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Abstract Discrete-event systems with synchronization but no concurrency can be
described by models that are “linear” in the max-plus algebra, and they are called
max-plus-linear (MPL) systems. Examples of MPL systems often arise in the context
of manufacturing systems, telecommunication networks, railway networks, parallel
computing, etc. In this paper we provide a solution to a finite-horizon model predic-
tive control (MPC) problem for MPL systems where it is required that the closed-
loop input and state sequence satisfy a given set of linear inequality constraints.
Although the controlled system is nonlinear, by employing results from max-plus
theory, we give sufficient conditions such that the optimization problem that is
performed at each step is a linear program and such that the MPC controller
guarantees a priori stability and satisfaction of the constraints. We also show how
one can use the results in this paper to compute a time-optimal controller for linearly
constrained MPL systems.
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1 Introduction

Discrete-event systems (DES) are event-driven dynamical systems (i.e. the state
transitions are initiated by events, rather than a clock) and they often arise in the
context of manufacturing systems, telecommunication networks, railway networks,
parallel computing, etc. In Baccelli et al. (1992) it has been shown that a DES with
synchronization but no concurrency can be modeled by a max-plus-linear (MPL)
system. Although several authors have already developed methods to compute
optimal controllers for MPL systems (Baccelli et al. 1992; Cofer and Garg 1996; De
Schutter and van den Boom 2001; Kumar and Garg 1994; Libeaut and Loiseau 1995;
Menguy et al. 1997, 2000; Necoara 2006), the literature on stabilizing controllers for
this class of systems subject to input and state constraints is relatively sparse. Some
of the contributions that partially address this problem include model predictive
control (MPC; De Schutter and van den Boom 2001, 2006) and optimal control
based on residuation theory (Cottenceau et al. 2001; Maia et al. 2003; Menguy
et al. 1997, 2000). In Maia et al. (2003) an optimal controller is derived based on
residuation theory that guarantees also stability. However, the residuation-based
approach does not cope with input and state constraints. Moreover, the methods
presented in Menguy et al. (1997) and Cottenceau et al. (2001) cannot solve tracking
problems corresponding to the case when the actual outputs do not necessarily
have to occur before the due dates although these situations are often met in
many practical applications. Some of these drawbacks are removed in Maia et al.
(2003), Menguy et al. (2000), and Necoara (2006) by using respectively projection,
an adaptive approach, or MPC. The main difference between our approach and the
papers mentioned previously is that in those papers the optimal controller does not
satisfy both requirements, i.e. a priori stability of the closed-loop system and that the
closed-loop input and state sequence should satisfy a given set of linear inequality
constraints.

MPC (Maciejowski 2002; Mayne et al. 2000) is one of the most applied advanced
control technique in the process industry. MPC provides many attractive features:
it is an easy-to-tune method, it is applicable to multi-variable systems, it can handle
constraints, and it is capable of tracking pre-scheduled reference signals. The essence
of MPC is to determine a control profile that optimizes a cost criterion over a predic-
tion window and then to apply this control profile until new process measurements
become available when the whole procedure is repeated. Feedback is incorporated
by using those measurements to update the optimization problem for the next step.

This paper considers the problem of designing a stabilizing MPC scheme for
the class of MPL systems where the input and state sequence must satisfy a given
set of linear inequality constraints. We follow here a similar finite-horizon MPC
approach as the one developed in Maciejowski (2002) and Mayne et al. (2000) for
conventional, time-driven systems and that uses a terminal set and a terminal cost
as basic ingredients. However, the extension from classical time-driven systems to
discrete-event MPL systems is not trivial since many concepts from system theory
have to be adapted adequately. One of the key results of the paper is to provide
sufficient conditions based on a terminal set and a terminal cost approach such that
one can compute an MPC controller that guarantees a priori stability and constraint
satisfaction for the closed-loop MPL system.
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The paper is organized as follows. In Section 2 we introduce some notation,
and we give a short introduction to MPL systems. We also formulate the control
problem that we are going to solve in this paper. We also introduce the notion
of (Lyapunov) stability for MPL systems. Moreover, we will see that under some
additional assumptions Lyapunov stability of the closed-loop MPC also implies
stability in terms of boundedness of the buffer levels as defined in Baccelli et al.
(1992) and Passino and Burgess (1998). In Section 3 we define the concept of
positively invariant set for MPL systems and we derive the main properties of such
a set. We show that under mild assumptions the maximal positively invariant set is
a polyhedron. In Section 4 we propose an MPC scheme based on a terminal set-
terminal cost approach that guarantees a priori stability of the closed-loop system
and also that the input-state constraints are not violated. We show that for certain
nonnegative piecewise affine stage costs the optimization problem that is solved at
each step can be recast as a linear program. In Section 5 we formulate the time-
optimal control problem for constrained MPL systems in a slightly different fashion
from the classical one and we provide a solution based on linear programming.
Next, in Section 6 we illustrate the method proposed in this paper with an example.
Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

We define ε := −∞, Rε := R ∪ {ε}, and R+ = {x ∈ R : x ≥ 0}. The max-plus-
algebraic (MPA) addition (⊕) and multiplication (⊗) are defined as (Baccelli et al.
1992; Heidergott et al. 2005)

x ⊕ y := max{x, y}, x ⊗ y := x + y for x, y ∈ Rε.

For matrices A, B ∈ R
m×n
ε and C ∈ R

n×p
ε one can extend the definition as follows:

(A ⊕ B)ij := Aij ⊕ Bij, (A ⊗ C)ij :=
n⊕

k=1

Aik ⊗ Ckj for all i, j.

Define the matrix ε as the MPA zero matrix of appropriate dimension: εij := ε for
all i, j. The matrix E is the MPA identity matrix: Eii := 0 for all i and Eij := ε for
all i, j with i �= j. Let k be a nonnegative integer. Then for any square matrix A the
kth MPA power of A is defined by A⊗k := A ⊗ A ⊗ · · · ⊗ A (k times) if k > 0, and
A⊗0 = E. We define A∗, whenever it exists, by A∗ := limk→∞ E ⊕ A ⊕ · · · ⊕ A⊗k

.
For a given matrix H, by H ≥ 0 we mean that H is nonnegative, i.e. Hij ≥ 0 for
all i, j. We use N to denote the set of nonnegative integers. For k, l ∈ N with k ≤ l,
N[k,l] represents the set {k, k + 1, · · · , l}. A matrix � ∈ R

n×m
ε is row-finite if for any

row i ∈ N[1,n], we have max j∈N[1,m] �ij �= ε; a column-finite matrix is defined similarly.
Throughout the paper ‖ · ‖∞ represents the ∞-norm (‖x‖∞ := maxi∈N[1,n] |xi| for
x ∈ R

n). Let d∞ denote the metric on R
n induced by the ∞-norm. Given a closed set

X ⊆ R
n and a point x ∈ R

n then d∞(x,X ) := miny∈X ‖x − y‖∞ denotes the distance
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from x to X . For ∈ R
n
ε we define ‖x‖⊕ := max{x1, . . . , xn}. For a vector x ∈ R

n
ε

and a scalar λ ∈ Rε, we define λ ⊗ x := x+λ := [x1+λ . . . xn+λ]T (for a matrix A,
λ ⊗ A := A + λ is defined similarly).

We denote with x ⊕′ y := min{x, y} and x ⊗′ y := x + y (the operations ⊗ and ⊗′
differ only in that (−∞) ⊗ (+∞) := −∞, while (−∞) ⊗′ (+∞) := +∞). The matrix
multiplication and addition for (⊕′,⊗′) are defined similarly as for (⊕, ⊗). It is known
(see e.g. Baccelli et al. 1992, Chapter 4) that the following inequalities hold for any
matrix A and vectors x, y of appropriate dimensions over Rε:

x ≤ y ⇒ A ⊗ x ≤ A ⊗ y and A ⊗′ x ≤ A ⊗′ y , (1)

where we consider the partial order defined by the positive orthant cone (i.e. x ≤ y
if and only if (iff) xi ≤ yi for all i). The following results are well-known in max-plus
algebra (Baccelli et al. 1992, Section 3.2.3):

Result 2.1

(i) The inequality A ⊗ x ≤ b in max-algebra has the largest solution given by xopt =
(−AT) ⊗′ b (by the largest solution we mean that for all x satisfying A ⊗ x ≤ b
we have x ≤ xopt).

(ii) The equation x = A ⊗ x ⊕ b has x = A∗ ⊗ b as a solution. If Aij < 0 for all i, j,
then this solution is unique.

