
Noname manuscript No.
(will be inserted by the editor)

Finite abstractions for hybrid systems with stable
continuous dynamics

Herbert G. Tanner · Jie Fu · Chetan Rawal ·
Jorge L. Piovesan · Chaouki T. Abdallah

the date of receipt and acceptance should be inserted later

Abstract This paper outlines an abstraction process in which a particular class of hy-

brid automata with continuous dynamics that have parameterized positive limit sets,

are being abstracted into finite transition systems. The limit sets with their correspond-

ing attraction regions define pre- and post-conditions for the continuous dynamics, and

determine the transitions in the discrete abstraction. An observable (weak) bisimulation

equivalence is established between the two models. The abstraction process described

can find application in verification, as well as in planning and symbolic control.

Keywords Abstraction · hybrid systems · symbolic control

1 Introduction

An important question in the context of hybrid systems is whether there is a process

of abstraction, that would enable the designer to somehow ignore the behavior of the

underlying component continuous dynamics of the hybrid system, and capture its be-

havior of interest in a purely discrete model of computation. Such a discrete model

can potentially simplify the solution of problems related to verification, planning and

control design for hybrid systems, which in the general case are computationally in-

tractable.

For an abstract model to be of use, it needs to share the properties of interest with

the concrete system: if a property is verified on the abstraction, it should hold true

The work of the first author is supported by the National Science Foundation under grant #
0447898. The work of the other authors was also supported by the National Science Foundation
(CNS0626380) under the FIND initiative.

Herbert Tanner, Chetan Rawal, and Jie Fu
Mechanical Engineering
University of Delaware
E-mail: btanner@udel.edu

Jorge L. Piovesan and Chaouki T. Abdallah
Electrical and Computer Engineering
University of New Mexico
E-mail: chaouki@ece.unm.edu

2

for the concrete one; if a controller is designed based on the abstract model, it should

be implementable and yield the same outcome on the original system. Therefore, it is

critical to identify not only the process that would yield the abstraction, but also the

requirements that enable the propagation of properties and designs between the two

representations.

Abstraction, as a concept, has been used as a means of obtaining simpler represen-

tations of system behavior, which however preserve some properties of interest to the

designer. The need for reigning in complexity has become apparent in model check-

ing and verification of general classes of hybrid systems [1,2], particularly when direct

reachability computation is involved [3–6]. Abstraction tools typically overapproximate

the reachable regions of the state space [7]. Non-conservative approaches [8] also exist,

for analysis from a finite set of initial conditions. There is significant computational

complexity associated with the application of reachability computation tools, which is

primarily due to the need for predicting what the continuous dynamics of the hybrid

system does. In this context, abstraction offers a way to facilitate computations by

enabling the analysis to be performed on a smaller system, and allowing the gener-

alization of the conclusions to the larger system. The ability to preserve properties

between the two models of different complexity is typically based on the particular

equivalence relations established.

There are a number of discrete abstraction approaches reported in literature, and

they fall under two main categories. Both create partitions of the continuous state

space, but the difference is their starting points. Partition approaches based on simula-

tion, bisimulation [9] or their approximate equivalents [10,11], focus on the dynamics,

and attempt to group together continuous states that evolve in a similar way. The sur-

vey [12] demonstrates that in order to obtain bisimulation relations for general hybrid

systems, one has to severely restrict either the discrete logic that governs the transi-

tions, or the type of continuous dynamics, or both. Certain undecidability results [12]

indicate the limits of bisimulation-based abstraction. Such results motivate less restric-

tive conditions, provided by simulation relations [13]. In such cases, one may choose to

abandon the search for input-output equivalence in the hope of obtaining some property

inclusion. The concept of approximate bisimulation [14] characterizes the case where

the trajectories of the two related systems under the abstraction map are not required

to match exactly, but they are rather allowed to be “close” in a Lyapunov-like sense.

Approximately bisimilar finite symbolic models have been constructed [15] based on an

incremental stability property of the underlying the hybrid system. The other category

of approaches to obtaining discrete abstractions is based on a priori partitioning the

state space based on properties of each block which may be of interest [16–21]. Among

this body of work, [18,20] make explicit use of a state quantizer.

In equivalence relation-based approaches, partitions are dictated by dynamics —

they yield simple models, which may be difficult to construct and may partition the

space in non-intuitive ways; in a priori partitioning blocks are user-defined, which

allows the underlying dynamics to induce too many transitions in the discrete model.

The approach in this paper is in-between: partition blocks are defined a priori based

on logical predicates, but at the same time respecting the asymptotic behavior of the

continuous dynamics. The abstraction approach therefore is reminiscent of predicate

abstraction (cf. [16]), but at the same time allows a formal link between the concrete

and abstract models in the form of a (weak) bisimulation relation, which is the main

technical result (Theorem 1) of this paper.

