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Abstract

Permutation arrays under the Chebyshev metric have been considered for error correction
in noisy channels. Let P (n, d) denote the maximum size of any array of permutations on n
symbols with pairwise Chebyshev distance d. We give new techniques and improved upper and
lower bounds on P (n, d), including a precise formula for P (n, 2).

1 Introduction

In [9] an interesting study of permutation arrays under the Chebyshev metric was presented. This
complemented many studies of permutation arrays under other metrics, such as the Hamming
metric [1] [2] [4], Kendall τ metric [7] [3], and several others [5]. The use of the Chebyshev metric
was motivated by applications of error correcting codes and recharging in flash memories [7].

Let σ and π be two permutations (or strings) over an alphabet Σ ⊆ [1...n] = {1, 2, ..., n}. The
Chebyshev distance between σ and π, denoted by d(σ, π), is max{ |σ(i) − π(i)| | i ∈ Σ }. For an
array (set) A of permutations (strings), the pairwise Chebyshev distance of A, denoted by d(A),
is min{ d(σ, π) | σ, π ∈ A }. An array A of permutations on [1...n] with d(A) = d will be called
an (n, d) PA. Note that this includes the case when A is a set of integers, i.e. a set of strings of
length one, where d(A) corresponds to the minimum difference between integers in the set. Let
P (n, d) denote the maximum cardinality of any (n, d)-PA A. More generally, let Pd(Σ) denote the
maximum cardinality of any array of permutations over the alphabet Σ ⊆ [1...n] with Chebyshev
distance d. For example, P2({1, 3, 5, 7}) = 4! = 24, whereas P (4, 2) = 6.

We present several methods to improve on lower and upper bounds for P (n, d). For comparison,
we begin with the following theorem from [9].

Theorem 1. ([9]) If n > d ≥ 1, then P (n+ 1, d) ≥ (⌊nd ⌋+ 1)P (n, d).

To generalize, let A be a subset of [1...(n + 1)] such that d(A) ≥ d, then, for all i ∈ A,
Pd([1..(n + 1)] − {i}) ≥ P (n, d). Observe that the set {1, d + 1, 2d + 1, ..., ⌊nd ⌋d + 1} is a subset of
[1...(n+1)] with ⌊nd ⌋+1 elements with Chebyshev distance d and was used in [9] to prove Theorem
1.
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Theorem 2. Let A be a subset of [1...(n+1)] such that d(A) ≥ d. If n > d ≥ 1, then P (n+1, d) ≥
∑

i∈A Pd([1..(n + 1)]− {i}).

Theorem 2 is a generalization of Theorem 1 and often gives improved lower bounds. For example,
using Theorem 1, one obtains P (11, 3) ≥ 36, 132, as ⌊103 ⌋+1 = 4 and the best lower bound currently
known for P (10, 3) is 9,033. Using Theorem 2 and choosing A = {3, 6, 9}, one obtains the lower
bound 53,549, as P3([1..11] − {3}) = P3([1..11] − {9} ≥ 17, 573 and P3([1..11] − {6}) ≥ 18, 403.

Another recursive technique in [9] gave the following result.

Theorem 3. ([9]) If n > d and r ≥ 2, then P (rn, rd) ≥ P (n, d)r.

For example, we use Theorem 3 to get P (18, 4) ≥ P (9, 2)2 = 2, 5202 = 514, 382, 400. Theorem
3 is generalized by Theorem 4, which subsumes Theorem 3 and gives several new lower bounds.
For example, we use Theorem 4, with a=3, to get P (18, 5) ≥ P (11, 3) ∗ P (7, 2) ≥ 53, 549 ∗ 630 =
33, 735, 870.

Theorem 4. P (n, d) ≥ max{P (n1, d1) · P (n2, d2) | d1 + d2 = d and n1 + n2 = n and, for some
constant a, n1 = ad1 + r1 and n2 = ad2 + r2, with 0 ≤ r1 ≤ d1 and with 0 ≤ r2 ≤ d2}, where the
maximum is taken over all possible values of n1, n2, d1, d2.

As another example, we use Theorem 4 to get the lower bound P (16, 9) ≥ P (9, 5) ∗ P (7, 4) ≥
3, 399, where a = 1, 9 = 1 ∗ 5 + 4, 7 = 1 ∗ 4 + 3, and the best lower bounds known for P (9, 5) and
P (7, 4) are 103 and 33, respectively.

For given n and d, Klove et al [9] defined C = {(π1, ..., πn) ∈ Sn | πi = i mod d, for all i ∈ [1..n]}
and gave the following theorems:

Theorem 5. ([9]) If n = ad+b, where 0 ≤ b < d, then C is an (n, d) PA and C = ((a+1)!)b(a!)d−b.

Theorem 6. ([9]) If n = ad+ b, where 0 ≤ b < d, then P (n, d) ≥ ((a+ 1)!)b(a!)d−b.

Klove et al [9] gave, as an example, the lower bound P (2a, 2) ≥ (a!)2. They also gave the
improvement, using Theorem 1 iteratively, P (2a, 2) ≥ 97

24(a!)
2. We give an exact equation for

P (n, 2). Specifically, we show P (2a, 2) = (2a)!
2a .

Theorem 7. P (n, 2) = n!
2⌊n/2⌋ .

The iterative use of Theorem 1 can be improved further by a generalization of Theorem 2 using
strings of more than one symbol. Let A be a set of length m strings with no repeated symbols
(permutations) over [1..(n + m)] with d(A) ≥ d. By an abuse of notation, for each σ ∈ A, let
σC denote the complement in [1..(n +m)] of the set of symbols used in σ. As in Theorem 2, we
show that P (n+m,d) ≥

∑

σ∈A Pd(σ
C). Let Q((n+m),m, d) denote the collection of all sets A of

permutations on a m symbol subset of [1..(n + m)] with d(A) ≥ d. Maximizing the sum over all
such sets A yields the following.

Theorem 8. For any n ≥ d ≥ 1,m ≥ 1, P (n+m,d) ≥ maxA∈Q((n+m),m,d)

∑

σ∈A Pd(σ
C).

