval. However in the publicly updatable
setting this is not always possible, while it may be possible when the party holds the secret
key. Still in this work we treat public key accumulators.

@ Springer

http://creativecommons.org/licenses/by/4.0/

3514 D. Benarroch et al.

Security correctness

For every t = poly(A) and |X| < ¢:
(sk, ek, vk) < GenAcc(1*, 1);
Pr accy < EvalAcc(ek, X); : VerWit(vk, accy,x, w) | = 1.
w < Witness(ek, X, x)

Soundness

A cryptographic accumulator is sound if for all # = poly()) and for all PPT adversaries .4

there is a negligible function negl(-) such that:
» (sk, ek, vk) < GenAcc(1*, 1); (v*, wit}, X*) < A(1*, ek, vk);
-)
accy~ < EvalAcc(ek, X™) : VerWit(vk, accy+, y*, wit;‘) =1lAy*eXx

*:| <negl(}).

A.1 Dynamic strong RSA accumulators

We formally define Dynamic Strong RSA Accumulators [2, 6, 16] described in Sect. 4.2. It
has domain X = Primes.

Gen(1%, co) — (sk, ek, vk) samples an RSA modulus (N, (g1, g2)) < GenSRSAmod
(1) and a generator F <—sZ}, and computes a quadratic residue G < F 2 (mod N).
Return (sk, ek, vk) < ((q1, ¢2), (N, G), (N, G))

Eval(ek, X) — (accx, aux) parses ek := (N, G). If X ¢ Primes return L, otherwise
computes prod y = Hx,EX x; and Return (accy, aux) < (GP4% mod N, X)

Witness(ek, x, aux) — wity parses ek := (N,G), X := aux and computes
prod (v := [;e\ () Xi Return wity « GPdx\x mod N

VerWit(vk, accy, x,w) — b parses vk := (N,G) Return b « (w* = accy
(mod N)).

Security of strong RSA accumulator and batch-verification

Collision Freeness of the above Accumulator comes directly from strong RSA assumption.
What is more interesting is that the same scheme allows for many memberships to be verified
atthe same time, what is called batch-verification. Thatis, given xy, . .., x,, € Primes one can
compute a batch-witness W = GP™¥\lx1..on) and the verification will be b < (W¥1-n =
accy). Again the security of the batch-verification comes from strong RSA assumption and
it allows us argue that for any W, x if W* = accy := GP™9x then x € Iy, meaning that
x is a product of primes of the set X.

B Generic CP-SNARK for set membership from accumulators with proof
of knowledge

We show here that any accumulator Acc scheme together with a zero knowledge proof of

knowledge that a committed value is accumulated, with a commitment scheme Com, can
generically construct a CP-SNARK for set membership. Let CPaccwit be a zero knowledge

@ Springer

Zero-knowledge proofs for set membership... 3515

Setup((1*,t)) : computes (sk, ek, vk) < Acc.Gen(1*,t) and returns ck := (ek, vk).
Commit(ck, ty, U) : parses ck := (ek,vk), computes (Acc, aux) < Eval(ek, U) and returns (c,0) := (Acc, @).
VerCommit(ck, ty, ¢, U, @) : parses ck := (ek,vk), computes (Acc, aux) < Eval(ek,U) and return 1 iff ¢ = Acc.

Fig.17 Compcc

KeyGen(ck, RS) : Generate the crsacewic <5 CPaccwic-KeyGen(Racewit)
Return crs := crsacewit-

Prove(crs, (cu, cu), (U, u), (@,0)) : parse ck := ((ekacc, Vkacc), Ckcom) and compute wit,, < Acc.Witness(ek, u, U).
Then compute macewit ¢~ CPacewit.Prove(crs, (Ace, cu), (wit, u, 0))
Return 7 := macewit

VerProof(crs, (cu, cu),) : Return 1 iff CPacewie.VerProof (crsacewit, (e, €U), TRoot) = 1.

Fig. 18 MemCPacc CP-SNARK for set membership

proof for the relation Raccwit((Acc, ,y), (wit, u,0)) = 1 iff VerCommit(ck, ,,,u,0) =
1 A VerWit(vk, Acc, u, wit) = 1. Consider a type commitment scheme that takes one type
for sets that can be accumulated by Acc and one for elements of the domain of Com. So it is
the canonical composition of Comacc ¢ Com, where Comacc is decribed in Fig. 17.

Finally the generic CP-SNARK can be seen in Fig. 18.

Theorem B.1 Let Com be a computationally binding commitment scheme, Acc a sound
Accumulator scheme and CPpaccwit be a knowledge sound proof then MemCPacc is a
knowledge-sound with partial opening of the set commitments ,y for the Rmem relation and
the Compacc commitment scheme. Furthermore, if Com,is statistically hiding commitments
and CPaccwit is zero-knowledge, then MemCPac is zero-knowledge.

C Vector commitments

A vector commitment (VC) [21, 52] is a primitive that allows one to commit to a vector v
of length n in such a way that it can later open the commitment at any position i € [n].
In terms of security, a VC should be position binding in the sense that it is not possible
to open a commitment to two different values at the same position. Also, what makes VC
an interesting primitive is conciseness, which requires commitment and openings to be of
fixed size, independent of the vector’s length. Furthermore, a vector commitment can also
support updates, meaning that updates in the underlying vector allow efficient updates of the
commitment and the opening proofs. We note that in this case position binding should also
hold with respect to updates.

C.1 Definition

We follow the definition of a Vector Commitment Scheme and its security with respect to
updates as defined in [23].

Definition C.1 A Vector Commitment Scheme is tuple of PPT algorithms, IT = (KeyGen,
Com, Prove, Ver, UpdateCom, UpdateCom):

@ Springer

3516 D. Benarroch et al.

KeyGen(l*, n) — (prk, vrk, upkg, ..., upk,_;) : given the security parameter A and the
size n of the committed vector it outputs a prover key prk, a verifier key vrk and update
keys upky, ..., upk,_;.

Com(prk, ao, ..., an,—1) — dig, : given prover key prk and vector a = (ao, ..., an—1), it
outputs a digest dig,, of vector a.

