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Žižkova 22, 616 62 Brno, Czech Republic

komenda@ipm.cz, masopust@math.cas.cz
2 Van Schuppen Control Research

Gouden Leeuw 143, 1103 KB Amsterdam, The Netherlands
jan.h.van.schuppen@euronet.nl

Abstract. In this paper, we revise and further investigate the coordination control
approach proposed for supervisory control of distributed discrete-event systems
with synchronous communication based on the Ramadge-Wonham automata fra-
mework. The notions of conditional decomposability, conditional controllability,
and conditional closedness ensuring the existence of a solution are carefully re-
vised and simplified. The paper is generalized to non-prefix-closed languages,
that is, supremal conditionally controllable sublanguages of not necessary prefix-
closed languages are discussed. Non-prefix-closed languages introduce the block-
ing issue into coordination control, hence a procedure to compute a coordinator
for nonblockingness is included. The optimization problemconcerning the size of
a coordinator is under investigation. We prove that to find the minimal extension
of the coordinator event set for which a given specification language is condition-
ally decomposable is NP-hard. In other words, unless P=NP, it is not possible to
find a polynomial algorithm to compute the minimal coordinator with respect to
the number of events.

Keywords: Discrete-event systems, distributed systems with synchronous communica-
tion, supervisory control, coordination control, conditional decomposability.

1 Introduction

In this paper, we revise and further investigate the coordination control approach pro-
posed for supervisory control of distributed discrete-event systems with synchronous
communication based on the Ramadge-Wonham automata framework. A distributed
discrete-event system with synchronous communication is modeled as a parallel com-
position of two or more subsystems, each of which has its own observation channel.
The local control synthesis consists in synthesizing localnonblocking supervisors for
each of the subsystems. It is well-known that such a purely decentralized (often referred
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to as modular) approach does not work in general. Recently, Komenda and Van Schup-
pen [13] have proposed a coordination control architectureas a trade-off between the
purely local control synthesis, which is not effective in general because the composi-
tion of local supervisors may violate the specification, andthe global control synthesis,
which is not always possible because of the complexity reasons since the composition of
all subsystems can result in an exponential blow-up of states in the monolithic plant. The
coordination control approach has been developed for prefix-closed languages in [12]
and extended to systems with partial observations in [9]. The case of non-prefix-closed
languages has partially been discussed in [8]. Most of theseapproaches for prefix-closed
languages have already been implemented in the software library libFAUDES [17].

In the last two decades several alternative approaches havebeen proposed for su-
pervisory control of large discrete-event systems. Among the different control archi-
tectures are such as hierarchical control based on abstraction [25,29,33], modular ap-
proaches [4,7,14,19], decentralized control [22,31] alsowith inferencing (conditional
decisions) [15,32] or with communicating supervisors [21], and the so-called interface-
based approach [16]. Nowadays, these approaches are combined to achieve even better
results, cf. [23,24]. Our coordination control approach can be seen as a combination
of the horizontal and vertical modularity. The coordinatorlevel corresponds to the ab-
straction (i.e., the higher level) of hierarchical control, while the local control synthesis
is a generalization of the modular control synthesis. Moreover, coordination control is
closely related to decentralized control with communication, because local supervisors
communicate indirectly via a coordinator, cf. [1].

In this paper, the notions of conditional decomposability,conditional controllability,
and conditional closedness, which are the central notions to characterize the solvability
of the coordination control problem, are carefully revisedand simplified. The paper is
generalized to non-prefix-closed languages, hence supremal conditionally controllable
sublanguages of not necessary prefix-closed languages are discussed. This generality,
however, introduces the problem of nonblockingness into the coordination control ap-
proach, therefore a part with a procedure to compute a coordinator for nonblockingness
is included in the paper. The optimization problem concerning the size of a coordinator
is nowadays the main problem under investigation. The construction of a coordinator
described in this paper depends mainly on a set of events, including the set of all shared
events. We prove that to construct the coordinator so that its event set is minimal with
respect to the number of events or, in other words, to find the minimal extension of the
coordinator event set for which a given specification language is conditionally decom-
posable, is NP-hard.

