
Sampled-Data Supervisory Control

Ryan J. Leduc ∗ Yu Wang ∗∗

∗ Department of Computing and Software, McMaster University,
Hamilton, Canada, (e-mail: leduc@mcmaster.ca)

∗∗ Department of Computing and Software, McMaster University,
Hamilton, Canada, (e-mail: wangy22@mcmaster.ca)

Abstract:
This paper focuses on issues related to implementing timed discrete-event systems (TDES)
supervisors, and the concurrency and timing delay issues involved. In particular, we examine
issues related to implementing TDES as sampled-data (SD) controllers. An SD controller is
driven by a periodic clock and sees the system as a series of inputs and outputs. On each clock
edge (tick event), it samples its inputs, changes states, and updates its outputs. We extend TDES
controllability to a new definition, SD controllability, which captures several new properties that
are useful in dealing with concurrency issues, as well as makes it easier to translate a TDES
supervisor into an SD controller. We present controllability and nonblocking results for SD
controllers. Finally, we apply our method to a small manufacturing system from the literature.

Keywords: Discrete-event systems (DES), Timed DES, implementation, concurrency.

1. INTRODUCTION

In the area of Discrete-Event Systems (DES) [Ramadge
and Wonham(1987)], [Wonham and Ramadge(1987)], [Won-
ham(2008)], a lot of effort has been devoted to studying
standard properties such as nonblocking and controllabil-
ity in a theoretical setting. However, limited effort has been
made in investigating what an implementation of a DES
supervisor would be like, whether we can guarantee that it
will retain the controllability and nonblocking properties of
the theoretical supervisor, and how to handle timing delay
and concurrency issues inherent in an implementation.

1.1 Sampled-Data Controllers

A good implementation method for DES supervisors would
be as sampled-data (SD) controllers. An SD controller is
driven by a periodic clock and sees the system as a series
of inputs and outputs. On each clock edge, it samples its
inputs, changes state, and updates its outputs. An exam-
ple of an SD controller might be a programmable logic
controller (PLC) [Bolton(2006)] or a Moore synchronous
finite state machine (FSM) [Brown and Vranesic(2008)].
For simplicity, we will assume inputs and outputs of an
SD controller can take the values of true or false. In this
paper, we will focus on the timing and concurrency issues
involved in implementing timed DES (TDES) [Brandin
and Wonham(1994)] as SD controllers.

When we are using an SD controller to manage a given
system, we associate an input with each event, and an
output with each controllable event. We consider an event
to have occurred when its corresponding input has gone

⋆ Initial work on this topic was begun during Leduc’s doctoral thesis
under Prof. W.M. Wonham, and in collaboration with Dr. Bertil A.
Brandin.

true during a given clock period. We consider a control-
lable event to be enabled when its corresponding output
has been set true by the controller, disabled otherwise.
Finally, we associate the clock edge that drives the SD
controller with the TDES tick (τ) event.

These definitions have several ramifications. First, an SD
controller does not know an event has occurred until
the next clock edge, and then it has no information on
the order or number of occurrences of events. The only
ordering information that remains is which sampling period
(clock period) a given event occurred in.

As an example, consider Fig. 1. We see on the third rising
edge of the clock, the SD controller knows that both
events e1 and e2 have occurred, but not which came first.
This means that the SD controller can’t tell the difference
between the strings e1-e2-τ , e2-e1-τ , or e1-e2-e1-τ .

Fig. 1. Sampling Events

Concurrency and timing issues arise when implementing
TDES as SD controllers as TDES assume that events occur
in an interleaving fashion (i.e. we can always determine
event ordering), we know immediately when events occur,
and enablement and forcing occur immediately (i.e. no
communication delay). These assumptions are false in
general for SD controllers. Also, due to variations in
how an SD controller is designed, the occurrence of a



forced event in a specified clock period will vary and
could possibly occur in any order relative to the other
events occurring in the same clock period. These have
ramifications with respect to controllability, plant model
correctness, and the SD controllers ability to determine
which state the TDES system currently is in.

Finally, if an SD controller is forcing multiple events (say α
and β) to occur in the same clock period, these events may
only actually occur (due to design or timing constraints)
in a specific order (say αβ only), even though the TDES
model says they can occur in multiple orderings (say βα
as well). This means a TDES could be nonblocking, but
its SD controller implementation could block.