In this paper we use both max-plus and conventional algebra. Therefore, we will
always write the operators “⊕” and “⊗” explicitly. The operators “+” and “·” denote
the conventional summation and multiplication operators (the “·” operator is usually
omitted, except for mixed equations where we want to stress that a multiplication in
conventional algebra is involved). We also use mixed properties like distributivity of
+ with respect to ⊕, i.e., x + (y ⊕ z) = (x + y) ⊕ (x + z) for x, y, z,∈ Rε, and mixed
associativity, i.e., x + (y ⊗ z) = (x + y) ⊗ z) for x, y, z,∈ Rε, which imply that

(A + λ) ⊗ (x + μ) = (A ⊗ x) + (λ + μ) (2)

for all scalars λ,μ and a vector x and matrix A of appropriate dimensions.

2.2 Max-plus-linear systems

An MPL system is defined as follows (Baccelli et al. 1992; Cuninghame-Green 1979;
Heidergott et al. 2005):

xsys(k) := Asys ⊗ xsys(k − 1) ⊕ Bsys ⊗ usys(k), ysys(k) := Csys ⊗ xsys(k) , (3)

where xsys(k) ∈ R
n
ε represents the state, usys(k) ∈ R

m
ε is the input, ysys(k) ∈ R

p
ε is the

output and where Asys ∈ R
n×n
ε , Bsys ∈ R

n×m
ε , Csys ∈ R

p×n
ε are the system matrices.1 In

the context of DES k is an event counter while usys, xsys and ysys are dates (feeding
times, processing times and finishing times, respectively). Note that for MPL systems
at the kth event the feeding time usys(k) has direct influence on the processing time

1We may assume without loss of generality that Bsys is column-finite and Csys is row-finite, since
otherwise the corresponding inputs and outputs can be eliminated from the description model.
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xsys(k) (see also Section 6). The monotonicity property of the max operator Eq. 1
implies that the MPL systems are a particular class of monotone systems.

The scalar λ ∈ Rε is an MPA eigenvalue of the matrix A if there exists a vector
v ∈ R

n
ε with at least one finite entry such that Asys ⊗ v = λ ⊗ v (Baccelli et al. 1992;

Heidergott et al. 2005). In the sequel we use λmax to denote the maximal MPA
eigenvalue of Asys. In practice, the finite entries of the system matrix Asys will always
be nonnegative as they correspond to processing and transportation times. This
implies that in practice λmax ≥ 0.

In this paper we consider a reference signal (i.e. a due date signal) that the output
should track of the form:

rsys(k) := yt + kρ , (4)

with yt ∈ R
p. In practice, such a reference signal is often used as it corresponds to a

regular and smooth due date signal with a constant output rate. In a manufacturing
context, this would correspond to situation with a steady production rate where we
have to produce a new product every ρ time units. Note that we can also consider
a more general signal rsys such that there exists a finite positive integer Kr for
which rsys(k) = yt + kρ for all k ≥ Kr. The subsequent derivations will then remain
the same.

Since time is not scalable, typical constraints for an MPL system (Eq. 3) are

ysys(k) ≤ rsys(k) + hyu , (usys)i(k) − (usys) j(k) ≤ hu
ij , (5)

(xsys)i(k) − (usys) j(k) ≤ hxu
ij , usys(k + 1) − usys(k) ≥ 0 . (6)

The constraint usys(k + 1) − usys(k) ≥ 0 appears in the context of DES where the
input represents times, so the input sequence should be nondecreasing. Moreover,
the constraints (usys)i(k) − (xsys) j(k) ≤ hux

ij are implicitly defined by the MPL system.
Note that, in general, the constraint (xsys)i(k) − (xsys) j(k) ≤ hx

ij can be satisfied (with
some conservativeness) if a constraint of the type (xsys)i(k) − (usys) j(k) ≤ hxu

ij is
fulfilled. The constraints 5 and 6 can be generalized as follows:

Hsysxsys(k) + Gsysusys(k) ≤ hsys(k) (7)

usys(k + 1) − usys(k) ≥ 0 , (8)

where Hsys ≥ 0. Later on we will propose methods to compute input signals that
satisfy these constraints. Note that the constraint 8 does not fit the form Eq. 7.
However, we can include Eq. 8 into Eq. 7 as follows: we introduce a new state vector
x̄sys(k) = [xT

sys(k) zT(k)]T with the dynamics

x̄sys(k) = Āsys ⊗ x̄sys(k − 1) ⊕ B̄sys ⊗ usys(k) (9)

ȳsys(k) = C̄sys ⊗ x̄sys(k) (10)

and the extra constraint:

[0 Im]x̄sys(k) ≤ usys(k) , (11)

with Āsys =
[

Asys Bsys

ε E

]
, B̄sys =

[
Bsys

E

]
and C̄sys = [Csys ε], and where Im denotes

the m × m identity matrix in conventional algebra. Given the initial conditions xsys(0)

and usys(0) for the system 3 with constraints 7 and 8 and the initial conditions
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x̄sys(0) = [xsys(0)T usys(0)T ]T and usys(0) for the new system 9 and 10 with the extra
constraint 11 then by applying the same input signal usys (which should satisfy Eq. 11)
to both systems we obtain that the first n components of x̄sys(k) coincide with xsys(k)

and the last m components of x̄sys(k) coincide with usys(k). Note that the constraints
7 and 8 corresponding to the MPL system 3 can be written for the new system (Eqs.
9 and 10) as [Hsys 0]x̄sys(k) + Gsysusys(k) ≤ hsys(k) and the extra constraint 11 as
[0 Im]x̄sys(k) − Imusys(k) ≤ 0, i.e.

H̄sys x̄sys(k) + Ḡsysusys(k) ≤ h̄sys(k) , (12)

where H̄sys =
[

Hsys 0
0 Im

]
, Ḡsys =

[
Gsys

−Im

]
and h̄sys(k) =

[
hsys(k)

0

]
. Note that the prop-

erty Hsys ≥ 0 is preserved under the previous transformation, i.e. H̄sys ≥ 0.
Recall that the maximal MPA eigenvalue λmax of Asys is in practice always

nonnegative. Since Āsys has an upper diagonal block structure and since the MPA
eigenvalue of E is 0, the maximal MPA eigenvalue of Āsys is given by max{λmax, 0} =
λmax. Since the maximal MPA eigenvalue of the system matrix Āsys characterizes
the maximal throughput of the system (Eqs. 9 and 10; see e.g. Baccelli et al. 1992,
Section 3.7) and since through the term B̄sys ⊗ usys it is possible to create delays in
the starting times of activities, we should choose a slope ρ for the reference signal
such that ρ ≥ λmax. Since λmax is finite in practice, there exists an MPA invertible
matrix P ∈ R

n×n
ε such that the matrix Ā = P⊗−1 ⊗ Āsys ⊗ P satisfies Āij ≤ λmax for

all i, j ∈ N[1,n] (see2 e.g. De Schutter 1996; Gaubert 1995; Mairesse 1996), where
P⊗−1

denotes the inverse of the matrix P in the max-plus algebra, i.e. P⊗−1 ⊗ P =
P ⊗ P⊗−1 = E. We make the following change of coordinates: x̄(k) = P⊗−1 ⊗ x̄sys(k).

We denote with B̄ = P⊗−1 ⊗ B̄sys, C̄ = C̄sys ⊗ P and ȳ(k) = ȳsys(k), ū(k) = usys(k) .
In the new coordinates the system (Eqs. 9 and 10) becomes:

x̄(k) = Ā ⊗ x̄(k − 1) ⊕ B̄ ⊗ ū(k), ȳ(k) = C̄ ⊗ x̄(k) .