The main contributions and the organization of the paper areas follows. Section 2
recalls the basics of supervisory control theory and revises the fundamental concepts.
Section 3 gives the computational complexity analysis of the minimal extension prob-
lem for conditional decomposability and proves that it is NP-hard to find the minimal
extension with respect to set inclusion (Corollary 1). Section 4 formulates the problem
of coordination supervisory control. The notion of conditional controllability (Defini-
tion 3) is revised and simplified, however still equivalent to the previous definition in,
e.g., [12]. Section 5 provides results concerning non-prefix-closed languages. Theo-
rem 6 shows that in a special case the parallel composition oflocal supervisors results



in the supremal conditionally controllable languages. However, the problem how to
compute the supremal conditionally controllable sublanguage in general is open. Sec-
tion 6 discusses the construction of a coordinator for nonblockingness (Theorem 8) and
presents an algorithm. Section 7 revises the prefix-closed case, where a less restrictive
condition, LCC, is used instead of OCC. The possibility to use LCC instead of OCC
has already been mentioned in [12] without proofs, therefore the proofs are provided
here. Finally, Section 8 concludes the paper.

2 Preliminaries and definitions

We assume that the reader is familiar with the basic notions and concepts of supervi-
sory control of discrete-event systems modeled by deterministic finite automata with
partial transition functions. For unexplained notions, the reader is referred to the mono-
graph [3].

Let Σ be a finite nonempty set whose elements are calledevents, and letΣ∗ denote
the set of all finite words (finite sequences of events) overΣ ; theempty wordis denoted
by ε. Let |Σ | denote the cardinality ofΣ .

A generatoris a quintupleG= (Q,Σ , f ,q0,Qm), whereQ is a finite nonempty set
of states, Σ is a finite set of events (anevent set), f : Q×Σ → Q is apartial transition
function, q0 ∈ Q is theinitial state, andQm ⊆ Q is a set ofmarked states. In the usual
way, the transition functionf can be extended to the domainQ×Σ∗ by induction. The
behavior of generatorG is described in terms of languages. The languagegeneratedby
G is the setL(G) = {s∈ Σ∗ | f (q0,s) ∈ Q}, and the languagemarkedby G is the set
Lm(G) = {s∈ Σ∗ | f (q0,s) ∈ Qm}. Obviously,Lm(G)⊆ L(G).

A (regular) language Lover an event setΣ is a setL ⊆ Σ∗ such that there exists
a generatorG with Lm(G) = L. The prefix closure of a languageL over Σ is the set
L = {w ∈ Σ∗ | there existsu ∈ Σ∗ such thatwu ∈ L} of all prefixes of words of the
languageL. A languageL is prefix-closedif L = L.

A controlled generatorover an event setΣ is a triple(G,Σc,Γ ), whereG is a gen-
erator overΣ , Σc ⊆ Σ is a set ofcontrollable events, Σu = Σ \Σc is the set ofuncon-
trollable events, andΓ = {γ ⊆ Σ | Σu ⊆ γ} is theset of control patterns. A supervi-
sor for the controlled generator(G,Σc,Γ ) is a mapS : L(G) → Γ . The closed-loop
systemassociated with the controlled generator(G,Σc,Γ ) and the supervisorS is de-
fined as the minimal languageL(S/G) such that the empty wordε belongs toL(S/G),
and for any words in L(S/G) such thatsa is in L(G) anda in S(s), the wordsa also
belongs toL(S/G). We define the marked language of the closed-loop system as the
intersectionLm(S/G) = L(S/G)∩Lm(G). The intuition is that the supervisor disables
some of the transitions of the generatorG, but it can never disable any transition under
an uncontrollable event. If the closed-loop system is nonblocking, which means that
Lm(S/G) = L(S/G), then the supervisorS is callednonblocking.