In [9] a 3-fold iterative use of Theorem 1, for d = 3 and n = 5 gives a set S ∈ Q(8, 3, 3) with
S = 18. That is, (⌊53⌋+ 1)(⌊63⌋+ 1)(⌊73⌋+ 1) = 18. However, by computation one can obtain a set
T ∈ Q(8, 3, 3) with T = 24. Thus, not only can one obtain a larger subset of [1..(n +m)] than the
iterative use of Theorem 1, but also larger sets than P (n, d) by the use of complement alphabets.
For m < n, let P (n,m, d) denote the maximum cardinality of any set A in Q(n,m, d). We have
computed several lower bounds for P (n,m, d). See, for example, Tables 4 and 5 in Section 4.
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Corollary 9. For any n ≥ d ≥ 1,m ≥ 1, P (n+m,d) ≥ P (n +m,m, d) ∗ P (n, d).

Proof. That is, for any set A ∈ Q((n+m),m, d), and any σ ∈ A,Pd(σ
C) ≥ P (n, d).

We have shown in previous examples that Corollary 9 gives improved lower bounds, by compu-
tation, over an iterative use of Theorem 1. The next theorem show that such improvements exist
even for arbitrarily large n. For example, if d = 5 and k = 2, an iterative use of Theorem 1 gives
P (dk + d − 1, d) = P (14, 5) ≥ (⌊135 ⌋ + 1)(⌊125 ⌋ + 1)(⌊115 ⌋ + 1)(⌊105 ⌋ + 1)P (10, 5) = 34P (10, 5) =

81P (10, 5). By Theorem 10, P (dk + d− 1) = P (14, 5) ≥ (35 −
(

6
4

)

)P (10, 5) = 228P (10, 5).

Theorem 10. For any d ≥ 3 and k ≥ 1, P (dk + d− 1, d) ≥
(

(k + 1)d −
(k+d−1

d−1

)

)

P (dk − 1, d).

As another example of the improvement shown by Theorem 10 consider the case when k = 3
and d = 3. The theorem states that P (11, 3) ≥ 54 · P (8, 3), whereas the three fold iterative use of
Theorem 1 gives P (11, 3) ≥ (⌊103 ⌋+1) · (⌊93⌋+1) · (⌊83 ⌋+1) ·P (8, 3) = 48 ·P (8, 3). By computational
methods, we show that P (11, 3, 3) ≥ 59 and hence, by Theorem 8, we have P (11, 3) ≥ 59 · P (8, 3).
In fact, as shown in Table 1, P (11, 3) ≥ 53, 549.

Let V (n, d) be the number of permutations on {1, 2, . . . , n} within distance d of the identity
permutation.

Kløve et al. [9] also gave general lower and upper bounds.

Theorem 11. [9] For n > d ≥ 2, P (n, d) ≥ n!
V (n,d−1)

Theorem 12. [9] For even d and 2d ≥ n ≥ d ≥ 2, P (n, d) ≤ (n+1)!
V (n+1,d/2) ,

In Theorem 13 we give a better upper bound. Using Theorem 13 we show, for example,
P (11, 6) ≤ 462. Kløve [8] also proved lower bounds on the size of spheres of permutations under
the Chebyshev distance.

Theorem 13. For 1 ≤ k ≤ d < n,

P (n, d) ≤ P (n− k, d) ·

(

n

k

)

.

In [9] there is also the following interesting theorem.

Theorem 14. [9] For fixed r, there exist constants cr and dr such that P (d+r, d) = cr, for d ≥ dr.

Moreover, an upper bound on the constants cr and dr is given in [9]. The proof uses the
concept of potent symbols. Basically, an integer is potent for Chebyshev distance d if there is
another integer, say j, in the given alphabet, such that j − i ≥ d. That is, the symbol can be used
in permutations to achieve distance d.

Definition 15. If A is a PA on d+ r symbols with Chebyshev distance d, then the integers
1,2, ... ,r and d+1,d+2, ... ,d+r are potent.

The following theorem provides improved upper bounds for the constants cr and dr of Theorem
14.
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Theorem 16. Suppose that P (n0, n0 − k) ≤ m such that

2k(m+ 1) < (n0 + 1)(1 + ⌊n0/(2k − 1)⌋). (1)

Then P (n, n− k) ≤ m, for all n ≥ n0.

As an example, Theorem 16 can be used to show that the constants c2, d2 in Theorem 14 are
d2 = 3 and c2 = 10.

Corollary 17. P (n, n− 2) = 10, for all n ≥ 5.

As part of the proof of Corollary 17, we have computed a PA A on [1..5] with d(A) = 3, so
P (5, 3) ≥ 10. In [9], P (5, 3) ≤ 9 was claimed, but was apparently due to a computational error.

Theorem 16 can also be used to show improved bounds for cr and dr, for r ≥ 3. For example,
by Theorem 13, we have P (n, n − 3) ≤ P (n − 1, n − 3) ·

(n
1

)

= 10 · n, for all n ≥ 6. Observe that,
for k = 3, n0 = 295, and m = 2950, the inequality of Equation (1) is true. So, P (n, n− 3) ≤ 2,950,
for all n ≥ 295. Thus, c3 ≤ 2,950 and d3 ≤ 295, which improves the bounds c3 ≤ 46,080 and
d3 ≤ 230,401 given in [9].

In [9] a few additional recursive constructions were described to obtain lower bounds for
P (n, d). For example, for any permutation σ ∈ Sn and any m (1 ≤ m ≤ n), define φm(σ) =
(m,π1, π2, ..., πn), where:

πi = σi, if i < m, and
πi = σi + 1, if i ≥ m.
For any PA A and symbols 1 ≤ s1 < s2 < ... < st ≤ n + 1, define A[s1, s2, ..., st] to be

{φm(σ) | σ ∈ A, m ∈ {s1, s2, ..., st}}

Theorem 18. ([9]) If A is an (n, d) PA of size M and sj + d ≤ sj+1, for 1 ≤ j ≤ t-1, then
A[s1, s2, ..., st] is an (n + 1,d) PA of size tM .