If we define x(k) = x̄(k) − ρk, u(k) = ū(k) − ρk, y(k) = ȳ(k) − ρk, A = Ā − ρ

(i.e. we subtract in the conventional algebra from all entries of x̄, ū, ȳ and Ā
the values ρk and ρ, respectively) and B = B̄, C = C̄, we obtain the normalized
system corresponding to the original system (Eq. 3). Using Eq. 2 it follows that this
normalized system can be written as

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k) (13)

y(k) = C ⊗ x(k) . (14)

Input and output signals determined for this normalized system can be transformed
into signals for the original system by adding the signal ρk (i.e., by applying the

2In (Mairesse 1995, Lemma 3) and (Gaubert 1996, Lemma 4.8) the matrix P is constructed as follows
for an irreducible matrix Asys: Pii = vi for all i and Pij = ε for all i, with i �= j, where v is an MPA

eigenvector of Asys. We then have
(
P⊗−1 )

ii = −vi for all i and
(
P⊗−1 )

ij = ε for all i, with i �= j. The
extension to a reducible matrix Asys can be done in a similar fashion (see e.g. De Schutter 1996,
Section C.2). Note that in fact these results are related to similar results in the theory of Hadamard
products of nonnegative matrices in conventional algebra (see Elsner et al. 1988, Theorem 7).
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inverse transformation). Note that A < 0 if ρ > λmax, and that the maximal MPA
eigenvalue of A is λmax − ρ < 0. In the sequel we will consider only MPL systems
in the form of Eqs. 13 and 14, with A ∈ R

n×n
ε , B ∈ R

n×m
ε , C ∈ R

p×n
ε and where the

matrix A satisfies A < 0 if ρ > λmax. We frequently use the short-hand notation

f (x, u) := A ⊗ x ⊕ B ⊗ u .

The MPL system (Eqs. 13 and 14) is controllable iff each component of the state can
be made arbitrarily large by applying an appropriate controller to the system initially
at rest. It follows [see Theorem 3.2 in Gazarik and Kamen (1999)] that the system
is controllable iff the matrix � := [B A ⊗ B · · · A⊗n−1 ⊗ B] is row-finite [note that
this definition is equivalent to the one given in Baccelli et al. (1992) and Gazarik and
Kamen (1999) where the system is controllable if all states are connected to some
input). Similarly, the system (Eqs. 13 and 14) is observable iff each state is connected
to some output, i.e. the matrix � := [CT (C ⊗ A)T · · · (C ⊗ A⊗n−1

)T ]T is column-
finite [see Theorem 3.9 in Gazarik and Kamen (1999)] .

For the MPL system (Eqs. 13 and 14) the following key assumptions will be used
throughout the paper:

A1: We assume that ρ > λmax ≥ 0 (and thus A < 0), and that the system is control-
lable and observable.

A2: There exist matrices H ≥ 0, G and a vector h of appropriate dimensions such
that the constraints (Eq. 12) can be written for the normalized system (Eqs. 13
and 14) as

Hx(k) + Gu(k) ≤ h . (15)

The conditions from Assumptions A1–A2 are quite weak and are usually met
in applications. Note that ρ can be chosen arbitrarily close to λmax (see also the
previous discussion). Moreover, since we consider constraints of the form of
Eqs. 5 and 6, it follows that h does not depend on k.

In the new coordinates the output should be regulated to the desired target yt.
From Assumption A1 it follows that Aij < 0 for all i, j ∈ N[1,n] and so [see Baccelli
et al. (1992, Theorem 3.20) or Heidergott et al. (2005, Section 2.3)]

A∗ = E ⊕ A ⊕ · · · ⊕ A⊗n−1
. (16)

For any finite vector u there exists a state equilibrium x, i.e. x = A ⊗ x ⊕ B ⊗ u,
given by x = A∗ ⊗ B ⊗ u. Note that x is unique [according to Result 2.1 (ii)]
and finite (since � is row-finite). We associate to yt the largest equilibrium pair
(xe, ue) satisfying3 C ⊗ xe ≤ yt. From the previous discussion it follows that (xe, ue) is
given by

ue := (−(C ⊗ A∗ ⊗ B))T ⊗′ yt, xe := A∗ ⊗ B ⊗ ue . (17)

Since we may assume that Bsys is column-finite and Csys is row-finite (see Footnote 1)
and since the system is controllable and observable by Assumption A1, every input

3By the largest pair we mean that any other feasible equilibrium pair (x, u) satisfies x ≤ xe, u ≤ ue.
Moreover, we impose C ⊗ xe ≤ yt since in applications it is preferable that the products be delivered
in time once the steady (periodic) behavior is reached.



336 Discrete Event Dyn Syst (2007) 17:329–354

of the system will influence some output, which implies that C ⊗ A∗ ⊗ B is column-
finite. As a consequence, ue is finite. Hence, xe is also finite. Note that in fact (xe, ue)

depends on the reference signal, but for the sake of simplicity of notation we drop
this dependence.

2.3 Stability for MPL systems

In this section we adopt the formulation developed in (Necoara 2006; Passino
and Burgess 1998; La Salle 1976) to the study of stability of MPL systems. We
use the symbol u to denote a control sequence4 and φ(k; x, u) to denote the state
solution of Eq. 13 at event step k when the initial state is x at event step 0 and
the control sequence u is applied. By definition φ(0; x, u) := x. For a state feedback
law κ : R

n → R
m applied to Eqs. 13 and 14 we study the stability properties of the

closed-loop system:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ κ(x(k − 1)), y(k) = C ⊗ x(k) . (18)

Similarly to the notation φ(k; x, u), we denote by φ(k; x, κ) the state solution of
Eq. 18 at step k when the initial state is x at event step 0 and the feedback law κ

is applied.

Definition 2.2 The set Xe ⊆ R
n is called positively invariant for Eq. 18 if for all

x ∈ Xe it follows that φ(k; x, κ) ∈ Xe for all k ≥ 0.

Definition 2.3 A closed positively invariant set Xe is called stable (Lyapunov stable
as it is sometimes called) for the system 18 if for any θ > 0 there exists a δ > 0 such
that for all x satisfying d∞(x, Xe) < δ we have d∞(φ(k; x, κ), Xe) < θ for all k ≥ 0.

If in addition to being stable, we have d∞(φ(k; x, κ), Xe) → 0 as k → ∞ for all
x ∈ X, then Xe is asymptotically stable for Eq. 18. In this case X is called a region of
attraction.

Remark 2.4 In Baccelli et al. (1992), Passino and Burgess (1998), and Necoara (2006)
stability for DES is defined in terms of boundedness of the buffer levels (i.e. there
exists a finite M > 0 such that at any time the number of parts in any buffer is less
than M). Let us note that our definition of stability implies in particular that for any
x ∈ R

n, ‖φ(k; x, κ) − xe‖∞ is bounded for all k ≥ 0, whenever the set Xe is bounded.
For a controllable and observable system the boundedness of the state trajectory
implies also boundedness of the output and of the input, i.e. ‖y(k) − yt‖∞ and
‖u(k) − ue‖∞ are bounded as well for all k ≥ 0. For the original system boundedness
of the state trajectory implies ‖xsys(k) − ρk‖∞, ‖ysys(k) − ρk‖∞ and ‖usys(k) − ρk‖∞
are bounded for all k ≥ 0 which leads to boundedness of the buffer levels5 [see also
Passino and Burgess 1998, Definition 3.5].

We now introduce the so-called K-functions: a function α : R+ → R+ is said to be
a K-function if (i) α(0) = 0, (ii) α(z) > 0 for all z > 0, and (iii) α is strictly increasing.

4A control sequence u is either a signal u = u1, u2, · · · or a stacked vector u = [
uT

1 · · · uT
N

]T
, for some

finite integer N.
5See Necoara et al. (2006) for a formal proof.
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The following theorem gives sufficient conditions for asymptotic stability of the
system 18.

Theorem 2.5 Let X be a positively invariant set for the system 18. Let V : X → R be
a function and let Xe be a closed subset of the interior of X such that

(i) V(x) = 0 for all x ∈ Xe, and V is continuous on a neighborhood of Xe, and
(ii) V(x) ≥ α(d∞(x, Xe)) for all x ∈ X, where α is a K-function, and

(iii) V( f (x, κ(x))) − V(x) ≤ −β(d∞(x, Xe)) for all x ∈ X, where β is a K-function.

Then, Xe is asymptotically stable for Eq. 18 with a region of attraction X.

Proof In Necoara (2006, Corollary C.1.4) a proof is given for the case Xe = {xe}, i.e.
the equilibrium point. However, following exactly the same steps, this proof can be
extended to the case of a general set Xe [see e.g. Passino and Burgess (1998, Theorem
3.2) or La Salle (1976, Theorem 7.9)]. ��

We formulate now the control problem that we solve in the sequel:

Problem definition: Given the MPL system (Eqs. 13 and 14), a reference signal of
the form of Eq. 4, and constraints of the form of Eq. 15, design a state feedback law
κ(x) such that the closed-loop system is asymptotically stable with respect to some
closed positively invariant set Xe and such that the constraints 15 are satisfied.

