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JACOBI POLYNOMIALS AND HARMONIC WEIGHT

ENUMERATORS OF THE FIRST-ORDER REED–MULLER

CODES AND THE EXTENDED HAMMING CODES

TSUYOSHI MIEZAKI* AND AKIHIRO MUNEMASA

Abstract. In the present paper, we give harmonic weight enumerators
and Jacobi polynomials for the first-order Reed–Muller codes and the
extended Hamming codes. As a corollary, we show the nonexistence of
combinatorial 4-designs in these codes.

1. Introduction

Let m be a positive integer, and set V = F
m
2 . The first-order Reed–Muller

code RM(1,m) is defined as the subspace of FV
2 consisting of affine linear

functions:

RM(1,m) = {(λ(x) + b)x∈V | λ ∈ V ∗, b ∈ F2},
where V ∗ = Hom(V,F2). We remark that the weight enumerator of RM(1,m)
is

x2
m

+ (2m+1 − 2)x2
m−1

y2
m−1

+ y2
m

.

It is well known that the dual code of RM(1,m) is isomorphic to an extended
Hamming code H2m [7].

Let C = RM(1,m) or H2m , and Cℓ := {c ∈ C | wt(c) = ℓ}. In this
paper, we call Cℓ a shell of the code C whenever it is non-empty. Shells of
RM(1,m) and H2m are known to support combinatorial 3-designs by the
Assmus–Mattson theorem (see Theorem 2.1) or the transitivity argument
(see [7, Ch. 13. §9]). More precisely, the set B(Cℓ) := {supp(x) | x ∈ Cℓ}
forms the set of blocks of a combinatorial 3-design.

In [9], H. Nakasora and the first named author gave the first nontrivial
examples of a code that supports combinatorial t-designs for all weights
obtained from the Assmus–Mattson theorem and that supports t′-designs
for some weights with some t′ > t (see also [3, 6, 8, 10]). Hence, it is natural
to ask whether certain shells of RM(1,m) andH2m support combinatorial 4-
designs. The aim of the present paper is to settle this problem by computing
the Jacobi polynomials and harmonic weight enumerators for the first-order
Reed–Muller codes and the extended Hamming codes. The definitions of
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the Jacobi polynomials and harmonic weight enumerators will be given in
Section 2.

Theorem 1.1. Let C = RM(1,m) and T = {0, u1, u2, u3} ∈
(V
4

)
.

(1) (a) If u1 + u2 6= u3, then

JC,T (w, z, x, y) =w4x2
m−4 + (2m−3 − 1)w4x2

m−1−4y2
m−1

+ 2m−1w3zx2
m−1−3y2

m−1−1 + 3 · 2m−2w2z2x2
m−1−2y2

m−1−2

+ 2m−1wz3x2
m−1−1y2

m−1−3 + (2m−3 − 1)z4x2
m−1

y2
m−1−4

+ z4y2
m−4.

(b) If u1 + u2 = u3, then

JC,T (w, z, x, y) =w4x2
m−4 + (2m−2 − 1)w4x2

m−1−4y2
m−1

+ 3 · 2m−1w2z2x2
m−1−2y2

m−1−2

+ (2m−2 − 1)z4x2
m−1

y2
m−1−4 + z4y2

m−4.

(2) (a) If u1 + u2 6= u3, then

JC⊥,T (w, z, x, y) =
1

2m+1

(
(w + z)4(x+ y)2

m−4

+ (2m−3 − 1)(w + z)4(x+ y)2
m−1−4(x− y)2

m−1

+ 2m−1(w + z)3(w − z)(x+ y)2
m−1−3(x− y)2

m−1−1

+ 3 · 2m−2(w + z)2(w − z)2(x+ y)2
m−1−2(x− y)2

m−1−2

+ 2m−1(w + z)(w − z)3(x+ y)2
m−1−1y2

m−1−3

+ (2m−3 − 1)(w − z)4(x+ y)2
m−1

(x− y)2
m−1−4

+ (w − z)4(x− y)2
m−4

)
.

(b) If u1 + u2 = u3, then

JC⊥,T (w, z, x, y) =
1

2m+1

(
(w + z)4(x+ y)2

m−4

+ (2m−2 − 1)(w + z)4(x+ y)2
m−1−4(x− y)2

m−1

+ 3 · 2m−1(w + z)2(w − z)2(x+ y)2
m−1−2(x− y)2

m−1−2

+ (2m−2 − 1)(w − z)4(x+ y)2
m−1

(x− y)2
m−1−4

+ (w − z)4(x− y)2
m−4

)
.