Theorem 19. ([9]) If A is an (n, d) PA of size M and n ≤ 2d, then A[d] is an (n+1,d+1) PA of
size M.

Theorem 18 implies the following:

Theorem 20. ([9]) If d < n ≤ 2d, then P (n+ 1, d + 1) ≥ P (n, d).

In Table 1 we give several lower bounds for P (n, d) and in Table 3 we give several upper bounds
for P (n, d).

2 Lower Bounds

In [9] a greedy algorithm was used to find a PA C on [1..n] with d(C) ≥ d:

Let the identity permutation in Sn be the first permutation in C. For any set of
permutations chosen, choose as the next permutation in C the lexicographically next
permutation in Sn with distance at least d to the chosen permutations in C if such a
permutation exists.
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We modified this greedy algorithm by choosing an initial set C of pairwise distance d permuta-
tions randomly. Because of the randomness, we also allowed the algorithm to automatically start
again and repeat the process while recording the best result. We call this the Random/Greedy
strategy.

Many of the lower bounds in Table 1, for small values of n, were obtained by this modified
greedy algorithm. A few were found by computing a largest clique in a graph, whose nodes are all
permutations, and edges are between nodes at Chebyshev distance ≥ d, called the Clique approach.
Others were found using Theorems 2, 4, 7, or 8. Computations using the ideas of Theorem 8 were
often done with a Max Weighted Clique solver tool [6] [10]. That is, to compute a lower bound for
P (n+m,d), a graph G was created with nodes labeled by permutations on m symbols of [1..(n+m)],
and whose edges connect two nodes with labels L1 and L2, where d(L1, L2) ≥ d. A node with label
L is given a weight of Pd(L

C), where the complement is taken with respect to the set [1..(n+m)].
Values for Pd(L

C) were pre-computed, using a modification of the Random/Greedy algorithm. A
maximum weighted clique of G corresponds to the lower bound given in Theorem 8. As the set of
all permutations on a m symbol subset of [1..(n+m)] gets very large as m and n get large, heuristics
were sometimes used to decide which permutations to use as labels in the graph G.

Table 1: Lower Bounds for P (n, d).

n/d 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1
4 6 3 1 1 1 1 1 1 1
5 30 10 3 1 1 1 1 1 1
6 90 20 10 3 1 1 1 1 1
7 630 100 33 10 3 1 1 1 1
8 2,520 430 70 33 10 3 1 1 1
9 22,680 1,654 295 103 33 10 3 1 1
10 113,400 9,033 1,336 247 103 33 10 3 1
11 see Thm 7 53,549 6,397 998 326 103 33 10 3

12 see Thm 7 317,728 26,678 4,355 842 330 103 33 10

13 see Thm 7 1,642,473 114,720 17,049 3,294 978 330 103 33
14 see Thm 7 11,081,916 647,420 81,888 10,709 2,805 1,089 330 103
15 see Thm 7 55,409,580 3,887,796 392,033 50,283 8,604 3,144 1,089 330
16 see Thm 7 332,457,480 15,551,184 1,898,103 250,867 37,017 9,379 3,399 1,089
17 see Thm 7 1,994,744,880 77,755,920 7,592,412 1,261,267 174,655 30,106 10,374 3,399
18 see Thm 7 11,968,469,280 514,382,400 33,735,870 3,783,801 862,566 129,756 31,779 10,758

We have, P (n, d) = 1, for all d ≥ n, as a single permutation is a (n, d)-PA. That P (n, n−1) = 3,
for all n ≥ 3 was shown in [9]. We show P (n, n − 2) = 10, for all n ≥ 5 by Corollary 17 and the
Clique approach ( [9] incorrectly gave P (n, n− 2) ≤ 9 ). The bound P (4, 2) = 6 was cited in [9].

We show in Theorem 7 that P (n, 2) = n!
2⌊n/2⌋ . P (6, 3) ≥ 20 was cited in [9]. We computed

P (7, 4) ≥ 33 by the Random/Greedy strategy, which improved on the previous lower bound of 28
[9]. It follows from Theorem 19 that P (n, n− 3) ≥ 33, for all n ≥ 7.

The bounds P (7, 3) ≥ 100, P (8, 4) ≥ 70, and P (9, 5) ≥ 103 were found by the Random/Greedy
strategy, whereas [9] gave lower bounds of 84, 70 and 95, respectively. That P (n, n − 4) ≥ 103,
for all n ≥ 9 follows from Theorem 19. The bounds P (8, 3) ≥ 430, P (9, 4) ≥ 295, P (10, 5) ≥
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247, P (11, 6) ≥ 326 and P (12, 7) ≥ 330 were all found by the Random/Greedy strategy, whereas
[9] gave lower bounds of 401, 283, 236, 236 and 236, respectively. That P (n, n − 5) ≥ 330, for all
n ≥ 12, follows from Theorem 19. The bounds P (9, 3) ≥ 1, 654, P (10, 4) ≥ 1, 336, P (11, 5) ≥
998, P (12, 6) ≥ 842 and P (13, 7) ≥ 978 were all found by the Random/Greedy strategy and
P (14, 8) ≥ 1, 089 was obtained by Theorem 3. That P (n, n − 6) ≥ 1, 089, for all n ≥ 14 follows
from Theorem 19. The bounds P (10, 3) ≥ 9, 033, P (11, 4) ≥ 6, 397, P (12, 5) ≥ 4, 355, P (13, 6) ≥
3, 294, P (14, 7) ≥ 2, 805, P (15, 8) ≥ 3, 144 were all found by Theorem 8. P (16, 9) ≥ 3, 399 was
found by Theorem 4, using P (9, 5) and P (7, 4).

Theorem 2 was used to obtain the current lower bound P (11, 3) ≥ 53, 549. That is, by compu-
tation we found P3([1..11] − {3}) = P3([1..11] − {9} ≥ 17, 573 and P3([1..11] − {6}) ≥ 18, 403. So,
P (11, 3) ≥ 2 ∗ 17, 573 + 18, 403 = 53, 549. Here is a proof of Theorem 2.

