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Abstract In this paper, we present a method to determine globally optimal schedules
for cyclically operated plants where activities have to be scheduled on limited
resources. In cyclic operation, a large number of entities is processed in an identical
time scheme. For strictly cyclic operation, where the time offset between entities is
also identical for all entities, the objective of maximizing throughput is equivalent
to the minimization of the cycle time. The resulting scheduling problem is solved
by deriving a mixed integer optimization problem from a discrete event model. The
model includes timing constraints as well as open sequence decisions for the activities
on the resources. In an extension, hierarchical nesting of cycles is considered, which
often allows for schedules with improved throughput. The method is motivated by
the application to high throughput screening plants, where a specific combination of
requirements has to be obeyed (e.g. revisited resources, absence of buffers, or time
window constraints).
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1 Introduction

Cyclic operation is characterized by the repetition of worksteps in a periodic scheme.
This contribution considers cyclically operated plants, where the sequence and timing
of worksteps is identical for all cycles. A usually large number of entities (batches)
is processed successively in an identical time scheme. This can be advantageous or
even compulsory for robot production lines or chemical batch processes as well as for
transportation systems and in many other areas. A new field of application for cyclic
operation methods are so-called screening plants, where a large number of substances
are analyzed with respect to their benefit for chemical or pharmaceutical purposes.
Determining the sequence and timing of the worksteps for a cyclic screening run is a
scheduling problem (Brucker 2004; Pinedo 1995; Parker 1995) that is characterized
by a specific combination of requirements:

• Cyclic operation: all batches pass the plant in an identical time scheme. For
Strictly cyclic operation, the time offset between the start of consecutive batches
is always constant. For screening plants, the requirement of identical time
schemes for all batches is mandatory in order to receive comparable analysis
results.

• Due dates: the time scheme for the batch may be restricted, involving lower as
well as upper bounds (time window constraints).

• General precedence network structure: the sequence of worksteps for the single
batch includes points of split-up and synchronization as well as parallel branches.

• Revisited resources: along the process, the same resource may be visited several
times by the same batch.

• Overtaking: batches will overlap in time. Worksteps for batch ρ may take place
prior to other worksteps for previous batches, even on the same resource.

• Deterministic workstep durations: the time needed for each workstep is prede-
fined and deterministic. Batch sizes and workstep recipies are fixed. Neverthe-
less, entities may keep resources allocated during additional waiting intervals
that succeed the worksteps.

• No buffers: after a workstep on one resource is finished, the resource will not
be released before the resource for the next workstep is allocated (blocking).
Thus, a batch will normally allocate two resources simultaneously while being
transferred. This may apply for some or all of the system’s resources.

• No preemption: worksteps cannot be interrupted by other worksteps on the same
resource.

• Globally optimal solution: we are interested in systematic approaches such that
a globally optimal solution can be guaranteed.

The set of worksteps which is necessary for a screening task as well as the sequence
of worksteps is specific for the substances and the tests to be performed. Thus, a new
instance of the scheduling problem has to be solved for every screening task. This
is performed in advance before the start of the screening run. The general objective
of scheduling is to maximize throughput, i.e. to process as many batches per time
as possible (high throughput screening) or, more generally, to finish a run of a fixed
number of batches as fast as possible.
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A large variety of cyclic scheduling problems have been considered in the
literature. Major applications include manufacturing systems (e.g. Levner et al.
1997; Crama et al. 2000; Seo and Lee 2002; Hall et al. 2002; Karimi et al. 2004)
traffic and transportation (e.g. Odijk 1996) or chemical batch plants (e.g. Pinto and
Grossmann 1998; Alle et al. 2004; Pinto and Grossmann 1994; Shah et al. 1993). For
the latter, additional degrees of freedom arise from recipies and material balances.
For screening processes, material balancing does not play a role since materials are
carried in the wells of microplates, which are always handled as one elementary unit.

Solution methods for cyclic scheduling are problem specific. If the sequence of
all worksteps (activities) is fixed, the minimum possible cycle time (i.e. a schedule
with maximum throughput) can be found using max-plus algebra (e.g. Lee 2000;
Seo and Lee 2002) or algorithms with polynomial complexity (e.g. Lee and Posner
1997; Levner and Kats 1998). If batches do not overlap on any single resource, i.e. all
activities of a batch are finished on a resource prior to the start of the first activity of
the following batch (no overtaking), the problem of scheduling is reduced to fixing
the optimal sequence and timing such that the single batch can be processed and
repeated as fast as possible (e.g. Hall et al. 2002; Lee and Posner 1997; Levner and
Kats 1998). Many of the cyclic scheduling methods in the literature address cycle
shop problems (Middendorf and Timkovsky 2002), which do not cover the case of
a general precedence network structure. Often, this is restricted further if resources
are only visited once by each batch (flow shop) or revisiting of resources is limited
to a single robot (e.g. Chen et al. 1998; Crama et al. 2000; Levner et al. 1997). The
absence of buffers may reduce the complexity of the scheduling problem (Crama
et al. 2000; Chen et al. 1998; Levner et al. 1997), but this is an additional requirement
if buffers exist for some of the resources but not for all of them, as it is the case for
screening plants. Another additional requirement is the demand for due dates resp.
time window constraints (e.g. Crama et al. 2000; Levner and Kats 1998; Chen et al.
1998), which makes it necessary to set up additional constraints in the scheduling
problem.

For many of these cyclic scheduling problems, an algorithm with polynomial
complexity has not been found. Such problems may nevertheless be efficiently
solved by formulating them as (mixed integer) optimization problems. Acceptable
calculation times for globally optimal solutions can then be achieved by use of
problem-specific formulations and branch-and-bound techniques (e.g. Chen et al.
1998; Roundy 1992; Seo and Lee 2002).

Although many of the approaches from the literature can be transferred to other
applications, they do not meet all the requirements listed above. For strictly cyclic
operation under these requirements, the maximum throughput problem has been
solved in Mayer and Raisch (2004) for problem instances from the pharmaceutical
industries. Several extensions, such as sequence dependent switching times or
resources with multiple capacity, have also been studied (Mayer and Raisch 2003).
The method presented there is not limited to screening plants but can be applied to
any cyclically operated system with the same (or less) requirements.

This contribution provides a thorough discussion of the modeling and solution
steps for the strictly cyclic maximum throughput problem. It then addresses the
extension of the strictly cyclic case to a more general hierarchical cyclic structure,
where cycles are nested in two levels. For specific task structures, this allows for
considerably increased throughput.
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This paper is arranged as follows: In Section 2, we present a timed discrete event
model for cyclic processes with activities and resources. The constraints for the
scheduling problem are derived. In Section 3, it is shown that the scheduling problem
can be cast into a mixed integer linear program (MILP). A number of additional
constraints are provided which allow to reduce computation time of the globally
optimal solution.

In Section 4, the method is extended from the basic strictly cyclic case to the
hierarchical cyclic case. It is shown that, by an appropriate modeling approach, the
hierarchical cyclic problem can be formulated as a nonlinear mixed-integer program.
A transformation to a mixed-integer linear program is presented, which again allows
effective solution of the scheduling problem. In Section 5, both, the strictly cyclic
and the hierarchical cyclic method, are illustrated by a small illustrating example and
finally in Section 6, both methods are applied to a standard problem instance from
high throughput screening.