3 Positively invariant sets for MPL systems

3.1 Properties of the equilibrium pair (xe, ue)

Recall that the equilibrium pair (xe, ue) defined in Eq. 17 is finite. Furthermore, we
assume that (xe, ue) belongs to the set described by the constraints 15, i.e. {(x, u) :
Hx + Gu ≤ h} (if this is not the case we determine (xe, ue) as the optimal solution
of the following linear programming problem: maxu{∑m

i=1 ui : x = A∗ ⊗ B ⊗ u,

C ⊗ x ≤ yt, Hx + Gu ≤ h}). We now consider the following MPL system:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ ue, y(k) = C ⊗ x(k) . (19)

First let us show that Xe = {xe} is asymptotically stable for Eq. 19 with a region of
attraction R

n
ε . Before proving this statement let us note that from the property of

non-expansiveness (see e.g. Heidergott et al. 2005, Lemma 3.10) it follows that

‖(A ⊗ x ⊕ B ⊗ u) − (A ⊗ y ⊕ B ⊗ v)‖∞ ≤ ‖x − y‖∞ ⊕ ‖u − v‖∞ (20)

for any matrices A ∈ R
n×n
ε and B ∈ R

n×m
ε such that [A B] is row-finite and for any

x, y ∈ R
n and u, v ∈ R

m.

Theorem 3.1 Suppose that Assumption A1 holds and the equilibrium pair (xe, ue) is
finite. Then, the set Xe = {xe} is asymptotically stable with respect to the closed-loop
system 19 with R

n as region of attraction. Moreover, the convergence towards {xe} is
achieved in a finite number of steps.
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Proof Note that φ(k; x, ue)= A⊗k ⊗ x ⊕ (⊕k
t=1 A⊗k−t ⊗ B ⊗ ue

)
. Recall that Aij <0

for all i, j ∈ N[1,n] (according to Assumption A1). Then it is well-known (see e.g.

Heidergott et al. 2005, Section 2.3) that for all x ∈ R
n: A⊗k ⊗ x → ε, as k → ∞.

From Eqs. 16 and 17 it follows that xe = ⊕n
t=1 A⊗n−t ⊗ B ⊗ ue. Therefore, there

exists a finite integer k(x) ≥ n such that φ(k; x, ue) = xe for all k ≥ k(x), i.e. con-
vergence towards the equilibrium xe is achieved in finite number of steps. In fact, we
can even determine an upper bound for k(x). Indeed, since Aij < 0 for all i, j, then if


 ≥ pn for some integers 
 and p, it follows that (A⊗

)ij is either equal to ε or it is the

weight of a path of length 
 that contains at least p cycles (see Baccelli et al. 1992,
Chapter 2 for appropriate definitions for path and cycle, and for an interpretation of
the MPA power A⊗k

in terms of graphs). Note that for any cycle the weight of the
cycle is less than λmax − ρ < 0. Since (A⊗k ⊗ x)i = max j{(A⊗k

)ij + x j}, it follows that
by choosing6 p = �maxi, j

(xe)i−x j

λmax−ρ
�, we have A⊗pn ⊗ x ≤ xe. Furthermore, since Aij < 0

for all i, j, we have A⊗pn+l ⊗ x ≤ xe for all l ∈ N. Therefore, pn is an upper bound
on k(x).

It now remains to prove that Xe = {xe} is stable. Note that xe = A⊗k ⊗ xe ⊕
(
⊕k

t=1 A⊗k−t ⊗ B ⊗ ue) for all k ≥ 1. Since we assume that xe is finite, it follows

that the matrix [A⊗k ⊕k
t=1 A⊗k−t ⊗ B] is row-finite for all k. Then, from Eq. 20 it

follows that

‖φ(k; x, ue) − xe‖∞ ≤ ‖x − xe‖∞ ∀ x ∈ R
n, k ≥ 0 ,

i.e. the set Xe = {xe} is stable for Eq. 19 (here we have δ = θ for Definition 2.3).

3.2 Maximal invariant set O∞

We recall that by Assumptions A1–A2 we have A < 0 and H ≥ 0. We define the
input-state admissible set associated with the closed-loop system 19 subject to the
constraints 15

O0 := {x ∈ R
n : Hx + Gue ≤ h} . (21)

We want to compute the maximal positively invariant set contained in the input-state
admissible set O0 corresponding to the closed-loop system 19. Therefore, we define
recursively the sets

Ok := {x ∈ O0 : f (x, ue) ∈ Ok−1} , (22)

for all k ≥ 1. From the definition of the set Ok and using induction it follows that
Ok ⊆ Ok−1 for all k ≥ 1. Indeed, for k = 1 the inclusion is obvious. Now let us assume
that Ok ⊆ Ok−1 and prove that this implies that Ok+1 ⊆ Ok. Using the definition of
the set Ok+1 and the induction hypothesis it follows that Ok+1 = {x ∈ O0 : f (x, ue) ∈
Ok} ⊆ {x ∈ O0 : f (x, ue) ∈ Ok−1} = Ok. Therefore, the limit of Ok exists and
we have

O∞ := lim
k→∞

Ok =
⋂

k≥0

Ok . (23)

6�x� denotes the largest integer less or equal to x.
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By induction we can prove that xe ∈ Ok for all k ≥ 0 and therefore xe ∈ O∞, i.e. O∞
is non-empty.

Proposition 3.2 Suppose that Assumption A2 holds. Then, the sets Ok are polyhedra
of the form

Ok = {x ∈ R
n : Hkx ≤ hk} , (24)

with Hk ≥ 0.

Proof For k = 0 the statement holds according to Assumption A2. Let us assume
that Ok−1 = {x ∈ R

n : Hk−1x ≤ hk−1} with Hk−1 ≥ 0 and prove that Ok has a similar
form. Since A ⊗ x ⊕ B ⊗ ue is a max expression in x and Hk−1 ≥ 0, it follows that the
inequality Hk−1 f (x, ue) = Hk−1 · (A ⊗ x ⊕ B ⊗ ue) ≤ hk−1 can be rewritten in the
form H̄kx ≤ h̄k with H̄k ≥ 0. So if we define Hk = [HT

k−1 H̄T
k ]T and hk = [hT

k−1 h̄T
k ]T ,

then Hk ≥ 0 and Ok can be written as Eq. 24. ��

From the previous lemma it is clear that the set O∞ is convex (it is a countable
intersection of polyhedral sets). We now derive conditions when O∞ is a polyhedron.
We first give a definition:

Definition 3.3 The set O∞ is finitely determined if there exists a finite positive
integer τ such that O∞ = Oτ .

Proposition 3.4

(i) If there exists a finite positive integer τ such that Oτ = Oτ+1, then O∞ is finitely
determined and it is a polyhedral set.

(ii) The set O∞ is the maximal positively invariant set for Eq. 19 contained in O0.

Proof

(i) Let us assume that there exists a finite positive integer τ such that Oτ =
Oτ+1. It is obvious that Oτ+2 ⊆ Oτ+1. Moreover, for any x ∈ Oτ+1 it follows
that f (x, ue) ∈ Oτ = Oτ+1, i.e. x ∈ Oτ+2. In conclusion, Oτ+1 ⊆ Oτ+2 and thus
Oτ+2 = Oτ+1 = Oτ . Iterating this procedure and using Eq. 23 we conclude that
O∞ = Oτ . Since Oτ is a polyhedron, it follows that O∞ is also a polyhedral set.

(ii) Let T ⊆ O0 be a positively invariant set for Eq. 19 and let x ∈ T. Then from
the definition of a positively invariant set we have H0 f (x, ue) ≤ h0. This implies
that x ∈ O1 (according to the recursion Eq. 22). Therefore, T ⊆ O1. By iterating
this procedure we obtain that T ⊆ Ok for all k ≥ 0. In conclusion, for any
positively invariant set T for Eq. 19 it follows that T ⊆ O∞ and thus O∞ is
maximal. ��

From Proposition 3.4 it follows that if O∞ is finitely determined, then O∞ is a
polyhedron of the form O∞ = {x ∈ R

n : H∞x ≤ h∞} with H∞ ≥ 0. Now, we give
sufficient conditions under which the set O∞ is finitely determined. Note that the
recursive relation Eq. 22 can be written equivalently as

Ok = {x ∈ Ok−1 : Hφ(k; x, ue) + Gue ≤ h} , (25)
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where φ(k; x, ue) can be written explicitly as φ(k; x, ue) = A⊗k ⊗ x ⊕ A⊗k−1 ⊗ B ⊗
ue ⊕ · · · ⊕ B ⊗ ue.