3

To be able to characterize the type of discrete computation models obtained from

the proposed abstraction process, we limit our scope to a specific class of hybrid sys-

tems, in which the continuous dynamics has parameterized attractors. Through the

parameters, the designer determines the location of these attractors for the continuous

dynamics, and thus exercises control over the hybrid system by forcing certain guards

to be activated. The switching that occurs between the different continuous dynamics

components (modes) is not arbitrary, but meets specific requirements formalized in

sets of first-order logic propositions involving continuous states, discrete states, and

parameters. Therefore, by resetting these parameters on-line, and without modifying

the structure of the component continuous dynamics, the designer not only maintains

authority to steer the continuous dynamics, but also controls the discrete transitions

between modes. By establishing the weak bisimulation equivalence between the hy-

brid system and its abstraction, this paper offers a finite, discrete model that can be

potentially used for verification, as well as for symbolic control synthesis. In contrast

to existing stability-based finite abstraction methods [15], the proposed does not rely

on the stability of the overall hybrid system, but rather exploits the local stability of

individual modes. In this context, overall asymptotic stability —although provable—

is irrelevant. The rationale is that in a bottom-up scheme such as this one is that if

well designed specialized stand-alone control laws are available, there should be a way

to combine them in order to perform a more complex task without having to explicitly

analyze the ensuing hybrid system.

Section 2 sets the stage for the technical discussion by providing necessary defini-

tions, introducing notation, and describing the computation models used. In Section 3

the equivalence between the concrete and abstract models is established. In Section 4

the proposed approach is applied to the case of a robotic system that needs to execute

a fairly complex task. Concrete and abstract models are derived, and it is shown how

the abstract model can match the evolution of the concrete system. Section 5 gives a

short summary of the main idea behind the proposed approach and highlights ongoing

and future research directions.

2 Preliminary definitions and notation

Let us first start with a general definition for a hybrid system, so that it can later be

compared with the special case considered in this paper.

Definition 1 ([22]) A hybrid automaton H is a collection

H = (Q,X,D, f, Init, E,G,R), in which

Q is a finite set of discrete variables;

X ⊂ Rn is a set of continuous variables;

D : Q→ P (X) is a continuous domain, where P (X) is the powerset of X;

f : Q×D(Q)→ TX is a vector field;

Init ⊆ Q×X is the set of initial states;

E ⊆ Q×Q is a set of edges;

G : E → P (X) is the guard condition;

R : E ×X → P (X) is the reset map.

The pair (q, x) ∈ Q×X is called the state of H.

4

In Definition 1, the domain D(q) is not required to be (positively) invariant for

f(q, x) —this is one of the main differences compared to our model. The notion of

positive invariance is understood in terms of the limiting behavior of the solutions

(flows) of ẋ = f(q, x) as follows:

Definition 2 ([23]) A curve σx : R→ X, with x ∈ X, is an integral curve of vector

field f if σ̇x(t) = f(σx(t)), and σx(0) = p. If I(f, x) is the largest time interval for which

an integral curve through x can be defined, then the integral closure σx(t) : I → X is

a maximal integral curve for f and the flow of the vector field f is defined as the map

Φt : X → X; Φt(x) 7→ σx(t).

Definition 3 ([24]) Let Φt(x) be the flow of f passing through x ∈ X at t = t0.

Then z ∈ X is said to be a positive limit point of Φt(x) if there is a sequence {tn},
with tn → ∞ as n → ∞, such that Φtn(x) → z as n → ∞. The set of all limit points

of Φt(x), x ∈ X is called the positive limit set of Φt, denoted L+.

In the context of this paper, the vector field f is assumed to approach some subset

A of D, and its approach is being quantified by means of a distance:

Definition 4 ([24]) The distance of a point x to a set A ⊂ X is denoted dist
`
x,A

´
and is defined as dist

`
x,A

´
, infy∈A ‖y − x‖.

The norm ‖·‖ is assumed to be the one induced in X by a typical norm on Rn. Positive

invariance can now be formally described as follows.

Definition 5 ([24]) A set X is (positively) invariant if Φt0(x) ∈ X ⇒ Φt(x) ∈ X,

for all t ≥ t0.

It can be shown [24], that for a time-invariant vector field f that evolves in a

compact set D for all time, the existence of a limit set L+ is guaranteed, and it is

known that L+ will be nonempty, compact, positively invariant, and attractive, in the

sense that for every ε > 0, there exists a T > 0 such that dist
`
x(t), L+´ < ε. So with

reference to Definition 1, let us assume that:

Assumption 1 The set X is compact.

We now define a specific class of hybrid systems, in which we can also have an

r < ∞ dimensional boolean vector ` ∈ L ⊆ {0,1}r, and where the vector fields are

parameterized, with a vector of parameters in a set P ⊆ Rm. The parameters in f are

assumed to determine the shape and position of its limit set [25].

5

Definition 6 (Hybrid agent) The hybrid agent is a collection

H =
n
H,P,K, I,AP, f,←· ,→· , s,∆

o
. In this collection,

H ⊂ X × L where X ⊂ Rn is compact, is the set of hybrid states;

P is the set of admissible parameter vectors;

K is a finite set of system modes;

I ⊆ K × P is the set of control inputs;

AP is a finite, indexed set of atomic logical propositions;

f : H×P ×K → TX is a family of locally Lipschitz vector fields indexed by K
and parameterized by P;

←−· : K → 2AP is the set of pre-conditions for each mode;

−→· : K → 2AP is the set of post-conditions for each mode;

s : H → 2P is the parameter reset map, and

∆ ∈ (H×P ×K)2 is the transition relation, also denoted →.

Note that since X is compact, local Lipschitz continuity is sufficient for global existence

and uniqueness of the solutions of f .

The “state” (or configuration) in H is a triplet (x, `, k) ∈ H×K (c.f. (x, q) ∈ X×Q
in H of Definition 1), and the first two elements in (x, `) will be referred to as the

hybrid state in the sequel. In the new model, H can be viewed as an extension of X

that includes boolean variables. Trajectories, or executions of H, describe the evolution

of the variables that belong in X and K, and are interpreted in the same way as for the

model of Definition 1 [22]. Note that no initial states are specified in this model. The

semantics for the new components of H can be described in more detail as follows.