Theorem 2. Let A be a subset of [1...(n + 1)] such that d(A) ≥ d. If n > d ≥ 1, then
P (n+ 1, d) ≥

∑

i∈A Pd([1..(n + 1)] − {i}).

Proof. Let A = {a1, a2, ..., ak} be a subset of [1...(n + 1)] such that d(A) ≥ d. For ai 6= aj , and
permutations σ and τ in [1..(n + 1)] − {ai} and [1..(n + 1)] − {aj}, respectively, aiσ and ajτ are
permutations on [1..(n+1)] such that d(aiσ, ajτ) ≥ d. It follows that

⋃

ai∈A
aiB, with B a set of

permutations over [1..(n + 1)] − {ai} with Chebyshev distance ≥ d, is a set of permutations on
[1..(n + 1)] with Chebyshev distance ≥ d.

Here is a proof for Theorem 4.
Theorem 4. P (n, d) ≥ max{P (n1, d1) · P (n2, d2) | d1 + d2 = d and n1 + n2 = n and, for some

constant a, n1 = ad1 + r1 and n2 = ad2 + r2, with 0 ≤ r1 ≤ d1 and with 0 ≤ r2 ≤ d2}, where
the maximum is taken over all possible values of n1, n2, d1, d2.

Proof. Let n = n1 + n2 and d = d1 + d2. Let A be a PA on the n1 symbols in Σ1 = [1...n1]
with Hamming distance d1 and let B be a PA on the n2 symbols in Σ2 = [1..., n2] with Hamming
distance d2. Let Σ = [1...n = n1 + n2]. Define the function F1 mapping Σ1 into Σ by:

F1(x) =

{

x if 1 ≤ x ≤ r1,

x+ sd2 if (s− 1)d1 + r1 + 1 ≤ x ≤ sd1 + r1, for some 1 ≤ s ≤ a.
and define the function F2 mapping Σ2 into Σ by:

F2(x) =

{

x+ (t− 1)d1 + r1 if (t− 1)d2 < x ≤ td2, for some 1 ≤ t ≤ a,

x+ n1, if ad2 < x ≤ ad2 + r2.

Construct the PA C = { F1(σ)F2(τ) | σ ∈ A and τ ∈ B }.
C is a set of |A| · |B| permutations on the alphabet Σ of n symbols. We show that the Chebyshev

distance between permutations in C is at least d = d1 + d2. Consider two different permutations
π1 = F1(σ1)F2(τ1) and π2 = F1(σ2)F2(τ2) in C, where σ1, σ2 ∈ A and τ1, τ2 ∈ B. Since π1 6= π2,
either σ1 6= σ2 or τ1 6= τ2. Due to the similarity of the argument we only explicitly examine the
case when σ1 6= σ2. So, the Chebyshev distance between σ1 and σ2 is at least d1. That is, there is
a position i (1 ≤ i ≤ n1) such that |σ1(i) − σ2(i)| ≥ d1. Assume, without loss of generality, that
σ1(i) > σ2(i). In other words, σ1(i) and σ2(i) are in different intervals of d1 symbols in Σ1, i.e.
σ2(i) is in the interval [(s− 1)d1 + r1, sd1 + r1], for some s, and σ1(i) is in the interval [(s′ − 1)d1 +
r1, s

′d1 + r1], for some s′ > s. Hence, F1 maps σ1(i) to σ1(i) + s′d2 and maps σ2(i) to σ2(i) + sd2.
So, (σ1(i)+s′d2) −(σ2(i)+sd2) = σ1(i)−σ2(i)+s′d2−sd2 = σ1(i)−σ2(i) + s′d2−sd2 ≥ d1+d2.
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Example 1. For the example P (16, 9) ≥ P (9, 5) ∗ P (7, 4) ≥ 3, 399, we see that

F1(x) =

{

x if 1 ≤ x ≤ 4,

x+ 4 if 5 ≤ x ≤ 9
and

F2(x) =

{

x+ 4 if 1 ≤ x ≤ 4,

x+ 9 if 5 ≤ x ≤ 7
.

Consider two permutations, say ρ = 1,2,3,4,5,6,7,8,9 and σ = 6,1,4,3,2,5,8,9,7, which are at
Chebyshev distance 5, and a permutation, say τ = 1,2,3,4,5,6,7. Then, F1(ρ)= 1,2,3,4,9,10,11,12,13
and F1(σ)= 10,1,4,3,2,9,12,13,11. So,

F1(ρ)F2(τ) = 1,2,3,4,9,10,11,12,13,5,6,7,8,14,15,16, and
F1(σ)F2(τ)= 10,1,4,3,2,9,12,13,11,5,6,7,8,14,15,16

are permutations on [1..16] and at Chebyshev distance 9.

Using the construction given in Theorem 4, we can obtain a PA for P (3n, 3) from PAs for
P (2n, 2) and P (n, 1), respectively, which is of size P (2n, 2)∗P (n, 1). As we show in Corollary 22 that

P (2n, 2) ≥ (2n)!
2n and, clearly, P (n, 1) = n!, we have, for example, the lower bound P (3n, 3) ≥ (2n)!n!

2n .
Turning now to the specific case of d=2. We first prove a recursive lower bound for P(n,2).

Theorem 21. For all n ≥ 4, P (n, 2) ≥ P (n− 2, 2)
(n
2

)

.

Proof. Let A be a PA on the n − 2 symbols {1, ..., n − 2} with Chebyshev distance 2. Take new
symbols a = n − 1, b = n, and insert them into each permutation of A in each of the possible
(

n
2

)

positions such that a precedes b. If in the resulting permutation, the symbols appear in the
order a, n − 2, b, possibly separated by other symbols, then swap the positions of a and b. Let the
resulting PA be B. Clearly, B has

(n
2

)

times as many permutations as A. We show that B has
Chebyshev distance 2.