In this paper, we will develop a new property for TDES
systems that will address the above issues, as well as make
our TDES supervisor more consistent with SD controllers,
making them easy to translate.

In Section 2, we discuss TDES preliminaries, including in-
troducing some TDES related properties that we will need.
Section 3 introduces the sampled-data setting, including
a new property called SD controllability. In Section 4,
we present controllability and nonblocking results for SD
controllers. In Section 5 we apply our method to a small
manufacturing example from the literature. We finish with
conclusions and future work.

1.2 Related Work

In the sampled-data setting, if the same event occurs
once or multiple times in the same sampling period, an
SD controller will not be able to detect the difference.
In [Basile and Chiacchio(2007)], the authors require that
the system have the property that an event cannot be
generated more than once during a sampling period. The
paper also discussed the loss of ordering information when
events occur in the same sampling period. To handle these
timing related issues, the author adds a dispatcher to
the existing supervisor to solve the problems that could
occur when event ordering cannot be ignored. The model
is implemented based on Petri Nets and an algorithm to
translate the Petri Net implementation into a program-
ming language is provided.

In [Leduc(1996)], the author investigated implementing
DES as Moore finite state machines (FSM) and created
an implementation by hand for his example. The idea of
implementing TDES as SD controllers was motivated by
this work. [Nourelfath and Niel(2004)] discuss translating
DES into PLC programs. They first convert automata into
the Grafcet language, which describes the specification of
logic controllers. They then translate the Grafcet language
into a PLC program.

In [Dragert et al.(2008)Dragert, Dingel, and Rudie], DES
theory is used as a tool to assist in the development of
concurrent software. The authors describe an approach to
generate program source code for currency control from
specifications. The approach takes portions of code that do
not contain concurrency control code, but instead markup
describing events that are relevant to the specification. A
supervisor is generated from this information and then
converted into concurrency control code.

A real world application of DES supervisory control is
given in [Giua and Seatzu(2008)], where Petri Nets are
used to model railway networks.

However, even if the DES supervisor is nonblocking for
the DES plant does not mean that the controller imple-
mentation is nonblocking as well. To ensure a controller is
nonblocking, [Malik(2003)] studied several different meth-
ods for implementing controllers. The author suggested
conditions to be satisfied for the implemented controllers
to be nonblocking.

Another practical issue for implementing controllers is
communication. In [Schmidt and Schmidt(2008)], the au-
thors study the communication between modular and de-
centralized supervisors on a switched network. In [Xu and
Kumar(2008)], the authors resolve communication issues
by introducing an asynchronous implementation.

2. PRELIMINARIES

Below, we present a summary of the DES terminology that
we use in this paper.

2.1 Strings and Languages

Let Σ be a finite set of distinct symbols (events), Σ+ the
set of finite sequences of events, and Σ∗ = Σ+∪{ǫ}, where
ǫ is the empty string. Let L ⊆ Σ∗ be a language over Σ.
A string t ∈ Σ∗ is a prefix of s ∈ Σ∗ (written t ≤ s) if
s = tu, for some u ∈ Σ∗. The prefix closure of language
L is defined as L = {t ∈ Σ∗ | t ≤ s for some s ∈ L}. Let
Pwr(Σ) denote the set of all possible subsets of Σ.

For Ω ⊆ Σ, natural projection PΩ : Σ∗ → Ω∗ denotes the
operation that deletes all events not in Ω from strings. For
language L ⊆ Σ∗, the eligibility operator EligL : Σ∗ →
Pwr(Σ) is given by EligL(s) := {σ ∈ Σ |sσ ∈ L} for s ∈ Σ∗.

Definition 1. The Nerode equivalence relation over Σ∗

mod L is defined for s, t ∈ Σ∗ as: s ≡L t iff (∀u ∈ Σ∗)su ∈
L ⇔ tu ∈ L.

2.2 Timed DES

Timed DES (TDES) [Brandin and Wonham(1994)] ex-
tends untimed DES theory by adding a new tick (τ) event,
corresponding to the tick of a global clock. The event set
of a TDES contains the tick event as well as other non-
tick events called activity events (Σact).