Logical variables in L represent system states which are more appropriately eval-

uated as true or false (e.g. the light is on, the battery is charged) and where the

additional resolution of a continuous domain would be superfluous.

Each element k ∈ K can be thought to be associated with a particular closed-

loop control law for the continuous dynamics. These controllers may use as parameters

elements of the vector p ∈ P (control gains, for example, could be included in p).

Here, the positive limit sets L+ for each f(h, p, k) are assumed given, having been

designed in the process of closing the control loop in f(·) for each k. The dependence

of L+ on p and k is denoted by writing L+(k; p). For every k ∈ K, it is assumed

that L+(k; p) is path connected, uniformly in p ∈ P; otherwise, if there are B(k) > 1

disconnected components of L+(k; p) they will each have their own attraction region

A+
b ,1 for b = 1, . . . , B(k), in which case one associates a different symbol in K for the

restriction of f(h, p, k) on each attraction region. By expanding K in this way, it is

ensured that there is a single path connected positive limit set for every continuous

dynamics indexed by k ∈ K.

The set AP consists of logical statements that involve hybrid states, parameters,

and modes, and express in predicate form all environmental and system conditions

which are of interest for the system. For example, the pre and post-conditions (denoted

Pre and Post, respectively) of each mode (read controller) can be thought of as

1 The region of attraction of a particular component L+
b of the positive limit set L+ of the

flow of vector field f in X can be defined as [26] A+
b (X) , {x ∈ X | limt→∞ dist

`
Φt(x), L+

b

´
=

0}.

6

the guards and limit sets in each domain, respectively. We write (h, p) |=
←−
k if the

pair (h, p) satisfies all atomic propositions in Pre(k), and similarly (h, p) |=
−→
k if

(h, p) satisfies the Post(k). In the case of different isolated components for L+(k; p)

mentioned above, the inclusion x ∈ A+
b ⊂ X constitute the pre-condition of k in

sense that for some valuation of the boolean vector ` ∈ L, and for p ∈ s
`
(x, `)

´
,

(x, `, p) |=
←−
k ⇒ limt→∞ dist

`
Φt(x), L+(k; p)

´
= 0. For k ∈ K, Post(k) is a set of

predicates that define the positive limit set of the continuous dynamics when driven by

the control law indexed by k, in the sense that x ∈ L+(k; p)⇒ (x, `, p) |=
−→
k for some

valuation of the boolean vector ` ∈ L. For a given k ∈ K and p ∈ P, the parameterized

vector field f(h, p, k) with h = (x1, `) may result in limt→∞ Φt(x1) = x2; in this case

we write h1
k[p]
99K h2, where h2 = (x2, `).

The reset map s does not capture discontinuous jumps in continuous states as in

Definition 1; in fact, in Definition 6 continuous states in X are not supposed to change

discontinuously. Rather, s takes the form of a set valued map that determines all the

possible values that the parameter vector can take at a particular hybrid state h. It is

the parameter vector p, therefore, that can be instantaneously “reset” from one value

in s(h) to another value in s(h), thus allowing a transition from a current mode to a

different one according to the transition relation ∆.

The transition relation ∆ allows a jump from mode k to mode k′ on a reset of the

parameter vector from p to p′, denoted (h, p, k) → (h, p′, k′), if and only (h, p) |=
−→
k

and (h, p′) |=
←−
k′ . Transitions in H express possible switches in the controllers of the

continuous dynamics. We require that the limit sets of the flows of the vector field driven

by k be properly contained in the set of continuous variables that satisfy Pre(k′), and

we express this formally by assuming a nonzero constant d > 0 for which ∀x ∈ L+(k; p)

we have dist
`
x, {x′ | (x′, `, p) |=

←−
k′}
´

= 0 (x is in Pre(k′)) and dist
`
x, ∂{x′ | (x′, `, p) |=

←−
k′}
´
> d (the distance from the boundary of Pre(k′) is larger than d).

The inputs (k, p) ∈ I (denoted k[p] in the sequel), are instructions given to the

machine in the form of a desired continuous dynamics to be activated, with the specific

parameterization. Input instructions are processed by the machine when continuous

dynamics have reached their limit set. Then the hybrid state h and parameter p at

mode k give (h, p) |=
−→
k . At that point, the machine determines whether it can process

the next input by checking whether there is a pair in ∆ that matches. A sequence

of inputs {ki[pi]}ni=1 is called admissible if all the elements in the sequence can be

sequentially executed by the machine.

The discrete computation model which will serve as an abstraction is a finite tran-

sition system,2 defined as follows:

Definition 7 (Labeled transition system) T = (Q, Σ, δ) consists of

Q a finite set of states;

Σ a finite alphabet;

δ ⊆ Q×Σ ×Q the transition relation.

If (v, σ, v′) ∈ δ we write v
σ−→T v′. Let Στ ⊂ Σ and call the transitions (v, σ, v′) ∈ δ

for which σ ∈ Στ , silent. Any input word of the form uσ w, where u,w ∈ Σ∗τ (the Kleene

closure of Στ) and σ ∈ Σ \ Στ will be called a composite transition of T if there are

2 This is in fact a semi-automaton, since there is no specification for initial and final states.

7

q1, . . . , qn ∈ Q, not necessarily distinct, such that q1
σ1−→T q2

σ2−→T q3 · · · qn−1
σn−1−→T qn

and σ1 · · ·σn−1 = uσ w. In this case we write q1
σ
; qn.

