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Abstract
Linear codes of length n over Zps , p prime, called Zps -additive codes, can be seen as
subgroups of Zn

ps . A Zps -linear generalized Hadamard (GH) code is a GH code over Zp

which is the image of a Zps -additive code under a generalized Gray map. It is known that
the dimension of the kernel allows to classify these codes partially and to establish some
lower and upper bounds on the number of such codes. Indeed, in this paper, for p ≥ 3 prime,
we establish that some Zps -linear GH codes of length pt having the same dimension of the
kernel are equivalent to each other, once t is fixed. This allows us to improve the known
upper bounds. Moreover, up to t = 10 if p = 3 or t = 8 if p = 5, this new upper bound
coincides with a known lower bound based on the rank and dimension of the kernel.
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1 Introduction

Let Zps be the ring of integers modulo ps with p prime and s ≥ 1. Let Zn
ps be the set

of n-tuples over Zps . In this paper, the elements of Zn
ps will also be called vectors. The

order of a vector u over Zps , denoted by o(u), is the smallest positive integer m such that
mu = (0, . . . , 0). A code over Zp of length n is a nonempty subset of Zn

p , and it is called
linear if it is a subspace of Zn

p . Similarly, a nonempty subset of Zn
ps is a Zps -additive code if

it is a subgroup of Zn
ps . When p = 2 and s = 1, a Zps -additive code is a binary linear code

and, when p = 2 and s = 2, it is a quaternary linear code or a linear code over Z4.
The usual Gray map φ from Z4 to Z

2
2, that is, the map such that φ(0) = (0, 0), φ(1) =

(0, 1), φ(2) = (1, 1) and φ(3) = (1, 0) [14], has been generalized to different maps, which

go from Zps to Z
ps−1

p [4, 8, 9, 13, 17, 19, 25]. In this paper, we consider the following
generalization of Carlet’s Gray map [13]:

φs(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Ys−1, (1)

where u ∈ Zps , [u0, u1, . . . , us−1]p is the p-ary expansion of u, that is, u = ∑s−1
i=0 piui

(ui ∈ Zp), and Ys−1 is a (s − 1) × ps−1 matrix whose columns are all the different elements
of Zs−1

p . We assume, without loss of generality, that the columns of Ys−1 are ordered in
ascending order, by considering them as the p-ary expansions of the elements of the ring

Zps−1 . Then, we define Φs : Zn
ps → Z

nps−1

p as the component-wise Gray map φs .
Let C be a Zps -additive code of length n. The Gray map image of C, C = Φs(C), is

called a Zps -linear code. Note that the length of C is ps−1n. As a subgroup of Zn
ps , C is

isomorphic to an abelian structureZt1
ps ×Z

t2
ps−1 ×· · ·×Z

ts
p , and we say that C, or equivalently

C = Φs(C), is of type (n; t1, . . . , ts). Note that |C| = pst1 p(s−1)t2 · · · pts . A Zps -additive
code C can also be seen as a Zps -submodule of Zn

ps . As a Zps -module, C is free only if it is
of type (n; t1, 0, . . . , 0). For linear codes over rings which are not free, there does not exist
a basis. However, for any linear code over Zps , there does exist a generator matrix having
minimum number of rows, that is, with t1+· · ·+ ts rows. Note that the rows of this generator
matrix contain ti codewords of order ps−i+1, for i ∈ {1, . . . , s}.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}. Two Zps -additive
codes of length n, C1 and C2, are permutation equivalent if there is a permutation of coordi-
nates π ∈ Sn such that C2 = {π(c) : c ∈ C1}. Two codes of length n over Zp , C1 and C2,
are equivalent if there is a vector a ∈ Z

n
p and a permutation of coordinates π ∈ Sn such that

C2 = {a + π(c) : c ∈ C1}.
Let C be a code over Zp . The rank of C is the dimension of its linear span, 〈C〉, and it

is denoted by rank(C). The kernel of C is K(C) = {x ∈ Z
n
p : x + C = C} [2, 20], and its

dimension is denoted by ker(C). If the all-zero vector belongs to C , then K(C) is a linear
subcode of C . Note also that if C is linear, then K (C) = C = 〈C〉. The values of rank(C)

and ker(C) can be used to distinguish between nonequivalent codes overZp , since equivalent
ones have the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix H(p, λ) = (hi j ) of order n = pλ over Zp is a
pλ × pλ matrix with entries from Zp with the property that for every i, j , 1 ≤ i < j ≤ pλ,

each of the multisets {his − h js : 1 ≤ s ≤ pλ} contains every element of Zp exactly λ times
[15]. An ordinary Hadamard matrix of order 4μ corresponds to a GH matrix H(2, λ) over
Z2, where λ = 2μ [1]. Two GH matrices H1 and H2 of order n are said to be equivalent if
one can be obtained from the other by a permutation of the rows and columns and adding the
same element of Zp to all the coordinates in a row or in a column. We can always change
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the first row and column of a GH matrix into zeros and we obtain an equivalent GH matrix
which is called normalized. Let H be a normalized GH matrix. We also denote by H the set
of rows of H . The code CH = ⋃

α∈Zp
(H + α1), where H + α1 = {h + α1 : h ∈ H} and 1

denotes the all-one vector, is called generalized Hadamard (GH) code [10]. Note that CH

is generally a nonlinear code over Zp . If C is a Zps -additive code such that Φs(C) is a GH
code, then we say that C is a Zps -additive GH code and Φs(C) is a Zps -linear GH code. Note
that a GH code over Zp of length N has pN codewords and minimum distance N (p−1)/p.

GH matrices over Zp are also known as Butson Hadamard matrices, introduced in [5],
since p is prime. They can also be seen as square difference matrices. Difference matrices,
introduced in [6], are matrices whose elements belong to a finite group, such that in the
difference of two distinct row vectors each element of the group occurs equally often. In
[23], three different constructions of difference matrices (the direct method, the iterative
procedure and the Kronecker product construction) were considered. They also studied the
codes induced by these matrices, and showed that these codes are optimal. In [27], binary
Hadamard codes obtained by using a general concatenation construction given in [28] are
studied. Unlike the Zps -linear GH codes, the codes from [27] come from codes over Zq

which are not necessarily linear, after applying not necessarily the same generalized Gray
map in each coordinate.

Let At,s,p and At,p be the number of nonequivalent Zps -linear GH codes of length pt ,
when both t and s are fixed, and when just t is fixed, respectively. The Z4-linear Hadamard
codes of length 2t can be classified by using either the rank or the dimension of the kernel [16,
21]. There are exactly At,2,2 = � t−1

2 	 nonequivalent such codes for all t ≥ 2. In [11], it is
proved that the dimension of the kernel for Z2s -linear Hadamard codes provides a complete
classification giving At,s,2 for all values of t and s, except for t ≥ 8 and 3 ≤ s ≤ t − 5.
This partial classification is improved in [3], by giving At,s,2 also for any 3 ≤ t ≤ 11 and
s ≥ 2. In [12], for s ≥ 2, it is established that some Z2s -linear Hadamard codes of length 2t

are equivalent, once only t is fixed, and this fact improved the known upper bounds forAt,2.
Moreover, the authors showed that, up to t = 11, this new upper bound coincides with the
known lower bound (based on the rank and dimension of the kernel).

For s ≥ 2 and p ≥ 3 prime, an iterative construction and the dimension of the kernel for
Zps -linear GH codes of length pt are established in [3], and it is also proved that this invariant
only provides a complete classification for certain values of t and s. Lower and upper bounds
are also established for At,s,p and At,p . From [3], we can observe that there are nonlinear
codes having the same rank and dimension of the kernel for different values of s, once the
length pt is fixed, at least for all 4 ≤ t ≤ 10 if p = 3 and 4 ≤ t ≤ 8 if p = 5. In this paper,
we show that, for all t ≥ 4 and p ≥ 3 prime, some Zps -linear GH codes of length pt having
different values of s are permutation equivalent to each other, once t is fixed. Moreover, for
all t ≤ 10 if p = 3 and t ≤ 8 if p = 5, the codes that are permutation equivalent are, in fact,
those having the same pair of invariants, rank and dimension of the kernel. For example, in
Table 3, the codes in bold type have the same rank and dimension of the kernel and are, in
fact, permutation equivalent. These results allow us to obtain a more accurate classification
of the Zps -linear GH codes, than the one given in [3]. Zps -additive codes have also been
studied in [24, 26] as two-weight codes over Zps by considering the homogeneous weight.
Recently, rank and pairs of rank and dimension of the kernel for ZpZp2 -linear codes have
been studied in [18].

The paper is organized as follows. In Sect. 2, we recall the recursive construction of
Zps -linear GH codes, the known partial classification, and some bounds on the number of
nonequivalent such codes, presented in [3]. In Sect. 3, we prove some equivalence relations
among the Zps -linear GH codes of the same length pt . Later, in Sect. 4, we improve the
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classification given in [3] by refining the known bounds. Finally, in Sect. 5, we give some
conclusions and further research on this topic.

2 Preliminaries and known partial classification

In this section, we provide some known results for Zps -linear GH codes of length pt with
t ≥ 3 and p prime. These results were presented mainly in [3, 11, 12] and are related to the
recursive construction, partial classification, and bounds on the number of such nonequivalent
codes.

Let Ti = { j · pi−1 : j ∈ {0, 1, . . . , ps−i+1 − 1}} for all i ∈ {1, . . . , s}. Note that
T1 = {0, . . . , ps−1}. Let t1, t2,…,ts be nonnegative integers with t1 ≥ 1. Consider thematrix
At1,...,ts
p whose columns are exactly all the vectors of the form zT , z ∈ {1} × T t1−1

1 × T t2
2 ×

· · · × T ts
s . Let 0, 1, 2, . . . ,ps − 1 be the vectors having the same element 0, 1, 2, . . . , ps − 1

from Zps in all its coordinates, respectively.
Anymatrix At1,...,ts

p can also be obtained by applying the following recursive construction.

We start with A1,0,...,0
p = (1). Then, if we have a matrix A = At1,...,ts

p , for any i ∈ {1, . . . , s},
we may construct the matrix

Ai =
(

A A · · · A
pi−1 · 0 pi−1 · 1 · · · pi−1 · (ps−i+1 − 1)

)

. (2)

Finally, permuting the rows of Ai , we obtain a matrix A
t ′1,...,t ′s
p , where t ′j = t j for j �= i and

t ′i = ti + 1. Note that any permutation of columns of Ai gives also a matrix A
t ′1,...,t ′s
p . Along

this paper, we consider that the matrices At1,...,ts
p are constructed recursively starting from

A1,0,...,0
p in the following way. First, we add t1 − 1 rows of order ps , up to obtain At1,0,...,0

p ;

then t2 rows of order ps−1 up to generate At1,t2,...,0
p ; and so on, until we add ts rows of order

p to achieve At1,...,ts
p . See [3] for examples.