Prove(prk, i, a) — (a;, m;) : given prover key prk, a vector a = (ay, ..., a,—1) and an index
i, it outputs the element a; in the i-th position of the vector and a proof ;.

Ver(vrk, dig, i, a, m) — b : given the verifier key prk, a digest dig, an index i, a value a and
a proof m it outputs 1 iff 7 is a valid proof that a is in the i-th position of the vector that
is committed in dig.

UpdateCom(dig, i, 8, upk;) — dig’ : given a digest dig, an index i, an update § and an
update key of i-th position it outputs an updated digest dig’ of a vector the same as before
but with value a + 6 (instead of a) in the i-th position.

UpdateProof (r, i, 8, upk;) — =’ : given a digest dig, an index i, an update § and an update
key of i-th position it outputs an updated proof that @ 4 é (instead of a) is in the i-th
position of the vector.

Soundness

A Vector Commitment Scheme IT is sound if for all PPT adversaries .A the below probability
is negl(})
i (n, state) < A]
(prk, vrk, upky, . .., upk,_,) < KeyGen(1*, n)
a<~— A

di Com(prk,
Ver(vrk, dig, i,a,) =1 19 < (prk, a)

Pr : fork =1,...,t = poly(r
ot = poly(3)
(j,0) < A
dig < UpdateCom(dig, j, 8, upk;)
endfor
L (i,a,m) < A]
= negl(}).
C.2 EDRAX: A vector commitment from multilinear extensions
Multilinear extension of vectors
Let F be a field and n = 2¢. Multilinear Extension of a vector a @ = (ay, . .., a,—1) in F is
a polynomial f, : F¢ — F with variables x1, . . ., x¢
n—1 4
fa(x1, ..., x0) = Zai . l_[select;, (xx),
i=0 k=1
Xk, ifiy =1

where igig—1 .. .21 is the bit representation of i and select;, (xx) = o
1 —xg, ifip =0.

@ Springer

Zero-knowledge proofs for set membership... 3517

A property of Multilinear extension of a is that f, (i, ..., i;) = a; foreachi € [n].
Vector commitment scheme

We describe the EDRAX Vector Commitment:

Definition C.2 Let abilinear group bp = (¢, g, G1, Gr, ¢) < RG(1*) generated by a group

generator. Let n = 2¢ be the length of the vector and 2[4 be the powerset of [£] = {1, ..., £}
KeyGen(l)‘,n) — (prk, vrk, upky, ..., upk,_;) : samples random si, ..., s, <s[F and
computes prk <« [gl_[iessi :Se Z[Z]] and vrk <« {g%,..., ¢*}. For each i =

0,...,n — 1 computes the update key upk; <« [gmzl selecty () p =1, ..., Z}
={upk; 1t =1,..., ¢}

Cem(prk, ag, ...,a,_1) — dig, : leta := (ao, ..., a,_1). Computes dig, < gfas1--50)
where f, is the multilinear extension of vector a as described above.

Prove(prk,i,a) — (a;,m;) :let x = (x1,...,x¢) be an £-variable. Compute ¢, ..., q¢
such that fo(x) — fa(it, ..., i¢) = Yy Ok — i)q(x) and ;< {g®), ..., g}

(where g% is evaluated by using prk := [gnies Si:Se ZW} without §).
Ver(vrk, dig, i, a, w) — b :parse T := (wy,...,we) and outputs 1 iff e(dig/g%, g) =
H/ﬁ:l e(glfk_lkv wk)
$
UpdateCom(dig, i, §, upk;) — dig’ : computes dig’ <« dig - [gnf:l select;, (S")]

— dig . [Upki,e]g _ g(u;+5)<1_[£:1 select;, (s)
+ 320,20 5 TTien select (s

UpdateCom(r, i, a’, upk;) — 7’ : Parses w := (w, ..., wy) and computes w; < wy -
g2® foreach k = 1, ..., ¢, where Az (x) are the delta polynomials computed by the

DELTAPOLYNOMIALS algorithm (for more details about the algorithm and its correctness
we refer to [23]).

The above scheme is proven in [23] to satisfy the Soundness property under the g-Strong
Bilinear Diffie-Hellman assumption.

D Another instantiation of protocol for Rcoprime

Below we propose another interactive ZK protocol for Rcoprime. The difference with the

above is that it doesn’t have the limitation of A; + 1 < @ and Ay < log(N)/2. Also, partial

opening of Acc isn’t needed. This comes with a cost of 2 more group elements in the proof

size, 4 more exponentiations for the prover and 2 more for the verifier.

1. Prover computes C, = DH'*, C,, = G H'a,Cp =G HP, Cp = Acc’ HP» Cpp =

G’ HPs and sends to the verifier:
P—=>V:Cq4 Cp,Crp, Cp, Cpy.

2. Proverand Verifier perform a protocol for the relation: R((Acc, Ce, Cq4, Cy,, Cp, Cp, Cpp),
(e,r,ra, 7}, b, pp, pB, P5. D, B, B,8)) = 1iff

Cp =G H”™ A Cp = Acc’HP® A Co=G°H" A C,, =G'*H"
ACpy = GPPHPE A CCp = GHP A CECpy=GPHY.