Given a specification languageK and a plant (generator)G, the control objective
of supervisory control is to find a nonblocking supervisorS such thatLm(S/G) = K.
For the monolithic case, such a supervisor exists if and onlyif the specificationK is
bothcontrollablewith respect to the plant languageL(G) and uncontrollable event set
Σu, that is the inclusionKΣu∩L ⊆ K is satisfied, andLm(G)-closed, that is the equality



K =K∩Lm(G) is satisfied. For uncontrollable specifications, controllable sublanguages
of the specification are considered instead. The notation supC(K,L(G),Σu) denotes
the supremal controllable sublanguage of the specificationK with respect to the plant
languageL(G) and uncontrollable event setΣu, which always exists and is equal to the
union of all controllable sublanguages of the specificationK, see [30].

A (natural) projection P: Σ∗ → Σ∗
0 , whereΣ0 is a subset ofΣ , is a homomorphism

defined so thatP(a) = ε for a in Σ \Σ0, andP(a) = a for a in Σ0. The projection of
a word is thus uniquely determined by projections of its letters. Theinverse imageof
P is denoted byP−1 : Σ∗

0 → 2Σ∗
. For three event setsΣi , Σ j , Σℓ, subsets ofΣ , we use

the notationPi+ j
ℓ to denote the projection from(Σi ∪Σ j)

∗ to Σ∗
ℓ . If Σi ∪Σ j = Σ , we

simplify the notation toPℓ. Similarly, the notationPi+k stands for the projection from
Σ∗ to (Σi ∪Σk)

∗. The projection of a generatorG, denoted byP(G), is a generator whose
behavior satisfiesL(P(G)) = P(L(G)) andLm(P(G)) = P(Lm(G)).

The synchronous product of languagesL1 overΣ1 andL2 overΣ2 is defined as the
languageL1 ‖ L2 = P−1

1 (L1)∩P−1
2 (L2), wherePi : (Σ1∪Σ2)

∗ → Σ∗
i is a projection, for

i = 1,2. A similar definition for generators can be found in [3]. Therelation between the
language definition and the generator definition is specifiedby the following equations.
For generatorsG1 andG2, L(G1‖G2) = L(G1) ‖ L(G2) andLm(G1‖G2) = Lm(G1) ‖
Lm(G2). In the automata framework, where a supervisorShas a finite representation as
a generator, the closed-loop system is a synchronous product of the supervisor and the
plant. Thus, we can write the closed-loop system asL(S/G) = L(S) ‖ L(G).

For a generatorG over an event setΣ , let Σr(G) = {a∈ Σ | there are wordsu,v∈
Σ∗ such thatuav∈ L(G)} denote the set of all events appearing in words of the language
L(G). GeneratorsG1 andG2 areconditionally independentwith respect to a generator
Gk if all events shared by the subsystems appear in the generator Gk, that is, if the in-
clusionΣr(G1)∩Σr (G2)⊆ Σr(Gk) is satisfied. In other words, there is no simultaneous
move in both generatorsG1 andG2 without the generatorGk being also involved.

Now, the notion of conditional decomposability is simplified compared to our pre-
vious work [12], but still equivalent.

Definition 1. A language K isconditionally decomposablewith respect to event sets
Σ1, Σ2, Σk, whereΣ1∩Σ2 ⊆ Σk ⊆ Σ1∪Σ2, if

K = P1+k(K) ‖ P2+k(K) ,

where Pi+k : (Σ1∪Σ2)
∗ → (Σi ∪Σk)

∗ is a projection, for i= 1,2.

Note that there always exists an extension ofΣk which satisfies this condition;Σk =
Σ1 ∪Σ2 is a trivial example. Here the indexk is related to projectionPk used later in
the paper. There exists a polynomial algorithm to check thiscondition, and to extend
the event set to satisfy the condition, see [11]. However, the question which extension
is the most appropriate requires further investigation. InSection 3, we show that to find
the minimal extension is NP-hard.

LanguagesK andL aresynchronously nonconflictingif K ‖ L = K ‖ L.

Lemma 1. Let K be a language. If the languageK is conditionally decomposable, then
the languages P1+k(K) and P2+k(K) are synchronously nonconflicting.