3 Stability-based discrete abstractions

Our approach to partitioning the hybrid state space H for each k ∈ K is based on which

subsets of H we can distinguish using the atomic propositions in AP as observations.

Each such subset can be properly defined as an equivalence class composed of elements

that have the same image under a binary vector-valued function. To this end, let us

first define a map that associates each pair (h, p) to a binary vector in {1, 0}|AP|. The

desired equivalence relation will be the one naturally induced by this function.

Definition 8 (Valuation map) VM : H×P 7→ V ⊆ {1, 0}|AP| is a function that

maps pairs (h, p) of hybrid states and parameters of H, to binary vectors v formed by

evaluating each atomic proposition αi ∈ APi, such that v[i] = 1⇔ (h, p) |= αi.

Define a relation R on H×V according to which a state h ∈ H is related to v ∈ V
if there exists a p ∈ s(h) such that (h, p) |= v, in which case we write (h, v) ∈ R.3

Let Σ , K ∪ {τ1, . . . , τ|K|}, where τi is an additional symbol (label), and define the

homomorphism (with respect to concatenation) φ : K → Σ∗ in which k 7→ τk k. The

proposed abstraction of the hybrid agent H in Definition 6 is a finite labeled transition

system T(H), with φ mapping inputs of H to labels in T(H).

Definition 9 (Induced transition system) A hybrid agent H induces a finite la-

beled transition system T(H) in which

Q = VM (H,P) is a finite set of states;

Σ = K ∪ {τ1, . . . , τ|K|} is a finite set of labels;

δ ⊆ Q×Σ ×Q is a transition relation denoted →T ,

in which for h ∈ H, p ∈ s(h), k ∈ K, and with VM (h, p) = v,

v
σ→T v′ ⇔

8<:∃h′ ∈ H, p ∈ s(h′) : (h, p) |=←−σ , VM (h′, p) = v′, h
σ[p]
99K h′; σ ∈ K

∃ p′ ∈ s(h) : VM (h, p′) = v′, (h, p, k)→ (h, p′, k′); σ = τk′ , k
′ ∈ K.

Note that each transition in H on input k[p] is associated with two consecutive

transitions in T(H), the first labeled τk and the second labeled k. However, with infor-

mation about p being abstracted away, transitions in T(H) can be nondeterministic:

a τk transition from a given state in T(H), may lead to several different states q ∈ Q
from which a subsequent k transition can be initiated. Thus, an input sequence in H

does not uniquely specify a path in T(H). Nevertheless, Lemma 1 and Theorem 1 that

follow indicate that there is still a lot of structure of H that is maintained in T(H) to

the point that both verification and design (under appropriate restrictions on how the

transitions of T(H) are defined, which are discussed later) can be performed using the

abstraction.

As a first step, it is shown that the partition on H induced by VM has the property

that if h can take a transition, then all h′ in the same equivalence class can also take

the same transition:

3 Alternatively, we can define R as an equivalence relation in H by identifying it with the
map VM

−1 ◦ VM (·, s(·)).

8

Lemma 1 Suppose that h, h′ ∈ H are both R-related to v ∈ V. If (h, p, k)→ (h, p, k′)
for some k, k′ ∈ K, then there exists a p′ ∈ s(h) such that (h′, p′, k)→ (h′, p′, k′).

Proof : Writing VM (h, p) = v implies that a specific combination of atomic propositions

evaluate true at state h when the parameter vector is set to p; without loss of generality,

let this set of propositions that are true be {α1, . . . , αm}. From (h, p, k)→ (h, p, k′) we

conclude that (h, p) |=
→
k and (h, p) |=

←
k′. It follows that

→
k⊆ {α1, . . . , αm} ⊇

←
k′. Given

that h′ is also R-related to v, there exists a p′ such that VM (h′, p′) = v; this means

that the same set of atomic propositions that are true when the system is at state

h with parameter p, are also true at state h′ with parameter p′. Therefore, we must

have (h′, p′) |=
→
k and (h′, p′) |=

←
k′. According to the expression of ∆ in Definition 6,

(h′, p′, k)→ (h′, p′, k′).

Consistency between the concrete system and its abstraction is established in terms

of a version of weak bisimulation [27], which is sometimes referred to as observable

bisimulation [28]. It applies to cases where some of the transitions in a system are

observable, and some are not (unobservable transitions are the ones called silent).

An external observer is only able to record the sequence of labels that are associated

to the observable transitions, and can have no information about how many silent

transitions may have been taken in between. Two systems are observably bisimilar

when the language generated from the observable labels in both machines is the same.

Alternatively, one can view observable bisimulation as a game, in which any one of the

two systems can match the observable transitions of the other one-to-one, and where

any silent transitions do not “count.” In an observable bisimulation “game,” the system

that moves first is allowed to take a composite transition.

Definition 10 (Observable bisimulation [28]) Consider two (labeled) transition sys-

tems over the same input alphabet ΣT , T1 = (Q1, ΣT ,→1, I1) and T2 = (Q2, ΣT ,→2

, I2), and let Στ ⊂ ΣT be a set of input symbols that trigger silent transitions. A

(total) binary relation R on Q1 ×Q2 is an observable bisimulation if

1. q1
σ

;1 q
′
1 ⇒ ∃ (q′1, q

′
2) ∈ R : q2

σ
;2 q

′
2.