@ Springer

3518 D. Benarroch et al.

Coprime2 protocol

On common reference string crs = (Zy, G, H)

Prove(crs, (Ce, Acc), (e, r, (D, b))) :

1. samples 7a,Ta, pv, pB,pp <$ (—|[N/4],|N/4]) and computes C, = DH"™,C,, = G™ H ,Ch
GPH,Cp = Acc®H?® ,C,py = GPB HPS,

2. Computes the non-interactive version of the above protocol
by Te <$ (72AZ+AE+“1 2A;+/\A+ﬂ)
oy Top s Trs Tras Tty s Tl 48 (— | N/4] 2“**", |N/4] ZA‘JM*‘)
g, 15 <8 (7 LN/‘U 2)\;_/4»)\.«*/1’ [N/4J 2>\z+)\.<+/‘)
a1 =GH™ g = Acc”H™?8 a3 = G H'" oy = G""a H'™"o a5 = CLeH™ L ag = CreG™H™ ,ar =
G H'*p
¢+ H(a1, a2, a3, a4, a5, a6, a7, Ce, Acc)
sy = Tp — b Se = Te = Ce,Sp, = Tp, — CPbySpy = Tpp — CPB, Sy = T — CTy S, = Try — Clay Sy =
Trl, = CTras Sply =Tyl — cpl.sp =1p+ clera + pn),ss = rs + clery + pi)

Returns 7 «— (Ca, Cr,,Cy,CB,Cpy, 1,02, 03, s, CSb, Sy Spy s Sp» Sty Sra s ety Syl s 8B, $5)

VerProof(crs, (Ce, Acc),7) : returns 1 iff oy = Cy;GPH®*v A ay = CpAcc®™ H®ve N ag = CEG°°H®"
as = CLGaH" Nas = CyrH¥GCp® Nag = CitHPG O, Nar = CS,GBH "8 N\ Ase €
[_2A+A<+)L+l-2A+As+u+l:|

>

Fig. 19 Description of the alternative Coprime protocol

Let A be the size of the challenge space, A, be the statistical security parameter and
the size of e.

— Prover samples:
Ty, re <= (=2t theti phthoti)
Tops Tpgs Trs Trgs Trs Tyl <5 (= LN /4] 2%+ || N /4] 22Hh)
rg.rs <=5 (—LN/4] Dretheti | N /4] 2A1+M+u),
and computes:
a1 =G"H'™, ay=AccH?5, a3=G"“H”", ay=G«H",
as=CltH'?, o= C;;G’f’H"S, o7 = G5 Hs

P V:(ar, 02,03, a4, a5, U6, A7)
— Verifier samples the challenge ¢ < {0, 1} V — P : ¢
— Prover computes the response:

sp=rp—cb, Ss,.=r,—ce
/
Spp = Fpy — CPbs Spg = Tpg — CPB, Sy = I'y — CI'y Sy, = Iy, — Clq, Sy = Iyl — CTy,
_ _ /
Sp;; = I’p;} CPp
i — / ’
sgp=rp+tclerq + pp), ss=rs+cler, + pp).

P =V (SbSes Spps Sppo 1> Sras Srls Splys S 55)-
— Verifier checks if:
? ? ? . ?
ar = CjGYH, ay = CZAcC? Hs, a3 =CSG*H, ay=C{ G H"a,
9

? — ? _ S 7
as = CrH¥GCy¢, ag= CEHPG¥C,¢, a7 =CS G H,

?
Se € [_2)‘z+)\5+u+1 , 2)‘Z+)\s+lj«+l] .

@ Springer

Zero-knowledge proofs for set membership... 3519

Correctness

Here we show the correctness of the protocol (Fig. 19).

a) = GPH»w = Gsb+chspb+crb — G Hm (Gprb)C
— G.Yb Hspb CZ
ay = Acc’? H'os = AP HSvs TP = Accs H*78 (Acc® HP?)¢
= Acc H8 Cy
o3 = GeH'r = GS<’+CeHsr+Cl’ — G HS (GEHV)C
= G H* Cec
s = G'a H' = Goa e 70 = G H (G HYo)
S/ n
= Gsfa H'a C’Ea
as = CeH'"# = Csetee prsp—c(eratpp) — oSe frsp (DeHera)CH—C(€’a+PB)
a a o
e — - B —bpy— _
= C; Hsﬂ(DeH pB)L — C; HSﬁ(GA(,C H ,UB)C _
— C;e HSﬁ GCCEC
og = C::; GBH" = C;§+ceGs,g—c(era+pB)HSE_C(B,(;_,,_,O%)
= C;v:; G*# H% (G" Hr(/l)ceG—c(era+pB)H—c(er{l+pjg) _ Cf; G % G—PB | —Pl
— Se S S, —C
— CHGPH C!
2}+L‘p2}

a7 = G'rs H' % = Gsters (' = G* H b (GP? H)¢

S 7
= Sop B C¢
G ' C6,.

Security

Theorem D.1 Let Z}; be an RSA group where strong-RSA assumption holds, then the above
protocol is an honest-verifier zero knowledge and knowledge sound protocol for Rcoprime-

Proof Zero-Knowledge can be proven with standard techniques, similar to the ones in the
proof of Theorem 4.6 and is therefore omitted.

For the knowledge soundness, let an adversary of the knowledge soundness A that is able
to convince the verifier V with a probability at least €. We will construct an extractor £ that
extracts the witness (e, r, 12, 13, B, §). Using rewinding £ gets two accepted transcripts

(Ca, Cp, Cr,, Cp, Cpy, 01, 02, @3, 4, A5, A6, U7, C Shy Ses Spys Spgs 1> Srqs Srls Splys S 55)

!/ ’ / / / / / / ’ ’ /
(Cas Cp, Gy, C, Cpp, @1, 02, 03, 04, U5, 0, AT, € Sy S Spys Sppys Sps Sy Syt Spp Sp> s5),

on two different challenges ¢ and ¢’. £ aborts if it cannot get two such transcripts (abort1).

We denote Ac := ¢’ — ¢, Asp 1= sp — SI;, Ase 1= 5o — 8, Asp, 1= Sp, — s;,b, Aspy 1=
/ . / . / . I . / .
Spp — Spge Asy =85y — 8., Asy, =S, =S Asr(/l =Sy =S Asp% =S —sp%, Asg =
sg— s,’g, Asj := 55 — 55 then
CP¢ = G*"H*» = C, =+G H™,)

@ Springer

3520 D. Benarroch et al.

C4¢ = Acc HA%s = Cp = Al HPE, (10)

CA° = GYHY = C,=+G°H, (1)

CA = GO HA = ¢, = £GTH", (12)

| = A% g G=Accie, (13)

1= CeH G CoY, (14)

chc = GO ™ = C,, = £GP HPS, (15)
define tAhe (possibly rational) numfserlsl; =52 5y = Aj‘;”,é = G f = Gy = AAS’C“,
= k. Op = S oy = 2

€ aborts in case Ac doesn’t divide: Asj, and As,, (abort 2a), As, and As,(abort2b), As,,
and As, (abort2c), Asp, and Asmf (abort2d). And finally, £ aborts if Ac doesn’t divide
As,, (abort2e). Therefore, after these aborts didn’t happen we can infer the equivalent
equalities on the right of Egs. 9, 10, 11, 12 and 15.