A TDES automaton is represented as a 5-tuple G =
(Q,Σ, δ, qo, Qm) where Q is the state set, Σ = Σact ∪̇ {τ}
is the event set, the partial function δ : Q × Σ → Q is the
transition function, qo is the initial state, and Qm is the
set of marker states. We extend δ to δ : Q × Σ∗ → Q in
the natural way. The notation δ(q, s)! means the transition
is defined. The closed behavior of G is defined to be
L(G) := {s ∈ Σ∗| δ(qo, s)!}. The marked behavior is
defined as Lm(G) := {s ∈ L(G)| δ(qo, s) ∈ Qm}.

Definition 2. A DES G is said to be nonblocking if

Lm(G) = L(G)

TDES contain forcible (Σfor), and prohibitable events
(Σhib). Forcible events are non-tick events which can be



relied upon to preempt tick, when needed. Prohibitable
events are non-tick events that can be disabled. The set
of controllable events are Σc = Σhib∪̇ {τ}, and the
uncontrollable events are Σu = Σ − Σc.

The reachable state subset of DES G, denoted Qr, is:
Qr := {q ∈ Q| (∃s ∈ Σ∗) δ(qo, s) = q}. A DES G
is reachable if Qr = Q. We will always assume that a
DES is reachable, has a finite state and event set, and
is deterministic.

Definition 3. For Gi = (Qi,Σ, δi, qo,i, Qm,i) (i = 1, 2), we
define the product of the two DES as:

G1×G2 := (Q1 ×Q2,Σ, δ1 × δ2, (qo,1, qo,2), Qm,1 ×Qm,2),

where δ1 × δ2 : Q1 × Q2 × Σ → Q1 × Q2 is given by (δ1 ×
δ2)((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ)), whenever δ1(q1, σ)!
and δ2(q2, σ)!.

We note that L(G1×G2) = L(G1)∩L(G2) and Lm(G1×
G2) = Lm(G1) ∩ Lm(G2).

In this paper, we assume all DES are combined with the
product DES operator. For plant G and supervisor S, our
closed-loop system is G × S.

Definition 4. Language K ⊆ L(G) is controllable with
respect to G if for all s ∈ K,

Elig
K

(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if Elig
K

(s)∩ Σfor =∅
EligL(G)(s) ∩ Σu if Elig

K
(s)∩ Σfor 6=∅

Definition 5. A supervisory control for G is a map V :
L(G) → Pwr(Σ), such that, for each s ∈ L(G),

V (s) ⊇











Σu ∪ ({τ} ∩ EligL(G)(s)) if V (s) ∩ EligL(G)(s)∩
Σhib = ∅

Σu if V (s) ∩ EligL(G)(s)∩
Σhib 6= ∅

Definition 6. We write V/G to represent G = (Y,Σ, δ, yo,
Ym) under the supervision of V . The closed behavior of
V/G is defined to be L(V/G) ⊆ L(G) such that

(1) ǫ ∈ L(V/G);
(2) if s ∈ L(V/G), σ ∈ V (s) and sσ ∈ L(G), then

sσ ∈ L(V/G);
(3) no other strings are in L(V/G).

2.3 TDES Properties

We now introduce several existing TDES conditions that
will be useful. The first ensures that TDES do not allow a
tick event to be indefinitely preempted by activity events.

Definition 7. TDES G = (Q,Σ, δ, q0, Qm) is activity-loop-
free (ALF) if

(∀q ∈ Qr)(∀s ∈ Σ+
act)δ(q, s) 6= q

We will also require that our plant TDES have proper
time behavior, as defined by Kai Wong et al. [Wong and
Wonham(1996)].

Definition 8. TDES G has a proper time behavior if

(∀q ∈ Qr)(∃σ ∈ Σu ∪ {τ}) δ(q, σ)!

If the plant is also ALF and has a finite statespace, then
we can always reach a state where a tick is possible after
at most a finite number of activity events.

Controllable events often are part of the supervisor’s
implementation and can occur when we want them to
[Balemi(1994)]. However, a plant might be modeled more
restrictively in order to make the system easier to model
or understand. We have modified the definition to only use
prohibitable events.

Definition 9. Let TDES G be a plant and TDES S be a
supervisor. G is complete for S if

(∀s ∈ L(G) ∩ L(S))(∀σ ∈ Σhib)sσ ∈ L(S) =⇒ sσ ∈ L(G)

3. SAMPLED-DATA CONTROLLERS

In this section, we will examine the behavior of SD
controllers in more detail.