Proof. Assume that the languageK is conditionally decomposable. From a simple ob-
servation thatK ⊆P−1

i+k(Pi+k(K)), for i =1,2, we immediately obtain thatK ⊆P1+k(K) ‖
P2+k(K). As the prefix-closure is a monotone operation,

K ⊆ P1+k(K) ‖ P2+k(K)⊆ P1+k(K) ‖ P2+k(K) = K ,

which proves the lemma. ⊓⊔

The following example shows that there exists, in general, no relation between the
conditional decomposability of languagesK andK.

Example 1.Let Σ1 = {a1,b1,a,b}, Σ2 = {a2,b2,a,b}, andΣk = {a,b} be event sets,
and define the languageK = {a1a2a,a2a1a,b1b2b,b2b1b}. ThenP1+k(K) = {a1a,b1b},
P2+k(K) = {a2a,b2b}, and K = P1+k(K) ‖ P2+k(K). Notice that whereasa1b2 is in
P1+k(K) ‖ P2+k(K), a1b2 is not in K, which means that the languageK is not condi-
tionally decomposable.

On the other hand, consider the languageL = {ε,ab,ba,abc,bac} over the event
set{a,b,c} with Σ1 = {a,c}, Σ2 = {b,c}, Σk = {c}. ThenL = P1+k(L) ‖ P2+k(L) =
P1+k(L) ‖ P2+k(L) , and it is obvious thatL 6= L. ⊳

3 Conditional decomposability minimal extension problem

We have defined conditional decomposability only for two event sets, but the definition
can be extended to more event sets as follows. A languageK is conditionally decom-
posablewith respect to event sets(Σi)

n
i=1, for somen≥ 2, and an event setΣk, where

Σk ⊆ ∪n
i=1Σi contains all shared events, that is, it satisfies

Σs :=
⋃

i 6= j

(Σi ∩Σ j)⊆ Σk ,

if

K =

nn

i=1

Pi+k(K) .

The conditional decomposability minimal extension problem is to find a minimal
extension (with respect to set inclusion) of the event setΣs of all shared events so that
the language is conditionally decomposable with respect togiven event sets and the
extension ofΣs. The optimization problem can be reformulated to a decisionversion as
follows.

Problem 1 (CD MIN EXTENSION).
INSTANCE: A languageK over an event setΣ = ∪n

i=1Σi , wheren≥ 2, and a positive
integerr ≤ |Σ |.
QUESTION: Is the languageK conditionally decomposable with respect to event sets
(Σi)

n
i=1 andΣs∪Σr , where|Σr | ≤ r?



We now prove that the CD MIN EXTENSION problem is NP-complete. This then
immediately implies that the optimization problem of finding the minimal extension of
the event setΣs is NP-hard. On the other hand, it is not hard to see that the optimization
problem is in PSPACE. Indeed, we can check all subsets generated one by one using
the polynomial algorithm described in [11].

To prove NP-completeness, we reduce the MINIMUM SET COVER problem to
the CD MIN EXTENSION problem; the MINIMUM SET COVER problem is NP-
complete [6].

Problem 2 (MINIMUM SET COVER).
INSTANCE: A collectionC of subsets of a finite setS, and a positive integert ≤ |C|.
QUESTION: Does the collectionC contain a cover for the setSof cardinalityt or less,
that is, a subsetC′ with |C′| ≤ t such that every element of the setSbelongs to at least
one member ofC′?

Theorem 1. The CD MIN EXTENSION problem is NP-complete.

Proof. First, we show that CD MIN EXTENSION is in NP. To do this, a Turing ma-
chine guesses a setΣr of cardinality at mostr and uses Algorithm 1 of [11] to verify
in polynomial time whether the given language is conditionally decomposable with re-
spect to the given event sets.

To prove the NP-hardness, consider an instance(S,C) of the MINIMUM SET
COVER problem as defined in Problem 2 such that the union of allelements of the
collectionC covers the setS(otherwise it is trivial to solve the problem). Denote

S= {b1,b2, . . . ,bn} and C= {c1,c2, . . . ,cm} .