~ 5\ Ase
If we replace Eqgs. 12 and 15 in Eq. 14 we get 1 = (:I:G’“H’a) HA58 G2

(iGp”B HPAQ;)AC or 1 = (£1)A% (41)A¢ Gradse s ActAsg HAse 0y ActAsp Since G.H.1
are quadratic residues then (+1)4%(£1)4¢ = 1, hence 1 = Gladsetrslctasg
HTadse+0pActAss Then under the DLOG assumption 7, As, + ppAc + Asg = 0 =
ry Ase + py Ac + Asg, which gives us that
Asg = —FyAs, — ppAc. (16)
Finally, we replace Egs. 10 and 16 in Eq. 13 we get | = C/'* H adse=ppAcG—Ac
(j:Acc’;H"AB)AC or 1 = (£ 1)Ac CA% pcchAc G=Ac pp—radse o (iAccéG‘l)AC = (C 7 HT)A

But as noted above Ac divides As, so +Ac?G™! = +(C71H™)" = AcPG! =
~\ € é »
+ (Ca_lH’”) = (%) Acc? = £G. We discern two cases:
é\ N =~ v A
- (g;;) Acc® = +G: Then &€ sets D <« ;f:z’é «— e = AX;’,? “«— 7= ﬁ‘c’ and
T As,
b <~ bA_ 2
P .
- (15,"0) Acc? = —G: Then ¢é should be odd otherwise if é = 2p then G =
€) Acch wouldb dratic residue. S0 & sets D < — i & « ¢ 1= At
— (%5 cc” would be a non-quadratic residue. So £ sets D «— ——-t-.¢ < & := ¢,
F7:= AA‘C’ and b < b := %. It is clear that D?Acc” = G.

Finally the £ outputs (e, 7, D, l;).

Now we show that the probability the extractor terminates with outputting a valid witness
is O (¢). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O (¢) (for the probabilistic analysis
we refer to [31]). Thus Pr[abortl] = 1 — O (¢). For the aborts abort 2a, abort 2b, abort 2¢
and abort 2d they happen with negligible probability (< 1_2_% Pr[B solves sRSA] each,
for any PPT adversary B) under the strong RSA assumption according to Lemma 4.2. For
abort2e we show in the lemma below that in case it happens an adversary can solve the

@ Springer

Zero-knowledge proofs for set membership... 3521

strong RSA problem. Putting them together the probability of success of £ is at least O (¢) —
(1_2_% n 1) Pr[B solves sRSA] = O(€) — negl(iy).

Lemma D.1 If Ac divides Asy, then it also divides App under the strong RSA assumption.

Proof An adversary to the strong RSA assumptionreceives H € QRy and does the following:
set G = HT for T <=s[0, 2* N%] and send (G, H) to the adversary .4 which outputs a proof
Tcoprime2- Then we rewind to get another successful proof né oprime2 and we use the extractor

as above to get Cﬁ" = Acc? HA%5 .

Assume that Ac t App. Since Ac divides Asy, then there is a k such that k - Ac = Asp,.
Then Cﬁ" = Acck A A% = (CBACC_k)AC = H*%s5 . From assumption Ac doesn’t
divide App, so gcd(Ac, App) = g for a g # Ac, App. Hence, there are there are x,
such that x - Ac + ¢ - Apg = g. Thus, H8 = HXActV-4os — pxAc (CBAcc_")wAC =

Ac
14

Ac £
(chgAcc"/’k> so H== (HXCgAcc"pk) . Now since H and Acc are quadratic

Ac
residues (and so is Cp) we getthat H = (HX CgAcc_‘/’k> ¢ and thus (HX CgAcc_W‘, %)
is a solution to the strong RSA problem. O

By a simple argument identical to the one of Sect. 4.5, we can also conclude about the range of
the extracted é: s, ; [—2eths it phethstutl] implies —2h A HiF2 < g < Dhathetut2)

[m}

E Instantiation over hidden order groups

InSects. 4 and 5 we construct zero knowledge protocols for set membership/non-membership,
where the sets are committed using an RSA accumulator. The integer commitment scheme
IntCom, the RSA accumulator-based commitments to sets SetCompgsa, SetComgsa/, the proof
of equality modEq, the argument of knowledge of a root Root and the argument of knowledge
of coprime element Coprime are all working over RSA groups.

Although in our work above we specify the group to be an RSA group, we note that our
protocols can also work over any Hidden Order Group. For example Class Groups [12] or
the recently proposed groups from Hyperelliptic Curves [34, 51].

Here we describe the (slight) modifications, in the protocols and the assumptions under
which they would be secure, that are necessary to switch to (general) Hidden Order Groups.

Let Ggen(1*) be a probabilistic algorithm that generates such a group G with order in a
specific range [0rd,;i,, Ordsqx] such that ordl,,,iy, ord ordmmlordmm € negl(}).

The additional assumption that we need to make is that it is hard to find any group element
in G of low (poly-size) order. This is the Low Order Assumption [10], which is formally
defined below:

Definition E.1 (Low order assumption [10]) We say that the low order assumption holds for
a Ggen if for any PPT adversary .A:

ui=1 G < Ggen(i
en
Pr| Au#1 : < Ggen(4) = negl(}).
Al <o <oty 0O TA®

@ Springer

3522 D. Benarroch et al.

We note that specifically for RSA groups, for Low Order assumption to hold, we have to
work in the quotient group ZY, /{1, —1} [72], since otherwise —1 would trivially break the
assumption. So Zj, /{1, —1} would be an instantiation of a Hidden Order Group where the
Low Order assumption holds.