For a proof by contradiction, assume σ, τ ∈ B have d(σ, τ) ≤ 1. If σ, τ are such that, σ(i), τ(i) ∈
{a, b} and σ(j), τ(j) ∈ {a, b}, for some i, j, then, d(σ, τ) ≥ 2, because removing symbols a,b
gives a permutation in A and all permutations in A have distance at least 2. It follows that two
permutations σ, τ have at most one position, say i, such that σ(i), τ(i) ∈ {a, b}. If there is no
position i such that σ(i), τ(i) ∈ {a, b}, then d(σ, τ) ≥ 2, as the symbol b is at distance at least
2 with all symbols except a and itself. Similarly, it follows that there cannot be a position i
such that σ(i) = τ(i) = a or σ(i) = a and τ(i) = b, as this means σ(j) = b, for some j, and
τ(j) /∈ {a, b}, i.e. |σ(j) − τ(j)| ≥ 2.

There is one remaining case, namely, σ(i) = τ(i) = b, for some i, then, for some j 6= k, σ(j) = a
and τ(k) = a. As we are assuming d(σ, τ) ≤ 1, we must have τ(j) = n − 2 and σ(k) = n − 2.
Now consider the order of the positions i, j, and k. If both j and k are less than i, say in the
order j < k < i. Then, the permutation σ has symbols in the order a, n − 2, b, which contradicts
the requirement that the symbols a and b are swapped. If both j and k are greater than i, say
in the order i < j < k, then the permutation σ has the symbols in the order b, a, n − 2, which
contradicts the requirement that the symbols a and b not be swapped. Lastly, if we have the order,
say j < i < k, then the permutation σ has the symbols in the order n− 2, b, a, which contradicts
the requirement that the symbols a and b not be swapped.

The following gives a lower bound for P (n, 2) which is larger than the bound P (2a, 2) ≥ 97
24 (a!)

2

in [9] by an exponential factor. It is proven by induction using Theorem 21.
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Corollary 22. P (n, 2) ≥ n!
2⌊n/2⌋ .

Proof. This is shown by induction on n. First observe that P (3, 2) = 3 and P (2, 2) = 1. For the
inductive step, assume P (n, 2) ≥ n!

2⌊n/2⌋ . By Theorem 21, P (n + 2, 2) ≥ P (n, 2) ∗
(

n+2
2

)

. By the

inductive hypothesis, we obtain P (n+ 2, 2) ≥ n!
2⌊n/2⌋

(n+2)(n+1)
2 = (n+2)!

2⌊(n+2)/2⌋

Here is a proof for Theorem 8.
Theorem 8 For any n ≥ d ≥ 1, P (n+m,d) ≥ maxA∈Q((n+m),m,d)

∑

σ∈A Pd(σ
C).

Proof. Let σ1 and σ2 be permutations of length m over the alphabet [1...n] with Chebyshev distance
at least d. We call these prefixes. Let τ1 and τ2 be permutations over Σ−σ1

n with Chebyshev distance
at least d. We call these suffixes. The Chebyshev distance between σ1τ1 and σ1τ2 is at least d and
the Chebyshev distance between σ1τ and σ2τ is at least d, for any τ . So, for any set U ∈ Q(n,m, d),
the set { στ | σ ∈ U and τ ∈ V , where V ∈ Qd(Σ

−σ
n )}, is a PA on n symbols with pairwise Chebyshev

distance at least d and has
∑

σ∈U Pd(Σ
−σ
n ) permutations.

As an example, we show that P (12, 4) ≥ 26, 678. Create a graph, say G, whose nodes are all
prefixes of length three and whose edges connect such nodes with Chebyshev distance at least four.
Furthermore, a node σ, a prefix of length three, is given the weight P4(Σ

−σ
14 ). That is, the weight

of a node is the maximum number of suffixes for the given prefix. By Theorem 5, the size of a
maximum weighted clique of G is a lower bound for P (12, 4). Using a MaxClique solver [10] [6] we
obtaind the lower bound 26,678.

We now give a proof for Theorem 10.

Theorem 10. For any d ≥ 3 and k ≥ 1,

P (dk + d− 1, d) ≥

(

(k + 1)d −

(

k + d− 1

d− 1

))

P (dk − 1, d).

Proof. Let Φ(a1, a2, . . . , as) denote the alphabet [1..(dk+d−1)]−{a1 , a2, . . . , as}, for a1, a2, . . . , as ∈
[1..(dk + d − 1)]. By Theorem 2, P (dk + d − 1, d) ≥

∑

a1∈A1
Pd(Φ(a1)), where A1 = {d −

1, 2d − 1, . . . , kd + d − 1}. Note that |Φ(a1)| = dk + d − 2. Similarly, for each Φ(a1), by The-
orem 2, Pd(Φ(a1)) ≥

∑

a2∈A2
Pd(Φ(a1, a2)), where A2 = {d − 2, 2d − 2, . . . , kd + d − 2}. Note

that |Φ(a1, a2)| = dk + d − 3. By applying Theorem 2 d − 1 times, Pd(Φ(a1, a2, . . . , ad−2)) ≥
∑

ad−1∈Ad−1
Pd(Φ(a1, a2, . . . , ad−1)), where Ad−1 = {1, d + 1, . . . , kd+ 1}. Note that

|Φ(a1, a2, . . . , ad−1)| = dk.

P (dk + d− 1, d) ≥
∑

a1∈A1

∑

a2∈A2

· · ·
∑

ad−1∈Ad−1

Pd(Φ(a1, a2, . . . , ad−1)). (2)

Note that there are k + 1 choices for each of the symbols ai, 1 ≤ i ≤ d− 1, with the property
that any two choices are at distance at least d. Consider a sequence α = (a1, a2, . . . , ad−1) with
ai ∈ Ai, 1 ≤ i ≤ d − 1. We call such a sequence a1, a2, . . . , ad−1 monotone if a1 > a2 > · · · > ad−1;
otherwise, the sequence is mixed.
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So far, we have sequences, such as α, of length d − 1. We now consider sequences of length d
obtained by adding an extra symbol to α (at the end). Since |Φ(a1, a2, . . . , ad−1)| = dk, by Theorem
1

Pd(Φ(a1, a2, . . . , ad−1), d) ≥ kP (dk − 1, d).