We now construct a languageK over the event setS∪{ai | i = 1,2, . . . ,n}∪C∪{a}
as follows. For eachbi in S, let Cbi = {c j | bi ∈ c j} be the set of all elements of the
collectionC containing the elementbi. Then, forCbi = {ci1,ci2, . . . ,cibi

}, where we
assume without loss of generality thati1 < i2 < .. . < ibi , add the two wordsaiabi and
aici1ci2 . . .cibi

a to the languageK. Then the languageK is

K =
n

∑
i=1

(aiabi +aici1ci2 . . .cibi
a) .

To demonstrate the construction, letS= {b1,b2,b3,b4,b5} andC= {c1 = {b1,b2,b3},
c2 = {b2,b4},c3 = {b3,b4},c4 = {b4,b5}}. The generator for languageK is depicted
in Fig. 1. Note that{c1,c4} is the minimum set cover. Next, we define two event sets

Σ1 = S∪{a}∪{ai | i = 1,2, . . . ,n}

and

Σ2 =C∪{a}∪{ai | i = 1,2, . . . ,n} .

As the intersectionS∩C is empty, it gives that the event setΣs = {a} ∪ {ai | i =
1,2, . . . ,n}. We now prove that there exists a minimum set cover of cardinality at mostr
if and only if there exists an extension of the event setΣs of cardinality at mostr making
the languageK conditionally decomposable.
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Fig. 1. The generator for languageK corresponding to the MINIMUM SET COVER in-
stance(S,C), whereS= {b1,b2,b3,b4,b5} and C = {c1 = {b1,b2,b3}, c2 = {b2,b4},c3 =
{b3,b4},c4 = {b4,b5}}.

Assume that there exists a minimum set coverC′ = {ci1,ci2, . . . ,cir} ⊆ C of cardi-
nality r. We prove that the languageK is conditionally decomposable with respect to
Σ1, Σ2, andΣk = Σs∪{ci1,ci2, . . . ,cir}. The application of projectionP1+k to language
K results in the language

P1+k(K) =
n

∑
i=1

(aiabi +aiP1+k(ci1ci2 . . .cibi
)a) ,

and the application of projectionP2+k to languageK results in the language

P2+k(K) =
n

∑
i=1

(aia+aici1ci2 . . .cibi
a) .



Note that the wordP1+k(ci1ci2 . . .cibi
) ∈C′∗ is nonempty because at least one set of the

collectionC′ covers the elementbi , for all i = 1,2, . . . ,n. Let

X =C\C′

denote the complement of the collectionC′, then the intersectionX ∩S is empty. As
Cbi ∩C 6= /0, for each elementbi of the setS, the languageP−1

1+kP1+k(ci1ci2 . . .cibi
) is not

a subset of the languageX∗. It can be seen that the intersectionS∗ci1S∗ci2S∗ . . .S∗cibi
S∗∩

X∗ = /0 is empty, that the intersectionP−1
1+kP1+k(ci1ci2 . . .cibi

)∩S∗ = /0 is empty, and that

the intersectionP−1
1+kP1+k(ci1ci2 . . .cibi

)∩S∗ci1S∗ci2S∗ . . .S∗cibi
S∗ = {ci1ci2 . . .cibi

}. Then
the parallel composition of both projections of the languageK,

P1+k(K) ‖ P2+k(K)

=
n

∑
i=1

(X∗aiX
∗aX∗biX

∗+X∗aiP
−1
1+k(P1+k(ci1ci2 . . .cibi

))aX∗)

∩
n

∑
i=1

(S∗aiS
∗aS∗+S∗aiS

∗ci1S∗ci2S∗ . . .S∗cibi
S∗aS∗)

