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Abstract
We suggest a construction of the minimal polynomial mβk of βk ∈ Fqn over Fq from the
minimal polynomial f = mβ for all positive integers k whose prime factors divide q − 1.
The computations of our construction are carried out in Fq . The key observation leading to
our construction is that for k | q − 1 holds

mβk (Xk) =
k
t∏

j=1

ζ
− jn
k f (ζ j

k X),

where t = max{m ∈ N : m | gcd(n, k), f (X) = g(Xm), g ∈ Fq [X ]} and ζk is a
primitive k-th root of unity in Fq . The construction allows to construct a large number
of irreducible polynomials over Fq of the same degree. Since different applications require
different properties, this large number allows the selection of the candidates with the desired
properties.

Keywords Recursive construction · Irreducible polynomial · Composition method ·
Multiplicative order · k-th power · Characteristic polynomial

Mathematics Subject Classification 11T06

1 Introduction

Let q be a prime power and Fq the finite field with q elements. For β ∈ Fqn , we denote
by mβ ∈ Fq [X ] the minimal polynomial and by χβ ∈ Fq [X ] the characteristic polynomial
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of β over Fq . We call β a proper element of Fqn if β ∈ Fqn and there does not exist a
proper subfield Fqm < Fqn such that β ∈ Fqm . For an irreducible polynomial f ∈ Fq [X ] the
smallest positive integer e such that f | Xe − 1 or, equivalently, the multiplicative order of
all of its roots, is called the order of f and is denoted by e = ord( f ). If f has degree n and
the order of f equals qn − 1, we call f a primitive polynomial. Furthermore, for k ∈ N we
denote byUk the group of the k-th roots of unity over Fq , that is, the roots of the polynomial
Xk − 1 ∈ Fq [X ]. Note that Uk need not be a subset of Fq , but Uk ⊆ E for an extension field
E ≥ Fq . If gcd(q, k) = 1, then |Uk | = k and throughout this paper we will use the notation
ζk for a generating element of Uk . For a prime p and an integer m we denote by νp(m) the
p-adic valuation of m, that is, νp(m) = v if m = pv · r with gcd(p, r) = 1.

The composition method is widely used to construct irreducible polynomials over finite
fields, see for example [3, 8, 9, 11–14, 16]. Originally based on a theorem by Cohen [2], with
this method one composes an irreducible polynomial with polynomials or rational functions
such that the resulting composition is irreducible itself. The composition usually is of higher
degree than the initial polynomial. In order to find polynomials with good cryptographic or
arithmetic properties, it is of interest to construct a large number of irreducible polynomials
of the same degree from which good candidates can be selected. In [10] Kyureghyan and
Kyuregyan introduce a recursive construction of irreducible polynomials which reverses the
composition method. Here, an irreducible polynomial f is extracted from the composition
f (X2), which is obtained from the knowledge of its factorization. This construction yields a
large number of polynomials of the same degree as the initial polynomial. During our search
for possible generalizations of the recursive construction from [10] (in this paperConstruction
KK), we noticed that the composition f (Xk) was studied by Albert [1] and Daykin [4]. We
will use the ideas from [1] and [4] to generalize the results and extend the construction from
[10].

Next we present results from [4] and [10]. We use a unified notation and terminology so
that the similarities of the approaches become visible. The following result [10, Corollary
3] details all the information needed to formulate Construction KK.

Theorem 1 ([10]) Let q be odd and f ∈ Fq [X ], f �= X, be a monic irreducible polynomial
of degree n and order e. Let β ∈ Fqn be a root of f . Then the following statements hold:

(i) There exists a polynomial C ∈ Fq [X ] such that C(X2) = f (X) · (−1)n f (−X).

More precisely, C(X) = (−1)n
∑n

j=0
∑2 j

u=0(−1)ucuc2 j−u X j , where c0, . . . , cn are the
coefficients of f and cu = 0 for u > n.

(ii) If C is irreducible, it is the minimal polynomial of β2 over Fq and ord(C) = e
gcd(e,2) .

(iii) The polynomialC is irreducible if and only if there does not exist a polynomial D ∈ Fq [X ]
such that f (X) = D(X2).

Theorem 1 can be proved by elementary means and leads to the following construction,
Construction KK, which is the key step of constructions [10, Construction 1] and [10,
Construction 2]. Note that Theorem 1 (iii) allows to determine whether the polynomial C is
irreducible by a simple examination of the coefficients of the polynomial f .

Construction KK ([10])Let q be odd and f ∈ Fq [X ], f �= X, amonic irreducible polynomial
of degree n such that there does not exist a polynomial D ∈ Fq [X ] with f (X) = D(X2). To
construct the monic irreducible polynomial C ∈ Fq [X ] of degree n over Fq , do the following
steps:

Step 1. Compute the product (−1)n · f (X) · f (−X) = C(X2).

Step 2. Extract C from the composition C(X2).
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Constructing irreducible polynomials... 697

A similar transformation with X3 has been studied in [1] for primitive polynomials over
Fq . The results from [1] have been generalized in [4]. The next theorem shows that the
polynomial C from Theorem 1 and Construction KK is in fact the characteristic polynomial
of β2 ∈ Fqn over Fq . This observation will allow us to develop the generalizations of the
results in [10].