3.1 Assumptions

We make the following assumptions about our system. It
is the designer’s responsibility to ensure that they are met.

(1) The set of prohibitable events is exactly equal to
the set of forcible events for our system. This is
a reasonable assumption that will greatly simplify
things. This is essentially a modeling issue.

(2) Enabling a prohibitable event means we should force
the event during the current clock period. We only
allow it to occur once per clock period.

(3) Our SD controllers will be implemented centrally with
a common clock, such that they all sample inputs, and
update outputs at the same time.

(4) We assume an event has “occurred” when its input
goes true unless this occurs so close to the clock edge
it shows up in the next sampling period. In that case,
it “occurs” immediately after the clock edge. This
should be reflected in the system model.

(5) When we force an event in a given sampling period,
it occurs sometime during that clock period.

(6) The length of a given input pulse for an event is such
that the controller will never miss it, or interpret the
event as occurring in the wrong clock period.

Applicable systems should not find Assumptions 1, 2,
5, and 6 very restrictive. Assumptions 3 and 4 partially
address timing delay issues and likely will be removed in
future work.

3.2 Sampled-Data Preliminaries

For SD controllers, we identify a tick event with the clock
edge that the SD controller uses for sampling and state
change. This means the strings an SD controller can
observe are ǫ and strings ending with a tick. The reason
ǫ is included is that it represents the initial state of the
system, which is usually known. We refer to these strings
as sampled strings, defined as:

Lsamp = Σ∗.τ ∪ {ǫ}

An SD controller changes state after each clock edge (tick).
Its next state is determined by all the strings that can
occur containing a single tick event at the end, since the
last tick event. We refer to such strings as concurrent
strings, defined as:

Lconc = Σ∗

act.tick ⊂ Lsamp



We note that if events occur in different sampling periods,
we can distinguish which event occurred first. However, if
two events occur in the same concurrent string, we can’t
distinguish order. This means we only consider events in
the same concurrent string as occurring concurrently.

Sampled strings represent observable points in the system.
If the controller is implementing TDES supervisor S =
(X,Σ, ξ, xo,Xm), states reached from the initial state by
sampled strings represent states in S that are at least
partially observable. We refer to such states as sampled
states, defined as:

Xsamp = {x ∈ X| (∃s ∈ L(S) ∩ Lsamp) x = ξ(xo, s)}

However, if two concurrent strings contain the exact same
events but in different order and/or number, they are indis-
tinguishable to the controller. To capture this uncertainty,
we define the occurrence operator. It takes a string and
returns the set of events (the occurrence image) that make
up the string.

Definition 10. For s ∈ Σ∗, the occurrence operator, Occu :
Σ∗ → Pwr(Σ), is defined as:

Occu(s) := {σ ∈ Σ | s ∈ Σ∗.σ.Σ∗}

To convert TDES S into SD controller C, we take the
sampled states of S as the states of C. The initial,
or reset state of C would be the initial state of S.
We then determine which concurrent strings are possible
from a given sampled state. The occurrence image of
these concurrent strings would then define our next state
conditions, i.e. the sampled state in S that the concurrent
string takes us to.

For state x of C, an output (enablement of some σ ∈ Σhib)
is set to to be true if the corresponding event is possible
at x in S. We note that outputs (enablement information)
are constant for the clock period. Also, forcing decisions for
the clock period are made immediately after the tick event
occurs. For a formal definition of SD controllers and the
conversion process, see [Wang(2009)].

Clearly, our translation method will not work if two
concurrent strings with the same occurrence image are
possible at a given sampled state, but they lead to different
states in S. To ensure this doesn’t happen, we require our
TDES be concurrent string deterministic.

Definition 11. A TDES S = (X,Σ, ξ, xo,Xm) is concur-
rent string (CS) deterministic, if

(∀s ∈ L(S) ∩ Lsamp)(∀s′, s′′ ∈ Lconc)

[ss′, ss′′ ∈ L(S) ∧ Occu(s′) = Occu(s′′)] =⇒

[ss′ ≡L(S) ss′′ ∧ ss′ ≡Lm(S) ss′′ ∧ ξ(xo, ss
′) = ξ(xo, ss

′′)]

In Fig. 2, we see part of a TDES that is not CS determin-
istic. For this e.g., we can merge states x′and x′′ and use
the minimal version for our translation. If the two states
were not equivalent, we wouldn’t be able to translate it.