2. q2
σ

;2 q
′
2 ⇒ ∃ (q′1, q

′
2) ∈ R : q1

σ
;1 q

′
1.

Then T1 and T2 are called observably bisimilar and we write T1≈T2.

The key result in this paper is that the discrete abstraction obtained for the hybrid

agent in the form of the finite label transition system of Definition 9, and the concrete

hybrid agent are observably bisimilar.

Theorem 1 There exists a total observable bisimulation R between a hybrid agent H

and its induced finite labeled transition system T(H) and in the sense that

1. If (h, v) ∈ R ⊂ H×Q and h
k[p]
99K h′, then ∃ v′ ∈ Q, v

k
; v′ and

`
h′, v′

´
∈ R.

2. If (h, v) ∈ R ⊂ H × Q and v
k
; v′, then ∃ h′ ∈ H such that h

k[p]
99K h′ and`

h′, v′
´
∈ R.

Then we write T≈H.

9

Proof : To show that R is total we note first that by construction,

Q =
˘
VM (h, p), ∀(h, p) ∈ H× P

¯
.

Thus given v ∈ Q, there must exist a hybrid state h ∈ H such that VM (h, p) = v. To

show the existence along the other direction, namely that for each h ∈ H there is some

v ∈ Q such that (h, v) ∈ R, note that for an arbitrary state h∗ ∈ H, {(h∗, p) | p ∈
P} ⊆ H×P implies {VM (h∗, p) | p ∈ P} ⊆ VM (H×P) = Q. Meanwhile, for all p ∈ P,

VM (h∗, p) is a binary vector and {VM (h∗, p)} 6= ∅. Hence, there must exist at least one

state v ∈ Q such that VM (h∗, p) = v for some p ∈ P, which means (h∗, v) ∈ R. Due

to the fact that h∗ is chosen arbitrarily, we can state that for all h ∈ H, there exists

v ∈ Q and (h, v) ∈ R.

To prove the first implication, note that (h, v) ∈ R means by definition that for

some p′ in s(h), the valuation map at VM (h, p′) = v. For generality, assume that

p′ 6= p. Since h
k[p]
99K h′, p must also be in s(h) and (h, p) |=

←
k . Therefore we trivially

have (h, p′, k) −→ (h, p, k),4 and thus by Definition 9 there exists a silent transition

v
τk−→T v′′, where v′′ = VM (h, p). The existence of the evolution h

k[p]
99K h′, also suggests

that h ∈ s−1(p) and h′ ∈ s−1(p). Let VM (h′, p) = v′. With VM (h, p) = v′′ and

VM (h′, p) = v′ by Definition 9 there must be a transition v′′
k−→T v′. We thus have a

composite transition v
τk−→T v′′

k−→T v′, which means that v
k
; v′ with VM (h′, p) =

v′ ⇔ (h′, v′) ∈ R.

To establish the second implication, observe that if v
k
; v′, then there must be

q, q′ ∈ Q such that q
k−→T q′. Given that (v, h) ∈ R and that v jumps to q via a

series of silent transitions (in which the hybrid state h is preserved), we can invoke

Definition 9 to ensure the existence of an evolution h
k[p]
99K h′ for some p ∈ s(h) ∩ s(h′),

such that VM (h, p) = q and VM (h′, p) = q′. It remains to show that (h′, v′) ∈ R. By

the same token, q′ jumps to v′ by another series of silent transitions, in which the

hybrid state remains at h′. By Definition 9 therefore, just as we have p ∈ s(h′) and

VM (h′, p) = q′ there should also be a p′ ∈ s(h′) such that VM (h′, p′) = v′, which shows

that (h′, v′) ∈ R.

What Theorem 1 implies, is that a controller switching sequence given as a succes-

sion of ∆ transitions —once interlaced with the corresponding silent transitions that

“prepare” the activation of these controllers— yields an admissible input trace in the

transition system. Conversely, an acceptable input trace in the transition system, once

projected on the set of controller symbols (removing the silent transitions) gives a con-

troller sequence for the hybrid system that is implementable. This type of equivalence

is of interest because one can in theory obtain all possible controller sequences in the

hybrid agent without actually simulating it directly; these same controller sequences

can be obtained as traces of the finite transition system.

4 Case study: fetching a printout

To illustrate the function of the different components of the concrete system and its

abstraction, this section traces the execution of a simple task by a wheeled mobile

4 These type of transitions in H correspond to an on-line re-parameterization of the con-
troller already activated.

10

manipulator, the kinematics of which are given by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω| {z }
base

ẋe = u1

ẏe = u2

że = u3| {z }
arm

, (1)

in both concrete and abstract representations of the hybrid system describing the be-

havior of the mobile manipulator. In (1), (x, y) = qp denotes the planar position of

the robot’s base, θ is the orientation of the base, and (xe, ye, ze) = qm are the carte-

sian coordinates of the onboard arm, relative to some base-fixed coordinate system.

The mapping from the base-fixed coordinate system to the global coordinate system

is assumed to be expressed by C(θ)qm + (qp, 0), where C is a rotation matrix (the

dependence on the current base orientation θ is dropped for brevity, but assumed).