Let Ht1,...,ts
p be the Zps -additive code of type (n; t1, . . . , ts) generated by the matrix

At1,...,ts
p , where t1, . . . , ts are nonnegative integers with t1 ≥ 1 and p prime. Let n = pt−s+1,

where t = (∑s
i=1(s − i + 1) · ti

)−1. The codeHt1,...,ts
p has length n, and the corresponding

Zps -linear code Ht1,...,ts
p = Φs(Ht1,...,ts

p ) is a GH code of length pt [3].
In order to classify the Zps -linear GH codes of length pt , we can focus on t ≥ 5 and

2 ≤ s ≤ t − 2 when p = 2 [11], and on t ≥ 4 and 2 ≤ s ≤ t − 1 when p ≥ 3 prime
[3]. Moreover, as shown in the following three theorems, for any t ≥ 5 and 2 ≤ s ≤ t − 2,
there are two Z2s -linear Hadamard codes of length 2t which are linear; and for any t ≥ 4,
2 ≤ s ≤ t − 1 and p ≥ 3 prime, there is a unique Zps -linear GH code of length pt which is
linear.

Theorem 1 [16] The codes H1,t2
2 and H2,t2

2 , with t2 ≥ 0, are the only Z4-linear Hadamard
codes which are linear over Z2.

Theorem 2 [11] The codes H1,0,...,0,ts
2 and H1,0,...,0,1,ts

2 , with s > 2 and ts ≥ 0, are the only
Z2s -linear Hadamard codes which are linear over Z2.

Theorem 3 [3] The Zps -linear GH codes H1,0,...,0,ts
p , with p ≥ 3 prime, s ≥ 2 and ts ≥ 0,

are the only Zps -linear GH codes which are linear over Zp.
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Table 1 All linear Z2s -linear GH codes of length 2t and dimension t + 1

t = 4 t = 5 t = 6 t = 7
(t1, . . . , ts ) (t1, . . . , ts ) (t1, . . . , ts ) (t1, . . . , ts )

Z4 (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4)

Z23 (1, 0, 2) (1, 0, 3) (1, 0, 4) (1, 0, 5)

(1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 1, 3)

Z24 (1, 0, 0, 1) (1, 0, 0, 2) (1, 0, 0, 3) (1, 0, 0, 4)

(1, 0, 1, 0) (1, 0, 1, 1) (1, 0, 1, 2)

Z25 (1, 0, 0, 0, 0) (1, 0, 0, 0, 1) (1, 0, 0, 0, 2) (1, 0, 0, 0, 3)

(1, 0, 0, 1, 0) (1, 0, 0, 1, 1)

Z26 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 2)

(1, 0, 0, 0, 1, 0)

Z27 (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 1)

Z28 (1, 0, 0, 0, 0, 0, 0, 0)

Table 2 All linear Zps -linear GH codes of length pt with p ≥ 3 prime and dimension t + 1

t = 4 t = 5 t = 6 t = 7
(t1, . . . , ts ) (t1, . . . , ts ) (t1, . . . , ts ) (t1, . . . , ts )

Zp2 (1, 3) (1, 4) (1, 5) (1, 6)

Zp3 (1, 0, 2) (1, 0, 3) (1, 0, 4) (1, 0, 5)

Zp4 (1, 0, 0, 1) (1, 0, 0, 2) (1, 0, 0, 3) (1, 0, 0, 4)

Zp5 (1, 0, 0, 0, 0) (1, 0, 0, 0, 1) (1, 0, 0, 0, 2) (1, 0, 0, 0, 3)

Zp6 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 2)

Zp7 (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 1)

Zp8 (1, 0, 0, 0, 0, 0, 0, 0)

Tables 1 and 2 show the values of t1, . . . , ts for all linear Zps -linear GH codes Ht1,...,ts
p

of length pt with 4 ≤ t ≤ 7 and p prime, given by Theorems 1, 2, and 3. Note that the case
p = 2 is different from the case p ≥ 3 prime.

Tables 3 and 4, for 4 ≤ t ≤ 10 and 2 ≤ s ≤ t − 1, show all possible values of (t1, . . . , ts)
for which there exists a nonlinear Zps -linear GH code Ht1,...,ts

p of length pt with p ≥ 3
prime. For each one of them, taking p = 3, the values (r , k) are shown, where r is the rank
(computed by using the computer algebra system Magma [7, 22]) and k is the dimension of
the kernel (determined in [3]). Note that the values of k are the same for any p ≥ 3 prime,
but the values of r are only given for p = 3. Also note that if two codes have different values
(r , k), then they are not equivalent. On the one hand, taking only the values of the dimension
of the kernel given in these tables, it is easy to see that this invariant does not always give
a classification. For example, in Table 4, for t = 8, there are two Z33 -linear GH codes with
the same dimension of the kernel, k = 5, that are nonequivalent since they have different
rank, r = 22 and r = 16. On the other hand, considering only the values of the rank given
in these tables, it is easy to note that the rank does give a classification, since all the codes
have different values of the rank, once t and s are fixed, at least when 4 ≤ t ≤ 10 and p = 3.
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Table 3 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3t

t = 4 t = 5 t = 6 t = 7

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z9 (2, 1) (6,3) (2, 2) (7,4) (3, 1) (12,4) (3, 2) (13,5)

(3, 0) (11,3) (2, 3) (8,5) (4, 0) (21,4)

(2, 4) (9,6)

Z33 (1, 1, 0) (6,3) (2, 0, 0) (13,2) (1, 2, 0) (12,4) (1, 2, 1) (13,5)

(1, 1, 1) (7,4) (2, 0, 1) (14,3) (2, 0, 2) (15,4)

(1, 1, 2) (8,5) (2, 1, 0) (25,3)

(1, 1, 3) (9,6)

Z34 (1, 0, 1, 0) (7,4) (1, 1, 0, 0) (14,3) (1, 0, 2, 0) (13,5)

(1, 0, 1, 1) (8,5) (1, 1, 0, 1) (15,4)

(2, 0, 0, 0) (34,2)

(1, 0, 1, 2) (9,6)

Z35 (1, 0, 0, 1, 0) (8,5) (1, 0, 1, 0, 0) (15,4)

(1, 0, 0, 1, 1) (9,6)

Z36 (1, 0, 0, 0, 1, 0) (9,6)

Similarly, Table 5 shows that this also happens for p = 5 when 4 ≤ t ≤ 8; and Tables 1 and
3 given in [11] show that it is also true for p = 2 when 4 ≤ t ≤ 11.

Let Xt,s,p be the number of nonnegative integer solutions (t1, . . . , ts) ∈ N
s of the equa-

tion t = (∑s
i=1(s − i + 1) · ti

) − 1 with t1 ≥ 1. This gives the number of sequences
(t1, . . . , ts) such that H

t1,...,ts
p is a Zps -linear GH codes of length pt . Let At,s,p be the num-

ber of nonequivalentZps -linear GH codes of length pt and a fixed s ≥ 2. Then, for any t ≥ 5
and 2 ≤ s ≤ t − 1, we have thatAt,s,2 ≤ Xt,s,2 − 1, since there are exactly two codes which
are linear [11]. For p ≥ 3 prime, t ≥ 4 and 2 ≤ s ≤ t − 1, we have that At,s,p ≤ Xt,s,p ,
since there is exactly one code which is linear. Moreover, these bounds are tight for t ≤ 11 if
p = 2 [11], t ≤ 10 if p = 3 [3], and t ≤ 8 if p = 5 from Table 5. It is still an open problem
to know whether this bound is always tight or not.

A partial classification for the Zps -linear GH codes of length pt is given for p = 2 in
[11], and for p ≥ 3 prime in [3]. Specifically, lower and upper bounds on the number of
nonequivalent such codes, once only t is fixed, are established. Let At,p be the number of
nonequivalent Zps -linear GH codes of length pt . We first consider the case p = 2.

Theorem 4 [11] For t ≥ 3,

At,2 ≤ 1 +
t−2∑

s=2

(Xt,s,2 − 2) (3)

and

At,2 ≤ 1 +
t−2∑

s=2

(At,s,2 − 1). (4)

The upper bounds (3) and (4) on At,2 are improved in [12], where it is proved that, for
a fixed t , there are Z2s -linear Hadamard codes of length 2t that are equivalent. It is also
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Table 4 Rank and kernel for all nonlinear Z3s -linear GH codes of length 3t

t = 8 t = 9 t = 10

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z9 (3, 3) (14,6) (3, 4) (15,7) (3, 5) (16,8)

(4, 1) (22,5) (4, 2) (23,6) (4, 3) (24,7)

(2, 5) (10,7) (5, 0) (36,5) (5, 1) (37,6)

(2, 6) (11,8) (2, 7) (12,9)

Z33 (1, 2, 2) (14,6) (1, 2, 3) (15,7) (1, 2, 4) (16,8)

(1, 3, 0) (22,5) (1, 3, 1) (23,6) (1, 3, 2) (24,7)

(2, 0, 3) (16,5) (2, 0, 4) (17,6) (1, 4, 0) (37,6)

(2, 1, 1) (26,4) (2, 1, 2) (27,5) (2, 0, 5) (18,7)

(3, 0, 0) (48,3) (2, 2, 0) (43,4) (2, 1, 3) (28,6)

(1, 1, 4) (10,7) (3, 0, 1) (49,4) (2, 2, 1) (44,5)

(1, 1, 5) (11,8) (3, 0, 2) (50,5)

(3, 1, 0) (82,4)

(1, 1, 6) (12,9)

Z34 (1, 0, 2, 1) (14,6) (1, 0, 2, 2) (15,7) (1, 0, 2, 3) (16,8)

(1, 1, 0, 2) (16,5) (1, 0, 3, 0) (23,6) (1, 0, 3, 1) (24,7)

(1, 1, 1, 0) (26,4) (1, 2, 0, 0) (49,4) (1, 1, 0, 4) (18,7)

(2, 0, 0, 1) (35,3) (1, 1, 0, 3) (17,6) (1, 1, 1, 2) (28,6)

(1, 0, 1, 3) (10,7) (1, 1, 1, 1) (27,5) (1, 1, 2, 0) (44,5)

