Uniqueness of an association scheme related to the Witt design on 11 points

Alexander L. Gavrilyuk Sho Suda

May 23, 2023

Abstract

It follows from Delsarte theory that the Witt 4- $(11,5,1)$ design gives rise to a Q-polynomial association scheme \mathcal{W} defined on the set of its blocks. In this note we show that \mathcal{W} is unique, i.e., defined up to isomorphism by its parameters.

1 Introduction

A t - (v, k, λ) design is a set of k-subsets (called blocks) of v points such that every t-subset is contained in exactly λ blocks. A t-design with $\lambda=1$ is called a Steiner system, and the most celebrated ones have parameters $4-(11,5,1), 5-(12,6,1), 3-(22,6,1), 4-(23,7,1)$, and $5-(24,8,1)$, which are often referred to as the Mathieu designs or the Witt systems. In particular, the 4- $(11,5,1)$ design W_{11} arises from a 4-transitive action of the Mathieu group M_{11} on 11 points, and its existence and uniqueness was first shown by Witt 3. The design W_{11} has 66 blocks, and every two distinct blocks B and B^{\prime} have 1,2 , or 3 points in common. Let us define a binary symmetric relation R_{i} on W_{11} by

$$
\left(B, B^{\prime}\right) \in R_{i} \Leftrightarrow\left|B \cap B^{\prime}\right|=4-i
$$

for $i=1,2,3$ and let $R_{0}=\left\{(B, B) \mid B \in W_{11}\right\}$. Then the pair $\mathcal{W}=\left(W_{11},\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}\right)$ is an association scheme (of 3 classes) by [7, Theorem 5.25]. Moreover, this scheme is Q polynomial (see [2] for the definitions and more results about P, Q-polynomial association schemes). Williford [8, 9] compiled the tables of feasible parameters of primitive 3-class Q polynomial association schemes (on up to 2800 vertices), where the uniqueness of the scheme \mathcal{W} was left blank (see also [6, Appendix B]). In this note, we show that \mathcal{W} is unique, i.e., it is determined up to isomorphism by its parameters. The proof is computer-assisted by Mathematica and relies on a spherical representation of the scheme [1].

2 The parameters of \mathcal{W}

Let us recall some standard facts from the theory of association schemes (see [2]). Let A_{i} denote the logical matrix of the relation R_{i}, for $i=0,1,2,3$. Then A_{0} is the identity matrix of size 66 and:
(1) $\sum_{i=0}^{3} A_{i}=J$, the square all-one matrix of size 66 ,
(2) $A_{i}^{\top}=A_{i}(0 \leq i \leq 3)$,
(3) $A_{i} A_{j}=\sum_{k=0}^{3} p_{i, j}^{k} A_{k}$, where $p_{i, j}^{k}$ are nonnegative integers $(0 \leq i, j, k \leq 3)$, called the intersection numbers of the scheme, which we refer to as the parameters of the scheme.

The intersection numbers of \mathcal{W}, written in the form of matrices $\left(L_{i}\right)_{k j}=\left(p_{i, j}^{k}\right)$, are found in the tables by Williford 9]:

$$
L_{1}=\left[\begin{array}{cccc}
0 & 30 & 0 & 0 \\
1 & 15 & 10 & 4 \\
0 & 15 & 6 & 9 \\
0 & 8 & 12 & 10
\end{array}\right], \quad L_{2}=\left[\begin{array}{cccc}
0 & 0 & 20 & 0 \\
0 & 10 & 4 & 6 \\
1 & 6 & 10 & 3 \\
0 & 12 & 4 & 4
\end{array}\right], \quad L_{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & 15 \\
0 & 4 & 6 & 5 \\
0 & 9 & 3 & 3 \\
1 & 10 & 4 & 0
\end{array}\right]
$$

and they determine ([2, Theorem 4.1]) the first and second eigenmatrices P and $Q=\frac{1}{66} P^{-1}$ of \mathcal{W} :

$$
P=\left[\begin{array}{cccc}
1 & 30 & 20 & 15 \\
1 & 8 & -2 & -7 \\
1 & -1 & -2 & 2 \\
1 & -6 & 8 & -3
\end{array}\right], \quad Q=\left[\begin{array}{cccc}
1 & 10 & 44 & 11 \\
1 & \frac{8}{3} & -\frac{22}{15} & -\frac{11}{5} \\
1 & -1 & -\frac{22}{5} & \frac{22}{5} \\
1 & -\frac{14}{3} & \frac{88}{15} & -\frac{11}{5}
\end{array}\right]
$$

where the $(P)_{i j}$-entry $(0 \leq i, j \leq 3)$ is the eigenvalue of A_{j} on the i-th maximal common eigenspace of the matrices A_{0}, \ldots, A_{3} (which commute and hence can be simultaneously diagonalized).