Theorem 2 ([4]) Let f ∈ Fq [X ] be a monic irreducible polynomial of degree n and β ∈ Fqn

a root of f . Let k ∈ N and k′ = k
gcd(q,k) . Then the characteristic polynomial χβk ∈ Fq [X ] of

βk ∈ Fqn over Fq satisfies

χβk (Xk) = (−1)n(k+1)
k∏

j=1

f (ζ j
k′ X).

Remark 1 The polynomials f (ζ j
k′ X) for 1 ≤ j ≤ k are not necessarily polynomials over Fq

and need not be irreducible. Thus, in general, Theorem 2 does not describe the factorization
of χβk (Xk) into irreducible factors over Fq .

Theorem 3 ([4]) Let f ∈ Fq [X ] be a monic irreducible polynomial of degree n and order e
and let β ∈ Fqn be a root of f . Then for k ∈ N the characteristic polynomial χβk ∈ Fq [X ] of
βk ∈ Fqn over Fq satisfies χβk = (

mβk

) n
m , where the minimal polynomial mβk of βk over Fq

has order e
gcd(e,k) and degree m, which is the least positive integer for which e

gcd(e,k) divides
qm − 1.

Note that Theorem 1 (i) and (ii) follow directly from Theorems 2 and 3 by selecting
k = 2. More precisely, Theorem 2 yields that the polynomialC in Theorem 1 not only exists,
but is in fact the characteristic polynomial χβ2 . If χβ2 is irreducible, then it is the minimal
polynomial mβ2 and it has order e

gcd(e,2) .
Theorems 2 and 3 suggest the following construction of mβk from mβ .

Construction AD Let f ∈ Fq [X ] be a monic irreducible polynomial of degree n and order
e and let β ∈ Fqn be a root of f . Given a positive integer k ≤ e define k′ = k

gcd(q,k) . To

construct the minimal polynomial mβk of βk ∈ Fqn over Fq , do the following steps:

Step 1. Compute the product

(−1)n(k+1)
k∏

j=1

f (ζ j
k′ X) = χβk (Xk).

Step 2. Extract χβk from the composition χβk (Xk).
Step 3. Determine m, the least positive integer for which e

gcd(e,k) divides q
m − 1.

Step 4. Find the factor mβk in the product χβk = (
mβk

) n
m .

Remark 2 (a) Note that ζk′ is an element of Fq if and only if k′ | q − 1. Therefore, the
computations of Step 1 in Construction AD are carried out in a pure extension field of
Fq if k′

� q − 1.
(b) Construction AD can also be applied without the knowledge of the order e of the poly-

nomial f . In that case we replace Steps 3 and 4 with factorizing χβk , which will be an
unknown power of the minimal polynomial mβk of βk over Fq .
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698 A.-M. Graner and G. M. Kyureghyan

(c) On the other hand, if the order e of f is known, it is possible to avoid the computation
intensive Step 4 by selecting k such that n = m. Then the characteristic and the minimal
polynomial of βk over Fq are equal.

(d) Construction KK does not depend on the knowledge of the order of the intial polynomial
f . If used iteratively, it can even give information on the order as we will discuss later.

In this paper we suggest a construction of the minimal polynomial mβk of βk ∈ Fqn

over Fq from the minimal polynomial f = mβ for all positive integers k whose prime
factors divide q − 1 which avoids the computation intensive Step 4 of Construction AD.
Additionally, in this construction computations are carried out in Fq and it does not depend
on the knowledge of the order of the initial polynomial f .While ConstructionKK onlyworks
for finite fields of odd size, our construction can also be used in finite fields of characteristic
2 which is attractive for applications in computer science. The key observation leading to our
construction is that for k | q − 1 holds

mβk (Xk) =
k
t∏

j=1

ζ
− jn
k f (ζ j

k X),

where t = max{m ∈ N : m | gcd(n, k), f (X) = g(Xm) for a polynomial g ∈ Fq [X ]}.

2 Theoretical background for the new construction

In Theorem 3 the order of the monic irreducible polynomial f = mβ is used to determine
the degree of the minimal polynomial mβk or, equivalently, the power to which the minimal
polynomial of βk is taken in the characteristic polynomial of βk ∈ Fqn overFq . In this section
we describe how to determine this exponent without the knowledge of the order of f .

Remark 3 If gcd(q, k) > 1, the coefficients of mβk can easily be derived from the coeffi-

cients of m
βk′ where k′ = k

gcd(q,k) . Indeed, Theorem 3 implies that ord(mβk ) = e
gcd(e,k) =

e
gcd(e,k′) = ord(m

βk′ ) and therefore deg(m
βk′ ) = deg(mβk ) = m. Suppose that m

βk′ =
∑m

i=0 ai X
i and set g = ∑m

i=0 a
gcd(q,k)
i X i ∈ Fq [X ]. Then

g(βk) =
m∑

i=0

agcd(q,k)
i

(
βk

)i =
m∑

i=0

agcd(q,k)
i

(
βk′)i ·gcd(q,k)

=
(
m

βk′ (βk′
)
)gcd(q,k) = 0.