(2, 0, 0, 2) (36,4) (1, 2, 0, 1) (50,5)

(2, 0, 1, 0) (64,3) (2, 0, 0, 3) (37,5)

(1, 0, 1, 4) (11,8) (2, 0, 1, 1) (65,4)

(2, 1, 0, 0) (121,3)

(1, 0, 1, 5) (12,9)

Z35 (1, 0, 0, 2, 0) (14,6) (1, 0, 0, 2, 1) (15,7) (1, 0, 0, 2, 2) (16,8)

(1, 0, 1, 0, 1) (16,5) (1, 0, 1, 0, 2) (17,6) (1, 0, 0, 3, 0) (24,7)

(1, 1, 0, 0, 0) (35,3) (1, 0, 1, 1, 0) (27,5) (1, 0, 1, 0, 3) (18,7)

(1, 0, 0, 1, 2) (10,7) (1, 1, 0, 0, 1) (36,4) (1, 0, 1, 1, 1) (28,6)

(2, 0, 0, 0, 0) (96,2) (1, 0, 2, 0, 0) (50,5)

(1, 0, 0, 1, 3) (11,8) (1, 1, 0, 0, 2) (37,5)

(1, 1, 0, 1, 0) (65,4)

(2, 0, 0, 0, 1) (97,3)

(1, 0, 0, 1, 4) (12,9)

Z36 (1, 0, 0, 1, 0, 0) (16,5) (1, 0, 0, 0, 2, 0) (15,7) (1, 0, 0, 0, 2, 1) (16,8)

(1, 0, 0, 0, 1, 1) (10,7) (1, 0, 0, 1, 0, 1) (17,6) (1, 0, 0, 1, 0, 2) (18,7)

(1, 0, 1, 0, 0, 0) (36,4) (1, 0, 0, 1, 1, 0) (28,6)
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Table 4 continued

t = 8 t = 9 t = 10

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

(1, 0, 0, 0, 1, 2) (11,8) (1, 0, 1, 0, 0, 1) (37,5)

(1, 1, 0, 0, 0, 0) (97,3)

(1, 0, 0, 0, 1, 3) (12,9)

Z37 (1, 0, 0, 0, 0, 1, 0) (10,7) (1, 0, 0, 0, 1, 0, 0) (17,6) (1, 0, 0, 0, 0, 2, 0) (16,8)

(1, 0, 0, 0, 0, 1, 1) (11,8) (1, 0, 0, 0, 1, 0, 1) (18,7)

(1, 0, 0, 1, 0, 0, 0) (37,5)

(1, 0, 0, 0, 0, 1, 2) (12,9)

Z38 (1, 0, 0, 0, 0, 0, 1, 0) (11,8) (1, 0, 0, 0, 0, 1, 0, 0) (18,7)

(1, 0, 0, 0, 0, 0, 1, 1) (12,9)

Z39 (1, 0, 0, 0, 0, 0, 0, 1, 0) (12,9)

proved that, for 5 ≤ t ≤ 11, the improved upper bounds are equal and give the exact value
of At,2. Let X̃t,s,2 = |{(t1, . . . , ts) ∈ N

s : t + 1 = ∑s
i=1(s − i + 1)ti , t1 ≥ 2}| for

s ∈ {3, . . . , �(t + 1)/2	} and X̃t,2,2 = |{(t1, t2) ∈ N
2 : t + 1 = 2t1 + t2, t1 ≥ 3}|.

Theorem 5 [12] For t ≥ 3,

At,2 ≤ 1 +
� t+1

2 	∑

s=2

X̃t,s,2 (5)

and

At,2 ≤ 1 +
� t+1

2 	∑

s=2

(At,s,2 − 1). (6)

Moreover, for 3 ≤ t ≤ 11, the upper bounds (5) and (6) coincide and are tight.

Now, we consider the case p ≥ 3 prime. In this case, we only have the following upper
bounds.

Theorem 6 [3] For t ≥ 3 and p ≥ 3 prime,

At,p ≤ 1 +
t−1∑

s=2

(Xt,s,p − 1) (7)

and

At,p ≤ 1 +
t−1∑

s=2

(At,s,p − 1). (8)

In this paper, in order to improve the upper bounds (7) and (8), we analyze the equivalence
relations among the Zps -linear GH codes with the same length pt and different values of s.
We prove that some of them are indeed permutation equivalent. For 5 ≤ t ≤ 11 if p = 2, for
4 ≤ t ≤ 10 if p = 3, and for 4 ≤ t ≤ 8 if p = 5, the ones that are permutation equivalent

123



On the equivalence ofZps -linear generalized Hadamard codes 1007

Ta
bl
e
5

R
an
k
an
d
ke
rn
el
fo
r
al
ln

on
lin

ea
r
Z
5s
-l
in
ea
r
G
H
co
de
s
of

le
ng
th

5t

t
=

4
t
=

5
t
=

6
t
=

7
t
=

8

(t
1
,
..

.,
t s

)
(r

,
k)

(t
1
,
..

.,
t s

)
(r

,
k)

(t
1
,
..

.,
t s

)
(r

,
k)

(t
1
,
..

.,
t s

)
(r

,
k)

(t
1
,
..

.,
t s

)
(r

,
k)

Z
25

(2
,
1)

(8
,3
)

(2
,
2)

(9
,4
)

(3
,
1)

(2
3,
4)

(3
,
2)

(2
4,
5)

(3
,
3)

(2
5,
6)

(3
,
0)

(2
2,
3)

(2
,
3)

(1
0,
5)

(4
,
0)

(5
7,
4)

(4
,
1)

(5
8,
5)

(2
,
4)

(1
1,
6)

(2
,
5)

(1
2,
7)

Z
53

(1
,
1,
0)

(8
,3
)

(2
,
0,

0)
(2
9,
2)

(1
,
2,

0)
(2
3,
4)

(1
,
2,

1)
(2
4,
5)

(1
,
2,

2)
(2
5,
6)

(1
,
1,
1)

(9
,4
)

(2
,
0,

1)
(3
0,
3)

(2
,
0,

2)
(3
1,
4)

(1
,
3,
0)

(5
8,
5)

(1
,
1,
2)

(1
0,
5)

(2
,
1,
0)

(8
4,
3)

(2
,
0,

3)
(3
2,
5)

(1
,
1,
3)

(1
1,
6)

(2
,
1,
1)

(8
5,
4)

(3
,
0,

0)
(?
,3
)

(1
,
1,
4)

(1
2,
7)

Z
54

(1
,
0,

1,
0)

(9
,4
)

(1
,
1,
0,

0)
(3
0,
3)

(1
,
0,

2,
0)

(2
4,
5)

(1
,
0,

2,
1)

(2
5,
6)

(1
,
0,

1,
1)

(1
0,
5)

(1
,
1,
0,

1)
(3
1,
4)

(1
,
1,
0,

2)
(3
2,
5)

(2
,
0,

0,
0)

(1
34

,2
)

(1
,
1,
1,
0)

(8
5,
4)

(1
,
0,

1,
2)

(1
1,
6)

( 2
,
0,

0,
1)

(1
35

,3
)

(1
,
0,

1,
3)

(1
2,
7)

Z
55

(1
,
0,

0,
1,
0)

(1
0,
5)

(1
,
0,

1,
0,

0)
(3
1,
4)

(1
,
0,

0,
2,

0)
(2
5,
6)

(1
,
0,

0,
1,
1)

(1
1,
6)

(1
,
0,

1,
0,

1)
(3
2,
5)

(1
,
1,
0,

0,
0)

(1
35

,3
)

(1
,
0,

0,
1,
2)

(1
2,
7)

Z
56

(1
,
0,

0,
0,

1,
0)

(1
1,
6)

(1
,
0,

0,
1,
0,

0)
(3
2,
5)

(1
,
0,

0,
0,

1,
1)

(1
2,
7)

Z
57

(1
,
0,

0,
0,

0,
1,
0)

(1
2,
7)

123



1008 D. K. Bhunia et al.

coincide with the ones having the same invariants, rank and dimension of the kernel, that
is, the same pair (r , k). Finally, by using these equivalence relations, we improve the upper
bounds on the number At,p of nonequivalent Zps -linear GH codes of length pt with p ≥ 3
prime given by Theorem 6. This allows us to determine the exact value of At,p for all t ,
5 ≤ t ≤ 11, if p = 2; for all t , 4 ≤ t ≤ 10, if p = 3; and for all t , 4 ≤ t ≤ 8, if p = 5;
since one of the new upper bounds coincides with the lower bound given by the number of
different pairs (r , k) in these cases.

3 EquivalentZps -linear GH codes

In this section, we give some properties of the generalized Gray map φs . We also prove that,
for p ≥ 3 prime, some of the Zps -linear GH codes of the same length pt , having different
values of s are permutation equivalent. Moreover, we see that they coincide with the ones
having the same rank and dimension of the kernel for all t , 4 ≤ t ≤ 10, when p = 3; and for
all t , 4 ≤ t ≤ 8, when p = 5.

Lemma 1 Let s ≥ 2 and λi ∈ Zp, i ∈ {0, . . . , s − 1}. Then,
s−1∑

i=0

λiφs(p
i ) = φs(

s−1∑

i=0

λi p
i ).

Proof Straightforward from the definition of φs . �

Let γs ∈ Sps−1 be the permutation defined as follows: for a coordinate k = j ps−2+i+1 ∈

{1, 2, . . . , ps−1}, where j ∈ {0, . . . , p− 1} and i ∈ {0, . . . , ps−2 − 1}, γs moves coordinate
k to coordinate j + i p + 1. Therefore, we can write γs as

(
1 2 . . . ps−2 ps−2 + 1 ps−2 + 2 . . . ps−2 + ps−2 . . .

1 p + 1 . . . (ps−2 − 1)p + 1 2 p + 2 . . . (ps−2 − 1)p + 2 . . .

. . . (p − 1)ps−2 + 1 (p − 1)ps−2 + 2 . . . ps−1

. . . p p + p . . . ps−1

)

.

Example 1 For p = 3 and s = 3,

γ3 =
(
1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

)

= (2, 4)(3, 7)(6, 8) ∈ S9.

and for p = 3 and s = 4,

γ4 =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 4 7 10 13 16 19 22 25 2 5 8 11 14 17 20 23 26 3 6 9 12 15 18 21 24 27

)

= (2, 4, 10)(3, 7, 19)(5, 13, 11)(6, 16, 20)(8, 22, 12)(9, 25, 21)(15, 17, 23)

(18, 26, 24) ∈ S27.