In terms of constructions, one difference regards the upper bound on the order of G that
is used in the protocols. More precisely, throughout the main core of our work we use N
as an upper bound for the order of the group Z7, and N /2 as an upper bound for the order
of the quadratic residues subgroup QRy . Similarly, in a Hidden Order Group G generated
by Ggen, although the order of the group is unknown, a range in which the order lies is
known [ord,;;, ord,;.x]. So the maximum order ord,,,, can be used, instead of N, as an
upper bound. In many cases these values are used either to securely sample a random value
or to bound the size of a value needed for a security proof. For example a random value
that is sampled from (— [N /4] 2% | N /4] 2*7%) in the RSA group instantiation will

be sampled from (—%2’\3 s %2*1““ in the case of hidden order groups.

Here we give other specific changes that need to be made to instantiate our protocols
in general hidden order groups. For IntCom, the verification equation becomes C = G*H"
(without the). Then the argument of knowledge of opening of such a commitment would be
secure under the strong RSA and low order assumptions. The set commitments SetComgsa,
SetComgsa’ remain the same and are binding under the strong RSA assumption for Ggen (and
collision resistance of Hpyime for the case of SetComgsa). For modEq, the same difference
as for the AoK of an opening of an IntCom commitment is inherited. For Root and Coprime,
the Proposition 4.1 needs to be slightly modified: A = B" can be without =+, and can be
proven under the low order assumption instead. Finally, in the proof of security of protocol
Coprime, in Lemma 5.1 the assumption A; < log(/N)/2 is not needed as long as the low
order assumption holds (an adversary that can find H, Ac such that gcd(ord(H), qé) =1
can be used to break low order assumption).

Transparent instantiation and efficiency

The above instantiation combined with a transparent proof system (for instance Bulletproofs)
gives transparent CP-NIZKs for set (non)-membership analogously with the ones described
for RSA groups in Sect. 4, i.e. proof systems with a uniformly random CRS. We ran some
preliminary experiments for this instantiation over class groups of 2048-bit discriminant
and using Bulletproofs. The results showed proving time of 3.3 s, verification time of 2.3 s
and proof size of 5.3 kB, for arbitrary accumulated elements (i.e. not necessarily primes).
Furthermore, if we make use of the optimization described in Sect. 7.4 it boosts the efficiency
to 1.66 s, 1.33 s and 4 kB (prover/verifier and proof size resp.).

Unfortunately, very recent cryptanalytic results on class groups [34] showed that a dis-
criminant of 2048 bits yields only about 60 bits of security level, while for 128 bits of
security one needs to choose a 6600-bit discriminant for the class group. We estimate that
over class groups of a 6000-bit discriminant our aforementioned protocol, together with the
optimization of Sect. 7.4, will give proving time of ~ 12 s, verification time of ~ 6.4 s and
proof size of 6.4 kB. Finally, our estimations for the respective protocol for prime elements
(with the computational ZK optimization) are: ~ 7 s/~ 6.2 s/6 KB (proving time/verification
time/proof size resp.).

@ Springer

Zero-knowledge proofs for set membership... 3523

References

15.
16.

20.

21.

22.

23.

24.

Agrawal S., Ganesh C., Mohassel P.: Non-interactive zero-knowledge proofs for composite statements.
In: Shacham H., Boldyreva A. (eds.) CRYPTO 2018, pp. 643—673. Part III, volume 10993 of LNCS.
Springer, Heidelberg (2018)

Bari N., Pfitzmann B.: Collision-free accumulators and fail-stop signature schemes without trees. In:
Fumy W. (ed.) EUROCRYPT’97, vol. 1233, pp. 480-494. LNCS. Springer, Heidelberg (1997).
Bartusek J., Ma F., Zhandry M.: The distinction between fixed and random generators in group-based
assumptions. In: Shacham H., Boldyreva A. (eds.) CRYPTO 2019, pp. 801-830. Part IT, LNCS. Springer,
Heidelberg (2019)

Ben L., Emilia K.: Revocation transparency. Google Research, September, p. 33 (2012)

Ben-Sasson E., Chiesa A., Garman C., Green M., Miers 1., Tromer E., Virza M.: Zerocash: decentralized
anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459—474.
IEEE Computer Society Press (2014)

BenalohJ.C., de Mare M.: One-way accumulators: a decentralized alternative to digital sinatures (extended
abstract). In: Helleseth T. (ed.) EUROCRYPT’93, vol. 765, pp. 274-285. LNCS. Springer, Heidelberg
(1994).

Benarroch D., Campanelli M., Fiore D.: Community standards proposal for commit-and-prove zero-
knowledge proof systems (2019). https://www.binarywhales.com/assets/misc/zkproof-cp-standards.pdf
Benarroch D., Campanelli M., Fiore D., Gurkan K., Kolonelos D.: Zero-knowledge proofs for set mem-
bership: efficient, succinct, modular. In: International Conference on Financial Cryptography and Data
Security, pp. 393—414. Springer (2021)

Benoit L., San L., Khoa N., Huaxiong W.: Zero-knowledge arguments for lattice-based accumulators:
logarithmic-size ring signatures and group signatures without trapdoors. In: Marc F., Jean-Sébastien C.
(eds.) EUROCRYPT 2016, pp. 1-31. Part II, volume 9666 of LNCS. Springer, Heidelberg (2016)
Boneh D., Biinz B., Fisch B.: A survey of two verifiable delay functions. Cryptology ePrint Archive,
Report 2018/712 (2018). https://eprint.iacr.org/2018/712

. Boneh D., Biinz B., Fisch B.: Batching techniques for accumulators with applications to iops and stateless

blockchains. IACR Cryptol. ePrint Arch. 2018, 1188 (2018).

BuchmannJ., Hamdy S.: A survey on IQ cryptography (2001). http://tubiblio.ulb.tu-darmstadt.de/ 100933/
Biinz B., Bootle J., Boneh D., Poelstra A., Wuille P., Maxwell G.: Bulletproofs: short proofs for confi-
dential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pages 315-334. IEEE
Computer Society Press (2018)

Cachin C., Micali S., Stadler M.: Computationally private information retrieval with polylogarithmic
communication. In: SternJ. (ed.) EUROCRYPT’99, vol. 1592, pp. 402—414. LNCS. Springer, Heidelberg
(1999).