Thus, βk is a root of g and since deg(g) = m = deg(mβk ) the polynomial g is the minimal

polynomial of βk over Fq . That is, mβk = ∑m
i=0 a

gcd(q,k)
i X i .

Using Remark 3, we can restrict our discussion to the case that gcd(q, k) = 1. Nontheless,
note that all results hold also for integers k such that gcd(q, k) > 1. The main advantage
of considering only the case gcd(q, k) = 1 is that there always exist exactly k distinct k-th
roots of unity in an extension field E ≥ Fq of Fq .

Note that the main statement of the following theorem is the fact that the roots of the two
polynomials χβk (X) and χβk (Xk) have the same multiplicity.
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Constructing irreducible polynomials... 699

Theorem 4 Let k ∈ N with gcd(q, k) = 1. Further, let β ∈ Fqn be a proper element of Fqn

and χβk be the characteristic polynomial of βk ∈ Fqn over Fq .

Then χβk = (
mβk

)t
for a positive integer t ∈ N if and only if every root of the polynomial

χβk (Xk) has multiplicity t . That is, the roots of χβk (X) and the roots of χβk (Xk) have the
same multiplicity t .

Proof Since χβk is the characteristic polynomial of βk over Fq , there exists a positive integer

t ≥ 1 such that χβk (Xk) = (
mβk (Xk)

)t
. Furthermore, mβk (Xk) = ∏ n

t −1
i=0

(
Xk − βk·qi

)

and for every i the polynomial Xk −
(
βqi

)k
has k distinct roots of the form ζ

j
k βqi in an

extension field of Fq , where 1 ≤ j ≤ k. Thus, χβk (Xk) = ∏ n
t −1
i=0

∏k
j=1

(
X − ζ

j
k βqi

)t
. Note

that the roots ζ
j
k βqi of χβk (Xk) for 1 ≤ j ≤ k and 0 ≤ i ≤ n

t − 1 are distinct. Indeed, if

for 1 ≤ j1, j2 ≤ k and 0 ≤ i1, i2 ≤ n
t − 1 the two roots ζ

j1
k βqi1 and ζ

j2
k βqi2 were equal, we

would have
(
βk

)qi1 =
(
ζ
j1
k βqi1

)k =
(
ζ
j2
k βqi2

)k = (
βk

)qi2
and since the elements

(
βk

)qi

of F
q
n
t
are distinct, we have i1 = i2 and consequently also j1 = j2. To complete the proof

recall that the roots of irreducible polynomials over finite fields are simple. �	
The roots of the polynomial χβk (Xk) lie in an extension field of Fq . Since we later want

to work in Fq , we state the following immediate consequence of Theorem 4.

Corollary 5 Let k ∈ N such that gcd(q, k) = 1. Further, let β ∈ Fqn be a proper element of
Fqn and χβk be the characteristic polynomial of βk ∈ Fqn over Fq .

Then χβk = (
mβk

)t
for a positive integer t if and only if every irreducible factor of

χβk (Xk) over Fq appears with multiplicity t .

Let f ∈ Fq [X ] be a monic irreducible polynomial of degree n and β ∈ Fqn be a root of
f . By Theorem 2, we have

χβk (Xk) = (−1)(k+1)n
k∏

j=1

f (ζ j
k X) =

k∏

j=1

ζ
− jn
k f (ζ j

k X). (1)

If k | q − 1, then Uk lies in Fq and for 1 ≤ j ≤ k the polynomials ζ
− jn
k f (ζ j

k X) are monic

polynomials of degree n over Fq . The element ζ
− j
k β is a root of ζ

− jn
k f (ζ j

k X) and since β

is a proper element of Fqn , the element ζ− j
k β also is a proper element of Fqn . Consequently,

the polynomial ζ− jn
k f (ζ j

k X) is the minimal polynomial of ζ
− j
k β over Fq and (1) yields the

factorization of χβk (Xk) into monic irreducible factors over Fq . With Corollary 5 we obtain
that the exponent of the minimal polynomial of βk over Fq in the characteristic polynomial

χβk is equal to the multiplicity of every polynomial ζ
− jn
k f (ζ j

k X) in the factorization (1).
Thus, in the case that k | q−1, we need to determine under which conditions the polynomials
of the form ζ

− jn
k f (ζ j

k X) are equal. For this we need the following easy proposition.

Proposition 6 Let k,m ∈ N such that gcd(q, k) = 1 = gcd(q,m) and f ∈ Fq [X ]. Then the
following statements hold:

(a) There exists g ∈ Fq [X ] such that f (X) = g(Xk) if and only if f (X) = f (ζk X).
(b) If there exist polynomials g, h ∈ Fq [X ] such that f = g(Xk) = h(Xm), then there exists

a polynomial u ∈ Fq [X ] such that f (X) = u(X lcm(k,m)).
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700 A.-M. Graner and G. M. Kyureghyan

Proof (a) If f (X) = g(Xk), then f (ζk X) = g(ζ k
k X

k) = g(Xk) = f (X). Vice versa,
suppose that f (X) = f (ζk X). Then if f (X) = ∑n

i=0 ai X
i , we have f (ζk X) =∑n

i=0 aiζ
i
k X

i . Thus, ζ ik = 1 for all 0 ≤ i ≤ n such that ai �= 0. Consequently,
k = ord(ζk) | i for all 0 ≤ i ≤ n such that ai �= 0.