Lemma 2 Let s ≥ 2, u = (0, 1, . . . ,p − 1) ∈ Z
ps−1

p , and v = (0, 1, . . . , p−1) ∈ Z
p
p. Then,

γs(u) = (v, ps−2
. . . , v).

Proof Straightforward from the definition of γs . �
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Then, we can define the map τs : Zps → Z
p
ps−1 as

τs(u) = Φ−1
s−1(γ

−1
s (φs(u))), (9)

where u ∈ Zps .

Example 2 For p = 3 and s = 3, we have

φ3(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0) = γ3(0, 0, 0, 0, 0, 0, 0, 0, 0) = γ3(Φ2(0, 0, 0)),
φ3(1) = (0, 1, 2, 0, 1, 2, 0, 1, 2) = γ3(0, 0, 0, 1, 1, 1, 2, 2, 2) = γ3(Φ2(0, 3, 6)),
φ3(2) = (0, 2, 1, 0, 2, 1, 0, 2, 1) = γ3(0, 0, 0, 2, 2, 2, 1, 1, 1) = γ3(Φ2(0, 6, 3)),
φ3(3) = (0, 0, 0, 1, 1, 1, 2, 2, 2) = γ3(0, 1, 2, 0, 1, 2, 0, 1, 2) = γ3(Φ2(1, 1, 1)),
φ3(4) = (0, 1, 2, 1, 2, 0, 2, 0, 1) = γ3(0, 1, 2, 1, 2, 0, 2, 0, 1) = γ3(Φ2(1, 4, 7))
φ3(5) = (0, 2, 1, 1, 0, 2, 2, 1, 0) = γ3(0, 1, 2, 2, 0, 1, 1, 2, 0) = γ3(Φ2(1, 7, 4)),
φ3(6) = (0, 0, 0, 2, 2, 2, 1, 1, 1) = γ3(0, 2, 1, 0, 2, 1, 0, 2, 1) = γ3(Φ2(2, 2, 2)),
φ3(7) = (0, 1, 2, 2, 0, 1, 1, 2, 0) = γ3(0, 2, 1, 1, 0, 2, 2, 1, 0) = γ3(Φ2(2, 5, 8)),
φ3(8) = (0, 2, 1, 2, 1, 0, 1, 0, 2) = γ3(0, 2, 1, 2, 1, 0, 1, 0, 2) = γ3(Φ2(2, 8, 5)),
φ3(9) = (1, 1, 1, 1, 1, 1, 1, 1, 1) = γ3(1, 1, 1, 1, 1, 1, 1, 1, 1) = γ3(Φ2(3, 3, 3)),
φ3(10) = (1, 2, 0, 1, 2, 0, 1, 2, 0) = γ3(1, 1, 1, 2, 2, 2, 0, 0, 0) = γ3(Φ2(3, 6, 0)),
φ3(11) = (1, 0, 2, 1, 0, 2, 1, 0, 2) = γ3(1, 1, 1, 0, 0, 0, 2, 2, 2) = γ3(Φ2(3, 0, 6)),
φ3(12) = (1, 1, 1, 2, 2, 2, 0, 0, 0) = γ3(1, 2, 0, 1, 2, 0, 1, 2, 0) = γ3(Φ2(4, 4, 4)),
φ3(13) = (1, 2, 0, 2, 0, 1, 0, 1, 2) = γ3(1, 2, 0, 2, 0, 1, 0, 1, 2) = γ3(Φ2(4, 7, 1)),
φ3(14) = (1, 0, 2, 2, 1, 0, 0, 2, 1) = γ3(1, 2, 0, 0, 1, 2, 2, 0, 1) = γ3(Φ2(4, 1, 7)),
φ3(15) = (1, 1, 1, 0, 0, 0, 2, 2, 2) = γ3(1, 0, 2, 1, 0, 2, 1, 0, 2) = γ3(Φ2(5, 5, 5)),
φ3(16) = (1, 2, 0, 0, 1, 2, 2, 0, 1) = γ3(1, 0, 2, 2, 1, 0, 0, 2, 1) = γ3(Φ2(5, 8, 2)),
φ3(17) = (1, 0, 2, 0, 2, 1, 2, 1, 0) = γ3(1, 0, 2, 0, 2, 1, 2, 1, 0) = γ3(Φ2(5, 2, 8)),
φ3(18) = (2, 2, 2, 2, 2, 2, 2, 2, 2) = γ3(2, 2, 2, 2, 2, 2, 2, 2, 2) = γ3(Φ2(6, 6, 6)),
φ3(19) = (2, 0, 1, 2, 0, 1, 2, 0, 1) = γ3(2, 2, 2, 0, 0, 0, 1, 1, 1) = γ3(Φ2(6, 0, 3)),
φ3(20) = (2, 1, 0, 2, 1, 0, 2, 1, 0) = γ3(2, 2, 2, 1, 1, 1, 0, 0, 0) = γ3(Φ2(6, 3, 0)),
φ3(21) = (2, 2, 2, 0, 0, 0, 1, 1, 1) = γ3(2, 0, 1, 2, 0, 1, 2, 0, 1) = γ3(Φ2(7, 7, 7)),
φ3(22) = (2, 0, 1, 0, 1, 2, 1, 2, 0) = γ3(2, 0, 1, 0, 1, 2, 1, 2, 0) = γ3(Φ2(7, 1, 4)),
φ3(23) = (2, 1, 0, 0, 2, 1, 1, 0, 2) = γ3(2, 0, 1, 1, 2, 0, 0, 1, 2) = γ3(Φ2(7, 4, 1)),
φ3(24) = (2, 2, 2, 1, 1, 1, 0, 0, 0) = γ3(2, 1, 0, 2, 1, 0, 2, 1, 0) = γ3(Φ2(8, 8, 8)),
φ3(25) = (2, 0, 1, 1, 2, 0, 0, 1, 2) = γ3(2, 1, 0, 0, 2, 1, 1, 0, 2) = γ3(Φ2(8, 2, 5)),
φ3(26) = (2, 1, 0, 1, 0, 2, 0, 2, 1) = γ3(2, 1, 0, 1, 0, 2, 0, 2, 1) = γ3(Φ2(8, 5, 2)).

These equalities define the map τ3 : Z27 → Z
3
9 as

τ3(0) = (0, 0, 0), τ3(9) = (3, 3, 3), τ3(18) = (6, 6, 6),
τ3(1) = (0, 3, 6), τ3(10) = (3, 6, 0), τ3(19) = (6, 0, 3),
τ3(2) = (0, 6, 3), τ3(11) = (3, 0, 6), τ3(20) = (6, 3, 0),
τ3(3) = (1, 1, 1), τ3(12) = (4, 4, 4), τ3(21) = (7, 7, 7),
τ3(4) = (1, 4, 7), τ3(13) = (4, 7, 1), τ3(22) = (7, 1, 4),
τ3(5) = (1, 7, 4), τ3(14) = (4, 1, 7), τ3(23) = (7, 4, 1),
τ3(6) = (2, 2, 2), τ3(15) = (5, 5, 5), τ3(24) = (8, 8, 8),
τ3(7) = (2, 5, 8), τ3(16) = (5, 8, 2), τ3(25) = (8, 2, 5),
τ3(8) = (2, 8, 5), τ3(17) = (5, 2, 8), τ3(26) = (8, 5, 2).

Lemma 3 [3] Let s ≥ 2 and λ ∈ Zp. Then, φs(λps−1) = (λ, ps−1
. . . , λ).

Lemma 4 Let s ≥ 2. Then,

(i) τs(1) = (0, ps−2, . . . , (p − 1)ps−2),
(ii) τs(piu) = pi−1(u, p. . ., u) for i ∈ {1, . . . , s − 1} and u ∈ {0, 1, . . . , ps−1 − 1} ⊆ Zps .

Proof First, let v = (0, 1, . . . , p − 1) ∈ Z
p
p . Then,

τs(1) = Φ−1
s−1(γ

−1
s (φs(1)))

= Φ−1
s−1(γ

−1
s (v, ps−2

. . . , v))

= Φ−1
s−1(0, 1, . . . ,p − 1), by Lemma 2.
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Finally, by Lemma 3, τs(1) = (0, ps−2, . . . , (p − 1)ps−2), and (i) holds.
In order to prove (i i), let u ∈ Zps and [u0, . . . , us−1]p be its p-ary expansion. The p-ary

expansion of piu is [0, i. . ., 0, u0, . . . , us−i−1]p and we have that φs(piu) = (us−i−1,
ps−1
. . .

, us−i−1) + (0, i. . ., 0, u0, . . . , us−i−2)Ys−1. Recall that the matrix Ys−1 given in (1), related
to the definition of φs , is a matrix of size (s − 1) × ps−1 whose columns are the elements
of Zs−1

p . Moreover, we consider that the columns of Ys−1 are ordered in ascending order, by
considering the elements ofZs−1

p as the p-ary expansions of the elements ofZps−1 . Therefore,
Ys is also the matrix obtained recursively from Y1 = (0 1 · · · p − 1) and

Ys =
(
Ys−1 Ys−1 · · · Ys−1

0 1 · · · p − 1

)

.

By Lemma 2, we can write

γ −1
s (Ys−1) =

(
0 1 · · · p − 1

Ys−2 Ys−2 · · · Ys−2

)

.

Then, we have that

γ −1
s (φs(p

iu))

= (us−i−1,
ps−1
. . . , us−i−1) + (0, i. . ., 0, u0, . . . , us−i−2)

(
0 1 · · · p − 1

Ys−2 Ys−2 · · · Ys−2

)

= (us−i−1,
ps−1
. . . , us−i−1) + (0, i−1. . ., 0, u0, . . . , us−i−2)

(
Ys−2 Ys−2 · · · Ys−2

)

= (φs−1(p
i−1u), p. . ., φs−1(p

i−1u)) = Φs−1(p
i−1(u, p. . ., u)).

Therefore, τs(piu) = Φ−1
s−1(γ

−1
s (φs(piu))) = pi−1(u, p. . ., u), and (i i) holds. �


Proposition 1 Let s ≥ 2 and λi ∈ {0, 1, . . . , p − 1}, i ∈ {0, . . . , s − 1}. Then,

φs

(
s−1∑

i=0

λi p
i

)

= γs

(

Φs−1

(
s−1∑

i=0

τs

(
λi p

i
)
))

. (10)

Proof By Lemma 4, we know that for all i ∈ {1, . . . , s − 1}, τs(pi ) = (pi−1, p. . ., pi−1) and
τs(1) = (0, ps−2, . . . , (p − 1)ps−2). Then, by Lemma 1, we have that

γs

(

Φs−1

(
s−1∑

i=0

τs(λi p
i )

))

= γs

(
s−1∑

i=0

Φs−1

(
τs(λi p

i )
)
)

.