Cambrian Tech: Cryptographic accumulators in rust (2019). https://github.com/cambrian/accumulator
Camenisch J., Lysyanskaya A.: Dynamic accumulators and application to efficient revocation of anony-
mous credentials. In: Yung M. (ed.) CRYPTO 2002, vol. 2442, pp. 61-76. LNCS. Springer, Heidelberg
(2002).

Camenisch J., Kohlweiss M., Soriente C.: An accumulator based on bilinear maps and efficient revocation
for anonymous credentials. In: Jarecki S., Tsudik G. (eds.) PKC 2009, vol. 5443, pp. 481-500. LNCS.
Springer, Heidelberg (2009).

Campanelli M., Fiore D., Querol A.: Legosnark: modular design and composition of succinct zero-
knowledge proofs. To appear at ACM CCS 2019. IACR Cryptology ePrint Archive, 2019 (2019)
Campanelli M., Fiore D., Han S., Kim J., Kolonelos D., Oh H.: Succinct zero-knowledge batch proofs
for set accumulators. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 455-469 (2022)

Canetti R., Lindell Y., Ostrovsky R., Sahai A.: Universally composable two-party and multi-party secure
computation. In: 34th ACM STOC, pp. 494-503. ACM Press (2002)

Catalano D., Fiore D.: Vector commitments and their applications. In: Kurosawa K., Hanaoka G. (eds.)
PKC 2013, volume 7778 of LNCS, pp. 55-72. Springer, Heidelberg (2013).

Chaum D.: Security without identification: transaction systems to make big brother obsolete. Commun.
ACM 28(10), 1030-1044 (1985).

Chepurnoy A., Papamanthou C., Yupeng Z.: A cryptocurrency with stateless transaction validation, Edrax
(2018)

Couteau G., Hartmann D.: Shorter non-interactive zero-knowledge arguments and zaps for algebraic
languages. In: Advances in Cryptology—CRYPTO 2020: 40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, pp. 768-798.
Springer (2020)

@ Springer

https://www.binarywhales.com/assets/misc/zkproof-cp-standards.pdf
https://eprint.iacr.org/2018/712
http://tubiblio.ulb.tu-darmstadt.de/100933/
https://github.com/cambrian/accumulator

3524 D. Benarroch et al.

25.

26.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

Couteau G., Peters T., Pointcheval D.: Removing the strong RSA assumption from arguments over the
integers. In: Coron J.-S., Nielsen J.B. (eds.) EUROCRYPT 2017, Part II, volume 10211 of LNCS, pp.
321-350. Springer, Heidelberg (2017).

Couteau G., Lipmaa H., Parisella R., @degaard A.T.: Efficient nizks for algebraic sets. In: Advances
in Cryptology—ASIACRYPT 2021: 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 610, (2021), Proceedings, Part III, pp. 128—
158. Springer (2021)

. cpsnarks-librustzcash. https://github.com/kobigurk/cpsnarks-librustzcash
. Cpsnarks-set. https://github.com/kobigurk/cpsnarks-set

Cramer R., Shoup V.: Signature schemes based on the strong RSA assumption. In: Motiwalla J., Tsudik
G. (eds) ACM CCS 99, pp. 46-51. ACM Press (1999)

Dahlberg R., Pulls T., Peeters R.: Efficient sparse merkle trees: Caching strategies and secure (non-
)membership proofs. Cryptology ePrint Archive, Report 2016/683 (2016). https://eprint.iacr.org/2016/
683

Damgérd L., Fujisaki E.: A statistically-hiding integer commitment scheme based on groups with hidden
order. In: Yuliang Zheng (ed.) ASIACRYPT 2002, vol. 2501, pp. 125-142. LNCS. Springer, Heidelberg
(2002).

Damgérd I., Triandopoulos N.: Supporting non-membership proofs with bilinear-map accumulators.
Cryptology ePrint Archive, Report 2008/538 (2008). http://eprint.iacr.org/2008/538

de Valence, H.: Merlin: composable proof transcripts for public-coin arguments of knowledge (2019).
https://github.com/dalek-cryptography/merlin

Dobson S., Galbraith Steven D.: Trustless groups of unknown order with hyperelliptic curves. Cryptology
ePrint Archive, Report 2020/196 (2020). https://eprint.iacr.org/2020/196

Eagen L., Fiore D., Gabizon A.: cq: Cached quotients for fast lookups. Cryptology ePrint Archive (2022)
Escala A., Groth J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk H. (ed.) PKC 2014, vol. 8383, pp.
630-649. LNCS. Springer, Heidelberg (2014).

Fazio N., Nicolosi A.: Cryptographic accumulators: definitions, constructions and applications. Paper
written for course at New York University. www.cs.nyu.edu/nicolosi/papers/accumulators.pdf (2002)
FINRA: https://www.finra.org/rules- guidance/rulebooks/finra-rules/2090#the-rule

Fiore D., Fournet C., Ghosh E., Kohlweiss M., Ohrimenko O., Parno B.: Hash first, argue later: adaptive
verifiable computations on outsourced data. In: Weippl E.R., Katzenbeisser S., Kruegel C., Myers A.C.,
Halevi S.(eds) ACM CCS 2016, pp. 1304-1316. ACM Press (2016)

Fouque P.-A., Tibouchi M.: Close to uniform prime number generation with fewer random bits. In: Esparza
J., Fraigniaud P., Husfeldt T., Koutsoupias E. (eds.) ICALP 2014, pp. 991-1002. Part I, volume 8572 of
LNCS. Springer, Heidelberg (2014)

Fujisaki E., Okamoto T.: Statistical zero knowledge protocols to prove modular polynomial relations. In:
Kaliski B.S. (ed.) CRYPTO’97, volume 1294 of LNCS, pp. 16-30. Springer, Heidelberg (1997).
Gabizon A., Khovratovich D.: Flookup: Fractional decomposition-based lookups in quasi-linear time
independent of table size. Cryptology ePrint Archive (2022)

Gennaro R., Halevi S., Rabin T.: Secure hash-and-sign signatures without the random oracle. In: Stern J.
(ed.) EUROCRYPT’99, vol. 1592, pp. 123-139. LNCS. Springer, Heidelberg (1999).