(b) Weknow that k | i andm | i for every 0 ≤ i ≤ n such that ai �= 0. Then also lcm(k,m) | i
for every such i .

�	
The following theorem states that it can be seen directly from the non-zero coefficients of

the polynomial f , which polynomials of the form ζ
− jn
k f (ζ j

k X) are equal.

Theorem 7 Let k ∈ N such that gcd(k, q) = 1 and let f ∈ Fq [X ] be a polynomial
of degree n such that f (0) �= 0. Set t = max{m ∈ N : m | gcd(n, k), f (X) =
g(Xm) for a polynomial g ∈ Fq [X ]}. Then for 0 ≤ j, j ′ ≤ k − 1 the two polynomials

ζ
− jn
k f (ζ j

k X) and ζ
− j ′n
k f (ζ j ′

k X) are equal if and only if j ≡ j ′ mod k
t .

Proof “⇐”: Note that since t | k the element ζ
k
t
k = ζt generates the subgroup Ut of the t-th

roots of unity of F
∗
q . If j ≡ j ′ mod k

t , then j − j ′ = v · k
t for an integer v and we have

ζ
− jn
k f (ζ j

k X) = ζ
−( j− j ′)n
k ζ

− j ′n
k f (ζ ( j− j ′)

k ζ
j ′
k X) = ζ

− k
t ·v·n

k ζ
− j ′n
k f (ζ

k
t ·v
k ζ

j ′
k X)

= ζ
−k·v· nt
k ζ

− j ′n
k f (ζ v

t ζ
j ′
k X) = ζ

− j ′n
k f (ζ v

t ζ
j ′
k X).

From the definition of t and Proposition 6 follows that f (X) = f (ζt X) and therefore also

f (X) = f (ζ v
t X). Thus, ζ− j ′n

k f (ζ v
t ζ

j ′
k X) = ζ

− j ′n
k f (ζ j ′

k X).

“⇒”: Suppose that ζ− jn
k f (ζ j

k X) = ζ
− j ′n
k f (ζ j ′

k X). Then also

ζk
−( j− j ′)n f (ζ j− j ′

k X) = ζ
j ′n
k · ζ

− jn
k f (ζ j

k

(
ζ

− j ′
k X

)
)

= ζ
j ′n
k · ζ

− j ′n
k f (ζ j ′

k

(
ζ

− j ′
k X

)
) = f (X)

(2)

Let f = ∑n
i=0 ai X

i ∈ Fq [X ]. Then we have ζ
−( j− j ′)n
k f (ζ j− j ′

k X) =
∑n

i=0 aiζ
−( j− j ′)(n−i)
k Xi . For this polynomial to be equal to f (X), we need k | ( j− j ′)(n−i)

for all ai �= 0. Note that a0 = f (0) �= 0. Consequently, k | ( j − j ′) · n. Let d := gcd(n, k),
then k

d | ( j − j ′) and there exists v ∈ N such that j − j ′ = v · k
d . Furthermore, the element

ζ
k
d
k = ζd generates the subgroup Ud of the d-th roots of unity of Fq and we obtain

ζ
−( j− j ′)n
k f (ζ ( j− j ′)

k X) = ζ
−v· kd ·d· nd
k f (ζ

v· kd
k X) = f (ζ v

d X). (3)

If l = d
gcd(d,v)

, the element ζ v
d = ζl generates the set Ul of the l-th roots of unity over

Fq . Equations (2) and (3) yield that f (X) = f (ζl X). Note that gcd(d, q) = 1 and with
Proposition 6 we obtain that M := {m ∈ N : m | d, f (X) = g(Xm), g ∈ Fq [X ]} is equal
to the set {m ∈ N : m | d, f (X) = f (ζm X)} and consequently, l ∈ M . Let t := maxM .
We will prove that M is in fact the set of all divisors of t . Note that if f (X) = f (ζt X), also

f (X) = f (ζ it X) for all 1 ≤ i ≤ t and any divisor m of t satisfies that ζm = ζ
t
m
t . Thus, all

divisors of t are elements of M . Suppose that there exists an elementm ∈ M such thatm does
not divide t . Then for all 0 ≤ i ≤ n such that ai �= 0, we have m | i and t | i . Consequently,
lcm(m, t) = t · m

gcd(m.t) | i and since both m and t divide d , we obtain lcm(t,m) ∈ M . But
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Constructing irreducible polynomials... 701

lcm(t,m) > t , becausem � t . This is a contradiction to the choice of t and M is in fact the set
of all divisors of t . Consequently, the fact l ∈ M is equivalent to l | t . Recall that l = d

gcd(d,v)

and therefore d
gcd(d,v)

| t which is equivalent to d
t | gcd(d, v) and this again is equivalent to

d
t | v. Thus, there exists an integer w such that v = d

t · w. Recall that v = j− j ′
k
d

and we have

j − j ′ = k
t · w. Consequently, j ≡ j ′ mod k

t . �	
As a consequence for k | q − 1 we have the following result.