As stated in our assumptions, controllers only allow pro-
hibitable events to occur once per sampling period, so we
want our TDES plant G to reflect this.

Definition 12. For TDES G and TDES S, we say that G
has S-singular prohibitable behavior if

(∀s ∈ L(S)∩L(G)∩Lsamp)(∀s′ ∈ Σ∗

act)ss
′ ∈ L(S)∩L(G)

=⇒ (∀σ ∈ Occu(s′) ∩ Σhib) σ 6∈ EligL(G)(ss
′)

Fig. 2. CS Deterministic Example

3.3 SD Controllable Languages

So far, we have required that our TDES system have a
finite statespace, be ALF and nonblocking, that our plant
have proper time behavior and be complete for our super-
visor, and that our supervisor be controllable for our plant.
However, these conditions are not sufficient to address
the concerns that we raised in Section 1.1. In particular,
even though the above conditions are met, our actual
system behavior under the control of the corresponding
SD controller could block, violate our control law, or even
exhibit behavior not contained in our plant model.

To address these issues, we now introduce a new concept
called SD controllable. Let G = (Q,Σ, δ, q0, Qm) be our
plant and S = (X,Σ, ξ, xo,Xm) be our supervisor. Note
that implicit in the definition is the assumption Σfor =
Σhib.

Definition 13. TDES S is SD controllable with respect to
TDES G if, ∀s ∈ L(S) ∩ L(G), the following statements
are satisfied:

(i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

(ii) If τ ∈ EligL(G)(s) then

τ ∈ EligL(S)(s) ⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅
(iii) If s ∈ Lsamp then

(1) (∀s′ ∈ Σ∗

act)[ss
′ ∈ L(S) ∩ L(G)] =⇒

[EligL(S)∩L(G)(ss
′) ∪ Occu(s′)] ∩ Σhib =

EligL(S)∩L(G)(s) ∩ Σhib

(2) (∀s′, s′′ ∈ Lconc)
[ss′, ss′′ ∈ L(S)∩L(G)∧Occu(s′) = Occu(s′′)] ⇒
ss′ ≡L(S)∩L(G) ss′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss′′

(iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

Point i: This is standard untimed controllability.
Point ii: The (⇐) direction and Point i imply standard

TDES controllability. The (⇒) part says that if we
enable a prohibitable event, we must disable tick. This is
to capture the notion that we only enable a prohibitable
event when we want to force it. This makes converting
TDES S into an SD controller less ambiguous.

Fig. 3 shows an example satisfying Point ii. Our
supervisor enables α after first tick, then must disable
the tick there to satisfy (⇒) of Point ii. The (⇐) part
states we are allowed to disable tick here since α ∈ Σhib

is possible to preempt the tick.
Point iii: These subpoints apply to the clock period de-

lineated by the sampled string s and the next tick event.



Fig. 3. An Example for Point ii

Point iii.1: This point says that when a prohibitable
event is possible in a clock period, it must be possible
immediately after the tick and stay possible for the
period until it occurs. This captures the notion that
the enablement information for an SD controller is
constant for the clock period. It also captures the idea
that when a controller forces a prohibitable event,
the event must occur before the next tick, but we
don’t know when. This means that the event must
be possible in the plant for the entire clock period
till it occurs, and must be able to interleave with the
other events occurring in the clock period. Otherwise,
we could get behavior not in our plant model.

Fig. 4 shows a system that passes Point iii.1. We
see that the only prohibitable event possible after the
tick is β, that β stays possible until it occurs on both
paths, and no new prohibitable events become eligible
before the next tick.

Fig. 4. Point iii.1 Fig. 5. Point iv

Point iii.2: This point says that if two concurrent
strings with the same occurrence image can occur,
they must have the same future with respect to the
system’s closed behavior (i.e. we take same control
action now and in the future for both strings), and
with respect to its marked behavior (i.e. the strings
are interchangeable with respect to reaching future
marked states). If G × S is minimal, this means that
the strings lead to the same state.

Point iv This point says marked strings must be sampled
strings (ǫ or end in tick). Combined with Point iii.2,
this ensures that if G × S is nonblocking, then our
plant and SD controller will be nonblocking even if only
a single concurrent string is possible in our physical
system despite our TDES model saying multiple with
same occurrence image are possible.