Moreover, γs commutes with the addition. Therefore, by applying the definition of the map
τs given in (9), we obtain that

γs

(

Φs−1

(
s−1∑

i=0

τs(λi p
i )

))

=
s−1∑

i=0

γs

(
Φs−1

(
τs(λi p

i )
))

=
s−1∑

i=0

φs
(
λi p

i ),

which is equal to φs(
∑s−1

i=0 λi pi ) by Lemma 1. �

Corollary 1 Let s ≥ 2 and λi ∈ {0, 1, . . . , p − 1}, i ∈ {0, . . . , s − 1}. Then,

τs

(
s−1∑

i=0

λi p
i

)

=
s−1∑

i=0

τs(λi p
i ). (11)
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Proof By Proposition 1, we have that

φs

(
s−1∑

i=0

λi p
i

)

= γs

(

Φs−1

(
s−1∑

i=0

τs(λi p
i )

))

,

and, therefore,

Φ−1
s−1

(

γ −1
s

(

φs(

s−1∑

i=0

λi p
i )

))

=
s−1∑

i=0

τs
(
λi p

i ),

that is, τs(
∑s−1

i=0 λi pi ) = ∑s−1
i=0 τs(λi pi ). �


Now, we extend the permutation γs ∈ Sps−1 to a permutation γs ∈ Sps−1n such that, if we
restrict this extended permutation to each set of ps−1 coordinates {ps−1i+1, ps−1i+2, . . . ,
ps−1(i + 1)}, i ∈ {0, . . . , n − 1}, it acts as γs ∈ Sps−1 . That is, the extended permutation
γs ∈ Sps−1n can be seen as n consecutive copies of γs ∈ Sps−1 . Then, we component-wise
extend function τs defined in (9) to τs : Zn

ps → Z
pn
ps−1 and define τ̃s = ρ−1 ◦ τs , where

ρ ∈ Spn is defined as follows: for a coordinate k = jn + i + 1 ∈ {1, 2, . . . , pn}, where
i ∈ {0, . . . , n − 1} and j ∈ {0, . . . , p − 1}, ρ moves coordinate k to coordinate i p + j + 1.
Therefore, we can write ρ as

(
1 2 . . . n n + 1 n + 2 . . . 2n . . .

1 p + 1 . . . (n − 1)p + 1 2 p + 2 . . . (n − 1)p + 2 . . .

. . . pn − n + 1 pn − n + 2 . . . pn

. . . p p + p . . . pn

)

.

Example 3 For p = 3 and n = 2,

ρ =
(
1 2 3 4 5 6
1 4 2 5 3 6

)

∈ S6.

and for p = 3 and n = 4,

ρ =
(
1 2 3 4 5 6 7 8 9 10 11 12
1 4 7 10 2 5 8 11 3 6 9 12

)

∈ S12.

Remark 1 If u = (u1, u2, . . . , un) ∈ Z
n
ps and τs(ui ) = (ui,1, ui,2, . . . , ui,p) for all i ∈

{1, . . . , n}, then
τs(u) = (u1,1, u1,2, . . . , u1,p, u2,1, u2,2, . . . , u2,p, . . . , un,1, un,2, . . . , un,p),

and τ̃s(u) = (u1,1, u2,1, . . . , un,1, u1,2, u2,2, . . . , un,2, . . . , u1,p, u2,p, . . . , un,p).

Lemma 5 Let s ≥ 2. Then, Φs(u) = γs(Φs−1(ρ(τ̃s(u)))) for all u ∈ Z
n
ps .

Proof From the definition of τs given in (9) and the definition of τ̃s = ρ−1 ◦ τs , we have that
τ̃s(u) = ρ−1(τs(u)) = ρ−1(Φ−1

s−1(γ
−1
s (Φs(u)))). Then, the result follows. �


A p-linear combination of the elements of a set B = {b1, . . . ,br } ⊆ Z
n
ps is

∑r
i=1 λibi

for λi ∈ Zp . We say that B is a p-basis of C if the elements in B are p-linearly independent

and any c ∈ C is a p-linear combination of the elements of B. Let w(s)
i be the i-th row of
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1012 D. K. Bhunia et al.

At1,...,ts
p , 1 ≤ i ≤ t1 + · · · + ts . By construction, w(s)

1 = 1 and o(w(s)
i ) ≤ o(w(s)

j ) if i > j .

Let σi be the integer such that o(w(s)
i ) = pσi . Then, we have that Bt1,...,ts = {pqiw(s)

i : 1 ≤
i ≤ t1 + · · · + ts, 0 ≤ qi ≤ σi − 1} is a p-basis of Ht1,...,ts

p .

Example 4 Let H2,1
3 and H1,1,0

3 be the Z9-additive and Z27-additive GH codes, which are
generated by

A2,1
3 =

⎛

⎜
⎝

w(2)
1

w(2)
2

w(2)
3

⎞

⎟
⎠ =

⎛

⎝
1 1 1
v v v

0 3 6

⎞

⎠ ,

where v = (0, 1, 2, 3, 4, 5, 6, 7, 8), and

A1,1,0
3 =

(
w(3)
1

w(3)
2

)

=
(
1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24

)

,

respectively. The corresponding 3-bases are

B2,1 = {w(2)
1 , 3w(2)

1 ,w(2)
2 , 3w(2)

2 ,w(2)
3 }

= {1, 3, (v, v, v), (0, 3, 6, 9. . ., 0, 3, 6), (0, 9. . ., 0, 3, 9. . ., 3, 6, 9. . ., 6)}, and

B1,1,0 = {w(3)
1 , 3w(3)

1 , 9w(3)
1 ,w(3)

2 , 3w(3)
2 }

= {1, 3, 9, (0, 3, 6, 9, 12, 15, 18, 21, 24), (0, 9, 18, 0, 9, 18, 0, 9, 18)}.

Lemma 6 Let s ≥ 2 and ts ≥ 1. Let w(s)
i and w(s+1)

i be the i-th row of At1,...,ts
p and

A1,t1−1,t2,...,ts−1,ts−1
p , respectively. Then, (w(s+1)

i , p. . .,w(s+1)
i ) = pw(s)

i and o(w(s)
i ) =

o(w(s+1)
i ) = pσi .

Proof Consider At1,...,ts
p with ts ≥ 1, andw(s)

i its i-th row for i ∈ {1, . . . , t1 +· · ·+ ts}. Then,
the matrix over Zps+1

⎛

⎜
⎜
⎜
⎜
⎝

w(s)
1

pw(s)
2
...

pw(s)
t1+···+ts

⎞

⎟
⎟
⎟
⎟
⎠

is, by definition, A1,t1−1,t2,...,ts
p . Moreover, by the construction given in (2), we have that

A1,t1−1,t2,...,ts
p is the matrix

(
A1,t1−1,t2,...,ts−1,ts−1
p A1,t1−1,t2,...,ts−1,ts−1

p · · · A1,t1−1,t2,...,ts−1,ts−1
p

ps · 0 ps · 1 · · · ps · (p − 1)

)

.

Therefore, ifw(s+1)
i is the i-th rowof A1,t1−1,t2,...,ts−1,ts−1

p for i ∈ {2, . . . , t1+t2+· · ·+ts−1},
we have that (w(s+1)

i , p. . .,w(s+1)
i ) = pw(s)

i and o(w(s)
i ) = o(w(s+1)

i ) = pσi . �

Proposition 2 Let s ≥ 2, ts ≥ 1, and Ht1,...,ts

p and H1,t1−1,t2,...,ts−1,ts−1
p be the Zps -additive

and Zps+1 -additive GH codes with generator matrices At1,...,ts
p and A1,t1−1,t2,...,ts−1,ts−1

p ,

respectively. Let w(s)
i and w(s+1)

i be the i-th row of At1,...,ts
p and A1,t1−1,t2,...,ts−1,ts−1

p , respec-
tively. Then, we have that
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(i) τ̃s+1(pqiw
(s+1)
i ) = pqiw(s)

i , for all i ∈ {2, . . . , t1+· · ·+ts −1} and qi ∈ {0, . . . , σi −1},
where o(w(s)

i ) = pσi ;

(ii) τ̃s+1(p j+1w(s+1)
1 ) = p jw(s)

1 , for all j ∈ {0, . . . , s − 1};
(iii) τ̃s+1(w

(s+1)
1 ) = w(s)

t1+···+ts .

Proof By Lemma 6, we have that (w(s+1)
i , p. . .,w(s+1)

i ) = pw(s)
i and o(w(s)

i ) = o(w(s+1)
i ) =

pσi . Let v(s+1)
i be the vector over Zps+1 such that w(s+1)

i = pv(s+1)
i and w(s)

i = (v(s+1)
i , p. . .

, v(s+1)
i ). Let (v(s+1)

i ) j be the j th coordinate of v(s+1)
i . By the definition of τ̃s+1 and Lemma

4, for qi ∈ {0, . . . , σi − 1}, we have that

τ̃s+1
(
pqiw(s+1)

i

) = ρ−1(τs+1(p
qiw(s+1)

i )
) = ρ−1(τs+1(p

qi+1v(s+1)
i )

)

= ρ−1(pqi
((
v

(
s+1

)

i

)
1,

p. . .,
(
v(s+1)
i

)
1, . . . ,

(
v(s+1)
i

)
n,

p. . .,
(
v(s+1)
i

)
n

))

= pqi
(
v(s+1)
i , p. . ., v(s+1)

i

) = pqiw(s)
i ,

and (i) holds.
Since w(s)

1 = (
w(s+1)
1 , p. . .,w(s+1)

1

) = 1 and w(s)
t1+···+ts = (ps−1 · 0, ps−1 · 1, . . . , ps−1 ·

(p − 1)), then the equalities in items (i i) and (i i i) hold by the definition of τ̃s+1 and Lemma
4. �


Note that, by Proposition 2, we have that τ̃s+1 is a bijection between the p-bases, Bt1,...,ts

and B1,t1−1,...,ts−1,ts−1.