Corollary 8 Let k ∈ N such that k | q −1 and let f ∈ Fq [X ], f �= X, be a monic irreducible
polynomial of degree n. Further, let β ∈ Fqn be a root of f and mβk ∈ Fq [X ] be the

minimal polynomial of βk ∈ Fqn over Fq . Set t = max{m ∈ N : m | gcd(n, k), f (X) =
g(Xm) for a polynomial g ∈ Fq [X ]}. Then

mβk (Xk) =
k
t∏

j=1

ζ
− jn
k f (ζ j

k X).

Proof Using Theorem 7 we can rewrite equation (1) and obtain that the characteristic
polynomial of βk ∈ Fqn over Fq satisfies

χβk (Xk) =
k∏

j=1

ζ
− jn
k f (ζ j

k X) =
⎛

⎜⎝

k
t∏

j=1

ζ
− jn
k f (ζk j X)

⎞

⎟⎠

t

and that the polynomials ζ− jn
k f (ζ j

k X) for 1 ≤ j ≤ k
t are distinct. ThenCorollary 5 completes

the proof. �	
Recall that Construction AD constructs the polynomial χβk (Xk) with the formula from

Theorem 2 and then extracts the irreducible factor of the polynomial χβk over Fq in order to
obtain the minimal polynomialmβk of βk . Using Corollary 8, in our construction we directly
compute the polynomial mβk (Xk) from which the minimal polynomial mβk can then easily
be extracted.

Remark 4 Note that if k | q − 1 and k is prime, then t > 1 if and only if t = k. Thus, if
f (X) = g(Xk) for a polynomial g ∈ Fq [X ], then the minimal polynomial of βk over Fq

satisfies mβk (X) = g(X). Otherwise, we obtain mβk by extracting it from the composition

mβk (Xk) = ∏k
j=1 ζ

− jn
k f (ζ j

k X) = (−1)n(k+1) ∏k
j=1 f (ζ j

k X).

3 The new recursive construction ofmˇk frommˇ

Observe that for k, k1, k2 ∈ N such that k = k1 · k2 and a proper element β of Fqn , we

have βk = (
βk1

)k2 and consequently mβk (Xk2) = m
(βk1)

k2 (X
k2). Thus, instead of using

the direct computation of mβk from mβ , we can apply Corollary 8 recursively. Meaning that
we first compute the minimal polynomial of βk1 and then with this polynomial compute
m

(βk1)
k2 (X

k2) from which mβk = m
(βk1)

k2 can easily be extracted. Using the unique prime

factorization of an integer k, we can apply Remark 4 to suggest a construction for all k ∈ N

whose prime factors divide q − 1.
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702 A.-M. Graner and G. M. Kyureghyan

Construction 1 Let k ∈ N such that k = k1 · · · km where k1, . . . , km are prime factors of
q − 1 (which are not necessarily distinct). Further, let f ∈ Fq [X ] be a monic irreducible
polynomial of degree n. Set f0 := f . For 1 ≤ i ≤ m compute the monic irreducible
polynomial fi in the following way:

If there exists a polynomial g ∈ Fq [X ] such that fi−1(X) = g(Xki ), then fi = g.
Otherwise, compute

(−1)deg( fi−1)·(ki+1)
ki∏

j=1

fi−1(ζ
j
ki
X) = fi (X

ki )

and extract fi from the composition. Then fm is the minimal polynomial of βk ∈ Fqn over
Fq , where β ∈ Fqn is a root of f .

The main differences between Construction 1 and Construction AD are that all com-
putations of Construction 1 are carried out in Fq and the construction relies solely on the
examination of the non-zero coefficients of the polynomials fi and not on the order of the ini-
tial polynomial f . Furthermore,while inConstructionAD theminimal polynomialmβk needs
to be extracted from the characteristic polynomial, it is computed directly in Construction 1.

Remark 5 (a) All polynomials obtained with Construction 1 are of the same degree n as the
initial polynomial f , if we select integers k such that gcd(n, k) = 1 or such that the order

e
gcd(e,k) of the minimal polynomial of βk does not divide q

n
t − 1 for any divisor t of n,

whose prime factors divide gcd(n, k).
(b) If there exists a polynomial g ∈ Fq [X ] such that f = g(Xt ) for a prime divisor t of k,

then the minimal polynomial of βk will be of lower degree. Observe that in this case the
polynomial f (X + a) for any element a ∈ Fq\{0} will not be a composition with Xm

for any positive integer m > 1 and could be used instead of f . This fact was proved in
[10] for t = 2. For the convenience of the reader, we include the generalized proof here.

Proof If f (X) = ∑n
i=0 bi X

i = g(Xt ) for t > 1, then bn−1 = 0 and since f is monic, we
have bn = 1. Furthermore,

f (X + a) = (X + a)n +
n−2∑

i=0

bi (X + a)i

︸ ︷︷ ︸
deg(...)<n−1

=
n∑

j=0

(
n

j

)
a j Xn− j +

n−2∑

i=0

bi (X + a)i

= Xn + naXn−1 +
n∑

j=2

(
n

j

)
a j Xn− j +

n−2∑

i=0

bi (X + a)i .