That is, the proof of Theorem 1 shows there are always k symbols one can add to the end of such
sequences α and preserve distance d. We show that Pd(Φ(a1, a2, . . . , ad−1)) ≥ (k+1)P (dk−1, d), if
the sequence a1, a2, . . . , ad−1 is mixed. That is, there are always k+1 symbols at pairwise distance
d to add to the end of α, if α is mixed. Note that, for symbols x and y, such that d(x, y) ≥ d,
d(αx, αy|) ≥ d.

Assume a1, a2, . . . , ad−1 is mixed. We construct a sequence S = s1, s2, . . . sk+1 of elements
in Pd(Φ(a1, a2, . . . , ad−1)) with d(si, si+1) ≥ d, for all i. Using S we get k + 1 sequences, say
τ1, τ2, . . . , τk+1, where τi consists of a1, a2, . . . , ad−1 followed by si. It follows that Pd(Φ(τi)) ≥
(k + 1)P (dk − 1, d).

Consider a table T with d−1 columns and k+1 rows, where row i of T contains the ith element
of Aj and column j of T , 1 ≤ j ≤ d−1 contains the elements of Ad−j in sorted order. In particular,
row i and column j of T contains the element (i− 1)d+ j. See Table 2 for an example when d = 6
and k = 5.

The desired sequence S = s1, s2, . . . , sk+1 is obtained from Table 2 by choosing one element
from each row with the property that the element chosen from row i+1 must come from a column
whose index is at least as large as the index of the column chosen for row i. (This is to ensure
distance at least d.) Also, an element must be chosen from each row in order to get a sequence of
length k + 1. In addition, one cannot choose any of the elements in the sequence a1, a2, . . . , ad−1,
which are already in α, and so are numbers deleted from the alphabet, There is one and only one
such symbol in each column. For example, consider the mixed sequence 17, 22, 15, 8, 1 shown
(in bold) in Table 2 (represented in the table in right-to-left order). In this example a desired
sequence S can be chosen to be 4, 10, 16, 23, 29, 35. In the mixed sequence 17, 22, 15, 8, 1 we
have a1 = 17 < a2 = 22.

In every mixed sequence a1, a2, . . . , ad−1 there must be a j such that aj ≤ aj+1. The desired
sequence S can be chosen by taking elements in order in column d− j− 1 until (but not including)
aj+1, say in row i), followed by elements in column d− j starting in row i and continuing through
all remaining rows. This always works as (1) each column has one and only one deleted element
and (2) the condition aj ≤ aj+1 ensures that the deleted element in column d− j occurs in a row
with index smaller than i.

Observe that, if a1, a2, . . . , ad−1 is monotone, there is no j such that aj < aj+1. Consequently,
there is no way to construct the desired sequence S by moving to a higher index column when a
deleted symbol is encountered. That is, the higher index column always has a different deleted
symbol in the given row or a latter row.

Let M be the set of all sequences mj = a1, a2, . . . , ad−1 with ai ∈ {d− i, 2d− i, . . . , kd+ d− i},
for all i, 1 ≤ i ≤ d − 1, with the property that, for j 6= k, d(mj ,mk) ≥ d. Map each sequence
mi = a1, a2, . . . , ad−1 to x = (x1, x2, . . . , xd−1) ∈ [0..k]d−1 using

x = (⌊a1/d⌋, ⌊a2/d⌋, ⌊a3/d⌋, . . . , ⌊ad−1/d⌋).

A sequence a1, a2, . . . , ad−1 is monotone if and only if x1 ≥ x2 ≥ · · · ≥ xd−1. The number of such
vectors x is

(

k+d−1
d−1

)

. (This is the number of ways of choosing a set of d − 1 elements from k + 1
sets of d − 1 indistinguishable items.) So, the number of monotone sequences a1, a2, . . . , ad−1 is

9



1 2 3 4 5
7 8 9 10 11
13 14 15 16 17

19 20 21 22 23
25 26 27 28 29
31 32 33 34 35

Table 2: An example of a mixed sequence (in bold), for d = 6 and k = 5. The sequence 17,22,15,8,1
is shown right-to-left.

nmon =
(k+d−1

d−1

)

. The number of mixed sequences a1, a2, . . . , ad−1 is nmix = (k + 1)d−1 −
(k+d−1

d−1

)

.

That is, the number of choices for a1 ∈ A1, a2 ∈ A2, ..., ad−1 ∈ Ad−1 is (k + 1)d−1, and

P (dk + d− 1, d) ≥
∑

a1∈A1

∑

a2∈A2

· · ·
∑

ad−1∈Ad−1

Pd(Φ(a1, a2, . . . , ad−1)) (3)

≥ (knmon + (k + 1)nmix)P (dk − 1, d) (4)

≥

(

(k + 1)d −

(

k + d− 1

d− 1

))

P (dk − 1, d). (5)

The theorem follows.

Lower bounds for P (n, d) are given in Table 1. The values in bold are exact. Precise lower
bounds for P (n, 2) are given in Theorem 14. Other lower bounds are from Theorems 2, 3, 4 and
7, and from the Random/Greedy algorithm. We offer some side-by-side comparisons with results
from Table II in [9] shown below in parentheses.

P (5, 2) ≥ 30 (29) P (7, 2) ≥ 630 (582)
P (n, n− 2) = 10, for all n ≥ 5 (9) P (7, 3) ≥ 100 (84)

P (8, 3) ≥ 430 (401) P (n, n− 3) ≥ 33, for all n ≥ 7 (28)
P (8, 4) ≥ 70 (68) P (9, 4) ≥ 295 (283)

P (n, n − 4) ≥ 103, for all n ≥ 9 (95) P (10, 5) ≥ 247 (236)
P (11, 6) ≥ 326 (236) P (n, n− 5) ≥ 330, for all n ≥ 12 (236)

3 Upper Bounds

We begin with a proof of Theorem 13, which is an improvement on Theorem 12.