2 Discrete event modeling of cyclic systems for scheduling

2.1 General setup

The general modeling approach for cyclic processes is described in Mayer and Raisch
(2004), Mayer (2007) and will therefore only be outlined in this paper.

Using a system with m resources of capacity 1, a set of n worksteps (a batch)
is executed a large number of times. The single batch represents one job or a
fixed group of jobs. The worksteps (activities) for the batch are given in the batch
definition, together with sequence and timing constraints. The duration needed for
the workstep within any activity is predefined and deterministic. Also, the resource
allocated by the activity during execution is well defined.

For the basic cyclic scheduling problem, a strictly cyclic operating scheme is
applied. Batches are started repeatedly with a fixed time offset, called cycle time
T. The activities of the batch as well as their sequence and timing are identical for
all batches. Usually, the overall processing time of the single batch exceeds the time
distance between the start of consecutive batches. Therefore batches may overlap,
i.e. at any instant of time, several batches may be in process simultaneously.

The model for the cyclic process therefore consists of two ingredients: the cycle
time T and the single batch time scheme, which is valid for all batches:

oi ∈ R . . . time, when activity i starts.

ri ∈ R . . . time, when activity i ends,

ri > oi

i = 1 . . . n (1)

Each activity allocates precisely one resource, denoted by Ji.

Ji . . . resource allocated by activity i,

Ji ∈ {1 . . . m}.
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Fig. 1 Example for a single batch time scheme (Gantt chart)

Of course, any resource may be allocated subsequently by different activities. Within
the single batch time scheme, the number of activities allocating resource j is

n j =
n∑

i=1

δJi j , j = 1 . . . m , (2)

where δJi j =
{

0 for Ji �= j

1 for Ji = j.

Together with the cycle time T, the single batch time scheme defines the timing
for the entire cyclic schedule: the times for the ρ-th batch are given by:

o(ρ)

i = oi + ρ · T

r(ρ)

i = ri + ρ · T, ρ ∈ Z, i = 1 . . . n. (3)

Note that the cyclic model does not account for the overall number of batches: in
principle, the cyclic process could be repeated infinitely often. Figure 1 shows an
example for a simple single batch time scheme involving n = 4 activities on m = 2
resources. The optimal strictly cyclic schedule for this single batch time scheme is
pictured as a Gantt chart in Fig. 2.

The batch definition given by the user identifies the set of activities together
with their resources Ji. If the values for the variables oi and ri, i = 1 . . . n, were
predetermined, the cycle time T would remain as the only degree of freedom. The
problem would then be reduced to the problem of determining the optimal value for
T and could be solved by simple algorithms in polynomial time. The optimal value
for T could for example be found by successively excluding all forbidden intervals
from the range of possible values for T. These intervals can be directly derived from
the fact that two activities cannot allocate the same resource simultaneously. The
number of forbidden intervals for n activities is O(n2).

However, in most cases the user will not fix the entire batch time scheme but will
only provide a number of (usually) linear constraints for the set of possible values for

Time

Resource 2

Resource 1

Batch ρ + 3ρρ − 1ρ − 2 ρ + 2ρ + 1

110 120-10 0-20 10 20 30 40 50 60 70 9080 100

Fig. 2 Optimal cyclic schedule for the single batch time scheme from Fig. 1
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the variables oi and ri. These constraints, together with a number of problem-intrinsic
constraints, will be discussed in Section 2.2.

Often, the mathematical formulation can be substantially simplified by suitably
parameterizing the time instants oi and ri. We represent the oi and ri as affine
functions of K time variables θk ∈ R

+
0 , k = 1 . . . K, where normally K << 2n:

oi = χi,0 +
K∑

k=1

(χi,k · θk) . . . time, when activity i starts ,

ri = ψi,0 +
K∑

k=1

(ψi,k · θk) . . . time, when activity i ends. (4)

Thus, the single batch time scheme is defined by the fixed parameters χi,0, ψi,0, χi,k,
and ψi,k, i = 1 . . . n, k = 1 . . . K and yet unknown variables θk, k = 1 . . . K.

The reparametrization (4) allows to reduce the number of degrees of freedom
in the timing of the single batch. Often, a parametrization can be found such that
the variables θk can simply be interpreted as an artificial delay that is either inserted
between two activities of the single batch time scheme or within an activity just before
the entity is transferred to a subsequent resource. The number K of variables θk

depends on the sequence structure of the activities in the batch definition. It is always
possible to find a parametrization (4) with K < 2n. A formal method to derive the
parameters χi,0, ψi,0, χi,k and ψi,k from a raw graph description of the batch definition
can be found in Mayer (2007).

2.2 Constraints

There are three types of constraints that have to be met by the cyclic schedule.
First, a number of user defined constraints for the single batch time scheme, i.e.

the variables oi and ri, i = 1 . . . n, ensure

1. That activities last long enough to allow finishing of the required operations
2. That certain sequence constraints hold (for example, a batch may not be allowed

to allocate the next resource before the activity in the previous resource is
completed)

3. That certain time window constraints (e.g. maximum admissible durations for
chemical reactions) hold.

After applying parametrization (4), these constraints for the variables oi and ri are
represented by upper bounds for the time variables θk:

θk ≤ θk,max , k = 1 . . . K , θk ∈ R
+
0 (5)

and by P additional linear constraints of the form

K∑

k=1

(κp,k · θk) ≤ ϑp , p = 1 . . . P. (6)
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Second, there is the problem intrinsic constraint that the cycle time T can never
be smaller than the sum of activity durations on any resource during the single batch
time scheme:

T ≥
n∑

i=1

(ri − oi)δJi j , j = 1 . . . m. (7)

Substituting Eq. 4 into Eq. 7 results in

γ j,0 +
K∑

k=1

(γ j,k · θk) − T ≤ 0 , j = 1 . . . m , (8)

where

γ j,0 =
n∑

i=1

(ψi,0 − χi,0)δJi j

γ j,k =
n∑

i=1

(ψi,k − χi,k)δJi j.

Third, there is the requirement that no two activities are allowed to allocate the
same resource simultaneously (disjunctive constraints).

This requirement is met if the mutual exclusion condition

o(ρ2)

i1 ≥ r(ρ1)

i2 XOR o(ρ1)

i2 ≥ r(ρ2)

i1 (9)

holds for any pair of activities using the same resource, i.e. for all i1, i2 ∈ {1 . . . n},
ρ1, ρ2 ∈ Z, i1 < i2, Ji1 = Ji2 . Due to symmetry in Eq. 9, it is sufficient to demand Eq. 9
for i1 < i2. The special case i1 = i2, ρ1 �= ρ2 is already ensured by Eq. 7.

For strictly cyclic operation, it has been shown in Mayer and Raisch (2004) that
the following condition correctly models the constraint (9):

∀(i1, i2), i1 < i2, Ji1 = Ji2 ∃ z(i1,i2) ∈ Z s.t.

z(i1,i2) · T − (oi2 − ri1) ≤ 0 (10)
(

z(i1,i2) + 1
)

·T − (ri2 − oi1) ≥ 0. (11)

Thus, an integer variable z(i1,i2) is introduced for each pair of activities within the
single batch time scheme that use the same resource. For oi2 > oi1 and z(i1,i2) ≥ 0, this
allows for the following physical interpretation for the integer variable z(i1,i2):

between activity i1 for a batch ρ1 and activity i2 for the same batch, the resource
is used for exactly z(i1,i2) activities of type i1 of subsequent batches, i.e. for batches
ρ2 ∈ {ρ1 + 1 . . . ρ1 + z(i1,i2)}.
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By introducing the integer variables, the infinite number of XOR conditions (9) is
replaced by a finite number of requirements of the form (10), (11).