=
n

∑
i=1

(aiabi +aici1ci2 . . .cibi
a) = K ,

is equal toK.
On the other hand, letΣr ⊆ S∪C be an extension of the event setΣs of cardinality

r such that the languageK is conditionally decomposable with respect to event setsΣ1,
Σ2, andΣk = Σs∪Σr . Consider a symbolbi and two corresponding wordsaiabi and
aici1ci2 . . .cibi

a from the languageK. If Σr ∩{bi ,ci1,ci2, . . . ,cibi
} = /0, then the projec-

tions of these words to event setsΣ2∪Σk andΣ1∪Σk are, respectively,P2+k(aiabi) = aia
and P1+k(aici1ci2 . . .cibi

a) = aia. But then the wordaici1ci2 . . .cibi
abi /∈ K belongs to

P1+k(K) ‖ P2+k(K), which is a contradiction. Hence, at least one of the symbolsbi , ci1,
ci2, . . . , cibi

must belong to the setΣr . In other words, at least one of these symbols
covers the symbolbi . We can now construct a coveringC′ ⊆C of cardinality at mostr
as follows. For eachc in Σr , add the setc to the coveringC′, and for eachb in Σr , add
any setc from the setCb to the coveringC′. It is then easy to see that the collectionC′

covers the setS. ⊓⊔

Note that an immediate consequence of the construction is that the minimal exten-
sion problem is NP-hard even for finite languages and two event sets.

Corollary 1. The minimal extension problem is NP-hard.

Similar minimal extension problems have been shown to be NP-hard in the litera-
ture, e.g., the minimal extension of observable event sets that guarantees observability
of a language. However, unlike coobservability of decentralized control, conditional de-
composability has an important property for large systems composed of many concur-
rent components—it can be checked in polynomial time in the number of components
as shown in [11]. In addition, an algorithm is presented there to compute an extension



(but not necessarily the minimal one) of the shared event setsuch that the language
under consideration becomes conditionally decomposable with respect to the original
event setsΣ1 andΣ2 and the new (coordinator) event setΣk.

4 Coordination control synthesis

In this section, we recall the coordination control problemand revise the necessary
and sufficient conditions established in [8,9,12] under which the problem is solvable.
This revision leads to a simplification of existing notions and proofs, e.g., compare
Definition 3 with [8, Definition 9] or the proof of Proposition1 with the proof of [8,
Proposition 10].

We now summarize the results of this section compared to the existing results. The
coordination control problem for non-prefix-closed languages was formulated in [8,
Problem 7]. The contribution of this paper is a simplification of the problem statement,
namely, the prefix-closed part of the closed-loop system with a coordinator is shown to
be a consequence of the non-prefix-closed case (see the note below the problem state-
ment). The original definition of conditional controllability is simplified in Definition 3.
A simplified proof of Proposition 1 is presented. Proposition 2 is new. Theorem 4 is a
simplified version of Theorem 18 stated in [8] without proof.

Problem 3 (Coordination control problem).Consider generatorsG1 and G2 over Σ1

andΣ2, respectively, and a generatorGk (called acoordinator) over Σk. Assume that
generatorsG1 and G2 are conditionally independent with respect to coordinatorGk,
and that a specificationK ⊆ Lm(G1‖G2‖Gk) and its prefix-closureK are conditionally
decomposable with respect to event setsΣ1, Σ2, andΣk. The aim of the coordination
control synthesis is to determine nonblocking supervisorsS1, S2, andSk for respective
generators such that

Lm(Sk/Gk)⊆ Pk(K) and Lm(Si/[Gi ‖ (Sk/Gk)])⊆ Pi+k(K), i = 1,2,

and the closed-loop system with the coordinator satisfies

Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)]) = K .

⋄

One could expect that the equalityL(S1/[G1 ‖ (Sk/Gk)]) ‖ L(S2/[G2 ‖ (Sk/Gk)]) =
K for prefix-closed languages should also be required in the statement of the problem.
However, it is really sufficient to require only the equalityfor marked languages since it
then implies that the equalityL(S1/[G1 ‖ (Sk/Gk)]) ‖ L(S2/[G2 ‖ (Sk/Gk)]) = K holds
true because

K = Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)])

⊆ Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)])

⊆ P1+k(K) ‖ P2+k(K)

= K .