Example 5 Let H2,1
3 and H1,1,0

3 be the same codes considered in Example 4. The length of

H1,1,0
3 is n = 9. Then, the extension of γ3 = (2, 4)(3, 7)(6, 8) ∈ S9 defined in Example 1 is

γ3 =(2, 4)(3, 7)(6, 8)(11, 13)(12, 16)(15, 17)(20, 22)(21, 25)(24, 26)(29, 31)(30, 34)

(33, 35)(38, 40)(39, 43)(42, 44)(47, 49)(48, 52)(51, 53)(56, 58)(57, 61)(60, 62)

(65, 67)(66, 70)(69, 71)(74, 76)(75, 79)(78, 80) ∈ S81,

and

ρ =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 4 7 10 13 16 19 22 25 2 5 8 11 14 17 20

17 18 19 20 21 22 23 24 25 26 27
23 26 3 6 9 12 15 18 21 24 27

)

∈ S27.

In this case, by using the equalites given in Example 2, we have that

Φ3(1, 1, 1, 1, 1, 1, 1, 1, 1) = γ3(Φ2(u, 9. . ., u)) = γ3(Φ2(ρ(0, 3, 6))),
Φ3(3, 3, 3, 3, 3, 3, 3, 3, 3) = γ3(Φ2(1, 27. . ., 1)) = γ3(Φ2(ρ(1, 27. . ., 1))),
Φ3(9, 9, 9, 9, 9, 9, 9, 9, 9) = γ3(Φ2(3, 27. . ., 3)) = γ3(Φ2(ρ(3, 27. . ., 3))),
Φ3(0, 3, 6, 9, 12, 15, 18, 21, 24) = γ3(Φ2(0, 0, 0, 1, 1, 1, . . . , 8, 8, 8)) = γ3(Φ2(ρ(v, v, v)),

Φ3(0, 9, 18, 0, 9, 18, 0, 9, 18) = γ3(Φ2(w, w, w)) = γ3(Φ2(ρ(u, 9. . ., u))),

where u = (0, 3, 6), v = (0, 1, 2, 3, 4, 5, 6, 7, 8) and w = (0, 0, 0, 3, 3, 3, 6, 6, 6).
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1014 D. K. Bhunia et al.

Since Φ3(u) = γ3(Φ2(ρ(τ̃3(u)))) for all u ∈ Z
9
27, the map τ̃3 sends the elements of the

3-basis B1,1,0 into the elements of the 3-basis B2,1. That is, as it is shown in Proposition 2,

τ̃3(w
(3)
1 ) = τ̃3(1, 1, 1, 1, 1, 1, 1, 1, 1) = (0, 3, 6) = w(2)

3 ,

τ̃3(3w
(3)
1 ) = τ̃3(3, 3, 3, 3, 3, 3, 3, 3, 3) = (1, 27. . ., 1) = w(2)

1 ,

τ̃3(9w
(3)
1 ) = τ̃3(9, 9, 9, 9, 9, 9, 9, 9, 9) = (3, 27. . ., 3) = 3w(2)

1 ,

τ̃3(w
(3)
2 ) = τ̃3(0, 3, 6, 9, 12, 15, 18, 21, 24) = (v, v, v) = w(2)

2 ,

τ̃3(3w
(3)
2 ) = τ̃3(0, 9, 18, 0, 9, 18, 0, 9, 18) = (u, 9. . ., u) = 3w(2)

2 ,

so τ̃3 is a bijection between both 3-bases.

Lemma 7 Let Hs = Ht1,...,ts
p be a Zps -additive GH code with s ≥ 2 and ts ≥ 1.

Then, Hs = Φs(Hs) is permutation equivalent to Hs+1 = Φs+1(Hs+1), where Hs+1 =
H1,t1−1,t2,...,ts−1,ts−1

p , which is a Zps+1 -linear GH code.

Proof Note that Hs and Hs+1 both have the same length pt . Let Bs = {v(s)
1 , . . . , v(s)

t+1} and
Bs+1 = {v(s+1)

1 , . . . , v(s+1)
t+1 } be the p-basis ofHs andHs+1, respectively. By Proposition 2,

τ̃s+1 is a bijection between Bs and Bs+1. By the definition of τ̃s+1 and Corollary 1, we have
that τ̃s+1 commutes with the addition, so τ̃s+1(Hs+1) = Hs .

Let ρ∗ ∈ Spt be a permutation such that Φs(ρ(u)) = ρ∗(Φs(u)) for all u ∈ Hs .
Since Hs = τ̃s+1(Hs+1) = ρ−1(Φ−1

s (γ −1
s+1(Φs+1(Hs+1)))), we have that Φs(Hs) =

ρ−1∗ (γ −1
s+1(Φs+1(Hs+1))). Therefore,weobtain Hs = (γs+1◦ρ∗)−1(Hs+1),whereγs+1◦ρ∗ ∈

Spt . �

Theorem 7 determines which Zps′ -linear GH codes are equivalent to a given Zps -linear

GH code Ht1,...,ts
p . We denote by 0 j the all-zero vector of length j .

Theorem 7 Let Ht1,...,ts
p be a Zps -linear GH code with s ≥ 2 and ts ≥ 1. Then, Ht1,...,ts

p is
permutation equivalent to the Zps+� -linear GH code

H1,0�−1,t1−1,t2,...,ts−1,ts−�
p ,

for all � ∈ {1, . . . , ts}.

Proof Consider H0 = Ht1,...,ts
p and H� = H1,0�−1,t1−1,t2,...,ts−1,ts−�

p for � ∈ {1, . . . , ts}. By
Lemma 7, we have that Hi = Φ(Hi ) is permutation equivalent to Hi+1 = Φ(Hi+1) for all
i ∈ {0, . . . , � − 1} and � ∈ {1, . . . , ts}. Therefore, we have that H0 and H� are permutation
equivalent for all � ∈ {1, . . . , ts}. �


Let t1, t2, . . . , ts be nonnegative integers with t1 ≥ 2, or t1 = 1 and s = 2. Let
Cp(t1, . . . , ts) = [H1 = Ht1,...,ts

p , H2, . . . , Hρ] be the sequence of all Zps′ -linear GH codes

of length pt , where t = (
∑s′

i=1(s
′ − i + 1) · ti ) − 1, that are permutation equivalent to

Ht1,...,ts
p by Theorem 7. We denote by Cp(t1, . . . , ts)[i] the i-th code Hi in the sequence, for

1 ≤ i ≤ ts + 1. We consider that the codes in Cp(t1, . . . , ts) are ordered as follows:

Cp(t1, . . . , ts)[i] =
{
Ht1,...,ts

p if i = 1,

H1,0i−2,t1−1,t2,...,ts−1,ts−i+1
p otherwise.

(12)

We refer to Cp(t1, . . . , ts) as the chain of equivalences of Ht1,...,ts
p .
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Remark 2 First, note that if ts = 0, then Cp(t1, . . . , ts) = [Ht1,...,ts
p ]. Moreover, there are no

two different codes in the chain Cp(t1, . . . , ts) that have the same value of s. Finally, also by
construction, if there is only one Zp2 -linear GH code in the chain Cp(t1, . . . , ts), then it is
placed in the first position and s = 2.

Corollary 2 Let Cp(t1, . . . , ts) be the chain of equivalences of Ht1,...,ts
p , where t1 ≥ 2, or

t1 = 1 and s = 2. Then,

|Cp(t1, . . . , ts)| = ts + 1.

Since all the codes in a given chain Cp(t1, . . . , ts) are equivalent, we have that if one of
the codes in a chain is linear, then all the codes in that chain are also linear. The following
result gives the conditions on the values t1, . . . , ts so that the chain Cp(t1, . . . , ts) contains
linear codes. In fact, we have that this chain contains linear Zps -linear codes of a certain
length for any s ∈ {2, . . . , t + 1}.
Theorem 8 Let Cp(t1, . . . , ts) be the chain of equivalences of Ht1,...,ts

p . Then, for all H ∈
Cp(t1, . . . , ts), H is linear if and only if s = 2 and one of the following conditions is satisfied:

(i) p = 2 and t1 ∈ {1, 2},
(ii) p ≥ 3 prime and t1 = 1.

Proof First, assume that H is linear for all H ∈ Cp(t1, . . . , ts). Let H
t ′1,...,t ′s′
p ∈ Cp(t1, . . . , ts).

If s′ = 2, then (t1, t2) = (t ′1, t ′2) by Remark 2, and we have that p = 2 and t ′1 ∈ {1, 2} by
Theorem 1, or p ≥ 3 prime and t ′1 = 1 by Theorem 3. Now, assume that s′ > 2. By Theorems

2 and 3, we have that H
t ′1,...,t ′s′
p = H

1,0s
′−2,t ′

s′
p for p prime, or H

t ′1,...,t ′s′
p = H

1,0s
′−3,1,t ′

s′
2 . By

Theorem 7, H
1,0s

′−2,t ′
s′

p is equivalent to H
1,t ′

s′+s′−2
p for p prime, and H

1,0s
′−3,1,t ′

s′
2 is equivalent

to H
2,t ′

s′+s′−2
2 . Therefore, by Remark 2, we have that s = 2 and one of the conditions in the

statement is satisfied.
The converse result follows from the definition of the chain of equivalencesCp(t1, . . . , ts)

and Theorems 1 and 3. �

Corollary 3 Let t ≥ 2. If p = 2, then there are two different linear chains of equivalences,
C2(1, t − 1) and C2(2, t − 3). If p ≥ 3 prime, then there is a unique linear chain of
equivalences, Cp(1, t − 1).

Proof From Theorem 8, if Cp(t1, . . . , ts) is a linear chain of equivalences, then s = 2.
Moreover, we have that the codes in Cp(t1, t2) are of length pt , where t = 2t1 + t2 − 1. The
possible values of t1 are also given in Theorem 8 depending on the value of p as follows.
First, if p = 2, we have that t1 ∈ {1, 2}. Therefore, if t1 = 1, then the chain is C2(1, t − 1);
and if t1 = 2, then the chain is C2(2, t − 3). Second, if p ≥ 3 prime, then t1 = 1 and the
chain is Cp(1, t − 1). �

Example 6 The chain of equivalences of H1,5

3 is

C3(1, 5) = [H1,5
3 , H1,0,4

3 , H1,0,0,3
3 , H1,0,0,0,2

3 , H1,0,0,0,0,1
3 , H1,0,0,0,0,0

3 ]
and it contains exactly t2 + 1 = 6 codes. Note that (t1, t2) = (1, 5) satisfies the second
condition of Theorem 8. Thus, this chain contains linear GH codes. They are all the linear
GH codes over Z3 of length 3t = 36 and dimension t + 1 = 7 as seen in Table 2.
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Example 7 From one hand, the chain of equivalences of H1,4
2 is

C2(1, 4) = [H1,4
2 , H1,0,3

2 , H1,0,0,2
2 , H1,0,0,0,1

2 , H1,0,0,0,0,0
2 ]

and it contains t2 + 1 = 5 codes. From the other hand, the chain of equivalence of H2,2
2 is

C2(2, 2) = [H2,2
2 , H1,1,1

2 , H1,0,1,0
2 ]

and it contains exactly t2 + 1 = 3 codes. Note that the values of (t1, t2) in both cases, (1, 4)
and (2, 2), satisfy the first condition of Theorem 8, so these chains contain linear Hadamard
codes. In fact, the sequences C2(1, 4) and C2(2, 2) contain all the linear Hadamard codes of
length of 2t = 25 and dimension t +1 = 6 as can be seen in Table 1. Therefore, all the codes
in these chains are permutation equivalent to each other.