Theorem 13. For 1 ≤ k ≤ d < n,

P (n, d) ≤ P (n− k, d) ·

(

n

k

)

.

Proof. Consider any PA on n symbols with distance d. Partition the PA into subsets determined
by the positions of the highest k symbols, {n − k + 1, n − k + 2, . . . , n}. Two permutations are
in the same subset if their highest k symbols occur in the same subset of k positions, though not
necessarily with the same symbol in the same position. For example if n = 5, d = 2, and k = 2,

10



Table 3: Upper Bounds for P (n, d).

n/d 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1

3 3 1 1 1 1 1 1 1 1

4 6 3 1 1 1 1 1 1 1

5 30 10 3 1 1 1 1 1 1

6 90 20 10 3 1 1 1 1 1

7 630 105 35 10 3 1 1 1 1

8 2,520 560 70 56 10 3 1 1 1

9 22,680 1,680 378 126 84 10 3 1 1

10 113,400 12,600 2,100 256 210 100 10 3 1

11 see Thm 7 92,400 11,550 1,386 462 330 110 10 3

12 see Thm 7 369,600 34,650 7,920 924 792 495 120 10

13 see Thm 7 3,603,600 270,270 72,072 5,148 1,716 1,287 715 130

14 see Thm 7 33,633,600 2,102,100 252,252 30,030 3,432 3,003 2,002 910

15 see Thm 7 168,168,000 15,765,750 768,768 420,420 19,305 6,435 5,005 3,003

then the permutations 54321 and 45132 would be in the same subset since the symbols 4 and 5
both occur in positions 1 and 2. Observe that there can be at most

(

n
k

)

subsets since that is the
number of ways to choose k positions.

Since any two permutations must have distance at least d, and there is no way for any pair of
the highest k ≤ d symbols to satisfy this distance, within a single subset the Chebyshev distance
must be satisfied by the remaining n−k symbols, {1, 2, . . . , n−k}. Assume each of the

(n
k

)

subsets
contains P (n− k, d) permutations. If we add one additional permutation to the PA, it will belong
to exactly one of these subsets. If we take that subset and delete the highest k symbols from each
permutation, we are left with a contracted PA on n − k symbols and distance d, however it now
contains more than P (n− k, d) permutations, giving us a contradiction. Therefore we can have no
more than P (n− k, d) ·

(n
k

)

permutations in the original PA.

Note that the best results from Theorem 13 typically come from choosing k = d.

Example 2. By Theorem 13, P (11, 6) ≤ P (5, 6)
(11
6

)

. Since P (5, 6) = 1, this means P (11, 6) ≤
(11
6

)

= 462. In [9], Example 3, they gave P (11, 6) ≤ 850.

Again, we turn to d=2.

Corollary 23. P (n, 2) ≤ n!
2⌊n/2⌋ .

Proof. This is shown by induction on n. First observe that P (3, 2) = 3 and P (2, 2) = 1. For the
inductive step, assume P (n, 2) ≤ n!

2⌊n/2⌋ . By Theorem 13, P (n + 2, 2) ≤ P (n, 2) ∗
(n+2

2

)

. By the

inductive hypothesis, we obtain P (n+ 2, 2) ≤ n!
2⌊n/2⌋

(n+2)(n+1)
2 = (n+2)!

2⌊(n+2)/2⌋

Theorem 7. P (n, 2) = n!
2⌊n/2⌋ .

Theorem 7) follows directly from Corollaries 22 and 23.
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Upper bounds, for small values of n and d, shown in Table 3 were computed by determining
the largest clique in a “distance” graph, i.e. a graph with a node for each permutation and an edge
between pairs of nodes at distance at least d. Others are computed by Theorem 13. We offer some
side-by-side comparisons with results from Table II in [9] shown in parentheses below.

P (4, 2) ≤ 6 (24) P (5, 2) ≤ 30 (120)
P (6, 2) ≤ 90 (720) P (7, 2) ≤ 630 (5040)

P (5, 3) ≤ 10

We give next a proof for Theorem 16. The basic idea is that if P (n0, n0 − k) ≤ m, and m is
small enough compared to n0, then one can prove that the diagonal in the lower bound table, such
as Table 1, i.e. P (n, n− k), for all n ≥ n0, is also m. The argument is a counting argument based
on the number of potent symbols and the length of the permutation.

Theorem 16. Suppose that P (n0, n0 − k) ≤ m such that

2k(m+ 1) < (n0 + 1)(1 + ⌊n0/(2k − 1)⌋). (6)

Then P (n, n− k) ≤ m, for all n ≥ n0 ≥ 2k.

Proof. Suppose to the contrary that P (n, n−k) ≥ m+1, for some n > n0. Let n be the smallest such
number. Let A = {π1, π2, . . . , πm+1} be a PA on n symbols with distance n− k. Let ki denote the
number of potent symbols in position i, taken over all permutations in A. Let z = 1+⌊n0/(2k−1)⌋,
so n0 ≥ (z − 1)(2k − 1). We show that ki ≥ z, for all i. Suppose, by symmetry of argument, that
k1 ≤ z − 1 and (by rearranging permutation order) only πi, 1 ≤ i ≤ k1, have potent symbols
in the first position. Observe that each permutation has 2k potent symbols, i.e. the symbols in
[1..k] ∪ [n − k + 1..n], and that, by our assumption, all of the first k1 permutations, and only the
first k1 permutations, have a potent symbol in position 1. So, if there are z− 1 permutations, each
adding 2k − 1 potent symbols to some position j > 1, the total number of potent symbols (other
than the one in position 1) is (2k − 1)(z − 1). Since the number of positions, namely, n > n0,
is greater than (2k − 1)(z − 1), by the pigeonhole principle, there is a position j > 1 where all
πi, 1 ≤ i ≤ k1, do not have potent symbols. Merge columns 1 and j and decrease n. That is, do
the following:

• for each permutation πi, 1 ≤ i ≤ k1, exchange the potent symbol in position 1 with the
symbol in position j.