In order to formulate the scheduling problem as a mixed integer optimization
problem with compact notation, some abbreviations are introduced.

Each possible pair of indices (i1, i2), i2 > i1, Ji1 = Ji2 , is denoted by a single
number ι,

ι = 1 . . . ιmax , ιmax =
m∑

j=1

n j(n j − 1)

2
. (12)

Hence, each value for ι signifies a pair of activities (within the single batch time
scheme) using the same resource.

Substituting Eq. 4 into Eqs. 10 and 11 results in

zι · T − vι,0 −
K∑

k=1

(vι,k · θk) ≤ 0 (13)

(zι + 1) · T − wι,0 −
K∑

k=1

(wι,k · θk) ≥ 0 (14)

with the following abbreviations:

vι,k = χi2,k − ψi1,k (15)

wι,k = ψi2,k − χi1,k (16)

vι,0 = χi2,0 − ψi1,0 (17)

wι,0 = ψi2,0 − χi1,0. (18)

Constraints (13) and (14) have to hold for all ι = 1 . . . ιmax.

3 Optimization problem

The objective of the scheduling problem is to maximize throughput. For strictly
cyclic processes, this is equivalent to minimizing the cycle time T. Formulating the
scheduling problem as an optimization problem, we have to take the cycle time T as
the objective function to be minimized under the constraints given by Eqs. 13 and 14
as well as Eqs. 5, 6, and 8. The search space for the optimization problem is defined
by the following variables:

• Cycle time T ∈ R
+ ,

• Time variables θk ∈ R
+
0 ,

• Integer variables zι ∈ Z .
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Hence, the basic cyclic scheduling problem can be written as the following mixed
integer nonlinear program:

Min T subject to

zι · T − vι,0 −
K∑

k=1

(vι,k · θk) ≤ 0 for ι = 1 . . . ιmax (19a)

(zι + 1) · T − wι,0 −
K∑

k=1

(wι,k · θk) ≥ 0 for ι = 1 . . . ιmax (19b)

θk ≤ θk,max for k = 1 . . . K (19c)

K∑

k=1

(κp,k · θk) ≤ ϑp for p = 1 . . . P (19d)

γ j,0 +
K∑

k=1

(γ j,k · θk) − T ≤ 0 for j = 1 . . . m (19e)

In general, problem (19a) to (19e) has more than one unique globally optimal
solution. Of course, any of its globally optimal solutions constitutes a throughput-
optimal cyclic schedule for the underlying problem instance. However, non-convex
mixed-integer optimization problems, especially of this size, are in general very
difficult to solve in a globally optimal way. Fortunately, it turns out that Eqs. 19a to
19e can be reformulated in mixed-integer linear form. Along the way, stricter bounds
for some variables are derived, which reduces computation time.

3.1 Strengthening the formulation

For batches, where some resources have to be shared by a large number of activities,
the optimization problem (19a) to (19e) may become very large (for n j activities on a
resource j, the number of pairs and therefore the number ιmax of integer variables
z is n j(n j−1)

2 , see Eq. 12). Therefore it can be helpful to add additional bounds
for the variables in Eqs. 19a to 19e, hence reducing the computation time for the
optimization algorithm.

A lower bound for the cycle time T can be derived from the fact that if each single
activity is finished as fast as possible and the busiest resource is allocated non-stop,
no further reduction of cycle time is possible:

T ≥ Tmin = max
j

(
min
θ1...θK

n∑

i=1

(ri − oi)δJi j

)
. (20)
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An upper bound Tmax for the cycle time T can be prescribed by the user.
Alternatively, such a bound can be deduced from the trivial case in which no batch is
started before the previous batch is finished:

T ≤ Tmax = max
θ1...θK

(
max

i
ri − min

i
oi

)
. (21)

A tighter bound can be derived if, in addition to Eq. 21, the single batch is required
to be finished as fast as possible. This corresponds to solving the optimization
problem (19a) to (19e) with zι ∈ {−1, 0}, which usually can be solved significantly
faster than the optimization problem with nominally unbounded variables z ∈ Z and
always has a solution if Eqs. 19a to 19e have a solution. Note that this upper bound
for T reduces the feasible region. Nevertheless, the feasible region does not become
empty. Since the objective is to minimize T, at least one globally optimal solution is
preserved in the formulation.

In addition to the bounds for T, lower and upper bounds for the integer variables
zι can be introduced as follows:

zι,min ≤ zι ≤ zι,max, ι = 1 . . . ιmax , (22)

where zι,min and zι,max are retrieved from solving the relaxation of Eqs. 19a to
19e, together with Eqs. 20 and 21 with the objective of minimizing respectively
maximizing zι (the relaxation of an optimization problem is obtained by allowing
the integer variables to take any value from R). A faster, but less strict way to find
lower and upper bounds zι,min, zι,max is as follows:

zι,min :=
⎧
⎨

⎩
� Wι

Tmin
	 − 1 for Wι < 0

� Wι

Tmax
	 − 1 for Wι ≥ 0

zι,max :=
⎧
⎨

⎩

 V̄ι

Tmax
� for V̄ι ≤ 0


 V̄ι

Tmin
� for V̄ι > 0

Wι = min
θ1...θK

(
wι,0 +

K∑

k=1

wι,k · θk

)

V̄ι = max
θ1...θK

(
vι,0 +

K∑

k=1

vι,k · θk

)
.

(
x� denotes the floor-function, i.e. the largest integer number that is less or equal
to x. �x	 denotes the ceil-function, i.e. the smallest integer number that is greater
or equal to x). These conditions can be derived directly from Eq. 19a resp. Eq. 19b,
together with Eqs. 20 and 21.

Conditions (22) can be interpreted as Gomory cuts (Bertsimas and Weismantel
2005) in the original system. Introducing such cuts does not reduce the feasible
region of the optimization problem. In other words, the introduction of the additional
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bounds only removes values for the integer variables, for which at least one of
conditions (19a) to (19e) is not satisfied.