Recall that w(s)
2 is the second row of At1,...,ts

p . Let σ be the integer such that o(w(s)
2 ) =

ps+1−σ . For H1,0,...,0
p , we define σ = s. Note that σ = 1 if and only if t1 ≥ 2, and σ =

min{i : ti > 0, i ∈ {2, . . . , s}} if t1 = 1. Then, σ ∈ {1, . . . , s}. We say that o(Ht1,...,ts
p ) = σ ;

or equivalently, o(Ht1,...,ts
p ) = σ . Note that if σ = s, then Ht1,...,ts

p = H1,0,...,0,ts
p with s ≥ 2

and ts ≥ 0, so it is linear by Theorems 1, 2, and 3. Moreover, since σ2 is the integer such that
o(w(s)

2 ) = pσ2 , we have that σ = s + 1 − σ2.
If we focus on the chains of equivalences Cp(t1, . . . , ts) having nonlinear codes, then we

can assume that t1 ≥ 2 by Theorem 8.

Proposition 3 Let Cp(t1, . . . , ts) be the chain of equivalences of Ht1,...,ts
p , where t1 ≥ 2. If

H t1,...,ts
p is nonlinear, then for all H ∈ Cp(t1, . . . , ts),

ker(H) =
{∑s

i=1 ti if p ≥ 3 prime,

1 + ∑s
i=1 ti if p = 2.

Proof Since t1 ≥ 2, then σ = 1. By [3, Theorem 4], for p ≥ 3 prime, we have that
ker(Ht1,...,ts

p ) = (
∑s

i=1 ti ) + σ − 1 = ∑s
i=1 ti . Note that for p = 2 and s > 2, Ht1,...,ts

2
is nonlinear by Theorem 2. Thus, by [11, Theorem 3], we have that ker(Ht1,...,ts

2 ) = σ +
(
∑s

i=1 ti ) = 1 + ∑s
i=1 ti . Therefore, the result follows from the definition of the chain of

equivalences Cp(t1, . . . , ts). �

Example 8 The chain of equivalences of H2,5

3 is the sequence C3(2, 5) = [H2,5
3 ,

H1,1,4
3 , H1,0,1,3

3 , H1,0,0,1,2
3 , H1,0,0,0,1,1

3 , H1,0,0,0,0,1,0
3 ] and contains exactly t2+1 = 6 codes.

Note that this sequence contains all the codes of length 38 having the pair (r , k) = (10, 7)
in Table 4. In the same table, note that there is only one code of length 39 having the pair
(r , k) = (43, 4), named H2,2,0

3 . Therefore, C3(2, 2, 0) = [H2,2,0
3 ], which contains just this

code, since t3 + 1 = 1.

Example 9 Consider the chains of equivalencesC3(4, 1) = [H4,1
3 , H1,3,0

3 ] andC3(2, 0, 3) =
[H2,0,3

3 , H1,1,0,2
3 , H1,0,1,0,1

3 , H1,0,0,1,0,0
3 ]. Note that, from Proposition 3, the codes in both

chains have dimension of the kernel equals to 5. However, from Table 4, we have that the
pair (r , k) is (22, 5) for codes in C3(4, 1), and (16, 5) for codes in C3(2, 0, 3). Therefore,
codes in C3(4, 1) are not equivalent to codes in C3(2, 0, 3).

Proposition 4 Let Cp(t1, . . . , ts) be the chain of equivalences of Ht1,...,ts
p . Then, the Zps′ -

linear GH code H
t ′1,...,t ′s′
p = Cp(t1, . . . , ts)[i], 1 ≤ i ≤ ts + 1, satisfies
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(i) s′ = s + i − 1,
(ii) σ ′ = i ,
(iii) t ′s′ = ts − i + 1,

(iv) (t ′1, . . . , t ′s′) =
{

(t1, . . . , ts) if i = 1,

(1, 0i−2, t1 − 1, t2, . . . , ts−1, ts − i + 1) otherwise.

Proof Straightforward from Theorem 7 and the definition of the chain of equivalences
Cp(t1, . . . , ts). �


Note that the value of s′ is different for every code H
t ′1,...,t ′s′
p belonging to the same chain

of equivalences Cp(t1, . . . , ts) as pointed out in Remark 2.

Corollary 4 Let Cp(t1, . . . , ts) be the chain of equivalences of Ht1,...,ts
p . Then,

(i) if t1 ≥ 2, the Zps′ -linear GH code H
t ′1,...,t ′s′
p = Cp(t1, . . . , ts)[1] is the only one in

Cp(t1, . . . , ts) with t ′1 ≥ 2;

(ii) the Zps′ -linear GH code H
t ′1,...,t ′s′
p = Cp(t1, . . . , ts)[ts + 1] is the only one in

Cp(t1, . . . , ts) with t ′s′ = 0; and

(iii) if t1 = 1 and s = 2, every H
t ′1,...,t ′s′
p ∈ Cp(t1, . . . , ts) satisfies t ′1 = 1.

Now, given any Zps -linear GH code Ht1,...,ts
p , we determine the chain of equivalences

containing this code, as well as its position in the sequence. Therefore, note that indeed
we prove that any code Ht1,...,ts

p (with t1 ≥ 1) belongs to a unique chain of equivalences
Cp(t ′1, . . . , t ′s′) with t ′1 ≥ 2 or t ′1 = 1 and s′ = 2.

Theorem 9 Let H = Ht1,...,ts
p , p prime, and σ = o(H). Let � ∈ {1, . . . , s − 1} such that

H = Ht1,0�−1,t�+1,...,ts
p , where t�+1 �= 0 if � < s − 1. Then, H belongs to an unique chain of

equivalences, and it satisfies one of the following conditions:

(i) if t1 ≥ 2, then σ = 1 and H = Cp(t1, . . . , ts)[1].
(ii) if t1 = 1 and � = s − 1, then σ = s and H = Cp(1, ts + � − 1)[σ − 1].
(iii) if t1 = 1 and � < s−1, then σ = �+1 and H = Cp(t ′1, . . . , t ′s′)[σ ], where (t ′1, . . . , t ′s′) =

(tσ + 1, tσ+1, . . . , ts−1, ts + σ − 1) and s′ = s − σ + 1.

Proof Item (i) follows from Corollary 4 (i). For Item (ii), we have that Ht1,...,ts
p = H1,0s−2,ts

p

and hence σ = s.We have that H1,0s−2,ts
p is a linearZps -linear GH code by Theorems 1, 2 and

3. Since H1,0s−2,ts
p is linear, then by Theorem 8, H1,0s−2,ts

p ∈ Cp(t ′1, t ′2), where t ′1 ∈ {1, 2} if
p = 2 and t ′1 = 1 if p ≥ 3prime.ByTheorem7,wehave that H1,0s−2,ts

p = Cp(1, ts+�−1)[�]
for p prime. Moreover, since no code in the chain C2(2, t ′2) has (t1, . . . , ts) = (1, 0s−2, ts),

H1,0s−2,ts
2 /∈ C2(2, t ′2).
For Item (iii), since t1 = 1 and � < s−1, we have that t�+1 �= 0 and hence σ = �+1. By

Theorem 7, we have that Ht1,...,ts
p = Cp(t ′1, . . . , t ′s′)[�+1]. Since � = σ −1, by Proposition 4

we have that (t1, . . . , ts) = (1, 0σ−2, t ′1−1, t ′2, . . . , t ′s′−1, t
′
s′ −σ +1). Therefore, tσ = t ′1−1,

tσ+1 = t ′2, . . ., ts−1 = t ′s′−1, ts = t ′s′ − σ + 1, and the result follows. �

Note that, in Theorem 9, the values of (t1, . . . , ts) satisfying Item (i i) for p prime corre-

spond to linear Zps -linear GH codes.
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Table 6 Type of all Zps -linear
GH codes of length pt with
t1 ≥ 2 (equivalently, σ = 1) and
ts = 0 for t ≤ 10 and p ∈ {2, 3}

t = 5 (3,0), (2,0,0)

t = 7 (4,0), (2,1,0), (2,0,0,0)

t = 8 (3,0,0)

t = 9 (5,0), (2,2,0), (2,0,1,0), (2,0,0,0,0)

t = 10 (3,1,0), (2,1,0,0)

Corollary 5 Let H = Ht1,0�−1,t�+1,...,ts
p , where p prime, � ∈ {1, . . . , s − 1}, t�+1 �= 0 if

� < s − 1, and σ = o(H). Let Cp(t ′1, . . . , t ′s′) be the chain of equivalences such that
H ∈ Cp(t ′1, . . . , t ′s′). Then, if t1 = 1 and � = s − 1, H = Cp(1, ts + � − 1)[σ − 1] and
|Cp(1, ts + �− 1)| = ts +σ − 1; otherwise, H = Cp(t ′1, . . . , t ′s′)[σ ] and |Cp(t ′1, . . . , t ′s′)| =
ts + σ .

Proof By Theorem 9, we have three cases. If t1 = 1 and � = s − 1, we have that σ = s and

H = Ht1,0�−1,ts
p = Cp(t1, ts + � − 1)[σ − 1]. Then, by Corollary 2, |Cp(t1, ts + � − 1)| =

ts + � − 1 + 1 = ts + s − 1 = ts + σ − 1.
If t1 ≥ 2, then σ = 1 and H = Ht1,...,ts

p = Cp(t1, . . . , ts)[1], so by Corollary 2,
|Cp(t1, . . . , ts)| = ts + 1 = ts + σ .