Moreover, if such supervisors exist, their synchronous product is a nonblocking super-
visor for the global plant, cf. [8].

Note that several conditions are required in the statement of the problem, namely,
(i) the generators are conditionally independent with respect to the coordinator and (ii)
the specification and its prefix-closure are conditionally decomposable with respect to
event setsΣ1, Σ2, andΣk. These conditions can easily be fulfilled by the choice of an
appropriate coordinator event setΣk. The reader is referred to [11] for a polynomial
algorithm extending a given event set so that the language becomes conditionally de-
composable.

In the statement of the problem, we have mentioned the notionof a coordinator. The
fundamental question is the construction of such a coordinator. We now discuss one of
the possible constructions of a suitable coordinator, which has already been discussed
in the literature [8,9,12]. We recall it here for the completeness.

Algorithm 2 (Construction of a coordinator) Consider generators G1 and G2 over
Σ1 andΣ2, respectively, and let K be a specification. Construct an event setΣk and a
coordinator Gk as follows:

1. SetΣk = Σ1∩Σ2 to be the set of all shared events.
2. ExtendΣk so that K andK are conditional decomposable, for instance using a

method described in [11].
3. Let the coordinator Gk = Pk(G1) ‖ Pk(G2).

So far, the only known condition ensuring that the projectedgenerator is smaller
than the original one is the observer property. Therefore, we might need to add step (2b)
to extend the event setΣk so that the projectionPk is anL(Gi)-observer, fori = 1,2, cf.
Definition 2 below.

Note that if we generalize this approach to more than two subsystems, the setΣk of
step 1 is replaced with the setΣs of all shared events defined in Section 3 above.

Definition 2 (Observer).The projection Pk : Σ∗ → Σ∗
k , whereΣk is a subset ofΣ , is an

L-observerfor a language L overΣ if, for all words t in Pk(L) and s inL, the word Pk(s)
is a prefix of t implies that there exists a word u inΣ∗ such that su is in L and Pk(su) = t.

For a generatorG with n states, the time and space complexity of the verification
whether a projectionP is anL(G)-observer isO(n2), see [18,2]. An algorithm extending
the event set to satisfy the property runs in timeO(n3) and linear space. The most
significant consequence of the observer property is the following theorem.

Theorem 3 ([28]). If a projection P is an L(G)-observer, for a generator G, then the
minimal generator for the language P(L(G)) has no more states than the generator G.

This is an important result because it guarantees that the coordinator computed in
Algorithm 2 is smaller than the plant whenever the projection Pk is anL(G1) ‖ L(G2)-
observer.



4.1 Conditional controllability

The concept of conditional controllability introduced in [13] and later studied in [8,9,12]
plays the central role in the coordination control approach. In this paper, we revise and
simplify this notion. In what follows, we use the notationΣi,u = Σi ∩Σu to denote the
set of locally uncontrollable events of the event setΣi .

Definition 3. Let G1 and G2 be generators overΣ1 andΣ2, respectively, and let Gk be
a coordinator overΣk. A language K⊆ L(G1‖G2‖Gk) is conditionally controllablefor
generators G1, G2, Gk and uncontrollable event setsΣ1,u, Σ2,u, Σk,u if

1. Pk(K) is controllable with respect to L(Gk) andΣk,u,
2. P1+k(K) is controllable with respect to L(G1) ‖ Pk(K) andΣ1+k,u,
3. P2+k(K) is controllable with respect to L(G2) ‖ Pk(K) andΣ2+k,u,

whereΣi+k,u = (Σi ∪Σk)∩Σu, for i = 1,2.

The difference between Definition 3 and the definition in previous papers is that in
item 2 we writeL(G1) ‖ Pk(K) instead ofL(G1) ‖ Pk(K) ‖ P2+k

k (L(G2)‖Pk(K)). This
is possible because the assumptionK ⊆ L(G1‖G2‖Gk) implies the inclusionPk(K) ⊆
(Pk

k∩2)
−1P2

k∩2(L(G2)), which results in the equality

Pk(K)‖P2+k
k (L(G2)‖Pk(K)) = Pk(K)‖P2

k∩2(L(G2))

= Pk(K)∩ (Pk
k∩2)

−1P2
k∩2(L(G2))

= Pk(K)

by Lemma 9 (see the Appendix). Hence we have the following.