3.2 Transformation to MILP

The nonlinear mixed-integer optimization problem (19a) to (19e), together with the
bounds derived in Section 3.1, can be transformed to a linear problem: the feasible
region is reparameterized by introducing

T̄ := 1

T
, θ̄k := θk

T
, k = 1 . . . K. (23)

This is an exact reformulation of the problem. The set of globally optimal solutions
remains unchanged. Note that the property of nonlinearity has been eliminated
without paying the cost of additional variables. The resulting linear reformulation
of the optimization problem reads as follows:

Max T̄ subject to

zι − vι,0 · T̄ −
K∑

k=1

(
vι,k · θ̄k

) ≤ 0 for ι = 1 . . . ιmax (24a)

zι + 1 − wι,0 · T̄ −
K∑

k=1

(
wι,k · θ̄k

) ≥ 0 for ι = 1 . . . ιmax (24b)

zι,min ≤ zι ≤ zι,max for ι = 1 . . . ιmax (24c)

θ̄k ≤ θk,max · T̄ for k = 1 . . . K (24d)

K∑

k=1

(
κp,k · θ̄k

) ≤ ϑp · T̄ for p = 1 . . . P (24e)

1

Tmax
≤ T̄ ≤ 1

Tmin
(24f)

γ j,0 · T̄ +
K∑

k=1

(
γ j,k · θ̄k

) − 1 ≤ 0 for j = 1 . . . m (24g)

Equations 24a to 24g state a mixed integer linear program (MILP). This opti-
mization problem can be efficiently solved using standard methods of mathematical
programming (e.g. Branch and Cut). For a comprehensive discussion of solution
techniques for MILPs see Bertsimas and Weismantel (2005).
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4 Extension: hierarchical cyclic structure

4.1 General framework

The scheduling problem for strictly cyclic operation can be solved in a globally
optimal way by solving the mixed-integer linear optimization problem presented in
Section 3. However, a strictly cyclic timetable, i.e. a strictly cyclic timetable with a
constant time offset between all consecutive entities is often unnecessarily restrictive
and a cyclic requirement may be sufficient. For a specific class of high throughput
screening tasks, a two-level hierarchical nesting of cycles allows for a throughput
rate higher than in the strictly cyclic case.

Again, the task is to process a (theoretically infinite) number of entities, which all
need the same set of worksteps (activities). In the hierarchical cyclic framework, we
use the term ‘job’ for such an entity. Together with their timing, the corresponding
set of activities is called the ‘job time scheme’.

For a hierarchical cyclic structure, a finite number of such jobs are grouped
together to form one batch. Within a batch, these individual jobs are also processed
in a cyclic scheme (‘inner cycles’). The batches itself are, again, periodically repeated
in a strictly cyclic scheme (‘outer cycles’). For the outer cyclic scheme the rules are
the same as for the strictly cyclic case described in Section 2:

• The time distance between the start of consecutive batches is always constant.
• The processing time scheme is identical for all batches.
• The cyclic time scheme does allow for infinite repetition.

For the inner cyclic scheme the following rules apply:

• The time distance between the start of consecutive jobs is constant.
• All individual jobs have to be processed in the same time scheme (‘job time

scheme’).

Figure 3 shows a schedule with hierarchical cyclic structure for the single batch
time scheme from Fig. 1. The schedule shown in Fig. 3 is said to be four-periodic,
i.e. the time offset between an activity for entity i and its counterpart for entity
i + 4 is constant for all entities and all activities. Compared to the strictly cyclic
solution from Fig. 2, this four-periodic schedule obviously allows for an improved
throughput rate.

If the number of jobs in the inner cycle, i.e. the number of jobs for one batch is
fixed a-priori, the problem is, again, reduced to the strictly cyclic scheduling problem

Resource 2

Resource 1

Time

Batch

Job

10 20 30 40 50 60 70 9080 100-20 0-10 120110

+ 1ρ ρ+ 1
321 4 1 2

ρ − 1
43

ρ ρ ρ ρ ρ− 1

Fig. 3 Schedule with hierarchical cyclic structure (four-periodic)
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described in Section 2: the jobs in the inner cycle can be grouped into one batch,
where the parametrization (4), together with the linear constraints (5) and (6) ensure
identical time distance between the start of the jobs and identical processing time
schemes for all jobs.

However, the optimal number of jobs per batch is usually not known a-priori,
but has to be determined simultaneously with the optimal values for the other
variables (i.e. the single batch time scheme and the cycle time T). This is done
by formulating the scheduling problem for the hierarchical cyclic structure as an
optimization problem which, in addition to the timing of the single batch time scheme
and the cycle time for the outer cycle, also includes the number of jobs within the
single batch time scheme as a variable Y ∈ N.

4.2 Batch time scheme

In our hierarchical setting, the set of activities in the single batch time scheme is not
fixed but depends on the value of the decision variable Y.

The time scheme for the individual jobs within the single batch is identical for all
jobs. It consists of n∗ activities, which are described by their starting times and end
times, parameterized by K∗ time variables θk ∈ R

+
0 :

o∗
i = χ∗

i,0 +
K∗∑

k=1

(
χ∗

i,k · θk
)

. . . time, when activity i starts ,

r∗
i = ψ∗

i,0 +
K∗∑

k=1

(
ψ∗

i,k · θk
)

. . . time, when activity i ends. (25)

r∗
i > o∗

i

i = 1 . . . n∗. (26)

Each activity i allocates one resource J∗
i ∈ {1 . . . m}.

Again, user-defined constraints ensure that the activity durations allow for fin-
ishing the required operations and that the sequence and time window constraints
for the individual jobs within the job time scheme hold. These constraints are
represented by upper bounds for the time variables θk

θk ≤ θ∗
k,max , k = 1 . . . K∗ , θk ∈ R

+
0 (27)

and by P additional linear constraints of the form

K∗∑

k=1

(
κ∗

p,k · θk

)
≤ ϑ∗

p , p = 1 . . . P. (28)

It is natural to assume that an upper bound Ymax for the variable Y is prescribed
by the user.

Thus, the single batch time scheme consists of at most Ymax jobs and n = Ymax · n∗
activities. Within the batch, jobs are started cyclically with cycle time T∗. As all jobs
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follow the time scheme given in Eq. 25, the activity start and end times for job h ∈
{1 . . . Ymax} are

o∗(h)

i = χ∗
i,0 +

K∗∑

k=1

(
χ∗

i,k · θk
) + (h − 1) · T∗ for i = 1 . . . n∗

r∗(h)

i = ψ∗
i,0 +

K∗∑

k=1

(
ψ∗

i,k · θk
) + (h − 1) · T∗ for i = 1 . . . n∗ (29)

As the cycle time of the inner cycle T∗ is a decision variable that is part of the
single batch time scheme, notation θK := T∗, K = K∗ + 1 will be used. Therefore
the constraints for the variables θk ∈ R

+
0 , k = 1 . . . K, are

θk ≤ θk,max , k = 1 . . . K , θk (30)

and

K∑

k=1

(κp,k · θk) ≤ ϑp , p = 1 . . . P , (31)

where

θk,max = θ∗
k,max , k = 1 . . . K∗ (32)

θk,max = ∞ , k = K (33)

κp,k = κ∗
p,k , p = 1 . . . P , k = 1 . . . K∗ (34)

κp,k = 0 , p = 1 . . . P , k = K (35)

ϑp = ϑ∗
p , p = 1 . . . P. (36)

To simplify notation, the activities of all Ymax jobs are subsumed in one set and are
serially numbered by a common index i. Thus, the single batch time scheme for the
hierarchical cyclic structure is defined as follows:

oi = χi,0 +
K∑

k=1

(χi,k · θk) , i = 1 . . . n

ri = ψi,0 +
K∑

k=1

(ψi,k · θk) , i = 1 . . . n (37)
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ψi,0 = ψ∗
i∗,0 , i = 1 . . . n

χi,0 = χ∗
i∗,0 , i = 1 . . . n

ψi,k = ψ∗
i∗,k , i = 1 . . . n , k = 1 . . . K∗

ψi,k = 
(i − 1) / n∗� , i = 1 . . . n , k = K = K∗ + 1

χi,k = χ∗
i∗,k , i = 1 . . . n , k = 1 . . . K∗

χi,k = 
(i − 1) / n∗� , i = 1 . . . n , k = K = K∗ + 1

where n = n∗ · Ymax and i∗ = (i − 1) mod n∗ + 1.
The resources allocated by the activities are

Ji = J∗
i∗ , i = 1 . . . n. (38)

As only the first Y jobs are part of the single batch time scheme, only activities i,
yi = 
(i − 1) / n∗� + 1 ≤ Y take place:

Y ≥ yi . . . activity i is part of the single batch time scheme (=‘effective’) (39)

Y < yi . . . activity i is not part of the single batch time scheme (=‘ineffective’).