The robot, through the choice of the control inputs v, ω and u1, u2, u3, can be

controlled to either reposition its mobile base from configuration A to configuration B

within a planar environment, or pick up a small object with its arm while its base is

stationary, or place an object held at a specific mode while its base remains stationary.

The three different controllers that give rise to each one of the aforementioned behaviors

will be represented by three symbols a, b, and c, respectively. The exact expression

of these control laws is immaterial; what is known is that all these control laws are

guaranteed to achieve their objective, namely reach the target configuration B from

every initial configuration A, pick up an object from mode qo and hold it at some

position qm = phm relative to the base, and place an object held at some other location,

respectively.

Let W(qp) denote the physical reachable workspace of the onboard arm’s gripper,

when the mobile base is at location qp, and denote qo the initial cartesian coordinates

of the object of interest in some global coordinate frame. The task that the robot is

called to complete in this example is to fetch a printout: navigate and park in front

of the printer at pn ∈ R2 × S1,5 pick up a stack of papers at the printer’s output

tray at location qo ∈ W(pn) ⊂ R3, and deliver the stack to the user at location

qu ∈ W(pu) ⊂ R3 for some pu ∈ R2 × S1.

The robot, equipped with the three controllers labeled a, b, and c, can be described

as a hybrid agent H =
˘
H,P,K, I,AP, f,←−· ,−→· , s,∆

¯
. The components of the hybrid

agent are described in detail as follows.

H = X × L is the hybrid state space, where X ⊂ R2 × S1 × R3, and

L = {g} consists of a single boolean variable g, that

expresses whether the gripper of the robot arm holds

something (true) or not (false).

P ⊂ R6 is the range of the parameter vector p = (pp, po), where pp
is used to specify a desired (x, y, θ) configuration for the

base, and po a desired configuration for the arm.

K = {a, b, c} is the set of discrete modes, in which the system

may operate, one for each control law. In mode a the robot

base moves from qip to qdp . In mode b the arm picks up an

object at po and holds it at phm. In mode c the arm places the

object held, at location po, and returns at phm.

5 The set Sn denotes the surface of an n-dimensional sphere.

11

I = K × P is the set containing all possible inputs.

AP = {α1, α2, α3, α4} is a set of four atomic propositions, defined as follows:

α1 ⇔ qp = pp, α2 ⇔ qo = C po + (qp, 0), α3 ⇔ po ∈ W(qp),

and α4 ⇔ g.

f is the vector field of the system, given by (1).
←−· , −→· the Pre and Post conditions for each controller:

a b c

Pre {¬α1} {α2, α3,¬α4} {¬α2, α3, α4}
Post {α1} {¬α2, α3, α4} {α2, α3,¬α4}

The sets of atomic propositions are interpreted as

conjunctions, i.e., {α2, α3,¬α4} ⇔ α2 ∧ α3 ∧ (¬α4).

s : H → 2P is the reset map in which (qp, qm) 7→ R2 × S1 ×W(qp).

∆ follows generically its description in Definition 6.

Note that in this model there can be no transitions of the form (h, p, b)→ (h, p′, b)
or (h, p, c)→ (h, p′, c), because irrespectively of the choice of p′, the Pre and Post of

both b and c are incompatible with each other (α4 does not depend on parameters).

This reflects the fact that once the gripper holds something it cannot pick up something

new, and if it has just placed the object somewhere it is not possible to place the same

object somewhere else without picking it up first.

The valuation map in this case becomes a mapping from a thirteenth-dimensional

space, H × P ⊂ R2 × S1 × {0,1} × R6 into the vertices of a fourth dimensional

(unit) hypercube. These vertices are labeled with a binary sequence indicating which

atomic propositions αi are true, and are shown tabulated in a two-dimensional array

in Fig. 1(b). Based on the valuation map, the induced labeled transition system T(H)

can be constructed with its components defined as follows.

Q = {q1q2q3q4 : qi ∈ {0, 1}, i = 1, . . . , 4} is the set of discrete states.

Σ = {a, b, c, τa, τb, τc} is the set of labels.

δ is the transition relation of Definition 9.

A sequence of inputs in H enables it to complete the task:

a[p1] with p1 = (pn, p
h
m),

b[p2] with p2 =
“
pn, C

−1(qo − (qp, 0))
”

,

a[p3] with p3 = (pu, qu), and

c[p3] with no parameter reset (identity).

The sequence of inputs a[p1] b[p2] a[p3] c[p3] for H, translates under φ to a sequence

of labels τa a τb b τa a τc c in T(H), where the transitions labeled with τi in T(H) are

considered silent. The remaining of the section illustrates the parallel runs on H and

T(H), and shows what is the effect of the discrete abstraction going from the hybrid

to the purely discrete model.

Assume that the initial parameter assignment in H is some pi = (pip, p
i
m), and that

the system starts at rest with (qp, θ) = (x0, y0, θ0) = pip 6= pn , (0, 0, 0), qm = phm =

pim, with g = 0, and C pim + (qp, 0) 6= qo. The valuation map gives for hi = (pip, p
h
m,0)

and pi the value vi = 1010, and the system satisfies Post(a) (see Fig. 1(b)). The first

input is a[p1], which involves reseting pi to p1 = (p1p, p
1
o) = (pn, p

h
m), in accordance to

the reset map s. With this assignment the valuation map now reports for (hi, p1) the

12

value v1 = 0010 which means that (hi, p1) |= Pre(a). The semantics of ∆ then suggest

that H can make a transition (hi, pi, a) → (hi, p1, a), and that hi starts evolving to

h1 = (p1,0); we write hi
a[p1]
99K h1. When the hybrid state of H becomes h1, the valuation

map reports VM (h1, p1) = 1000 again; the difference now is that (qp, θ) = pn.