Theorem 1.2. Let C = RM(1,m) and U ⊂ V be a three-dimensional

subspace of V . We assume that f is a harmonic function of degree k ∈ N
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such that f = 0 on
(V
k

)
\
(U
k

)
. Then we have

wC,f (x, y) =2m−3x2
m−1

y2
m−1

∑

a∈H8,wt(a)=4

f̃(a),

wC⊥,f (x, y) =(−1)k(xy)k22
m−1−2

(
x+ y√

2

)2m−1−k (
x− y√

2

)2m−1−k ∑

a∈H8,wt(a)=4

f̃(a).

We show, as a corollary, the nonexistence of combinatorial 4-designs in
these codes.

Corollary 1.3. Let C = RM(1,m) or H2m. Then for any ℓ ∈ N, Cℓ is not

a combinatorial 4-design.

This paper is organized as follows. In Section 2, we define and give some
basic properties of codes, combinatorial t-designs, Jacobi polynomials, and
harmonic weight enumerators used in this paper. In Sections 3, 4, and 5,
we prove Theorems 1.1 and 1.2 and Corollary 1.3, respectively.

All computer calculations reported in this paper were done usingMagma [4]
and Mathematica [12].

2. Preliminaries

2.1. Codes and combinatorial t-designs. A binary linear code C of
length n is a linear subspace of Fn

2 . An inner product (x, y) on F
n
2 is given

by

(x, y) =

n∑

i=1

xiyi,

where x, y ∈ F
n
2 with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The dual

of a linear code C is defined as

C⊥ = {y ∈ F
n
2 | (x, y) = 0 for all x ∈ C}.

For x ∈ F
n
2 , the weight wt(x) is the number of its nonzero components.

A combinatorial t-design is a pair D = (Ω,B), where Ω is a set of points
of cardinality v, and B is a collection of k-element subsets of Ω called blocks,
with the property that any t points are contained in precisely λ blocks.

The support of a vector x := (x1, . . . , xn), xi ∈ F2 is the set of indices of
its nonzero coordinates: supp(x) = {i | xi 6= 0}. Let Ω := {1, . . . , n} and
B(Cℓ) := {supp(x) | x ∈ Cℓ}. Then for a code C of length n, we say that the
shell Cℓ is a combinatorial t-design if (Ω,B(Cℓ)) is a combinatorial t-design.

The following theorem is from Assmus and Mattson [1]. It is one of the
most important theorems in coding theory and design theory:

Theorem 2.1 ([1]). Let C be a linear code of length n over Fq with minimum

weight d. Let C⊥ denote the dual code of C, with minimum weight d⊥.

Suppose that an integer t (1 ≤ t ≤ n) is such that there are at most d − t
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weights of C⊥ in {1, 2, . . . , n − t}, or such that there are at most d⊥ − t

weights of C in {1, 2, . . . , n− t}. Then the supports of the words of any fixed

weight in C form a t-design (with possibly repeated blocks).

2.2. Jacobi polynomials. Let C be a binary code of length n and T ⊂
[n] := {1, . . . , n}. Then the Jacobi polynomial of C with T is defined as
follows [11]:

JC,T (w, z, x, y) :=
∑

c∈C

wm0(c)zm1(c)xn0(c)yn1(c),

where for c = (c1, . . . , cn),

mi(c) = |{j ∈ T | cj = i}|,
ni(c) = |{j ∈ [n] \ T | cj = i}|.

The following is a generalization of the classical MacWilliams identity:

Theorem 2.2 ([11]). Let C be a binary code of length n and T ⊂ [n]. Then

we have

JC⊥,T (w, z, x, y) =
1

|C|JC,T (w + z, w − z, x+ y, x− y).

It is easy to see that Cℓ is a combinatorial t-design if and only if the
coefficient of ztxn−ℓyℓ−t in JC,T is independent of the choice of T with |T | =
t.

2.3. Harmonic weight enumerators. In this subsection, we review the
concept of harmonic weight enumerators.

Let Ω = {1, 2, . . . , n} be a finite set (which will be the set of coordinates of
the code) and let X be the set of its subsets, while, for each k = 0, 1, . . . , n,
let Xk be the set of its k-subsets. We denote by RX and RXk the real vector
spaces spanned by the elements of X and Xk, respectively. An element of
RXk is denoted by

f =
∑

z∈Xk

f(z)z

and is identified with the real-valued function on Xk given by z 7→ f(z).

An element f ∈ RXk can be extended to an element f̃ ∈ RX by setting,
for all u ∈ X,

f̃(u) =
∑

z∈Xk,z⊂u

f(z).