Since gcd(n, q) = 1, char(Fq) does not divide n from which follows that na �= 0 and there
cannot exist any positive integer m > 1 such that f (X + a) = h(Xm) for a polynomial
h ∈ Fq [X ]. �	

In [1] Albert defines a “cubing transformation", which is an iterated application of Con-
struction AD for k = 3. He notices that if the order e of the initial polynomial and 3 are
coprime, its behaviour is “periodic”. That is, after a certain amount of iterations it will yield
the initial polynomial again. In [10] a similar construction for k = 2, the repeated application
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of Construction KK, is presented, which does not need the knowledge of the order e of the
initial polynomial but can even be used to gain information on e. Our results allow to gener-
alize the construction from [10] for primes k satisfying k | q − 1 by applying Construction 1
iteratively.

Construction 2 Let k be a prime factor of q − 1 and f ∈ Fq [X ] a monic irreducible polyno-
mial of degree n. Further let w = νk(qn − 1) be the k-adic valuation of qn − 1. Set f0 := f .
For i ≥ 1 compute the monic irreducible polynomial fi in the following way:

If there exists a polynomial g ∈ Fq [X ] such that fi−1(X) = g(Xk), then fi = g.
Otherwise, compute

(−1)deg( fi−1)·(k+1)
k∏

j=1

fi−1(ζ
j
k X) = fi (X

k)

and extract fi from the composition. If fi = fl for an integer l such that 0 ≤ l ≤ w and
l < i , then stop.

With the notation from Construction 2, suppose that the construction terminates for the
polynomial fl+s which is equal to fl , for integers s ≥ 1 and 0 ≤ l ≤ νk(qn − 1). Then we
call the sequence

( f0, f1, . . . , fl−1)

the tail of the construction and the sequence

( fl , . . . , fl+s−1)

the orbit. Note that the construction would yield the polynomials of the orbit repeatedly if
we continued to iterate through the integers i ≥ l + s. Observe that the length of the tail is l
and the length of the orbit s.

Corollary 9 With the notation from Construction 2, we suppose that Construction 2
terminated after a tail of length l and an orbit of length s.

Then ord( f ) = kl · r and r must satisfy
(I) gcd(k, r) = 1,
(II) s = ordr (k)

d for a divisor d of deg( fl),
(III) Furthermore, for an integer 0 ≤ j ≤ deg( fl) − 1, d must satisfy ordr (q j ) = d and

ks ≡ q j mod r .

Proof Let β ∈ Fqn be a root of f , that is, f = mβ is the minimal polynomial of β over Fq .
Then with Construction 1 we know that fi = m

βki for every i ≥ 0. Further, let ord( f ) = e

and e = kv · r with gcd(k, r) = 1. Then with Theorem 3 the minimal polynomial of βki , that
is, the polynomial fi , has order

ord( fi ) =
{

e
ki

= kv−i · r for 0 ≤ i ≤ v,

r for i ≥ v.
(4)

Since the order of the polynomials ( f0, f1, . . . , fv−1) strictly decreases, these polynomials
cannot appear twice in the sequence ( fi )i≥0. Note that v ≤ w = νk(qn − 1). Thus, the
polynomial fv , which is the first polynomial of order r of the sequence ( fi )i≥0, is an element
of the sequence ( f0, f1, . . . , fw).
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We need to examine Z
∗
r , the multiplicative group modulo r , to see that fv is the first

polynomial to appear twice in the sequence ( fi )i≥0 and therefore v = l. The subgroup 〈k〉
of Z

∗
r generated by k has order ordr (k), which is the multiplicative order of k modulo r . This

implies that βkv+ordr (k) = βkv
and obviously the minimal polynomials of βkv

and βkv+ordr (k)

over Fq are equal. Thus, fv = fv+ordr (k) and we have shown that fv does appear again in
the sequence.

However, the length s of the orbit is not always equal to ordr (k). The polynomials fi1 and

fi2 are equal if and only if βki1 and βki2 are Fq -conjugates. Thus, it is possible that there

exists a positive integer u smaller than ordr (k) such that βkv+u
is an Fq -conjugate of βkv

and
the minimal polynomial fv+u = m

βkv+u also is equal to fv = mβkv . To account for this, we
choose u ∈ N to be the smallest positive integer that satisfies

〈k〉 ∩ 〈q〉 = 〈ku〉 = 〈q j 〉 ≤ Z
∗
r for an integer 0 ≤ j ≤ deg( fv) − 1. (5)

Note that since 〈kordr (k)〉 = 〈q0〉 such an integer u exists and satisfies u ≤ ordr (k). Then

βkv+u = (
βkv )q j

and fv+u = fv . Moreover, the minimal polynomials of βkv+i
for 0 ≤ i ≤

u − 1 are distinct because we selected u to be the smallest positive integer to satisfy (5).
Consequently, v = l, which shows that (I) holds, and the length s of the orbit equals u.