Theorem 3.5 Suppose that there exists a finite positive integer τ0 and a vector a ∈ R
n

such that Oτ0 ⊆ {x ∈ R
n : x ≤ a}, and that Assumption A1 holds. Then O∞ is finitely

determined.

Proof Since Aij < 0 for all i, j (according to Assumption A1), it follows that for all

x ∈ R
n: A⊗k ⊗ x → ε as k → ∞. Moreover, for any b ∈ R

n we have b ⊕ A ⊗ b ⊕
· · · ⊕ A⊗k+n ⊗ b = A∗ ⊗ b for all k ≥ 0. Since xe = A∗ ⊗ B ⊗ ue is finite, there exists
a τ ≥ max{n, τ0} such that A⊗k ⊗ a ≤ xe for all k ≥ τ . We now have to show that
Oτ = Oτ+1. Since Oτ+1 ⊆ Oτ , to complete the proof we now show that the other
inclusion is also valid, i.e. Oτ ⊆ Oτ+1.

Let x ∈ Oτ ⊆ Oτ0 ⊆ {x ∈ R
n : x ≤ a}. Then by Eq. 1 we have A⊗τ+1 ⊗ x ≤

A⊗τ+1 ⊗ a ≤ xe. It follows that: H · (A⊗τ+1 ⊗ x ⊕ A⊗τ ⊗ B ⊗ ue ⊕ · · · ⊕ B ⊗ ue) =
H ·(A⊗τ+1 ⊗x ⊕ A∗ ⊗ B ⊗ ue)= Hxe ≤h−Gue, i.e. x∈Oτ+1 and thus Oτ ⊆ Oτ+1. ��

Remark 3.6 It is often the case that the set O0 can be written as O0 = {x ∈ R
n :

xi ≤ a0
i , for i ∈ N[1,n]}, where a0

i is either a finite number or +∞ (when there are no
restrictions on xi). Then, we can prove that all the sets Ok can be written in a similar
form Ok = {x ∈ R

n : xi ≤ ak
i , for i ∈ N[1,n]}, where ak

i is either a finite number or +∞
(so every Ok is described by at most n inequalities).

We prove this by induction. For k = 0 this statement is true. Let us assume that
Ok = {x ∈ R

n : xi ≤ ak
i , for i ∈ N[1,n]} and prove that Ok+1 has a similar form. We

denote with ak = [ak
1 · · · ak

n]T . From the recursive relation (Eq. 22) we have

Ok+1 = {x ∈ R
n : x ≤ ak, A ⊗ x ≤ ak}

= {x ∈ R
n : x ≤ ak, x ≤ (−AT) ⊗′ ak} = {x ∈ R

n : x ≤ ak+1} ,

where ak+1 = min{ak, (−AT) ⊗′ ak} (recall that the operator ⊗′ is defined in Section
2.1). We conclude that O∞ is described by at most n inequalities and in fact O∞ =
{x ∈ R

n : x ≤ a∞} where a∞
i is either in R or equal to +∞ for any i ∈ N[1,n].

Note that the results obtained in this section concerning the maximal positively
invariant set O∞ for the MPL system 19 are similar to the ones obtained in (Gilbert
and Tan 1991) for conventional, time-driven linear systems.

4 Stable model predictive control for MPL systems

The main advantage of MPC is that it can accommodate constraints on inputs and
states. In this section it is assumed that the maximal positively invariant set O∞ is
available and that it is a polyhedron, i.e. O∞ = {x ∈ R

n : H∞x ≤ h∞} with H∞ ≥ 0
(according to Section 3.2).
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4.1 State regulation

We first give a lemma that will be used in the sequel:

Proposition 4.1

(i) Let X = {x ∈ R
n : Px ≤ q}, where P ≥ 0, be a non-empty set and let x0 ∈ R

n.
Then d∞(x0,X ) = minx∈X max{‖x0 − x‖⊕, 0}.

(ii) In particular if X = {x ∈ R
n : x ≤ a}, then d∞(x0,X ) = max{‖x0 − a‖⊕, 0}.

Proof

(i) Note that since x0 is finite and since the points of X are also finite and X is
non-empty and closed, the distance d∞(x0,X ) is defined and finite.

First we consider the case where x0 ∈ X . Then we have d∞(x0,X ) = 0 and
minx∈X ‖x0 − x‖⊕ ≤ 0 (note that for x = x0 we have ‖x0 − x‖⊕ = 0 which im-
plies that the minimum — or better, infimum, in this case — will be less than or
equal to 0). This implies that the statement of part (i) of the proposition holds
if x0 ∈ X .
From now on we consider the case when x0 /∈ X .
Clearly, d∞(x0,X ) = minx∈X ‖x0 − x‖∞ > 0 if x0 /∈ X . Let us now prove that
also minx∈X ‖x0 − x‖⊕ > 0 if x0 /∈ X . We do this by contradiction. Suppose that
there exists an x̃ ∈ X such that ‖x0 − x̃‖⊕ ≤ 0. Then we have maxi{(x0)i − x̃i} ≤
0 and thus (x0)i − x̃i ≤ 0 for all i, which implies that x0 ≤ x̃. Since P ≥ 0, this
results in Px0 ≤ Px̃ ≤ q. So x0 ∈ X , which is in contradiction with the fact
that x0 /∈ X . As a consequence, we have ‖x0 − x‖⊕ > 0 for all x ∈ X . Since
infx∈X ‖x0 − x‖⊕ can be recast7 as a linear programming problem that is feasible
and for which the objective function is (strictly) bounded from below by 0, the
infimum is attained, which implies that the minimum minx∈X ‖x0 − x‖⊕ exists
and satisfies minx∈X ‖x0 − x‖⊕ > 0.
Let x ∈ R

n. From the definition of ‖x0 − x‖⊕ and ‖x0 − x‖∞, it directly follows
that ‖x0 − x‖⊕ ≤ ‖x0 − x‖∞ for any x ∈ R

n. This implies that minx∈X ‖x0 −
x‖⊕ ≤ minx∈X ‖x0 − x‖∞. So to complete the proof of part (i) we have to prove
that we also have minx∈X ‖x0 − x‖⊕ ≥ minx∈X ‖x0 − x‖∞.
Let x† be a point of X for which ‖x0 − x†‖⊕ = minx∈X ‖x0 − x‖⊕. For ‖x0 −
x†‖∞ we now distinguish between two cases:

Case A: There exists an index i ∈ N[1,n] such that ‖x0 − x†‖∞ = (x0)i − x†
i .

Then we have (x0) j − x†
j ≤ (x0)i − x†

i for all j ∈ N[1,n]. Hence, ‖x0 −
x†‖⊕ =(x0)i−x†

i =‖x0−x†‖∞. So in this case, ‖x0−x†‖⊕ =‖x0−x†‖∞.
Case B: We have ‖x0 − x†‖∞ > (x0) j − x†

j for all j ∈ N[1,n].

7By introducing a dummy variable t such that t � ‖x0 − x‖⊕ or equivalently t ≥ (x0)i − xi for all i,
and then minimizing t subject to these constraints and to Px ≤ q, we obtain a linear programming
problem. It is easy to verify that for the optimal solution (topt, xopt) of this linear programming
problem we have topt = ‖x0 − xopt‖⊕.
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Now we will prove that this case can be transformed and reduced to Case A.
If ‖x0 − x†‖∞ > (x0) j − x†

j for all j ∈ N[1,n], then there should exist an index

i ∈ N[1,n] such that ‖x0 − x†‖∞ = x†
i − (x0)i. Since ‖x0 − x†‖∞ > 0, we then have

x†
i > (x0)i. This implies that the set I = {i ∈ N[1,n] : x†

i > (x0)i} is non-empty. If
we now define xfeas ∈ R

n such that (xfeas)i = (x0)i if i ∈ I , and (xfeas)i = x†
i if

i �∈ I , then we have xfeas ≤ x†. Since P ≥ 0, this implies that Pxfeas ≤ Px† ≤ q
and thus xfeas ∈ X . Moreover, we have

‖x0 − x†‖⊕ ≤ ‖x0 − xfeas‖⊕ (by the definition of x† and as xfeas ∈ X )

= max
l∈N[1,n]

{(x0)l − (xfeas)l}

= max
{

max
i∈I

{(x0)i − (xfeas)i}, max
j∈N[1,n]\I

{(x0) j − (xfeas) j}
}

= max
{
0, max

j∈N[1,n]\I
{(x0) j − (xfeas) j}

}
(as (xfeas)i = (x0)i

for all i ∈ I)

� ‖x0 − x†‖⊕ (as ‖x0 − x†‖⊕ > 0 and by the definition of I).