The differentiation γ is the operator on RX defined by linearity from

γ(z) =
∑

y∈Xk−1,y⊂z

y

for all z ∈ Xk and for all k = 0, 1, . . . , n. An element f ∈ RXk satisfying
γ(f) = 0 is called a harmonic function of degree k, and we denote by Harmk

the set of all harmonic functions of degree k:

Harmk = ker(γ|RXk
).
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Theorem 2.3 ([5, Theorem 7]). A set B ⊂ Xm (where m ≤ n) of blocks is

a t-design if and only if
∑

b∈B f̃(b) = 0 for all f ∈ Harmk, 1 ≤ k ≤ t.

In [2], the harmonic weight enumerator associated with a binary linear
code C was defined as follows.

Definition 2.4. Let C be a binary code of length n and let f ∈ Harmk.
The harmonic weight enumerator associated with C and f is

wC,f (x, y) =
∑

c∈C

f̃(c)xn−wt(c)ywt(c),

where we write f̃(supp(c)) as f̃(c) for short.

Bachoc proved the following MacWilliams-type equality.

Theorem 2.5 ([2]). Let C be a binary code of length n and f ∈ Harmk.

Let wC,f (x, y) be the harmonic weight enumerator associated with C and f .

Then

wC,f (x, y) = (xy)kZC,f (x, y),

where ZC,f is a homogeneous polynomial of degree n− 2k and satisfies

ZC⊥,f (x, y) = (−1)k
2n/2

|C| ZC,f

(
x+ y√

2
,
x− y√

2

)
.

It follows from Theorem 2.3 that Cℓ is a combinatorial t-design if and
only if the coefficient of xn−ℓyℓ in wC,f (x, y) vanishes.

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. Let V = F
m
2 and C =

RM(1,m). For c = (λ(x) + b)x∈V and T ⊂ V , we define

c|T := (λ(x) + b)x∈T .

Lemma 3.1. Let T = {0, u1, u2, u3} ∈
(
V
4

)
.

(1) If u1 + u2 6= u3, then

|{c ∈ C \ {0,1} | wt(c|T ) = i}| =





2m−3 − 1 if i = 0, 4,

2m−1 if i = 1, 3,

3 · 2m−2 if i = 2.

(2) If u1 + u2 = u3, then

|{c ∈ C \ {0,1} | wt(c|T ) = i}| =





2m−2 − 1 if i = 0, 4,

0 if i = 1, 3,

3 · 2m−1 if i = 2.
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Proof. By identifying (λ(x))x∈V with λ ∈ V ∗, we have C = V ∗ ∪ (V ∗ + 1).
For i = 0, 1, . . . , 4, define

ai = |{c ∈ C \ {0,1} | wt(c|T ) = i}|,
bi = |{c ∈ V ∗ | wt(c|T ) = i}|.

Then

b0 = |{c ∈ V ∗ | c|T = 0}|
= |u⊥1 ∩ u⊥2 ∩ u⊥3 |

=

{
2m−3 if u1 + u2 6= u3,

2m−2 otherwise,

b1 = |{c ∈ V ∗ | wt(c|T ) = 1}|
= 3|{c ∈ V ∗ | c(u1) = 1, c(u2) = c(u3) = 0}|
= 3|u⊥2 ∩ u⊥3 \ u⊥1 |

=

{
3(|u⊥2 ∩ u⊥3 | − |u⊥2 ∩ u⊥3 ∩ u⊥1 |) if u1 + u2 6= u3,

0 otherwise,

=

{
3 · 2m−3 if u1 + u2 6= u3,

0 otherwise,

b2 = |{c ∈ V ∗ | wt(c|T ) = 2}|
= 3|{c ∈ V ∗ | c(u1) = c(u2) = 1, c(u3) = 0}|
= 3|u⊥3 \ (u⊥1 ∪ u⊥2 )|
= 3(|u⊥3 | − |u⊥3 ∩ u⊥1 | − |u⊥3 ∩ u⊥2 |+ |u⊥3 ∩ u⊥1 ∩ u⊥2 |)

=

{
3 · 2m−3 if u1 + u2 6= u3,

3 · 2m−2 otherwise,

b4 = 0,

b3 = |V ∗| − b0 − b1 − b2 − b4

= 2m − b0 − b1 − b2

=

{
2m − 7 · 2m−3 if u1 + u2 6= u3,

2m − 4 · 2m−2 otherwise,

=

{
2m−3 if u1 + u2 6= u3,

0 otherwise.