Theorem 2.1. An association scheme with the above parameters is isomorphic to \mathcal{W}.
In what follows, we assume that $\mathcal{X}=\left(X,\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}\right)$ is an association scheme with the same parameters as \mathcal{W}. Let E_{1} denote the orthogonal projection matrix onto the 1 st maximal common eigenspace (of multiplicity $m_{1}=Q_{01}=10$) of the matrices A_{i} 's of \mathcal{X}. Since E_{1} is positive semidefinite, we may regard $\frac{|X|}{m_{1}} E_{1}$ as the Gram matrix of vectors in the unit sphere $S^{m_{1}-1}$ in $\mathbb{R}^{m_{1}}$, and write $\frac{|X|}{m_{1}} E_{1}=F_{1} F_{1}^{\top}$ where F_{1} is a $|X| \times m_{1}$ matrix. We now identify a vertex $x \in X$ with the x-th row $\mathbf{x} \in \mathbb{R}^{m_{1}}$ of F_{1}, and such a map is said to be a spherical representation of the scheme \mathcal{X} into its first eigenspace. Define the angle set $A(X):=\{\langle\mathbf{x}, \mathbf{y}\rangle \mid x, y \in X, x \neq y\}$ and observe that $A(X)=\left\{\left.\frac{Q_{j 1}}{Q_{01}} \right\rvert\, 1 \leq j \leq 3\right\}$. Note that the map is injective, since $Q_{j 1} \neq Q_{01}$ provided that $j \neq 0$; thus, it defines all relations of the scheme. Therefore, to prove Theorem 2.1 it suffices to show that the Gram matrix of the vertex set X embedded into the unit sphere S^{9} in \mathbb{R}^{10} is unique, up to orthogonal transformation.

3 Proof of Theorem 2.1

Observe that the graph $\left(X, R_{2}\right)$ is strongly regular with parameters $(66,20,10,4)$. Such a strongly regular graph is isomorphic to the triangular graph $T(12)$ by [5]; thus, we may identify the point set X with the vertex set of $T(12)$, which is $\binom{[12]}{2}$, where $[12]:=\{1, \ldots, 12\}$, and R_{2} with the edge set of $T(12)$, which is $\left\{\left\{v, v^{\prime}\right\}\left|\left|v \cap v^{\prime}\right|=1, v, v^{\prime} \in\binom{[12]}{2}\right\}\right.$. The next lemma can easily be seen from this description of $T(12)$.

Lemma 3.1. Each vertex of the triangular graph $T(12)$ is contained in two maximum cliques of order 11. Each vertex outside such a clique has exactly two neighbors in it.

Note that a clique of order 11 in $T(12)$ is a Delsarte clique, as it attains the Delsarte bound [4, Proposition 1.3.2]. Fix a vertex $x=\{1,2\}$ of $T(12)$. The two Delsarte cliques containing x are

$$
C_{1}=\{\{1, j\} \mid 2 \leq j \leq 12\} \quad \text { and } \quad C_{2}=\{\{2, j\} \mid j=1,3 \leq j \leq 12\}
$$