Note that
`
(hi, pi, a), (hi, p1, a)

´
∈ ∆ ⇒ 1010

τa→T 0010, and that (hi, p1) |= ←−a

with hi
a[p1]
99K h1 imply 0010

a→T 1010; Thus T(H) indeed matches the evolution from

hi to h1 in H.

Now (h1, p1) |= Post(a). At that point the second input is processed, which is

b[p2], reseting the parameter to p2 = (p2p, p
2
o) =

“
pn, C

−1(qo − (qp, 0))
”

. The switch

makes VM jump to 1110 because qo = C p2o + (qp, 0)⇔ (h1, p2) |= α2 and in addition

p2o ∈ W(pn). Since (h1, p2) |= Pre(b), ∆ permits H to take the transition (h1, p1, a)→
(h1, p2, b); for the same reason there exists a transition 1010

τb→T 1110 in T(H). With H

at mode b, the continuous dynamics first evolve to a state where qm = C−1`qo−(qp, 0)
´
,

before retreating to qm = phm with the gripper holding the object originally positioned

at qo. When this happens, the valuation map reads 1011, because the object is no longer

at p2o and thus α2 is now false. Now H is in Post(b) (see Fig. 1(b)), and h2 = (pn,1).

Since h1 = (pn,0)
b[p1]
99K (pn,1) = h2, with (h1, p1) |=

←−
b and VM (h2, p1) = 1011, there

exists a transition 1110
b→T 1011 in T(H).

Now the input a[p3] is processed, where the parameter vector is reset to p3 =

(p3p, p
3
o) = (pu, qu). This assignment satisfies (h2, p3) |= Pre(a) and gives VM (h2, p3) =

0001.6 The transition relation in H then enables (h2, p2, b)→ (h2, p3, a) and the con-

tinuous dynamics start to evolve in mode a in a way so that (h2, a)
a[p3]
99K (h3, a), where

h3 = (pu, p
h
m,1). When the hybrid state reaches h3, then VM (h3, p3) = 1011, because

in addition to qp = pu it is now qu ∈ W(pu). Since
`
(h2, p2, b), (h2, p3, a)

´
∈ ∆, there

exists a transition in T(H) of the form 1011
τa→T 0001; similarly from (h2, a)

a[p3]
99K (h3, a)

it follows that there is also a δ transition 0001
a→T 1011.

Notice now that (h3, p3) |= Pre(c). Thus ∆ trivially admits (h3, p3, a)→ (h3, p3, c)

without any additional change in the parameters. At the same time, by definition since`
(h3, p3, a), (h3, p3, c)

´
∈ ∆ it follows that 1011

τc→T 1011 ∈ δ. Now H is able to process

input c[p3]. With that, the robot’s gripper reaches out to qu, releases the printout and

returns to qm = phm. With the object at qu, α2 becomes true and the valuation map

outputs 1110. For h4 = (pu, p
h
m,0) we write h3 c[p

3]
99K h4, which also implies the existence

of a δ transition 1011
c→T 1110.

Thus the evolution of a hybrid system of the form H, is matched by a run in the

labeled finite transition system T(H), through interlacing of observable and unobserv-

able (silent) transitions. The execution of the plan to fetch the printout on the hybrid

agent Hr and its abstraction on the transition system Tr are shown in Figure 1. Had

an additional atomic proposition α5 ⇔ qo = qu been defined, its satisfaction would

signify the completion of the task. For simplicity in the representation of T(H) in

Fig. 1(b), this predicate is not included.

In general, if there is an execution in H, there is always a path in T(H) that

visits the same blocks of the partition induced by VM (and vice versa); the transition

6 We assume that the user is not right next to the printer and so qu /∈ W(pn), because then
there would be no need to send the robot to bring the printout.

13

hi

h1

h1

h2

h2

h3 h3

h4

a
b

c

Post(a)

Pre(b)

Pre(b)

Post(b)

Pre(c)
Pre(c)

Post(c)

(a) Evolution of the hybrid dynamics.

Post(b)

Pre(b)

Post(c)

Pre(c)Pre(a)

Post(a)

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

τa

τa

a a

τb
bc

τc

(b) Evolution of the discrete dynamics.

Fig. 1 The hybrid agent and its abstraction. Continuous evolution and discrete jumps in the
hybrid system are mirrored in the silent and observable transitions of the transition system.
Each state in the transition system defines a region on the continuous domain where a specific
combination of atomic propositions evaluates true.

sequences in the two machines, however, need not have the same length. In theory, this

property of the two models enables one to search in T(H) for a path that connects an

arbitrary initial state to a “forbidden” block. If such a path exists in T(H) this means

that there is a combination of inputs and parameters in H that can realize it.

5 Conclusions

Hybrid systems within a certain class can be abstracted into finite state transition sys-

tems. A finite transition system obtained as an abstraction, is shown to be observably

bisimilar to the concrete hybrid dynamics it originated from. This fact ensures that all

input strings that the transition system accepts, have a corresponding implementation

on the concrete hybrid system, and that whatever behavior the hybrid system can

exhibit is also observed as a sequence of transitions between the equivalence classes of

the quotient abstract system. The result allows motion planning and behavior design

for the hybrid system to be performed on the discrete system, without concerns about

the continuous dynamics of the former. In addition, if a property is found to hold for

the transition system, it will also hold for the hybrid system. Ongoing work is directed

toward using slightly more general discrete models of computation, which will enable

the designer to preserve the information about the continuous controller parameteri-

zation in the abstraction, and allow planning at the discrete level with the use of this

information.