The system in Fig. 5, fails Point iv. The left marked state
is fine, but the top marked state fails as it is reached by τα
which is not a sampled string. The concurrent strings αβτ
and βατ have same occurrence image and they take us to
the same state so they satisfy Point iii.2. Consider the
case that in the physical system, we will only get string
βατ and never αβτ . If our only marked state was the top
marked state, our physical system would never reach it
although our TDES model says we could.

4. CONTROLLABILITY AND NONBLOCKING

In this section, we examine how the control action of an SD
controller compares to that of the TDES controller it was
converted from. In particular, we want to take into account
that an SD controller can only update its enablement and
forcing information immediately after a tick event, while
a TDES can be more flexible.

Let G = (Y,Σ, δ, yo, Ym) be our plant, and S =
(X,Σ, ξ, xo,Xm) our supervisor. For the rest of this sec-
tion, we will require plant G to be complete for S, have
proper time behavior and S-singular prohibitable behav-
ior, and that G×S be ALF. Also, that S be CS determin-
istic and SD controllable with respect to our G. Let C be
a SD controller translated from S.

4.1 SD Controller as a Supervisory Control

To investigate the enablement and forcing behavior of our
controller, we capture this behavior as a supervisory con-
trol for G. In [Wang(2009)], we give a detailed algorithm to
define map V based on our controller. Here we only have
space to give the basic idea. For each s ∈ L(G), we set
V (s) = Σu ∪{τ}. Then for each sampled string s accepted
by G and C and taking us to state q in C, we add to V (s)
the prohibitable events whose corresponding outputs are
true at state q. We also remove tick unless all outputs are
false. Then for each concurrent string t accepted after s by
G and C, we process each strict prefix t′ < t. We add to
V (st′) the same prohibitable events as for s, and remove
tick if any of these events have not occurred in t′.

4.2 SD Controllers and Controllability

We will now show that the closed-loop behavior L(V/G)
equals the behavior of G × S, if the TDES satisfy the
indicated conditions. This means that we can implement
our TDES supervisor as an SD controller and get our
expected behavior despite the discussed limitations of
the SD controller, at least with respect to the required
enablement and forcing actions of the controller.

Theorem 4.1. For plant G = (Y,Σ, δ, yo, Ym), and CS
deterministic supervisor S = (X,Σ, δ, xo,Xm) that is SD
controllable for G, let both TDES have finite statespaces,
let G be complete for S, have proper time and S-singular
prohibitable behavior, let G×S be ALF, let C be the SD
controller that is constructed from S, and let V be the
map that is constructed from C. Then,

L(V/G) = L(S) ∩ L(G)

Proof. See proof in [Wang(2009)]. 2

4.3 SD Controllers and Nonblocking

For plant G, and CS deterministic supervisor S that is
SD controllable for G, let C be the SD controller that is
constructed from S, and V be the map that is constructed
from C. The marked behavior of V/G is defined to be

Lm(V/G) := L(V/G) ∩ Lm(S) ∩ Lm(G)

We say V is nonblocking for G if Lm(V/G) = L(V/G). It
follows immediately that if the assumptions of Theorem



4.1 are met, then Lm(V/G) = Lm(S) ∩ Lm(G); thus V is
nonblocking for G if and only if G × S is nonblocking.

We also want to ensure that if G × S is nonblocking,
then our plant and SD controller will be nonblocking even
if only a single concurrent string is actually possible in
our physical system at a given sampled state, despite our
TDES model saying multiple concurrent strings with the
same occurrence image are possible. We wish to be robust
with respect to such variations and nonblocking. We will
frame our argument in terms of supervisory control maps.

Definition 14. Let G = (Q,Σ, δ, qo, Qm) be a TDES and
let V and V ′ be supervisory controls for G. We say V ′ is
concurrent supervisory control equivalent (CSCE) to V if

(1) (∀s ∈ L(G))V ′(s) ⊆ V (s)
(2) (∀s ∈ L(V ′/G) ∩ Lsamp)(∀s′ ∈ Lconc)ss

′ ∈ L(V/G)
=⇒ (∃s′′ ∈ Lconc)ss

′′ ∈ L(V ′/G) ∧ Occu(s′) =
Occu(s′′)

The first point essentially guarantees that L(V ′/G) ⊆
L(V/G). The second point says that if V ′/G accepts
sampled string s, and then V/G accepts concurrent string
s′, then V ′/G must accept a concurrent string s′′ that
has the same occurrence image as s′. Fig. 6 shows a
CSCE example. Here, V/G has two paths with the same
occurrence image but V ′/G only one, but that is sufficient.