Consider the image of C_{1} in the spherical representation in \mathbb{R}^{10} : since C_{1} is a clique, the angle between any two vectors is the same; thus, these 11 vectors form a regular simplex. Let V_{1} be an 11×10 matrix whose row vectors correspond to the vertices of C_{1}. Up to
orthogonal transformation, we may assume that the matrix V_{1} has the following form:

$$
V_{1}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & \frac{3 \sqrt{11}}{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & \frac{2 \sqrt{55}}{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & \frac{\sqrt{385}}{20} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & \frac{\sqrt{1155}}{355} & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & -\frac{\sqrt{1155}}{210} & \frac{\sqrt{33}}{6} & 0 & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & -\frac{\sqrt{1155}}{210} & -\frac{\sqrt{33}}{30} & \frac{\sqrt{22}}{5} & 0 & 0 & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & -\frac{\sqrt{1155}}{210} & -\frac{\sqrt{33}}{30} & -\frac{\sqrt{22}}{20} & \frac{\sqrt{330}}{20} & 0 & 0 \\
-\frac{1}{10}-\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & -\frac{\sqrt{1155}}{210} & -\frac{\sqrt{33}}{30} & -\frac{\sqrt{22}}{20} & -\frac{\sqrt{330}}{60} & \frac{\sqrt{165}}{15} & 0 \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140}-\frac{\sqrt{1155}}{210} & -\frac{\sqrt{33}}{30} & -\frac{\sqrt{22}}{20} & -\frac{\sqrt{330}}{60} & -\frac{\sqrt{165}}{30} & \frac{\sqrt{55}}{10} \\
-\frac{1}{10} & -\frac{\sqrt{11}}{30} & -\frac{\sqrt{55}}{60} & -\frac{\sqrt{385}}{140} & -\frac{\sqrt{1155}}{210} & -\frac{\sqrt{33}}{30} & -\frac{\sqrt{22}}{20} & -\frac{\sqrt{330}}{60} & -\frac{\sqrt{165}}{30} & -\frac{\sqrt{55}}{10}
\end{array}\right],
$$

where the first row corresponds to x.
Now the problem is to add the remaining 55 vectors such that together with the vectors from C_{1} their Gram matrix is permutation equivalent to E_{1}. Since $A(X)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, where $\alpha_{1}=\frac{4}{15}, \alpha_{2}=-\frac{1}{10}, \alpha_{3}=-\frac{7}{15}$, every such a vector $\mathbf{u} \in S^{9}$ in question satisfies $V_{1} \mathbf{u}^{\top} \in\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}^{10}$, and there are at most 3^{10} candidates for \mathbf{u}.

We first determine the coordinates of the vectors in the image of C_{2}. Let $z \in C_{1} \backslash\{x\}$ and $y \in C_{2}$. Then $(x, z) \in R_{2},(x, y) \in R_{2}$ and $(y, z) \in R_{1} \cup R_{2} \cup R_{3}$. Since $p_{2,1}^{2}=6, p_{2,2}^{2}=$ $10, p_{2,3}^{2}=3$ and, by Lemma 3.1, for each vertex $z \in C_{1} \backslash\{x\}$, there is exactly one vertex $y \in C_{2} \backslash\{x\}$ such that $\langle\mathbf{y}, \mathbf{z}\rangle=\alpha_{2}$, it follows that the vertices in C_{2} are taken from the following set:

$$
Y_{1}=\left\{\mathbf{y} \in S^{9} \mid V_{1} \mathbf{y}^{\top}=\left(\alpha_{2}, \mathbf{v}\right)^{\top}, \mathbf{v}=\left(\left\{\left[\alpha_{1}\right]^{6},\left[\alpha_{2}\right]^{1},\left[\alpha_{3}\right]^{3}\right\}\right)\right\}
$$

where $\left(\left\{\left[\alpha_{1}\right]^{6},\left[\alpha_{2}\right]^{1},\left[\alpha_{3}\right]^{3}\right\}\right)$ denotes a vector of length 10 having 6 entries equal to $\alpha_{1}, 1$ entry α_{2}, and 3 entries α_{3}. Note that $\left|Y_{1}\right|=840$. Consider a graph with vertex set Y_{1} and edge set E_{1} defined by $\left\{\mathbf{y}, \mathbf{y}^{\prime}\right\} \in E_{1}$ if and only if $\left\langle\mathbf{y}, \mathbf{y}^{\prime}\right\rangle=\alpha_{2}$. Then every clique of order 10 in the graph $\left(Y_{1}, E_{1}\right)$ is a candidate for C_{2}. Let us define a 10×10 matrix $V_{2}=C \cdot V_{1}$, where