(40)

4.3 Constraints

Since the outer cyclic structure is identical to the standard strictly cyclic case
described in Section 2, the constraints for the optimization problem are derived in
the same way. However, the set of activities in the single batch time scheme is not
fixed but depends on the number of jobs per batch (Y). The set of constraints for the
optimization problem therefore depends on the value of the decision variable Y.

First, a lower bound for the cycle time T can be set up equivalently to Constraint
(7). For the hierarchical cyclic case, this constraint needs to account for the number
of effective activities in the single batch time scheme: for a certain value of Y, only
activities i that are effective (i.e. yi ≤ Y) contribute to the sum of activity durations
in the single batch time scheme. Hence, a lower bound for the cycle time T is

T ≥
n∑

i=1

(ri − oi)δJi j�yiY , j = 1 . . . m (41)

where �yiY =
{

0 for yi > Y

1 for yi ≤ Y.

Substituting Eq. 4 into Eq. 41 results in

γ j,0,Y +
K∑

k=1

(γ j,k,Y · θk) − T ≤ 0 , j = 1 . . . m , (42)
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where

γ j,0,Y =
n∑

i=1

(ψi,0 − χi,0)δJi j�yiY

γ j,k,Y =
n∑

i=1

(ψi,k − χi,k)δJi j�yiY . (43)

This set of constraints depends on the value of the decision variable Y. In order to
have a fixed number of constraints, Eq. 42 can be transformed to the following set of
‘OR’ statements:

γ j,0,Y ′ +
K∑

k=1

(γ j,k,Y ′ · θk) − T ≤ 0 OR Y �= Y ′ (44)

for j = 1 . . . m , Y ′ = 1 . . . Ymax.

Due to the definition of γ j,0,Y and γ j,k,Y , Eqs. 43, 37 together with Eq. 26, the
following always holds for Y1 ≥ Y2:

γ j,0,Y1 +
K∑

k=1

(γ j,k,Y1 · θk) ≥ γ j,0,Y2 +
K∑

k=1

(γ j,k,Y2 · θk). (45)

Therefore, Eq. 44 can be finally given as follows:

γ j,0,Y ′ +
K∑

k=1

(γ j,k,Y ′ · θk) − T ≤ 0 OR Y ≤ Y ′ − 1 (46)

for j = 1 . . . m , Y ′ = 1 . . . Ymax.

The second set of constraints for the optimization problem is given by the linear
constraints on the variables θk, k = 1 . . . K, given in Eqs. 30 and 31.

The third type of constraints are the disjunctive constraints (9) that have to be
met for all pairs of effective activities belonging to the single batch time scheme.
Therefore, Eqs. 10 and 11 have to hold for all pairs (i1, i2) for which

yi1 ≤ Y and yi2 ≤ Y. (47)

Accordingly, Constraints (13), (14) have to come into effect if Eq. 47 holds for the
indices i1, i2 associated to the index ι. A variable gι is used to formulate this condition:
constraints (13), (14) have to hold if

Y > gι , (48)

with gι = max(yi1 , yi2) − 1. (49)
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In other words,

zι · T − vι,0 −
K∑

k=1

(vι,k · θk) ≤ 0 OR Y ≤ gι , ι = 1 . . . ιmax (50)

(zι + 1) · T − wι,0 −
K∑

k=1

(wι,k · θk) ≥ 0 OR Y ≤ gι , ι = 1 . . . ιmax , (51)

where ιmax has to be determined for the case Y = Ymax.

4.4 Optimization problem

The objective is to process a maximum number of jobs per time. As Y jobs are
grouped into one batch, the objective function for throughput maximization is to
minimize the cycle time of the outer cycles divided by the number of jobs per batch:

minimize
T
Y

.

This term represents the inverse of the job throughput, i.e. the mean time offset
between consecutive jobs.

This function has to be minimized subject to constraints (30), (31), (46), (50),
and (51).

Lower and upper bounds for the cycle time T as well as for the integer variables zι

can be included in the optimization problem as detailed for the model in Section 3.1.
Additionally, a lower and an upper bound can be prescribed for the objective

function term:

Tlo ≤ T
Y

≤ Tup. (52)

The lower bound Tlo can be determined by evaluating Eq. 20 for Y = 1, i.e. for
one job:

Tlo = max
j

(
min

θ1...θK∗

n∗∑

i=1

(
r∗

i − o∗
i

)
δJ∗

i j

)
. (53)

An upper bound Tup can be derived by solving the strictly cyclic scheduling
problem with one single job per batch.

To sum up, the following optimization problem describes the cyclic scheduling
problem with hierarchical cyclic structure:

(T ∈ R
+, θk ∈ R

+
0 , zι ∈ Z, Y ∈ N, Y > 0)
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Min T
Y subject to

zι · T − vι,0 −
K∑

k=1

(vι,k · θk) ≤ 0 OR Y ≤ gι for ι = 1 . . . ιmax (54a)

(zι + 1) · T − wι,0 −
K∑

k=1

(wι,k · θk) ≥ 0 OR Y ≤ gι for ι = 1 . . . ιmax (54b)

zι,min ≤ zι ≤ zι,max for ι = 1 . . . ιmax (54c)

θk ≤ θk,max for k = 1 . . . K (54d)

K∑

k=1

(κp,k · θk) ≤ ϑp for p = 1 . . . P (54e)

Tmin ≤ T ≤ Tmax (54f)

Tlo ≤ T
Y

≤ Tup (54g)

γ j,0,Y ′ +
K∑

k=1

(γ j,k,Y ′ · θk) − T ≤ 0 OR Y ≤ Y ′ − 1 (54h)

for j = 1 . . . m , Y ′ = 1 . . . Ymax

Y ≤ Ymax (54i)

This problem can once again be transformed into a linear one, albeit we need to
expend some more effort because of the nonlinear objective function; it should also
be noted that an increase in the number of values allowed for Y influences the size
of the resulting linear problem and makes it worse from a complexity theoretic point
of view. However, in the typically occurring instances, Y has a small range.

The linear reformulation can be split into 5 steps.

1. Reformulation of the objective function
Instead of minimizing T/Y we can maximize Y/T, since T, Y > 0. This obviously
changes the objective function value, but any optimal solution for the minimiza-
tion problem will be optimal for the maximization problem, and vice versa.

2. Reparametrization of T
As in the previous model we will reparameterize T by substituting T̄ = 1

T , and
θ̄k = θk

T for k = 1, . . . , K. This leads to a set of constraints that is of the same form
as in Eqs. 24a to 24g, except for the disjunctions in Eqs. 54a, 54b and 54h.