Set d := |〈q j 〉| = |〈ks〉| which is a divisor of deg( fl), since 〈q j 〉 ≤ 〈q〉 and |〈q〉| =
deg( fl). Then because of 〈ks〉 being a subgroup of 〈k〉, we have s = |〈k〉|

|〈ks 〉| = ordr (k)
d which

shows that (II) holds. (III) follows directly from equation (4) and our definition of d . �	
Note that with equation (4) in the proof of Corollary 9 the polynomials fi for 0 ≤ i ≤ l−1

of the tail of Construction 2 have order kl−i · r and all polynomials of the orbit have order r .
If p1, . . . , pm are the distinct prime factors of q − 1, and ord( f ) = e = pv1

1 · · · pvm
m · r

with gcd(q, r) = 1 and v1 ≥ 0, . . . , vm ≥ 0. Then Construction 2 allows us to determine the
pi -adic valuations v1, . . . , vm of the order of f . Additionally, Corollary 9 (II) and (III) give
further conditions on the factor r . In most of our computations the conditions on the factor
r were so restrictive that Construction 2 yielded the exact order e of f .

Remark 6 In the original version of [10], the number of distinct polynomials produced by [10,
Construction 1], is given as ordr (2) where ord( f ) = 2vr with v ≥ 0 and r ≥ 1 odd. As we
can see fromCorollary 9, this number is false, since the authors did not take into consideration
that the construction could also yield the minimal polynomials of Fq -conjugates over Fq .
Similarly, in [10, Remark 1] the information about the order of the initial polynomial C0(X)

obtained by the construction should be changed to: 2l t where t is an odd divisor of qn − 1
and k − l = ordt (2)

d for a divisor d of n.

4 Implementation of the construction

In this section we discuss which polynomials can be obtained from a given initial polynomial
f with Construction 1 and how to select the integers k for which we apply the construction.
All discussions in this section are about this fixed polynomial f . Suppose that f is of degree
n, has order e and β ∈ Fqn is a root of f . Then β has multiplicative order e and the subgroup
〈β〉 = {βk : 0 ≤ k ≤ e − 1} of F

∗
qn contains all elements of Fqn with multiplicative order

dividing e. Consequently, the set of all polynomials of the form mβk for k ≥ 0 is in fact
{mβk : 0 ≤ k ≤ e − 1} and contains all monic irreducible polynomials over Fq whose order
divides e.
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Let p1, . . . , pm be the distinct prime factors of q − 1. Then we can apply Construction 1
for any integer k that is an element of the set

A := {pi11 · · · pimm : i1, . . . , im ≥ 0}.
Since the element β has multiplicative order e, Construction 1 yields the minimal polynomial
of βk (mod e) over Fq . Thus, the set of polynomials that we can construct with the integers in
A is

M := {mβk (mod e) : k = pi11 . . . pimm , i1, . . . , im ≥ 0}.
However, we would like to emphasize that the construction should not be restricted to the
elements of A which are smaller than e, here denoted by A<e. An integer k ∈ A, k ≥ e,
can yield a polynomial that cannot be constructed by choosing all elements of A<e. This is
the case if its representative k (mod e) in Ze is not an element of A as can be seen from the
following example:

Example 1 LetF8 = F(a)where a is a root of themonic irreducible polynomial X3+X+1 ∈
F2[X ]. We consider the primitive monic irreducible polynomial f = X5 + aX4 + X3 +
aX2 + (a2 + a)X + a2 ∈ F8[X ] of order e = 32 767 = 7 · 31 · 151. Since 8− 1 = 7, we can
apply Construction 1 for all elements of A = {7i : i ≥ 0}. Note that we can use the notation
of Construction 2 and say that the construction yields a tail of length 1 and an orbit of length
150. By this we mean that the polynomials mβ7 and m

β7151 are equal, where β is a root of f .

The smallest positive integer i such that 7i is greater than or equal to e is 6. In fact, 76

(mod e) = 117 649 (mod e) = 19 348 = 22 · 7 · 691 /∈ A. Thus, if we had restricted
ourselves to A<e, we would only have found 5 of the 151 possible polynomials.

The number of polynomials that we can construct with Construction 1, which is the size
of M, obviously depends on the size of A considered in Ze:

A mod e = {pi11 · · · pimm (mod e) : i1, . . . , im ≥ 0}.
Note that in general |M| is smaller than the size of A mod e, because in A mod e exponents
can belong to Fq -conjugates which then yield the same polynomial multiple times.

We believe that it is not possible to give a closed formula for |M| in general since com-
puting |A mod e| is difficult. Indeed, it is related to determining the order of some prime
numbers in Z

∗
r . In order to see this, suppose that e = pv1

1 . . . pvm
m · r with gcd(q − 1, r) = 1

and v1, . . . , vm ≥ 0. Then by the Chinese Remainder Theorem the ring Ze is isomorphic to
Zp

v1
1

× . . . × Zpvm
m

× Zr . To determine |A mod e|, in particular, we need to calculate the size
of the multiplicative subgroup 〈p1, . . . , pm〉 in Z

∗
r .