Fig. 6. An Example for CSCE

Theorem 4.2. For plant G = (Q,Σ, δ, qo, Qm), and CS
deterministic supervisor S = (X,Σ, ξ, xo,Xm) that is SD
controllable for G, let both TDES have finite statespaces,
let G be complete for S, and have proper time and S-
singular prohibitable behavior, let G × S be ALF, let C
be the SD controller that is constructed from S, let V be
the map constructed from C and let V ′ be a supervisory
control for G. If V is nonblocking for G and V ′ is CSCE
to V , then V ′ is also nonblocking for G.

Proof. See proof in [Wang(2009)]. 2

5. FMS EXAMPLE

In this section we present an example based on the untimed
Flexible Manufacturing System (FMS) from [Hill(2008)].
The system, shown in Fig. 7, is composed of six plant com-
ponents and five one slot buffers. We will treat the buffers
as specifications, requiring that they do not overflow or
underflow. Table 1 below shows an explanation of event
labels used.

The plant components consist of two conveyors (Con2
and Con3), a handling robot (Robot), a lathe that
can produce two different parts (A and B), a painting

Fig. 7. Flexible Manufacturing System Overview

Table 1. Meaning of Event Labels

Label Meaning Label Meaning

921 Part enters system 922 Part enters B2

933 Robot takes from B2 934 Robot to B4

937 B4 to Robot for B6 939 B4 to Robot for B7

938 Robot to B6 930 Robot to B7

951 B4 to Lathe (A) 953 B4 to Lathe (B)

952 Lathe to B4 (A) 954 Lathe to B4 (B)

971 B7 to Con3 974 Con3 to B7

972 Con3 to B8 973 B8 to Con3

981 B8 to PM 982 PM to B8

961 Initialize AM 963 B6 to AM

965 B7 to AM 966 Finished from B7

964 Finished from B6

machine (PM), and a finishing machine (AM). The flow of
material is illustrated in Fig. 7. Event 921 represents parts
entering system, and events 966 and 964 represent finished
parts leaving the system. In total, we have 10 plant TDES
and 15 modular supervisor TDES. Unfortunately, there is
no space to discuss them in detail. See [Wang(2009)] for
full details of all TDES, and their design.

As part of this work, we developed a set of predicate-based
algorithms to verify the SD controllability property, as well
as the other conditions that we require. See [Wang(2009)]
for details. We have also created a software tool that im-
plements these algorithms using binary decision diagrams
(BDD) [Bryant(1992)].



Using a 1.8GHz PC, we verified in 3 minutes that our
supervisor S is SD controllable for our plant, our plant has
proper time behavior, S-singular prohibitable behavior,
and is complete for our supervisor, and that our closed-
loop system (82,608 states) is ALF and nonblocking.

6. CONCLUSIONS

This paper focuses on concurrency and timing issues
related to implementing timed discrete-event systems
(TDES) as sampled-data (SD) controllers. We first deter-
mined existing TDES properties that our system needed
to satisfy.

To these existing conditions we added the new requirement
that our plant have S-singular prohibitable behavior. We
then extended TDES controllability to SD controllability,
which captures several new properties that are useful in
dealing with concurrency issues, as well as makes it easier
to translate a supervisor into an SD controller.

Using these properties, we were able to show that the
closed-loop behavior of the SD controller and the plant
is the same as that of the plant and the original TDES
supervisor, at least as far as enablement and forcing goes.
We also showed that our method is robust with respect to
nonblocking and certain variations in the actual behavior
of our physical system.

We applied our approach to a small, flexible, manufac-
turing system from the literature. We used a software
tool we developed to verify that our example passed our
conditions, showing that they can be applied in practice.

7. FUTURE WORK

In this paper, we only partly deal with timing delay issues
which we have left as future work due to time constraints.
We have tried to mitigate potential problems by the
assumptions given in Section 3.1. Here, we have required
that our controllers be implemented on a single machine,
so they have a common clock and their inputs and outputs
change at the same time. These address timing issues
caused by a distributed implementation.

Another potential timing delay problem is the difference
between when an event physically occurs, and when a
controller sees that the event has occurred. We have tried
to compensate for this by our fourth assumption.