3. Removal of Eq. 54h
The inequalities (54h) can be subsumed under Eqs. 54a and 54b, by introducing
m · Ymax new indices ι1, . . . , ιm·Ymax after ιmax, fixing the associated variables zιi to
0, setting the new coefficients vιi = 0 and wιi,{0,k} = γ[(i−1)mod m]+1,{0,k},
(i−1)/ m�+1,
and limiting Y by gιi = (i − 1) mod m for Y ′ = 1, . . . , Ymax. The associated in-
equalities of type (54a) are then no restriction, while those of type (54b) take the
place of Eq. 54h.
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4. Modeling of the disjunctions (54a) and (54b)
The disjunctions (54a) and (54b) with enlarged ιmax, i.e. including Eq. 54h from
the application of step 3, can be modeled by introducing decision variables
xι ∈ {0, 1} for ι = 1, . . . , ιmax, which are to be equal to 1 whenever Y ≤ gι, and 0
otherwise. We can then model the disjunctions (54a) and (54b), already rewritten
according to the reparametrization step above, by a family of 3 inequalities for
each ι = 1, . . . , ιmax:

Y − gι ≤ UY
ι · xι with constant UY

ι ≥ Ymax − gι,

zι − vι,0 · T̄ −
K∑

k=1

vι,k · θ̄k ≤ (1 − xι) · U z
ι

with constant

U z
ι ≥ zι,max + |vι,0| 1

Tmin
+

K∑

k=1

|vι,k| · θk,max
1

Tmin
,

and finally

zι + 1 − wι,0 · T̄ −
K∑

k=1

wι,k · θ̄k ≥ (1 − xι) · Lz
ι

with constant

Lz
ι ≤ zι,min + 1 − |wι,0| 1

Tmin
−

K∑

k=1

|wι,k| · θk,max
1

Tmin
.

In this formulation the choice of the three constants UY
ι , U z

ι , and Lz
ι ensures that

the respective inequality is not a restriction whenever the decision variable xι is
not forcing the right hand side to 0.

5. Linear formulation of the objective max Y · T̄
For each possible value q of Y in the range of 1, . . . , Ymax we introduce a binary
variable Y �=q, which is 1 whenever Y does not attain the value q:

Y �=q ≥ (Y − q)/(Ymax − 1) q = 1, . . . , Ymax

Y �=q ≥ (q − Y)/(Ymax − 1) q = 1, . . . , Ymax

Ymax∑

q=1

Y �=q = Ymax − 1.

Then we can replace the objective max Y · T̄ by max γ , where γ is a variable
modeling the supremum of Y · T̄ over the feasible region:

γ ≤ q · T̄ + M · Y �=q q = 1, . . . , Ymax

where the constant M ≥ Ymax · 1
Tmin

, ensures that only one of these restrictions is
binding.
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After applying steps 1 to 5, we obtain a linear reformulation of the problem that
has the same set of globally optimal solutions. Nevertheless, this time, the advantage
of linearity comes at the cost of ιmax additional binary variables xι, Ymax additional
binary variables Y �=q, and the additional variable γ ∈ R

+. The linear reformulation
finally reads as follows:

Max γ subject to

γ ≤ q · T̄ + M · Y �=q for q = 1 . . . Ymax (55a)

Y �=q ≥ (Y − q)/(Ymax − 1) for q = 1 . . . Ymax (55b)

Y �=q ≥ (q − Y)/(Ymax − 1) for q = 1 . . . Ymax (55c)

Ymax∑

q=1

Y �=q = Ymax − 1 (55d)

Y − gι ≤ UY
ι · xι for ι = 1 . . . ιmax (55e)

zι − vι,0 · T̄ −
K∑

k=1

vι,k · θ̄k ≤ (1 − xι) · U z
ι for ι = 1 . . . ιmax (55f)

zι + 1 − wι,0 · T̄ −
K∑

k=1

wι,k · θ̄k ≥ (1 − xι) · Lz
ι for ι = 1 . . . ιmax (55g)

zι,min ≤ zι ≤ zι,max for ι = 1 . . . ιmax (55h)

θ̄k ≤ θk,max · T̄ for k = 1 . . . K (55i)

K∑

k=1

(κp,k · θ̄k) ≤ ϑp · T̄ for p = 1 . . . P (55j)

1

Tmax
≤ T̄ ≤ 1

Tmin
(55k)

Y ≤ Ymax (55l)

5 Illustrating example

In order to illustrate the modeling and solution procedure proposed in Sections 2 to 4,
we describe all necessary steps for the strictly cyclic case as well as for the hierarchical
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cyclic structure, both for the very simple example from Fig. 1. The batch definition
consists of n = 4 activities on m = 2 resources. Each single batch passes through the
following sequence:

– Workstep on resource 2 (4 time units) } activity 1, J1 = 2– Transfer to resource 1 (4 time units) } activity 2, J2 = 1– Workstep on resource 1 (6 time units)
– Interval during which the batch is not present in the system but, e.g. stored in

an infinite buffer (minimum 40 time units, maximum 46 time units)
– Workstep on resource 1 (4 time units) } activity 3, J3 = 1– Transfer to resource 2 (4 time units) } activity 4, J = 2– Workstep on resource 2 (8 time units)

Inserting any artificial waiting times between the worksteps and the transfers will
not allow for increased throughput. The interval between activity 2 and 3 therefore
constitutes the only degree of freedom within the single batch time scheme. We
assume that the batch definition allows this interval to vary by a maximum of 6 time
units.

In this case, the parametrization (4) can be found straightforward. It incorporates
one variable θ1 (i.e. K = 1) and is chosen such that this variable represents the
additional waiting time between activity 2 and 3, up to a maximum of 6 time units.
This results in the following values for the parameters χi,0, ψi,0, χi,k, and ψi,k:

χ1,0 = 0 χ1,1 = 0 ψ1,0 = 8 ψ1,1 = 0

χ2,0 = 4 χ2,1 = 0 ψ2,0 = 14 ψ2,1 = 0

χ3,0 = 56 χ3,1 = 1 ψ3,0 = 64 ψ3,1 = 1

χ4,0 = 60 χ4,1 = 1 ψ4,0 = 72 ψ4,1 = 1 (56)

Figure 1 illustrates the single batch time scheme for θ1 = 0.
Condition (5) gives

0 ≤ θ1 ≤ θ1,max = 6. (57)

Since there is only one degree of freedom in the single batch time scheme, there are
no constraints of form (6) necessary for this example.

With values (56), Condition (8) results in

T ≥ 18, T ≥ 20. (58)

There are two pairs of activities (i1, i2), i2 > i1, Ji1 = Ji2 for which constraints (10)
and (11) need to be considered:

(i1, i2) ∈ {(2, 3), (1, 4)} .

This means we need to introduce the integer variables z1 = z(2,3) and z2 = z(1,4). The
abbreviations (15) to (18) provide the following notation:

v1,0 = 42 v1,1 = 1

w1,0 = 60 w1,1 = 1

v2,0 = 52 v2,1 = 1

w2,0 = 72 w2,1 = 1 (59)



376 Discrete Event Dyn Syst (2008) 18:355–383

Hence, we get two pairs of constraints of the form (13) resp. (14):

z1·T − ( 42 +θ1 ) ≤ 0

(z1 + 1)·T − ( 60 +θ1 ) ≥ 0

z2·T − ( 52 +θ1 ) ≤ 0

(z2 + 1)·T − ( 72 +θ1 ) ≥ 0 (60)

To sum up, the mixed integer nonlinear program, which has to be solved in order to
obtain a globally optimal solution to the scheduling problem is the following:

Min T over
(

T ∈ R
+, θ1 ∈ R

+
0 , zι ∈ Z, ι ∈ {1, 2} )

such that conditions (60), as well as conditions (57) and (58) hold.