So ‖x0 − x†‖⊕ = ‖x0 − xfeas‖⊕, which means that also for xfeas we have ‖x0 −
xfeas‖⊕ = minx∈X ‖x0 − x‖⊕. Now we show that if we redefine x† to be equal to
xfeas then Case A holds. Indeed, we have

‖x0 − xfeas‖∞ = max
l∈N[1,n]

{
max{(x0)l − (xfeas)l, (xfeas)l − (x0)l}

}

= max
{

max
i∈I

{
max{(x0)i − (xfeas)i, (xfeas)i − (x0)i}

}
,

max
i∈N[1,n]\I

{
max{(x0)i − (xfeas)i, (xfeas)i − (x0)i}

}}

= max
{

0, max
i∈N[1,n]\I

{(x0)i − (xfeas)i}
}

by the definition of I and since for i �∈ I we have (xfeas)i = x†
i ≤ (x0)i. Since

‖x0 − xfeas‖∞ > 0, it follows that ‖x0 − xfeas‖∞ = maxi∈N[1,n]\I{(x0)i − (xfeas)i},
i.e., xfeas satisfies Case A above, and thus ‖x0 − xfeas‖⊕ = ‖x0 − xfeas‖∞.
In conclusion, we can always find a point x† ∈ X for which ‖x0 − x†‖⊕ =
minx∈X ‖x0 − x‖⊕ = ‖x0 − x†‖∞. This implies that minx∈X ‖x0 − x‖⊕ = ‖x0 −
x†‖⊕ = ‖x0 − x†‖∞ ≥ minx∈X ‖x0 − x‖∞. Together with the reverse inequal-
ity obtained previously, this results in minx∈X ‖x0 − x‖⊕ = minx∈X ‖x0 − x‖∞,
which concludes the proof of part (i).

(ii) If x0 ∈ X , then d∞(x0,X ) = 0 and also ‖x0 − a‖⊕ ≤ 0, which means that the
result holds in this case.
If x0 /∈ X and x ≤ a, then d∞(x0,X ) > 0 and x0 − x � x0 − a. So maxi{(x0)i −
xi} � maxi{(x0)i − ai} and thus also d∞(x0,X ) = minx∈X maxi{(x0)i − xi} �
maxi{(x0)i − ai}. So d∞(x0,X ) � ‖x0 − a‖⊕. On the other hand, from part (i)
of this proposition it follows that 0 < d∞(x0,X ) = minx∈X maxi{(x0)i − xi} �
‖x0 − a‖⊕. Hence, d∞(x0,X ) = ‖x0 − a‖⊕. ��
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The MPC strategy derived in this section uses O∞ as the terminal set, where we
recall that O∞ is a polyhedron of the form O∞ = {x ∈ R

n : H∞x ≤ h∞} with H∞ ≥ 0.
For a given positively invariant set Xe for Eq. 19 such that xe ∈ Xe ⊆ O∞, we define
a continuous stage cost 
(x, u) with the following properties:

P1: 
(x, u) = 0 iff x ∈ Xe and u = ue.
P2: 
(x, u) ≥ α(d∞(x, Xe) + ‖u − ue‖∞) for all x and u, where α is a K-function.

Some examples of such stage costs are


(x, u) = ‖x − xe‖∞ + γ ‖u − ue‖∞ (26)


(x, u) = max
i∈N[1,n]

{xi − (xe)i, 0} + γ ‖u − ue‖∞ (27)


(x, u) = d∞(x,O∞) + γ ‖u − ue‖∞ , (28)

where γ > 0, i.e. it is a positive scalar. The stage cost (Eq. 26) corresponds to
Xe = {xe}, Eq. 27 corresponds to Xe = {x : x ≤ xe} (according to Proposition 4.1),
and Eq. 28 corresponds to Xe = O∞. Note that the first term in these stage costs
penalizes the tardiness with respect to the boundary of the set Xe while the second
term penalizes the deviation of the input from the equilibrium input ue. From
Proposition 4.1 it follows that in these cases the K-function α of Property P2 is the
identity function, i.e. α(x) = x.

We consider a prediction horizon N ≥ 1. For the event pair (k, x) (i.e. x(k) = x)
the following optimal control problem is considered:

PN(x) : V0
N(x) := min

u∈�N(x)
VN(x, u) , (29)

where the set of feasible input sequences is defined by8

�N(x) := {u : Hxi + Gui ≤ h ∀i ∈ N[1,N], xN ∈ O∞} ,

and the cost function is defined by VN : R
n × R

Nm → R

VN(x, u) =
N∑

i=1


(xi−1, ui) + Vf(xN) ,

where the stage cost 
 satisfies Properties P1–P2, and where u := [uT
1 · · · uT

N]T and
xi :=φ(i; x, u). It follows that x0 =x. The terminal cost is determined as Vf : O∞ →R

Vf(xN) :=
k(xN)∑

j=1


(x j, ue) ,

where k(xN) is finite and defined as in the proof of Theorem 3.1 and x j := φ( j; xN,

ue). Typically O∞ ⊆ {x : x ≤ a} (see Remark 3.6) and then an upper bound on k(x) is
k(a), where k(a) can be determined as in the proof of Theorem 3.1. Note that for the
stage cost Eq. 28 we always have a zero terminal cost since Vf(x) = 0 for all x ∈ O∞.

8So �N(x) is the set of input sequences for which starting from the initial state x the constraints (15)
are satisfied and for which the target set O∞ is reached after N steps.
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Let XN denote the set of finite initial states for which a feasible input sequence
exists, i.e.

XN := {x ∈ R
n : �N(x) �= ∅} .

The optimal control problem PN(x) yields an optimal control sequence u0(x) =
[(u0

1(x))T · · · (u0
N(x))T ]T for all x ∈ XN . The first control u0

1(x) is applied to the system
(Eqs. 13 and 14) at step k according to the receding horizon principle. This defines
an implicit MPC law κMPC(x) := u0

1(x). The next theorem shows that the closed-loop
system obtained from applying the MPC law κMPC to Eqs. 13 and 14 enjoys some
stabilizing properties.

Theorem 4.2 Suppose that Xe lies in the interior of the set XN and that Assumption
A1 holds. Then,

(i) the set Xe is asymptotically stable for the closed-loop system

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ κMPC(x(k − 1)) (30)

with a region of attraction XN, and
(ii) if there exists an a ∈ R

n such that Xe ⊆ {x ∈ R
n : x ≤ a}, then for each x ∈ XN

the closed-loop state trajectory of the system 30 is bounded.

Proof

(i) Consider the function V0
N : XN → R defined by Eq. 29. We will show that V0

N
satisfies the conditions from Theorem 2.5.
Let us show that XN is positively invariant for the system (Eq. 30). Let x ∈ XN ,
then there exists an optimal control sequence u0(x) ∈ �N(x). Moreover, let
x0 = [xT (x0

1)
T · · · (x0

N)T ]T be the corresponding optimal state trajectory. The
MPC input κMPC(x) steers the system from the state x to the successor state
x0

1 = f (x, κMPC(x)). Since x0
N ∈ O∞, we have f (x0

N, ue) ∈ O∞. Furthermore, the
feasible control sequence [(u0

2(x))T · · · (u0
N(x))T ]T steers the system from the

state x0
1 to x0

N ∈ O∞. It follows that at the next step a feasible input sequence
is given by uf = [(u0

2(x))T · · · (u0
N(x))T uT

e ]T , i.e. uf ∈ �N( f (x, κMPC(x))). We
conclude that f (x, κMPC(x)) ∈ XN and thus XN is a positively invariant set
for Eq. 30. As a consequence, for any initial state x ∈ XN we can guarantee
feasibility of the MPL–MPC optimization problem 29 at each step.
Using the properties of a multi-parametric convex program (see e.g.
Necoara 2006), the Properties P1–P2 of the stage cost, convexity of the function
f , and linearity of the constraints we can see that the first two conditions
from Theorem 2.5 are satisfied by V0

N . In particular, continuity of V0
N for

the stage cost 26 follows from Eq. 20, while for the stage costs 27 and 28
continuity of V0

N follows from multi-parametric linear programming arguments
(Necoara 2006, Section 2.3.1). It remains to prove the third condition. Due to
the special form of the chosen feasible input sequence uf, the input sequence
[(u0

2(x))T · · · (u0
N(x))T ]T steers the system from the state x0

1 to x0
N ∈ O∞ and then
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to f (x0
N, ue) ∈ O∞. Moreover, the terminal cost Vf is a finite sum of the stage

costs 
 over a horizon k(x0
N) corresponding to the input ue and thus

Vf(x0
N) =

k(x0
N)∑

j=0


(x0
N+ j, ue)

V0
N(x) =

N∑

i=1


(x0
i−1, u0

i (x)) + Vf(x0
N)

VN( f (x, κMPC(x)), uf) =
N∑

i=2


(x0
i−1, u0

i (x)) + Vf(x0
N) ,

where x0
N+ j = φ( j; x0

N, ue) and x0
0 := x. Then it follows that

V0
N( f (x, κMPC(x))) − V0

N(x) ≤ VN( f (x, κMPC(x)), uf) − V0
N(x)

= −
(x, u0
1(x)) ≤ −α(d∞(x, Xe)) (31)

and according to Property P2 of the stage cost, we obtain that the conditions
from Theorem 2.5 are satisfied. Therefore, Xe is asymptotically stable for Eq. 30
with a region of attraction XN .