If t1 = 1 and � < s−1, we have that H = Ht1,...,ts
p = Cp(tσ +1, tσ+1, . . . , ts−1, ts +σ −

1)[σ ]. By Corollary 2, |Cp(tσ +1, tσ+1, . . . , ts−1, ts +σ −1)| = ts +σ −1+1 = ts +σ . �


Example 10 The Z35 -linear GH code H1,0,0,1,2
3 has t1 = 1, � = 3, σ = 4, and s = 5. By

Theorem 9, since 3 = � < s − 1 = 4, σ = 4, and s′ = s − σ + 1 = 2, this code is placed in
the fourth position of the chain of equivalences C3(t ′1, t ′2), where t ′1 = t4 + 1 = 1 + 1 = 2

and t ′2 = t5 + σ − 1 = 2 + 4 − 1 = 5. Therefore, H1,0,0,1,2
3 = C3(2, 5)[4]. By Corollary

5, C3(2, 5) contains exactly t5 + σ = 2 + 4 = 6 codes, which are the ones described in
Example 8.

If Ht1,...,ts
p is a Zps -linear GH code of length pt with t1 ≥ 2 and ts = 0, then Ht1,...,ts

p =
Cp(t1, . . . , ts)[1] and |Cp(t1, . . . , ts)| = 1 since σ = 1, by Corollary 5. From Tables 1 and
3 given in [11], and Tables 3, 4 and 5, we can see that Ht1,...,ts

p is not equivalent to any other

code H
t ′1,...,t ′s′
p of the same length pt , for t ≤ 11 if p = 2, for t ≤ 10 if p = 3, and for t ≤ 8

if p = 5. We conjecture that this is true in general, for any t ≥ 3 and p prime. The values of
(t1, . . . , ts) for which the code Ht1,...,ts

p is not equivalent to any other such code of the same
length pt , for t ≤ 10 and p ∈ {2, 3}, can be found in Table 6. These values are also the same
at least for t ≤ 8 if p = 5 by Table 5.

From Tables 3 and 4, we can also see that the Z3s -linear GH codes of length 3t with
t ≤ 10 having the same values (r , k) are the ones which are equivalent by Theorem 7. The
same happens for Z5s -linear GH codes of length 5t with t ≤ 8 by Table 5, and the same was
known for Z2s -linear GH codes of length 2t with t ≤ 11 [12]. We conjecture that this is true
in general, for any t ≥ 3 and p prime.

4 Improvement of the partial classification

In this section, we improve some results on the classification of the Zps -linear GH codes of
length pt with p ≥ 3 prime, once t is fixed. More precisely, we improve the upper bounds
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of At,p given by Theorem 6 and determine the exact value of At,3 for t ≤ 10 and At,5 for
t ≤ 8, by using the equivalence results established in Sect. 3. This represents a generalization
of the results given by Theorem 5 for p = 2.

Next, we prove two corollaries of Theorem 7, which allow us to improve the known upper
bounds on At,p with t ≥ 3 and p ≥ 3 prime.

Corollary 6 Let Ht1,...,ts
p be a nonlinear Zps -linear GH code with p prime, and σ =

o(Ht1,...,ts
p ). Then, Ht1,...,ts

p is permutation equivalent to ts + σ Zps′ -linear GH codes, for

s′ ∈ {s + 1 − σ, . . . , s + ts}. Among them, there is exactly one H
t ′1,...,t ′s′
p with t ′1 ≥ 2, and

there is exactly one H
t ′1,...,t ′s′
p with t ′s′ = 0.

Proof The code Ht1,...,ts
p belongs to a chain of equivalences C , which can be determined

by Theorem 9. We have that Ht1,...,ts
p is equivalent to any code in C by Theorem 7, and

the number of codes in C is ts + σ by Corollary 5. By Theorem 9, the first code in C has

s′ = s − σ + 1. By Proposition 4, the i-th code H
t ′1,...,t ′s′
p = C[i] has s′ = s − σ + i for

i ∈ {1, . . . , ts + σ }. Therefore, s′ ∈ {s − σ + 1, . . . , s + ts}. Finally, by Corollary 4, C[1] is
the only code in C with t ′1 ≥ 2 and C[ts + σ ] is the only code in C with t ′s′ = 0. �


FromCorollary 6, in order to determine the number of nonequivalent nonlinearZps -linear
GH codes of length pt with p ≥ 3 prime, namedAt,p , we just have to consider one code out
of the ts + σ codes that are permutation equivalent. For example, we can consider the one
with t1 ≥ 2.

Corollary 7 Let H be a nonlinear Zps -linear GH code of length pt with p prime. If s ∈
{�(t + 1)/2	 + 1, . . . , t + 1}, then there is a permutation equivalent Zps′ -linear GH code of

length pt with s′ ∈ {2, . . . , �(t + 1)/2	}.
Proof Let Ht1,...,ts

p be a Zps -linear GH code with s ∈ {�(t + 1)/2	 + 1, . . . , t + 1}. Since∑s
i=1(s + 1 − i)ti = t + 1 and t1 ≥ 1, then t1 = 1 and we have that σ > 1. There-

fore, by Theorem 9, Ht1,...,ts
p is permutation equivalent to the Zps−σ+1 -linear GH code

H = Htσ +1,tσ+1,...,ts−1,ts+σ−1
p .

Now, we just need to see that s − σ + 1 < �(t + 1)/2	. Since the length of H is pt , we
have that t + 1 = (s − σ + 1)(tσ + 1) + ∑s−σ+1

i=2 (s − σ + 2− i)tσ−1+i + σ − 1. Therefore,
(s − σ + 1)(tσ + 1) ≤ t + 1 and s − σ + 1 ≤ (t + 1)/(tσ + 1). By the definition of tσ , we
know that tσ ≥ 1, so s − σ + 1 ≤ �(t + 1)/2	. �


Note that we can focus on the Zps -linear GH codes of length pt with p prime and s ∈
{2, . . . , �(t + 1)/2	} by Corollary 7, and we can restrict ourselves to the codes having t1 ≥ 2
by Corollary 6. With this on mind, in order to classify all such codes for a given t ≥ 3,
we define X̃t,s,p = |{(t1, . . . , ts) ∈ N

s : t + 1 = ∑s
i=1(s − i + 1)ti , t1 ≥ 2}| for s ∈

{2, . . . , �(t + 1)/2	} if p ≥ 3 prime. Recall that for p = 2, X̃t,s,2 = |{(t1, . . . , ts) ∈ N
s :

t + 1 = ∑s
i=1(s − i + 1)ti , t1 ≥ 2}| for s ∈ {3, . . . , �(t + 1)/2	} and X̃t,2,2 = |{(t1, t2) ∈

N
2 : t + 1 = 2t1 + t2, t1 ≥ 3}|.

Theorem 10 For all t ≥ 3 and p prime,

At,p ≤ 1 +
� t+1

2 	∑

s=2

X̃t,s,p (13)
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Table 7 Bounds for the numberAt,3 of nonequivalent Z3s -linear GH codes of length 3t for 3 ≤ t ≤ 10

t 3 4 5 6 7 8 9 10

Previous lower bound (r , k) 2 2 4 4 7 8 12 14

New upper bound (13) 2 2 4 4 7 8 12 14

New upper bound (14) 2 2 5 6 11 15 26 33

Previous upper bounds (7) and (8) 2 2 6 9 15 22 33 46

Table 8 Bounds for the number
At,5 of nonequivalent Z5s -linear
GH codes of length 5t for
3 ≤ t ≤ 8

t 3 4 5 6 7 8

Previous lower bound (r , k) 2 2 4 4 7 8

New upper bound (13) 2 2 4 4 7 8

New upper bound (14) 2 2 5 6 11 15

Previous upper bounds (7) and (8) 2 2 6 9 15 22

and

At,p ≤ 1 +
� t+1

2 	∑

s=2

(At,s,p − 1). (14)

Moreover, for any 3 ≤ t ≤ 11 if p = 2, any 3 ≤ t ≤ 10 if p = 3, and any 3 ≤ t ≤ 8 if
p = 5, the upper bound (13) is tight.

Proof If p = 2, the result is given by Theorem 5.
For p ≥ 3 prime, it is proven that the codes H1,0,...,0,ts

p with s ≥ 2 and ts ≥ 0, are the
only Zps -linear GH codes which are linear. Note that they are not included in the definition
of X̃t,s,p for s ∈ {2, . . . , �(t +1)/2	}. Therefore, the new upper bounds (13) and (14) follow
by Corollaries 6 and 7, after adding 1 to take into account the linear code.

In Table 7, for p = 3 and 3 ≤ t ≤ 10, these new upper bounds together with previous
bounds are shown. Note that the lower bound based on the rank and dimension of the kernel
coincides with the upper bound (13) for t ≤ 10, so this upper bound is tight for t ≤ 10.
Similarly, for p = 5 and 3 ≤ t ≤ 8, the upper bound (13) is tight considering Table 8. �


This last result improves the partial classification given in [3] or Theorem 6. Actually,
by definition, we have that X̃t,s,p ≤ Xt,s,p − 1, so the upper bound (13) is clearly better
than (7). It is also clear that the upper bound (14) is better than (8) since there are fewer
addends. Therefore, both new upper bounds improve the previous known upper bounds
given by Theorem 6. Recall that At,s,3 = Xt,s,3 for any 3 ≤ t ≤ 10 and 2 ≤ s ≤ t − 1, and
At,s,5 = Xt,s,5 for any 3 ≤ t ≤ 8 and 2 ≤ s ≤ t − 1. If this equation is also true for any
t ≥ 3 and p ≥ 3 prime, then upper bounds (7) and (8) coincide. Moreover, upper bound (13)
would always be better than (14) since X̃t,s,p ≤ Xt,s,p − 1 = At,s,p − 1.

5 Conclusions and further research

The aim of this paper is to improve the classification of Zps -linear GH codes of length pt

with p prime, fixing the value of t . This approach complements the classification given in [3,
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11] in which the authors fix the values of t and s. Specifically, we prove that there are some
families of Zps -linear GH codes of length pt , with codes having different values of s, such
that all the codes belonging to the same family are equivalent to each other. This result is a
generalization of a similar result given in [12] for p = 2. It allows us to improve the known
upper bounds forAt,p . Moreover, it can be used to see that we only need to focus on finding
the rank of Zps -linear GH codes Ht1,...,ts

p with t1 ≥ 2 and s ∈ {2, . . . , �(t + 1)/2	} in order
to establish a full classification, that is, to prove that the upper bound (13) is tight.

Taking into account the results about equivalences presented along this paper, we conjec-
ture that Zps -linear GH codes Ht1,...,ts

p with t1 ≥ 2 and ts = 0 are not equivalent to any other
Zps′ -linear GH code of the same length. We know that this statement is true at least for the
codes of length pt with t up to 11, 10, 8 when p is equal to 2, 3, 5, respectively.
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