The solution to this problem can be found using a MINLP solver or, of course,
by transforming the problem into a mixed integer linear program using Eq. 23. A
globally optimal solution is

T = 36, θ1 = 0, z1 = 1, z2 = 1.

A graphical representation of the resulting strictly cyclic schedule can be found in
Fig. 2.

To illustrate the extension from Section 4, we now allow for a hierarchical cyclic
structure with a maximum number of Ymax = 5 identical jobs in one batch. The
job time scheme matches the batch time scheme from the strictly cyclic case and
involves n∗ = 4 activities and the time variable θ1 with 0 ≤ θ1 ≤ θ1,max = 6. The batch
time scheme involves up to 5 such jobs and therefore n = 5 · 4 = 20 activities. An
additional time variable θ2 is introduced to represent the cycle time of the inner cycle
T∗. This results in the following values for the parameters χi,0, ψi,0, χi,k, and ψi,k in
the parametrization (37):

χ1,0 = 0 χ1,1 = 0 χ1,2 = 0 ψ1,0 = 8 ψ1,1 = 0 ψ1,2 = 0
χ2,0 = 4 χ2,1 = 0 χ2,2 = 0 ψ2,0 = 14 ψ2,1 = 0 ψ2,2 = 0
χ3,0 = 56 χ3,1 = 1 χ3,2 = 0 ψ3,0 = 64 ψ3,1 = 1 ψ3,2 = 0
χ4,0 = 60 χ4,1 = 1 χ4,2 = 0 ψ4,0 = 72 ψ4,1 = 1 ψ4,2 = 0
χ5,0 = 0 χ1,1 = 0 χ1,2 = 1 ψ5,0 = 8 ψ1,1 = 0 ψ1,2 = 1
χ6,0 = 4 χ2,1 = 0 χ2,2 = 1 ψ6,0 = 14 ψ2,1 = 0 ψ2,2 = 1
χ7,0 = 56 χ3,1 = 1 χ3,2 = 1 ψ7,0 = 64 ψ3,1 = 1 ψ3,2 = 1
χ8,0 = 60 χ4,1 = 1 χ4,2 = 1 ψ8,0 = 72 ψ4,1 = 1 ψ4,2 = 1

...

χ17,0 = 0 χ1,1 = 0 χ1,2 = 4 ψ17,0 = 8 ψ1,1 = 0 ψ1,2 = 4
χ18,0 = 4 χ2,1 = 0 χ2,2 = 4 ψ18,0 = 14 ψ2,1 = 0 ψ2,2 = 4
χ19,0 = 56 χ3,1 = 1 χ3,2 = 4 ψ19,0 = 64 ψ3,1 = 1 ψ3,2 = 4
χ20,0 = 60 χ4,1 = 1 χ4,2 = 4 ψ20,0 = 72 ψ4,1 = 1 ψ4,2 = 4 (61)

together with

0 ≤ θ1 ≤ θ1,max = 6. (62)
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Constraints (46) read as follows (constraints for j = 1 are redundant and therefore
omitted):

20 − T ≤ 0 OR Y ≤ 0

40 − T ≤ 0 OR Y ≤ 1

...

100 − T ≤ 0 OR Y ≤ 4. (63)

The batch time scheme involves n j = 10 activities for each of two resources, thus
resulting in ιmax = 90 integer variables zι (Eq. 12). Constraints (50), (51) for 68 out of
90 variables zι turn out to be redundant. Omitting the corresponding 136 redundant
lines, constraints (50) and (51) result in

z1·T − ( 42 +θ1 ) ≤ 0 OR Y ≤0
(z1 + 1)·T − ( 60 +θ1 ) ≥ 0 OR Y ≤0

z2·T − ( 52 +θ1 ) ≤ 0 OR Y ≤0
(z2 + 1)·T − ( 72 +θ1 ) ≥ 0 OR Y ≤0

z3·T − ( 42 +θ1 +θ2 ) ≤ 0 OR Y ≤1
(z3 + 1)·T − ( 60 +θ1 +θ2 ) ≥ 0 OR Y ≤1

z4·T − ( 52 +θ1 +θ2 ) ≤ 0 OR Y ≤1
(z4 + 1)·T − ( 72 +θ1 +θ2 ) ≥ 0 OR Y ≤1

...
z9·T − ( 42 +θ1 +4θ2 ) ≤ 0 OR Y ≤4

(z9 + 1)·T − ( 60 +θ1 +4θ2 ) ≥ 0 OR Y ≤4
z10·T − ( 52 +θ1 +4θ2 ) ≤ 0 OR Y ≤4

(z10 + 1)·T − ( 72 +θ1 +4θ2 ) ≥ 0 OR Y ≤4
z11·T − ( −60 −θ1 +θ2 ) ≤ 0 OR Y ≤1

(z11 + 1)·T − ( −42 −θ1 +θ2 ) ≥ 0 OR Y ≤1
z12·T − ( −72 −θ1 +θ2 ) ≤ 0 OR Y ≤1

(z12 + 1)·T − ( −52 −θ1 +θ2 ) ≥ 0 OR Y ≤1
z13·T − ( −60 −θ1 +2θ2 ) ≤ 0 OR Y ≤2

(z13 + 1)·T − ( −42 −θ1 +2θ2 ) ≥ 0 OR Y ≤2
z14·T − ( −72 −θ1 +2θ2 ) ≤ 0 OR Y ≤2

(z14 + 1)·T − ( −52 −θ1 +2θ2 ) ≥ 0 OR Y ≤2
z15·T − ( −60 −θ1 +3θ2 ) ≤ 0 OR Y ≤3

(z15 + 1)·T − ( −42 −θ1 +3θ2 ) ≥ 0 OR Y ≤3
z16·T − ( −72 −θ1 +3θ2 ) ≤ 0 OR Y ≤3

(z16 + 1)·T − ( −52 −θ1 +3θ2 ) ≥ 0 OR Y ≤3
z17·T − ( −60 −θ1 +4θ2 ) ≤ 0 OR Y ≤4

(z17 + 1)·T − ( −42 −θ1 +4θ2 ) ≥ 0 OR Y ≤4
z18·T − ( −72 −θ1 +4θ2 ) ≤ 0 OR Y ≤4

(z18 + 1)·T − ( −52 −θ1 +4θ2 ) ≥ 0 OR Y ≤4
z19·T − ( −12 +θ2 ) ≤ 0 OR Y ≤1

(z19 + 1)·T − ( 12 +θ2 ) ≥ 0 OR Y ≤1
z20·T − ( −12 +2θ2 ) ≤ 0 OR Y ≤2

(z20 + 1)·T − ( 12 +2θ2 ) ≥ 0 OR Y ≤2
z21·T − ( −12 +3θ2 ) ≤ 0 OR Y ≤3

(z21 + 1)·T − ( 12 +3θ2 ) ≥ 0 OR Y ≤3
z22·T − ( −12 +4θ2 ) ≤ 0 OR Y ≤4

(z22 + 1)·T − ( 12 + 4θ2 ) ≥ 0 OR Y ≤4. (64)



378 Discrete Event Dyn Syst (2008) 18:355–383

The following lower and upper bounds for the mean job cycle time T/Y respec-
tively the batch cycle time T can be added to the optimization problem:

Tlo = Tmin,Y=1 = 20 (65)

Tup = Topt (strictly cyclic) = 36 (66)

Tmin = Tlo = 20 (67)

Tmax = Ymax · Tmax (strictly cyclic) = 360. (68)

Constraints (62) to (68) build up the problem formulations (54a) to (54i), which
can be reformulated to linear form according to Eqs. 55a to 55l, following steps 1 to
5 in Section 4.4.