(ii) For any finite initial state x ∈ XN , from (31) it follows that the se-
quence {V0

N(φ(k; x, κMPC))}k≥0 is non-increasing and bounded from below
and thus convergent. Moreover, 
(φ(k; x, κMPC), κMPC(φ(k; x, κMPC))) ≤ V0

N
(φ(k; x, κMPC))− V0

N(φ(k + 1; x, κMPC)). Therefore, limk→∞ 
(φ(k; x, κMPC),

κMPC(φ(k; x, κMPC))) = 0. Using continuity arguments and Properties P1–P2 of
the stage cost it follows that

lim
k→∞

κMPC(φ(k; x, κMPC)) = ue (32)

lim
k→∞

d∞(φ(k; x, κMPC), Xe) = 0 . (33)

Since the initial state x is taken to be finite and since the system is control-
lable and observable (according to Assumption A1), there does not exist a
finite k0 such that either φ(k0; x, κMPC) or κMPC(φ(k0; x, κMPC)) or y(k0) = C ⊗
φ(k0; x, κMPC) are equal to ε. If the set Xe is bounded (e.g. Xe = {xe} in Eq. 26),
then ‖φ(k; x, κMPC) − xe‖∞ is also bounded for all k ≥ 0 (this follows from the
triangle inequality for norms) and thus the buffer levels remain bounded.
If Xe is not bounded, then from Eq. 32 we conclude that for any fi-
nite initial state x ∈ XN there exists a finite lower bound u(x) such that
κMPC(φ(k; x, κMPC)) ≥ u(x) for all k ≥ 0. From the monotonicity property of
the max operator (Eq. 1) it follows that there exists a finite lower bound9 on the
corresponding state trajectory φ(k; x, κMPC) ≥ m(x) for all k ≥ 0. Since Xe ⊆
{x ∈ R

n : x ≤ a}, it follows that the set Xe ∩ {z : z ≥ m(x)} is bounded and then
using the same arguments as before we conclude that ‖φ(k; x, κMPC) − xe‖∞ is
also bounded for all k ≥ 0. ��

9I.e. m(x) := A∗ ⊗ x ⊕ A∗ ⊗ B ⊗ u(x) which is a finite vector.
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Remark 4.3

(i) Since in the constraints (Eq. 15) we have H ≥ 0 (according to Assumption A2),
and since for the terminal set O∞ we have H∞ ≥ 0, using basic properties of
the max operator it follows that �N(x) is a polyhedron, i.e. it is described by
linear inequalities: �N(x) = {u : Gu ≤ Hx + g}. Furthermore, the set of initial
states XN is also a polyhedron since XN is the projection of the polyhedral set
{(x, u) : Gu − Hx ≤ g} onto R

n. For the stage costs 27 or 28, using Proposition
4.1, the previous discussion and including extra variables, it follows that the
optimization problem (29) can be recast as a linear program (cf. Footnote 7).
For the stage cost (26) the optimization problem 29 can be recast as a mixed-
integer linear program, since in this case we also get that constraints that state
that a maximum of linear expressions should be larger than or equal to some
dummy variables. Such a constraint is not linear. However, by introducing
additional binary variables such a constraint can be recast as a system of linear
inequalities (Heemels et al. 2001). The overall problem then results in a mixed-
integer linear programming problem.

(ii) If Xe ⊂ int(O∞), then from Eq. 33 it follows that the trajectory enters the
terminal set O∞ in a finite number of steps. Inside O∞ we can use the feasible
controller ue (since O∞ is a positively invariant set for the system 19) and so
we can steer the trajectory towards the equilibrium xe in finite number of steps
as well (see Theorem 3.1). In conclusion, using such a dual-mode approach
(see also Mayne et al. 2000), we can guarantee that for any finite initial state
x ∈ XN , the trajectory reaches the steady state in finite number of steps.

(iii) Note that by increasing the prediction horizon N, the region of attraction
increases as well, i.e. for N1 < N2 it follows that XN1 ⊆ XN2 . Indeed, let
x ∈ XN1 then there exists a feasible u = [uT

1 · · · uT
N1

]T ∈ �N1(x) and we can
construct uf = [uT

1 · · · uT
N1

uT
e · · · uT

e︸ ︷︷ ︸
N2−N1 times

]T ∈ �N2(x), i.e. x ∈ XN2 .

4.2 Output regulation

For a given set Ye such that ye := C ⊗ xe ∈ Ye, we define a continuous stage cost

(x, u) with the following properties:

P1’: 
(x, u) = 0 iff C ⊗ x ∈ Ye and u = ue.
P2’: 
(x, u) ≥ α(d∞(y, Ye) + ‖u − ue‖∞) for all y = C ⊗ x and u, where α is a

K-function.

Examples of such stage costs are [see De Schutter and van den Boom (2001) for more
examples]


(x, u) = ‖y − ye‖∞ + γ ‖u − ue‖∞ (34)


(x, u) = max
j∈N[1,p]

{y j − (yt) j, 0} + γ ‖u − ue‖∞ (35)


(x, u) =
p∑

j=1

max{y j − (yt) j, 0} + γ ‖u − ue‖∞ , (36)
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where γ > 0 and y = C ⊗ x. The stage cost (34) corresponds to Ye = {ye}, and (35)
or (36) correspond to Ye = {y : y ≤ yt}. In the stage cost 34 the first term penalizes
the deviation of the output from the output equilibrium ye while the second term
penalizes the deviation of the input from the input equilibrium ue. The stage costs 35
and 36 have the following interpretation: the first term penalizes the tardiness with
respect to the due dates while the second term penalizes the deviation of the input
from the input equilibrium. From Proposition 4.1 it follows that the K-function α of
Property P2’ is in these cases the identity function, i.e. α(x) = x.

Using the same notations as in Section 4.1 we obtain the following corollary:

Corollary 4.4 Suppose there exists a vector b ∈ R
p such that Ye ⊆ {y ∈ R

p : y ≤ b}
and that Assumption A1 holds. Then, using in the optimal control problem 29 a
stage cost that satisfies Properties P1’–P2’ we obtain an MPC law κMPC

y for which the
corresponding closed-loop buffer levels are bounded.

Proof Using the same arguments as in the proof of Theorem 4.2 it follows that

lim
k→∞

κMPC
y (φ(k; x, κMPC

y )) = ue

lim
k→∞

d∞(C ⊗ φ(k; x, κMPC
y ), Ye) = 0

and that φ(k; x, κMPC
y ) is bounded for all k since the system is observable according to

Assumption A1 and therefore the buffer levels remain bounded for any finite initial
state x ∈ XN . ��

Using similar arguments as in Remark 4.3 (i) we conclude that for the stage costs
35 or 36 the corresponding MPC optimization problem 29 can be recast as a linear
program whenever Assumption A2 holds. For the stage cost (34) the optimization
problem 29 can be recast as a mixed-integer linear program.

5 Time-optimal controller for MPL systems

Given a maximum horizon length Nmax we now consider the problem of ensuring
that the completion times after N events, where N = 1, 2, · · · , Nmax, are less than
or equal to a specified target time T (i.e. y(N) ≤ T), using the “latest” controller
that satisfies the input and state constraints 15. Here “latest” means that the input
times should be as large as possible (so in a manufacturing context we would feed the
raw material as late as possible). Note that such a problem, but without considering
constraints, was considered also in (Baccelli et al. 1992, Chapter 6) in terms of lattice
theory. The time-optimal control problem in our setting is different from the classical
one: we want to maximize N instead of minimizing it; so in fact a better term would
be “throughput-optimal” control.