Gentry C., Wichs D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In:
Fortnow L., Vadhan S.P. (eds) 43rd ACM STOC, pp. 99-108. ACM Press (2011)

Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof systems. SIAM J.
Comput. 18(1), 186-208 (1989).

Groth J.: On the size of pairing-based non-interactive arguments. In: Fischlin M., Coron J.-S. (eds.)
EUROCRYPT 2016, pp. 305-326. Part II, volume 9666 of LNCS. Springer, Heidelberg (2016)

Groth J., Sahai A.: Efficient non-interactive proof systems for bilinear groups. In: Smart N.P. (ed.) EURO-
CRYPT 2008, vol. 4965, pp. 415-432. LNCS. Springer, Heidelberg (2008).

Helger L.: Secure accumulators from euclidean rings without trusted setup. In: Feng B., Pierangela S.,
Jianying Z. (eds.) ACNS 12, vol. 7341, pp. 224-240. LNCS. Springer, Heidelberg (2012).

Hopwood D., Bowe S., Hornby T., Wilcox N.: Zcash protocol specification. Tech. rep. 2016—1.10. Zero-
coin Electric Coin Company, Tech. Rep., (2016). https://github.com/zcash/zips/blob/master/protocol/
sapling.pdf

Jiangtao L., Ninghui L., Rui X.: Universal accumulators with efficient nonmembership proofs. In: Jonathan
K., Moti Y. (eds.) ACNS 07, vol. 4521, pp. 253-269. LNCS. Springer, Heidelberg (2007).

Lee J.: The security of groups of unknown order based on jacobians of hyperelliptic curves. Cryptology
ePrint Archive, Report 2020/289 (2020). https://eprint.iacr.org/2020/289

@ Springer

https://github.com/kobigurk/cpsnarks-librustzcash
https://github.com/kobigurk/cpsnarks-set
https://eprint.iacr.org/2016/683
https://eprint.iacr.org/2016/683
http://eprint.iacr.org/2008/538
https://github.com/dalek-cryptography/merlin
https://eprint.iacr.org/2020/196
www.cs.nyu.edu/nicolosi/papers/accumulators.pdf
https://www.finra.org/rules-guidance/rulebooks/finra-rules/2090#the-rule
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://eprint.iacr.org/2020/289

Zero-knowledge proofs for set membership... 3525

52.

53.
54.
55.
56.
57.
58.
59.
60.
61.

62.

70.

71.
72.
73.

74.

75.

76.
. Zhang Y., Genkin D., Katz J., Papadopoulos D., Papamanthou C.: A zero-knowledge version of vSQL.

78.

79.

Libert B., Yung M.: Concise mercurial vector commitments and independent zero-knowledge sets with
short proofs. In: Micciancio D. (ed.) TCC 2010, vol. 5978, pp. 499-517. LNCS. Springer, Heidelberg
(2010).

Lipmaa H., Parisella R.: Set (non-) membership nizks from determinantal accumulators. Cryptology
ePrint Archive (2022)

Lovecruft I.A., de Valence H.: curve25519-dalek: a pure-rust implementation of group operations on
ristretto and curve25519. https://github.com/dalek-cryptography/curve25519-dalek

Merkle R.C.: A digital signature based on a conventional encryption function. In: Pomerance C. (ed.)
CRYPTO’87, vol. 293, pp. 369-378. LNCS. Springer, Heidelberg (1988).

Miers 1., Garman C., Green M., Rubin Aviel D: Zerocoin: anonymous distributed E-cash from Bitcoin.
In: 2013 IEEE Symposium on Security and Privacy, pp. 397—411. IEEE Computer Society Press (2013)
Nguyen L.: Accumulators from bilinear pairings and applications. In: Menezes A. (ed.) CT-RSA 2005,
vol. 3376, pp. 275-292. LNCS. Springer, Heidelberg (2005).

Ozdemir A., Wahby Riad S., Whitehat B., Boneh D.: Scaling verifiable computation using efficient set
accumulators. Cryptology ePrint Archive, Report 2019/1494 (2019). https://eprint.iacr.org/2019/1494
Papamanthou C., Shi E., Tamassia R.: Signatures of correct computation. In: Sahai A. (ed.) TCC 2013,
vol. 7785, pp. 222-242. LNCS. Springer, Heidelberg (2013).

Papamanthou C., Shi E., Tamassia R., Yi K.: Streaming authenticated data structures. In: Johansson T.,
Nguyen P.Q. (eds.) EUROCRYPT 2013, vol. 7881, pp. 353-370. LNCS. Springer, Heidelberg (2013).
Parno B., Howell J., Gentry C., Raykova M.: Pinocchio: nearly practical verifiable computation. In: 2013
IEEE Symposium on Security and Privacy, pp. 238-252. IEEE Computer Society Press (2013)

Posen J., Kattis Assimakis A: Caulk+: table-independent lookup arguments. Cryptology ePrint Archive
(2022)

. Ray J.: Patricia tree (2019). https://github.com/ethereum/wiki/wiki/Patricia- Tree

rln Semaphore: rate limiting nullifier for spam prevention in anonymous p2p setting, February (2019).
https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam- prevention-in-anonymous- p2p-
setting/5009

. Rsa-2048. https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Rust implementation of LegoGroth16. https://github.com/kobigurk/legogro16

. SCIPR Lab: Zexe (zero knowledge execution). https://github.com/scipr-lab/zexe
. Securities U.S. and Exchange Commission: Anti-money laundering (aml) source tool for broker-dealers

(2018). https://www.sec.gov/about/offices/ocie/amlsourcetool.htm

. Shoup V.: Lower bounds for discrete logarithms and related problems. In: Fumy W. (ed.) EURO-

CRYPT’97, vol. 1233, pp. 256-266. LNCS. Springer, Heidelberg (1997).