References

1. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In:
A. Gupta, S. Malik (eds.) Computer Aided Verification, LNCS, vol. 5123, pp. 190–203.
Springer-Verlag (2008)

2. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixed-
points. Formal Methods in System Design 35(1), 98–120 (2009)

14

3. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the verification
of hybrid systems. Proceedings of the IEEE 91(7), 986–1001 (2000)

4. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: N. Lynch,
B. Krogh (eds.) Hybrid Systems : Computation and Control, LNCS, vol. 1790, pp. 310–323.
Springer-Verlag (2000)

5. Stursberg, O., Krogh, B.: Efficient representation and computation of reachable sets for
hybrid systems. In: O. Lynch, A. Pnueli (eds.) Hybrid Systems : Computation and Control,
LNCS, vol. 2623, pp. 482–497. Springer-Verlag (2003)

6. Girard, A., Cuernic, C.: Zonotope/hyperplane intersection for bybrid systems reachability
analysis. In: M. Egerstedt, P. Mishra (eds.) Hybrid Systems : Computation and Control,
LNCS, vol. 4981, pp. 215–228. Springer-Verlag (2008)

7. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1),
57–83 (2008)

8. Lerda, F., Kapinski, J., Clarke, E., Krogh, B.: Verification of supervisory control software
using state proximity and merging. In: M. Egerstedt, B. Mishra (eds.) Hybrid Systems :
Computation and Control, LNCS, vol. 4981, pp. 344–357. Springer-Verlag (2008)

9. Broucke, M.E.: A geometric approach to bisimulation and verification of hybrid systems.
In: F.W. Vaandrager, J.H. van Schuppen (eds.) Hybrid Systems: Computation and Control,
Lecture Notes in Computer Science, vol. 1569, pp. 61–75. Springer-Verlag (1999)

10. Girard, A., Pappas, G.J.: Hierarchical control system design using approximate simulation.
Automatica 45, 566–571 (2009)

11. Tabuada, P.: Approximate simulation relations and finite abstractions of quantized control
systems. In: A. Bemporad, A. Bicchi, G. Buttazzo (eds.) Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science, vol. 4416, pp. 529–542. Springer-Verlag
(2007)

12. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid sys-
tems. Proceedings of the IEEE 88(7), 971–984 (2000)

13. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
14. Girard, A., Pappas, G.J.: Approximate metrics for discrete and continuous systems. IEEE

Transactions on Automatic Control 53(5), 782–798 (2007)
15. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incre-

mentally stable switched systems. In: M. Egerstedt, B. Mishra (eds.) Hybrid Systems:
Computation and Control, Lecture Notes in Computer Science, vol. 4981, pp. 201–214.
Springer Verlag (2008)

16. Alur, R., Verimag, T.D., Ivancic, F.: Predicate abstractions for reachability analysis of
hybrid systems. ACM Transactions on Embedded Computing Systems 5(1), 152–199
(2006)

17. Koutsoukos, X., Antsaklis, P., Stiver, J., Lemmon, M.: Supervisory control of hybrid sys-
tems. Proceedings of the IEEE 88(7), 1026–1049 (2000)

18. Lunze, J., B.Nixdorf, Schroder, J.: Deterministic discrete-event representations of linear
continuous-variable systems. Automatica 35(3), 395–406 (1999)

19. Raisch, J., O’Young, S.: Discrete approximations and supervisory control of continuous
systems. IEEE Transactions on Automatic Control 43(4), 569–573 (1998)

20. Tazaki, Y., Imura, J.: Finite abstractions of discrete-time linear systems and its application
to optimal control. In: Proceedings of the 17th IFAC World Congress, pp. 4656–4661 (2008)

21. Kowalewski, S., Engell, S., Preußig, J., Stursberg, O.: Verification of logic controlles for
continuous plants using timed condition/event-system models. Automatica 35, 505–518
(1999)

22. Lygeros, J., Johansson, K., Simić, S., Sastry, S.: Dynamical properties of hybrid automata.
IEEE Transactions on Automatic Control 48(1), 2–17 (2003)

23. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. No. 49 in Texts in
Applied Mathematics. Springer (2005)

24. Khalil, H.K.: Nonlinear Systems. Prentice Hall (1996)
25. Piovesan, J.L., Tanner, H.G., Abdallah, C.T.: Discrete asymptotic abstractions of hybrid

systems. In: Proceedings of 45th IEEE Conference on Decision & Control, pp. 917–922
(2006)

26. Athanasopoulos, K.: Explosions near isolated unstable attractors. Pacific Journal of Math-
ematics 210(2), 201–214 (2003)

27. Milner, R.: Communicating and mobile systems: the π calculus. Cambridge University
Press (2003)

28. Stirling, C.: Modal and temporal logics for processes. In: F. Moller, G. Birtwistle (eds.)
Logics for concurency: structure vs automata. Springer (1996)

	Introduction
	Preliminary definitions and notation
	Stability-based discrete abstractions
	Case study: fetching a printout
	Conclusions