Since

ai = |{c ∈ (V ∗ \ {0}) ∪ ((V ∗ + 1) \ {1}) | wt(c|T ) = i}|
= |{c ∈ V ∗ \ {0} | wt(c|T ) = i}|+ |{c ∈ (V ∗ + 1) \ {1} | wt(c|T ) = i}|
= bi − δi,0 + |{c ∈ V ∗ \ {0} | wt(c|T ) = 4− i}|
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= bi − δi,0 + b4−i − δi,4,

we obtain the desired results. �

Proof of Theorem 1.1. Part (1) follows from Lemma 3.1, by noticing that
wt(c) = 2m−1 for all c ∈ C \ {0,1}. Part (2) follows from part (1) and
Theorem 2.2. �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let V = F
m
2 .

Lemma 4.1. Let C = RM(1,m) and U ⊂ V be a three-dimensional sub-

space of V . Then {c|U | c ∈ C} = H8, and for each a ∈ H8, we have

|{c ∈ C2m−1 | c|U = a}| = 2m−3.

Proof. The first statement is immediate since RM(1, 3) = H8. As for the
second statement, we may assume a has entry 0 at the coordinate 0 ∈ V .
Then the number of c ∈ C2m−1 with c|U = a is the same as the number of
λ ∈ V ∗ satisfying Kerλ ⊃ U , which is 2m−3. �

Proof of Theorem 1.2. Since f is a harmonic function of degree k ≥ 1, we

have f̃(∅) = 0. Since γ(f) = 0 and
∑

y∈( U

k−1
)

(γ(f))(y) = kf̃(U),

we have f̃(U) = 0. Note that {c|U | c ∈ C} = H8 has codewords of weight

0, 4, 8 only. This implies that, for c ∈ C, f̃(c) = f̃(c|U ) is nonzero only if
wt(c|U ) = 4, or equivalently, wt(c) = 2m−1. Then

wC,f (x, y) =
∑

c∈C, wt(c)=2m−1

f̃(c|U )x2
m−wt(c)ywt(c)

= x2
m−1

y2
m−1

∑

a∈H8,wt(a)=4

|{c ∈ C2m−1 | c|U = a}|f̃(a)

= 2m−3x2
m−1

y2
m−1

∑

a∈H8,wt(a)=4

f̃(a)

by Lemma 4.1. Then we obtain (1). Using Theorem 2.5, we obtain (2). �

5. Proof of Corollary 1.3

In this section, we give a proof of Corollary 1.3.

Proof of Corollary 1.3. Let C = RM(1,m). We give two proofs.
The first proof relies on properties of Jacobi polynomials. Let T1 =

{0, u1, u2, u3} ∈
(V
4

)
and T2 = {0, v1, v2, v3} ∈

(V
4

)
. We assume that

u1 + u2 6= u3 and v1 + v2 = v3. By Theorem 1.1,

JC,T1
− JC,T2

= −2m−3x2
m−1−4y2

m−1−4(wy − xz)4.
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The coefficient of z4x2
m−ℓyℓ−4 in JC,T1

− JC,T2
is non-zero whenever Cℓ is

non-empty. Hence, Cℓ is not a 4-design.
By using Theorem 2.2, we have

JC⊥,T1
− JC⊥,T2

= −(x2 − y2)2
m−1−4(wy − xz)4.

The coefficient of z4x2
m−ℓyℓ−4 in JC⊥,T1

−JC⊥,T2
is non-zero whenever (C⊥)ℓ

is non-empty. Hence, (C⊥)ℓ is not a 4-design.
The second proof relies on properties of harmonic weight enumerators.

Let U ⊂ V be a three-dimensional subspace of V . Then {c|U | c ∈ C} = H8

by Lemma 4.1. Let B = {supp(z) | z ∈ H8, wt(z) = 4}, and let τ be a
transposition of two coordinates of H8. Then B is the set of 14 blocks of a
3-(8, 4, 1) design, and |B ∩ Bτ | = 6. Define

f =
∑

z∈B

z −
∑

z∈Bτ

z.

Then f ∈ Harm4, and ∑

a∈H8

wt(a)=4

f(a) = |B| − |B ∩ Bτ | = 8.

By Theorem 1.2 we have

wC,f (x, y) = 8 · 2m−3x2
m−1

y2
m−1

,

wC⊥,f (x, y) = 8(xy)4(x2 − y2)2
m−1−4,

and the coefficients of x2
m−ℓyℓ in wC,f (resp. wC⊥,f ) do not vanish whenever

Cℓ (resp. (C
⊥)ℓ) is non-empty. By Theorem 2.3, the proof is complete. �
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