The behaviour of Construction 2 allows us to discuss the selection of the integers
k = pi11 · · · pimm , i1 ≥ 0, . . . , im ≥ 0, for Construction 1 so that the number of multiple
constructions of the same polynomial is reduced. First, we can obtain a naive upper bound
on the exponents i1, . . . , im by computing Construction 2 separately for every prime integer
p j , 1 ≤ j ≤ m. Suppose then that the tail has a length of v j and the orbit a length of s j ,
which is a divisor of the multiplicative order orde/p

v j
j

(p j ). We set i j ≤ v j + s j . We would

like to note that if the order e of the initial polynomial f = mβ is known, the values v j and
s j can be determined directly with Corollary 9.

In order to eliminate the remaining duplicates, we suggest the following procedure: We
select an integer k = pi11 · · · pim−1

m−1 with i j ≤ v j + s j for every 1 ≤ j ≤ m − 1 and compute
mβk . Thenwe construct the polynomialsm

βk·pim by applyingConstruction 1 for pm repeatedly.
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With this we obtain a tail (mβk , . . . ,m
βk·pvm−1

m
) and an orbit (m

βk·pvmm , . . . ,m
βk·pvm+(s−1)

m
).

Note that the length s of the orbit depends on k.
Two integers k1 and k2 have either the same or a distinct tail. This will happen if and only

if k1 ≡ k2 · q j mod e for an integer 0 ≤ j ≤ n − 1. Clearly if the tail is the same, the orbits
coincide too. Thus, if the first tail polynomial is equal, the computation can be stopped. The
polynomials of the orbits of two different integers are also either distinct or equal. Equal
orbits can also occur for integers with distinct tails. In this case the orbit polynomials appear

in a shifted order. It is easy to see that any other integer of the form k1 ·
(
k2
k1

)l
with l ≥ 0

will yield the same orbit. For such integers we compute only the tail.

Example 2 As we have seen before, the number of constructed polynomials only depends
on the order of the initial polynomial. As an example for our computations we consider the
polynomials

f1 = X8 + X5 + X3 + X2 + a,

f2 = X9 + (a2 + a)X8 + (a3 + a2)X7 + aX6 + X5 + (a3 + a2 + a)X4

+ (a2 + a + 1)X3 + a2X2 + a3X + a3 + a2 + a

over F16 = F(a), where a is a root of the monic irreducible polynomial X4 + X + 1 over F2.
The polynomial f1 is primitive and has order 4 294 967 295 = 3 · 5 · 17 · 257 · 65 537.

Construction 1 with f1 as initial polynomial yields 1 114 113 monic irreducible polynomials
of degree 8. Computing mβk for values of k of the form 3 j , j ≥ 0, and then applying the
construction repeatedly for 5, there are 33 orbits of 32768 polynomials each. The orbit for k =
1 contains 32768 of the 67108864monic irreducible polynomials of order 3 ·17 ·257 ·65537
over F16 and the other 32 orbits for k = 3 j , 1 ≤ j ≤ 32, yield 1048576 of the 33554432
monic irreducible polynomials of order 17·257·65 537overF16. f1 has 5non-zero coefficients
and yields a weight distribution of 4653846722576599783310849709417, which means that there
exist 6 polynomials with smaller weight and 384 polynomials with the same weight. Hence,
from these we could try to choose polynomials with other required properties that our initial
polynomial might lack.

The polynomial f2 has order 68 719 476 735 = 33 · 5 · 7 · 13 · 19 · 37 · 73 · 109 and
yields 4 644 monic irreducible polynomials over F16 of degree 9 with the weight distribution
62747837391401102821. Even though the number of constructed polynomials is not very large,
we could find polynomials ofweight 6, 7 and 8.Considering the orbits for repeated application
of Construction 1 for 5 with starting polynomialsmβk with k = 3 j , j ≥ 0, there are 21 orbits
of 216 polynomials each and the construction yields 3888 of the 40310784 polynomials of
order 509 033 161 = 7 · 13 · 19 · 37 · 73 · 109.

An interesting class of polynomials are the so-called normal polynomials or N-
polynomials (see [5, 6, 11, 13, 15]). A monic irreducible polynomial of degree n with
a root α is called normal if its roots α, αq . . . , αqn−1

are linearly independent over Fq

or, equivalently, if the degree of the greatest common divisor of the polynomials gα =
αXn−1 + αq Xn−2 + . . . + αqn−2

X + αqn−1
and Xn − 1 over Fqn is 0. This concept has been

extended in [7] to k-normal polynomials which satisfy that the greatest common divisor of
the two polynomials gα and Xn −1 has degree k. Tables 1and 2show that Construction 1 also
yields a large number of k-normal polynomials for small values of k which could be used
for respective applications. Since the number of k-polynomials decreases with k increasing,
this distribution of k-normality is to be expected (see [7]).
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Table 1 Weight and k-normality distribution for f1

Weight Total 0-normal 1-normal 2-normal 3-normal

4 6 1 5 0 0

5 384 139 240 5 0

6 7225 4160 2927 136 2

7 65997 47088 17746 1 119 44

8 331084 283554 44713 2 625 192

9 709417 709417 0 0 0

Table 2 Weight and k-normality distribution for f2

Weight Total 0-normal 1-normal 2-normal 3-normal 4-normal

6 2 1 1 0 0 0

7 47 28 15 4 0 0

8 373 256 102 14 1 0

9 1401 1091 290 18 0 2

10 2821 2475 339 5 2 0
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