The time-optimal control problem can be posed in terms of an optimization
problem: given x := x(0), find

N0(x) = max
N∈N[1,Nmax ], u∈�T

N(x)

N ,
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where �T
N(x) := {u : Hxi + Gui ≤ h, ∀i ∈ N[1,N], yN ≤ T} with yN = C ⊗ xN . More-

over, since we aim for the latest input times, we want u1, . . . , uN to be as big as
possible [see also (Baccelli et al. 1992, Chapter 6)]. We denote with XT

N = {x :
�T

N(x) �= ∅}, i.e. the set of initial states such that after N steps the trajectory is below
the target time T. It follows that

N0(x) = max
N

{N ∈ N[1,Nmax] : x ∈ XT
N} . (37)

Since we want the latest controller, a suitable choice of the stage cost is 
(x, u) =
−∑m

j=1 u j.
The time-optimal controller is then implemented as follows:

(1) For each N ∈ N[1,Nmax], solve the linear program

min
u∈�T

N(x)
−

N∑

i=1

m∑

j=1

(ui) j .

(2) Determine N0(x) according to Eq. 37.
(3) Apply the control sequence u0(x) corresponding to the prediction horizon

N0(x).

The time-optimal control problem involves solving Nmax linear programs in Step 1
above. The set XN has the following interpretation: the boundary of the polyhedron
XT

N represents the latest starting times such that after N events the output is below
the target time T.

6 Example

Consider the manufacturing system of Fig. 1. It consists of three processing units.
Raw material is fed to the first two units, processed and sent to the third unit where
assembly takes place. Each unit can only start working on a new product if it has
finished processing the previous product. We assume that each processing unit starts
working as soon as all parts are available. We denote with usys(k) the time at which
a batch of raw material is fed to the system for the kth cycle, (xsys)i(k) the time at
which unit i starts working for the kth cycle, and ysys(k) the time at which the kth

Fig. 1 A manufacturing system
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product leaves the system. We also denote with pi and t j the transportation times
and processing times, respectively. We take the following value for these parameters:
t1 = 1, t2 = 1, t3 = 0, t4 = 3, t5 = 0, t6 = 0, p1 = 1, p2 = 2, p3 = 2.

Now we explain in more detail the dynamical equation that describes the evolution
of the first processing unit: unit 1 will start with job k when

• the previous job is finished, indicated by (xsys)1(k − 1) + p1 (i.e. the start of the
previous job (k − 1) plus the production time p1), and

• the raw material has arrived at the unit at time usys(k) + t1 (i.e. the time the raw
material is put into the system plus the transportation time t1).

Since processing unit 1 starts working on as soon as the raw material is available
and the current product has left the machine, this implies that we have (xsys)1(k) =
max{(xsys)1(k − 1) + 1, usys(k) + 1}. In max-plus algebra this expression can be writ-
ten as (xsys)1(k) = 1 ⊗ (xsys)1(k − 1) ⊕ 1 ⊗ usys(k). The same reasoning applies to the
second and third processing unit. Therefore, the MPA state space equations of the
system, written in matrix form, are

xsys(k) =
⎡

⎣
1 ε ε

2 2 ε

5 4 2

⎤

⎦ ⊗ xsys(k − 1) ⊕
⎡

⎣
1
2
5

⎤

⎦ ⊗ usys(k)

ysys(k) = [ε ε 2] ⊗ xsys(k) .

For this example the (maximal) MPA eigenvalue of the system matrix Asys is
λmax = 2. We consider the reference signal for the output rsys(k) = 5 + ρk with
ρ = 1.5λmax = 3. We take the following constraints:

usys(k) − usys(k + 1) ≤ 0 (38)

(xsys)2(k) − usys(k) ≤ 2.5 . (39)

The initial conditions are xsys(0) = [9 13 14]T , usys(0) = 6.
We now apply MPC. We choose the prediction horizon N = 12. We consider the

stage cost 36 and we apply the MPC approach of Section 4.2. In this case the MPC
optimization problem 29 can be recast as a linear program.

For the normalized system (obtained as in Section 2) the positively invariant set
O∞ is determined after 4 iterations: O∞ = O4 = {x ∈ R

4 : I4x ≤ [0.5 − 0.5 0 0]T}.
By solving the linear program 29 in a receding horizon fashion we obtain for the

original system the following MPC input sequence:

{κMPC
y (x(k − 1)) + ρk}15

k=0 = 6, 12.5, 14.5, 16.5, 18.5, 20.5, 22.5, 24.5,

26.5, 28.5, 30.5, 32.5, 34.5, 37, 40, 43 .

The results of the closed-loop simulations are displayed in Fig. 2. We observe from
the top plot that although we start later than the initial due date the closed-loop
output is able to track the due date signal after a finite transient behavior, i.e. we
have closed-loop stability. The middle plot displays the MPC input. We see that the
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Fig. 2 The closed-loop MPC simulations

MPC input reaches the steady-state behavior in finite number of steps and that it is
nondecreasing. The input-state constraints 39 are depicted in the bottom plot. Note
that the MPC keeps the system behavior as close as possible to the constraints.

Let us now compare our MPC method with the other control design methods
mentioned in Section 1. The max-plus control approaches proposed in (Baccelli et al.
1992; Cottenceau et al. 2001; Libeaut and Loiseau 1995; Menguy et al. 1997) typically
involve an open-loop optimal control problem over a simulation horizon and for
a given due date signal rsys such that the output of the system ysys should satisfy
ysys(k) ≤ rsys(k) for all k. The solution of this optimal control problem is computed
using residuation, resulting in a just-in-time control input. The main disadvantage of
this approach is that it cannot cope with tracking problems where the outputs do not
occur before the due dates, and that the resulting control input sequence is sometimes
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decreasing, i.e. the constraint 38 might be violated. For instance, if we apply the
method of (Libeaut and Loiseau 1995) we get the following just-in-time control
sequence {usys(k)}15

k=0 = 6, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43.
This sequence is not feasible since we have usys(1) = 1 < usys(0) = 6, i.e. the con-
straint 38 is violated. This infeasibility is caused by the fact that the optimal input
aims to fulfill the constraint ysys(k) ≤ rsys(k) for all k, which cannot be met using a
nondecreasing input sequence. So other residuation-based control design methods
that also include this constraint such as (Baccelli et al. 1992; Cottenceau et al. 2001;
Menguy et al. 1997) would also yield a control sequence that is not nondecreasing
and thus infeasible.

These issues are overcome in (Maia et al. 2003; Menguy et al. 2000) by using
a projection on the set of nondecreasing input sequences, or by considering a
residuation-based adaptive control approach. The methods of (Maia et al. 2003;
Menguy et al. 2000) result in nondecreasing input sequences and allow violations of
the due dates. However, in contrast to the MPC approach presented in this paper the
approaches of (Maia et al. 2003; Menguy et al. 2000) cannot cope with more complex
state and input constraints, such as Eq. 39. For instance, using the adaptive control
approach of (Menguy et al. 2000) we obtain the following optimal input sequence
{usys(k)}15

k=0 = 6, 6, 6, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43. However,
by applying this control the constraint 39 is violated (e.g. (xsys)2(1)−usys(1)=9 �≤ 2.5).

The MPC approach of De Schutter and van den Boom (2001) can cope with state-
input constraints. However, this approach cannot guarantee a priori stability of the
closed-loop system. Note that stability is really an issue when designing controllers
for MPL systems [see van den Boom et al. (2005) for an illustrative example where
instability of the MPC-MPL closed-loop system occurs].

7 Conclusions

In this paper we have discussed the problem of stabilization of an MPL system subject
to state-input constraints using MPC. We have derived an MPC strategy based on a
terminal set-terminal cost approach that guarantees that the closed-loop input and
state sequences satisfy a given set of linear inequality constraints. We have also
shown that with this strategy asymptotic stability can be guaranteed a priori. For
particular nonnegative piecewise affine stage costs we have shown that the MPL-
MPC optimization problem can be recast as a linear program for which efficient
algorithms exist. Moreover, under some additional assumptions we have proved that
two types of stability (asymptotic stability and boundedness) hold for the closed-loop
MPC. For the time-optimal MPL control subject to linear constraints on the inputs
and states we have also derived the solution, based on linear programming.
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