Srinivasan S., Karantaidou I., Baldimtsi F., Papamanthou C.: Batching, aggregation, and zero-knowledge
proofs in bilinear accumulators. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2719-2733 (2022)

Valiant P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In:
Canetti R. (ed.) TCC 2008, vol. 4948, pp. 1-18. LNCS. Springer, Heidelberg (2008).

Wesolowski B.: Efficient verifiable delay functions. Cryptology ePrint Archive, Report 2018/623 (2018).
https://eprint.iacr.org/2018/623

Yap R.: Cryptographic description of zerocoin attack (2019). https://zcoin.io/cryptographic-description-
of-zerocoin-attack/

Zapico A., Buterin V., Khovratovich D., Maller M., Nitulescu A., Simkin M.: Caulk: lookup arguments in
sublinear time. In:Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pp. 3121-3134 (2022)

Zapico A., Gabizon A., Khovratovich D., Maller M., Carla R.: Nearly optimal lookup arguments. Cryp-
tology ePrint Archive, Baloo (2022).

Zcash: Zcash rust crates. https://github.com/zcash/librustzcash

Cryptology ePrint Archive, Report 2017/1146 (2017). https://eprint.iacr.org/2017/1146

Zhang Y., Katz J., Papamanthou C.: An expressive (zero-knowledge) set accumulator. In: 2017 IEEE
European Symposium on Security and Privacy (EuroS P), pp. 158-173 (2017)

Zhang J., Xie T., Zhang Y., Song D.: Transparent polynomial delegation and its applications to zero
knowledge proof. In: IEEE Symposium on Security and Privacy (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://github.com/dalek-cryptography/curve25519-dalek
https://eprint.iacr.org/2019/1494
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048
https://github.com/kobigurk/legogro16
https://github.com/scipr-lab/zexe
https://www.sec.gov/about/offices/ocie/amlsourcetool.htm
https://eprint.iacr.org/2018/623
https://zcoin.io/cryptographic-description-of-zerocoin-attack/
https://zcoin.io/cryptographic-description-of-zerocoin-attack/
https://github.com/zcash/librustzcash
https://eprint.iacr.org/2017/1146

	Zero-knowledge proofs for set membership: efficient, succinct, modular
	Abstract
	1 Introduction
	1.1 Existing approaches for proving set membership for pedersen commitments
	1.2 Our contributions
	1.3 RSA-based constructions
	1.4 Pairing-based construction
	1.5 Extensions to set non-membership
	1.6 Implementation and experiments
	1.7 Transparent instantiations
	1.8 Other related work
	1.9 Organization
	1.10 Recent developments
	1.11 Publication note

	2 Preliminaries
	2.1 Notation
	2.2 RSA groups
	2.2.1 Computational assumptions in RSA groups

	2.3 Non-interactive zero-knowledge (NIZK)
	2.4 Type-based commitments
	2.5 Commit-and-prove NIZKs
	2.6 Commit-and-prove NIZKs with partial opening
	2.6.1 Composition properties of commit-and-prove schemes

	3 CP-SNARKs for set membership (and non-membership)
	3.1 Set membership relations
	3.2 CP-SNARKs for set membership
	Proving arbitrary relations involving set (non-)membership
	3.2.1 CP-SNARKs for set membership from accumulators with proofs of knowledge

	4 A CP-SNARK for set membership with short parameters
	4.1 An high-level overview of our constructions
	4.2 Preliminaries and building blocks
	4.2.1 Notation
	4.2.2 Commitment schemes
	4.2.3 Hashing to primes
	4.2.4 CP-NIZK for H computation and PedCom
	4.2.5 Integer commitments
	4.2.6 Strong-RSA accumulators
	4.2.7 Argument of knowledge of a root
	4.2.8 Proof of equality of commitments in mathbbZN* and mathbbGq

	4.3 Our CP-SNARKMemCPRSA
	4.3.1 Proof of security
	4.3.2 Notation
	4.3.3 Collision finding analysis

	4.4 Our CP-SNARK for set membership for primes sets
	4.5 Proposed instantiations of protocols for RRoot and RmodEq
	4.5.1 Protocol CPRoot
	4.5.2 Protocol CPmodEq

	4.6 Instantiations

	5 A CP-SNARK for set non-membership with short parameters
	5.1 An high-level overview of the constructions
	5.2 Argument of knowledge for a coprime element
	5.3 Our constructions of NonMemCPRSA and NonMemCPRSAPrm
	5.4 Proposed instantiations of protocol for RCoprime
	5.4.1 Correctness
	5.4.2 Security

	6 A CP-SNARK for set membership in bilinear groups
	6.1 Preliminaries and building blocks
	6.1.1 Bilinear groups
	6.1.2 A polynomial-pedersen type-based commitment scheme
	6.1.3 Input-hiding CP-SNARK for polynomial evaluation
	6.1.4 Range proof CP-NIZK
	6.1.5 Multilinear extensions of vectors
	6.1.6 The type-based commitment scheme of MemCPVC

	6.2 CP-SNARK for set membership using EDRAX vector commitment
	6.3 Input-hiding CP-SNARKs for polynomial evaluation

	7 Experimental evaluation
	7.1 Implementation of cpsnarks-set
	7.2 CP-SNARKs for set membership
	7.2.1 Comparison with Merkle-tree approach

	7.3 CP-SNARKs for set non-membership
	7.3.1 Comparison to other approaches for non-membership

	7.4 Improving running times: from statistical ZK to computational ZK

	8 Applications
	8.1 Zerocash
	8.2 Asset governance
	8.3 Anonymous broadcast
	8.4 Financial identities
	8.5 Zerocoin vulnerability

	Acknowledgements
	A Accumulator definitions
	Security correctness
	Soundness
	A.1 Dynamic strong RSA accumulators
	Security of strong RSA accumulator and batch-verification

	B Generic CP-SNARK for set membership from accumulators with proof of knowledge
	C Vector commitments
	C.1 Definition
	Soundness

	C.2 EDRAX: A vector commitment from multilinear extensions
	Multilinear extension of vectors
	Vector commitment scheme

	D Another instantiation of protocol for RCoprime
	Correctness
	Security

	E Instantiation over hidden order groups
	Transparent instantiation and efficiency

	References