• delete the symbol in position 1 in all permutations (they are no longer potent) and appropri-
ately modify the symbols in each permutation so that they are consecutive integers (deletions
may have created gaps).

The result is a PA of m + 1 permutations on n − 1 symbols with Chebyshev distance n − k.
This contradicts our choice of n being smallest.

Note that the total number of potent symbols in the PA A is 2k(m + 1). Since ki ≥ z, for all
1 ≤ i ≤ n, 2k(m+ 1) ≥ nz ≥ (n0 + 1)(1 + ⌊n0/(2k − 1)⌋) which contradicts Inequality 6.

Corollary 17. P (n, n − 2) = 10, for all n ≥ 5.
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Table 4: Lower bounds for P (n,m, 2) (left) and P (n,m, 3) (right). The tight bounds are in bold.

n/m 2 3 4 5

4 4 6 1 1

5 6 15 23 30

6 9 24 53 78

7 12 42 104 234

8 16 59 187 479

9 20 88 306 979

10 25 115 478 1,732

11 30 158 709 3,002

12 36 202 1,028 4,805

13 42 261 1,430 7,490

14 49 322 1,953 11,165

15 56 400 2,600 16,291

n/m 2 3 4 5

4 2 3 1 1

5 4 6 6 10

6 4 8 14 19

7 6 15 30 49

8 9 24 49 107

9 9 27 78 181

10 12 40 118 313

11 16 59 177 530

12 16 64 245 817

13 20 85 333 1,232

14 25 116 466 1,838

15 25 125 601 2,620

Proof. P (n, n − 2) = 10, for all 5 ≤ n ≤ 11, by the clique approach. In Theorem 16, set n0 =
11, k = 2, and m = 10. Then z = 1+ ⌊n0/(2k − 1)⌋ = 4 and 2k(m+ 1) = 44 < 48 = (n0 + 1)z. So,
P (n, n− 2) ≤ 10, for all n ≥ 11, follows by Theorem 16. By Theorem 20 , P (n, n− 2) ≥ 10, for all
n ≥ 5. Therefore P (n, n− 2) = 10, for all n ≥ 5.

Theorem 14 states that P (n, d) values along the diagonal n = d+ r in Table 1 are all equal to
cr, if n ≥ dr, for some constants cr and dr. Corollary 17 shows that these constants for r = 2 are
c2 = 10 and d2 = 3.

4 Prefixes

Computed values for P (n,m, d), for 2 ≤ d ≤ 5, 4 ≤ n ≤ 15, and 2 ≤ m ≤ 5 are given in Ta-
bles 4, 5. For example, P (9, 3, 4) ≥ 15, as shown in Table 5, means there is a set of 15 prefix
strings of three symbols over the alphabet [1..9] with pairwise Chebyshev distance 4. For example,
{795, 451, 125, 129, 165, 169, 291, 512, 516, 569, 691, 851, 912, 916, 956} is such a set. Our computa-
tions use a modification of the Random/Greedy algorithm to compute Q(n,m, d). These sets are
useful in applications of Theorem 8 toward obtaining improved lower bounds. Our computed sets
are available on our web site.

Theorem 24. If d | n and d ≥ m ≥ 2, then P (n,m, d) = (n/d)m.

Proof. Let k = n/d. First, we show that P (n,m, d) ≤ km. Let A be an array of size P (n,m, d)
in Q(n,m, d). Map each permutation π in A to [0..km − 1] using f(π) = σ where σ(i) = j if
π(i) ∈ [jd + 1 . . . jd + d− 1]. Since d(A) = d, map f is injective. Therefore P (n,m, d) ≤ km.

To show the lower bound P (n,m, d) ≥ km, consider set A ∈ Q(n,m, d) of permutations π such
that π(i) ∈ {i, i+ d, . . . , i+(k− 1)d} for all i ∈ [1..m]. Then |A| = km and d(A) = d. The theorem
follows.

Theorem 25. If d | n and d ≥ m ≥ 2, then P (n− i,m, d) = (n/d)m for any i ∈ [0..d−m].
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Proof. Let k = n/d. By Theorem 24, the theorem follows for i = 0. Then P (n− i,m, d) ≤ km for
i ≥ 1.

To show lower bound P (n − i,m, d) ≥ km, consider set A ∈ Q(n,m, d) of all permutations π
such that π(j) ∈ {j, j+d, . . . , j+(k−1)d}, for all j ∈ [1..m]. All numbers in π are ≤ m+(k−1)d =
kd+m− d = n+m− d ≤ n− i. The theorem follows.

Table 5: Lower bounds for P (n,m, 4) (left) and P (n,m, 5) (right). The tight bounds are in bold.

n/m 2 3 4 5

4 1 1 1 1

5 2 3 3 3

6 4 6 6 9

7 4 8 14 18

8 4 8 16 30

9 6 15 28 55

10 9 24 50 97

11 9 27 76 174

12 9 27 81 234

13 12 41 116 334

14 16 58 176 512

15 16 64 243 803

n/m 2 3 4 5

4 1 1 1 1

5 1 1 1 1

6 2 3 3 3

7 4 6 6 9

8 4 8 14 18

9 4 8 16 30

10 4 8 16 32

11 6 15 28 55

12 9 24 49 95

13 9 27 77 173

14 9 27 81 236

15 9 27 81 243

5 Conclusion and Open Problems

We have given several new lower and upper bounds (See Tables 1 and 3) for P (n, d) as well as
several new techniques for their computation. We conjecture that the bounds for cr and dr in
Theorem 14 can be improved. For example, from Table 1 it appears that c3 ≥ 33 and c4 ≥ 103. Is
it true that c3 = 33, d3 = 4, and c4 = 103, d4 = 5?

We computed lower bounds for P (n,m, d) for n ≤ 15 and m ≤ 5 (see Tables 4 and 5). The
computation of bounds for P (n,m, d) is significantly faster than the computation of bounds for
P (n, d) if m is small. Is there a polynomial time algorithm for computing P (n,m, d), for m = O(1)?
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