$$
C=\frac{1}{3}\left[\begin{array}{rrrrrrrrrrr}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \\
0 & 1 & 1 & -1 & 0 & -1 & 1 & 1 & -1 & 1 & 1 \\
0 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 0 & 1 & 1 \\
0 & 1 & -1 & -1 & 1 & 1 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 \\
0 & -1 & 1 & 1 & -1 & 0 & 1 & 1 & 1 & 1 & -1 \\
0 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 0 & 1 \\
0 & -1 & 0 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & 1
\end{array}\right]
$$

and $V=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$. We can prove the following lemma with the aid of a computer.
Lemma 3.2. There exist exactly 30240 cliques of order 10 in the graph $\left(Y_{1}, E_{1}\right)$. For every such clique C_{2}, the Gram matrix of $C_{1} \cup C_{2}$ is permutationally equivalent to that of the rows of V.

By Lemma 3.2, we may fix the set Y_{2} of the row vectors of V_{2} representing C_{2} and extend the above argument to other Delsarte cliques, which yields that $X \backslash\left(C_{1} \cup C_{2}\right)$ can be represented by a subset of the following set:

$$
Y=\left\{\mathbf{u} \in S^{9} \mid V_{1} \mathbf{u}^{\top}=\mathbf{v}^{\top}, \mathbf{v}=\left(\left\{\left[\alpha_{1}\right]^{6},\left[\alpha_{2}\right]^{2},\left[\alpha_{3}\right]^{3}\right\}\right)\right\} \backslash Y_{2}
$$

Note that $|Y|=4610$, which is somewhat smaller than 3^{10}. We determine the set Y and select only those of its vectors whose inner products with the vectors from Y_{2} belong to $A(X)$. Let Z denote the set of such vectors. With the aid of a computer, we obtain $|Z|=90$. We proceed by finding a maximal subset of Z such that the inner product of every two of its distinct vectors is in $A(X)$.

Lemma 3.3. The set Z splits into $Z_{1} \cup Z_{2}$ in such a way that $\left|Z_{1}\right|=\left|Z_{2}\right|=45, Z_{1} \cap Z_{2}=\emptyset$, $A\left(Z_{1}\right)=A\left(Z_{2}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, and $\left\langle\mathbf{z}_{1}, \mathbf{z}_{2}\right\rangle \notin\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ for all $\mathbf{z}_{1} \in Z_{1}$ and all $\mathbf{z}_{2} \in Z_{2}$. Moreover, the Gram matrices $C_{1} \cup C_{2} \cup Z_{1}$ and $C_{1} \cup C_{2} \cup Z_{2}$ are permutationally equivalent.

Thus, we may assume that the 66 vertices of X are represented by the row vectors from V_{1}, V_{2}, and Z_{1}, and we can directly verify that, together with the binary relations defined by their inner products, they form an association scheme of 3 classes with the same parameters as \mathcal{W}. This completes the proof of Theorem 2.1.

Acknowledgments

The authors would like to thank the reviewers for valuable comments. The research of Alexander Gavrilyuk is supported by JSPS KAKENHI Grant Number 22K03403. The research of Sho Suda is supported by JSPS KAKENHI Grant Number 22K03410.

References

[1] E. Bannai, E. Bannai, H. Bannai. Uniqueness of certain association schemes, European J. Combin., 25:261-267, 2004.
[2] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park, CA, 1984.
[3] T. Beth, D. Jungnickel. Mathieu groups, With designs, and Golay codes. Lecture Notes in Math. 893:157-169, 1981.
[4] A.E. Brouwer, A.E. Cohen, A. Neumaier. Distance-regular graphs. Springer-Verlag, Berlin, 1989. xviii +495.
[5] L.C. Chang. The uniqueness and nonuniqueness of the triangular association scheme, Sci. Record, 3:604-613, 1959.
[6] E.R. van Dam. Three-Class Association Schemes, J. of Alg. Combin., 10:69-107, 1999.
[7] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. 10 (Suppl.), 1973.
[8] A.L. Gavrilyuk, J. Vidali, J.S. Williford. On few-class Q-polynomial association schemes: feasible parameters and nonexistence results, Ars Math. Contemp., 20(1):103127, 2021.
[9] J.S. Williford. Tables of feasible parameter sets for primitive 3-class Q-polynomial association schemes.