The globally optimal solution results in

Y = 4 , T = 72 , θ1 = 0 , θ2 = T∗ = 12

and is pictured in Fig. 3. The mean job cycle time for this four-periodic schedule is
T/Y = 18. Compared to the strictly cyclic solution, throughput is improved by 100%.

6 Application example

As a second example, we apply the proposed method to the ELISA test, which is a
typical problem instance from high throughput screening. The example is adapted
from Murray and Anderson (1996). It involves all requirements listed in Section 1.
A compact illustration of the example is provided by the Gantt chart for the single
batch time scheme in Fig. 4, which consists of four distinct parts. The resources of
this example include not only machines for liquid handling, incubation and reading
etc. but also transport units: three robots are used to move the entities (microplates)
between the machine resources. The time an empty robot needs to move to the next
resource after having transferred a plate to its destination is neglected.

The time distances between the four parts are restricted by lower and upper
bounds (time window constraints). Apart from these restrictions, all activities may be
arbitrarily prolonged by inserting an idle time interval before the end of the activity,

4000 42003000 3200 3400 36001200 1400 1600 1800 2000 2200
Robot 3

Robot 2

Robot 1

Res.4

Res.3

Res.2

Res.1

0 200

Fig. 4 Job time scheme for the ELISA assay (Gantt chart). Note that the problem specification also
includes lower and upper bounds for time intervals, which cannot be visualized here
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causing the follow-up activity on the next resource to start later. Altogether, these
degrees of freedom are used to find a globally optimal timing for the activities, hence
allowing for a schedule with maximum throughput.

Following the modeling process of Sections 2 and 3, a mathematical program can
be established for the strictly cyclic case. The basic MILP consists of 28 continuous
and 78 integer variables and includes 195 constraints (apart from lower and upper
bounds for variables). The solution of the mathematical program provides a strictly
cyclic schedule with globally optimal throughput. During the modeling process, an
upper bound Tmax = 2350 for T can be found by solving the problem for the fixed
single batch time scheme from Fig. 4, i.e. without allowing for any change in the
timing. A lower bound Tmin = 1150 can be established by solving the relaxed MILP.

After adding bounding constraints for the variables and cuts as described in
Section 3.1, a globally optimal solution to the mathematical program is found within
less than 1 second on a 2 GHz Linux PC. The optimal cycle time turns out to be
Topt = 2260 and therefore allows for an increase in throughput of 4% compared to
the originally known solution Tmax = 2350. Information about the model size and the
size of the mathematical program as well as computation times are given in Table 1
below.

We now drop the prerequisite of strictly cyclic operation and allow for hierarchical
nesting of cycles as described in the extension in Section 4: while all entities still
have to be processed within the same time scheme, the distance between the start
of consecutive entities is not required to be constant any more. A maximum number
of Ymax = 4 entities form one batch and are processed in an inner cyclic scheme.
Following the modeling steps of Section 4, the scheduling problem is cast into a mixed
integer linear program of the form (55a) to (55l) with 30 continuous, 528 integer
variables, and 1079 constraints.

The resulting mixed-integer linear programs can be solved using standard integer
programming software like CPLEX (ILOG 2006). Since the range of Y is small, it is
worth to require branching on Y first. This can be achieved by supplying suitable
priority-order files to the small CPLEX solver, and allows significant problem
compactification in the Branch-and-Cut tree on subsequent nodes.

Optimization results in a globally optimal solution with Yopt = 3 and Topt = 4150:
three jobs have to be grouped to one batch in the inner cycle; a new batch is started
every 4150 time units. Hence, the mean cycle time results in 4150/3 = 1383 1

3 , which
is significantly better than the best possible cycle time 2260 for the strictly cyclic case.

Table 1 provides data about the basic ELISA problem (strictly cyclic case)
and the extended version (hierarchical cyclic structure). For both problems, the table

Table 1 ELISA problem instances

m n Ymax n∗ #var #constr #integer obj.function tsolve

ELISA: strictly cyclic
7 30 1 30 106 195 78 Topt = 2260 1 s(∗)

ELISA: hierarchical cyclic structure
7 120 4 30 558 1079 528 Topt/Yopt = 1383 1

3 1105 s(∗∗)
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Table 2 Problem instances from high throughput screening

m n Ymax n∗ #var #constr #integer tsolve

Example from Section 5
2 4 1 4 4 7 2 0.01 s(∗)

Normal-sized problem
18 57 1 57 183 1051 131 0.65 s(∗)

Large sized problem
18 87 1 87 399 2402 321 122 s(∗)

gives the size of the underlying scheduling problem as well as the following data
about the MILP:

• The number of variables, i.e. the number of columns in the MILP (#var),
• The number of constraints, i.e. the number of rows in the MILP (#constr), and
• The number of integer variables in the MILP (#integer).

Additionally, the globally optimal objective function value is given, which is equiva-
lent to the mean cycle time, i.e. the inverse of the best possible throughput. Finally,
the last column of Table 1 shows the time needed to compute the globally optimal
solution of the MILP on a 2 GHz Linux PC (*) resp. a Sun-Fire-V440 with 1.28 GHz
Ultrasparc-IIIi processors (**).

To show the applicability of the strictly cyclic scheduling method to problems of
different size, Table 2 provides analogue figures for three other problem instances
from high throughput screening. Globally optimal strictly cyclic schedules have been
calculated for all problems within reasonable computation time. For the hierarchical
cyclic approach, the computation time furthermore depends on the value for Ymax.
From Table 1, it can be seen that the computation of the globally optimal hierarchical
cyclic schedule takes much more time then the computation of the globally optimal
strictly cyclic schedule. Nevertheless, due to large numbers of batches, this will
normally be worthwhile since throughput is considerably increased.

7 Conclusion

In this paper, we have addressed the problem of finding throughput-optimal se-
quences for a class of cyclic discrete event systems. We are interested in systematic
approaches that guarantee globally optimal solutions. For the case of strictly cyclic
operation, it has been shown that globally optimal solutions can be found by casting
the cyclic scheduling problem into a mixed integer linear program (MILP). The
method has been very successful in computing strictly cyclic schedules for a large
number of high throughput screening problems from the pharmaceutical industries.

Additionally, a new extension towards a more general case of cyclicity has been
presented: for some systems, hierarchical nesting of cycles allows for schedules with
improved throughput rates. For this extension, it is still possible to solve the problem
in a globally optimal way by casting it into an MILP. However, nesting of cycles
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demands for a more advanced modeling approach and thus results in more complex
mathematical programs.

The extended method has been applied to an example from high throughput
screening, showing its applicability to real-sized problem instances. Clearly, the
computation time for the solution of the resulting mathematical program suffers from
combinatoric explosion, as the size of the problem is increased. Further mathematical
programming methods are needed to improve computation times and to solve large
problem instances. Such methods are currently under investigation.
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