Whereas the steps we have taken to compensate for timing
delay are not ideal, they should handle the more pressing
issues. However, research needs to be done to address such
issues directly in a more flexible manner.

REFERENCES

[Balemi(1994)] Balemi, S. (1994). Input/output discrete
event processes and communication delays. Discrete
Event Dynamic Systems, 4(1), 41–85.

[Basile and Chiacchio(2007)] Basile, F. and Chiacchio, P.
(2007). On the implementation of supervised control
of discrete event systems. Control Systems Technology,
IEEE Transactions on, 15(4), 725–739.

[Bolton(2006)] Bolton, W. (2006). Programmable Logic
Controllers. Elsevier, 4th edition.

[Brandin and Wonham(1994)] Brandin, B. and Wonham,
W.M. (1994). Supervisory control of timed discrete-
event systems. IEEE Trans. on Auto Cont, 329–342.

[Brown and Vranesic(2008)] Brown, S. and Vranesic, Z.
(2008). Fundamentals of Digital Logic with VHDL
Design. McGraw Hill Higher Education, 3rd edition.

[Bryant(1992)] Bryant, A.E. (1992). Symbolic boolean ma-
nipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24, 293–318.

[Dragert et al.(2008)Dragert, Dingel, and Rudie]
Dragert, C., Dingel, J., and Rudie, K. (2008). Gener-
ation of concurrency control code using discrete-event
systems theory. In Proc. of the 16th ACM SIGSOFT
Int. Symp. on Foundations of Sftw Eng., 146–157.
ACM, Atlanta, Georgia.

[Giua and Seatzu(2008)] Giua, A. and Seatzu, C. (2008).
Modeling and supervisory control of railway networks
using petri nets. IEEE Transactions on Automation
Science and Engineering, 5(3), 431–445.

[Hill(2008)] Hill, R.C. (2008). Modular Verification and
Supervisory Controller Design for Discrete-Event Sys-
tems Using Abstraction and Incremental Construc-
tion. Ph.D. thesis, Department of Mechanical Engi-
neering, University of Michigan.

[Leduc(1996)] Leduc, R. (1996). PLC Implementation of
a DES Supervisor for a Manufacturing Testbed: An
Implementation Perspective. Master’s thesis, Depart-
ment of Electrical and Computer Engineering, Univer-
sity of Toronto, Toronto, Ont.

[Malik(2003)] Malik, P. (2003). From Supervisory Control
to Nonblocking Controllers for Discrete Event Sys-
tems. Ph.D. thesis, Dept. of Computer Science, Uni-
versity of Kaiserslautern, Kaiserslautern.

[Nourelfath and Niel(2004)] Nourelfath, M. and Niel, E.
(2004). Modular supervisory control of an experimen-
tal automated manufacturing system. Control Engi-
neering Practice, 12(2), 205–216.

[Ramadge and Wonham(1987)] Ramadge, P. and Won-
ham, W.M. (1987). Supervisory control of a class
of discrete-event processes. SIAM J. Control Optim,
25(1), 206–230.

[Schmidt and Schmidt(2008)] Schmidt, K. and Schmidt,
E. (2008). Communication of distributed discrete-
event supervisors on a switched network. Proc. of
WODES 2008, 419–424.

[Wang(2009)] Wang, Y. (2009). Sampled-data Supervisory
Control. Master’s thesis, Dept. of Computing and
Software, McMaster University, Hamilton, Ont. [ON-
LINE] http://www.cas.mcmaster.ca/~leduc/.

[Wong and Wonham(1996)] Wong, K.C. and Wonham,
W.M. (1996). Hierarchical control of timed discrete-
event systems. Discrete Event Dynamic Systems, 6(3),
Pages 275 – 306.

[Wonham(2008)] Wonham, W.M. (2008). Supervisory
Control of Discrete-Event Systems. Department of
Elec and Comp Eng, University of Toronto.

[Wonham and Ramadge(1987)] Wonham, W.M. and Ra-
madge, P. (1987). On the supremal controllable sub-
language of a given language. SIAM J. Control Optim,
25(3), 637–659.

[Xu and Kumar(2008)] Xu, S. and Kumar, R. (2008).
Asynchronous implementation of synchronous discrete
event control. Proc. of WODES 2008, 181–186.