Lemma 2. Definition 3 and [8, Definition 9] of conditional controllability are equiva-
lent.

The following proposition demonstrates that every conditionally controllable and
conditionally decomposable language is controllable.

Proposition 1. Let Gi be a generator overΣi , for i = 1,2,k, and let G= G1‖G2‖Gk.
Let K ⊆ Lm(G) be such a specification that the languageK is conditionally decom-
posable with respect to event setsΣ1, Σ2, Σk, and conditionally controllable for gen-
erators G1, G2, Gk and uncontrollable event setsΣ1,u, Σ2,u, Σk,u. Then the language
K is controllable with respect to the plant language L(G) and uncontrollable event set
Σu = Σ1,u∪Σ2,u.

Proof. Since the languageP1+k(K) is controllable with respect toL(G1) ‖ Pk(K) and
Σ1+k,u, andP2+k(K) is controllable with respect toL(G2) ‖ Pk(K) andΣ2+k,u, Lemma 7
implies that the languageK =P1+k(K) ‖P2+k(K) is controllable with respect toL(G1) ‖
Pk(K) ‖ L(G2) ‖ Pk(K) = L(G) ‖ Pk(K) andΣu, where the equality is by commutativity
of the synchronous product and by the fact thatPk(K)⊆L(Gk). As the languagePk(K) is
controllable with respect toL(Gk) andΣk,u, by Definition 3, the languageL(G) ‖ Pk(K)
is controllable with respect toL(G) ‖ L(Gk) = L(G) by Lemma 7. Finally, by Lemma 8,
K is controllable with respect toL(G) andΣu, which means thatK is controllable with
respect toL(G) andΣu. ⊓⊔



On the other hand, controllability does not imply conditional controllability.

Example 2.Let G be a generator such thatL(G) = {au} ‖ {bu}= {abu,bau}. Then the
languageK = {a} is controllable with respect toL(G) andΣu = {u}. Moreover, both
languagesK andK are conditionally decomposable with respect to event sets{a,u},
{b,u}, andΣk = {u}, but the languagePk(K) = {ε} is not controllable with respect to
L(Gk) = Pk(L(G)) = {u} andΣk,u = {u}. ⊳

However, we show below that if the observer property and local control consistency
(LCC) are satisfied, the previous implication holds. To prove this, we need the following
definition of LCC. Note that unlike our previous papers, we use a weaker notion of
local control consistency (LCC) presented in [24] instead of output control consistency
(OCC).

Definition 4 (LCC). Let L be a prefix-closed language overΣ , and letΣ0 be a subset
of Σ . The projection P0 : Σ∗ → Σ∗

0 is locally control consistent(LCC) with respect to a
word s∈ L if for all eventsσu ∈ Σ0∩Σu such that P0(s)σu ∈ P0(L), it holds that either
there does not exist any word u∈ (Σ \Σ0)

∗ such that suσu ∈ L, or there exists a word
u∈ (Σu \Σ0)

∗ such that suσu ∈ L. The projection P0 is LCC with respect to a language
L if P0 is LCC for all words of L.

Now the opposite implication to the one proven in Proposition 1 can be stated.

Proposition 2. Let L be a prefix-closed language overΣ , and let K⊆ L be a language
that is controllable with respect to L andΣu. If, for i ∈ {k,1+ k,2+ k}, the projection
Pi is an L-observer and LCC for L, then the language K is conditionally controllable.

Proof. Let s∈ Pk(K), a∈ Σk,u, andsa∈ Pk(L). Then there exists a wordw in K such
that Pk(w) = s. By the observer property, there exists a wordu in (Σ \Σk)

∗ such that
wua∈ L andPk(wua) = sa. By LCC, there exists another wordu′ in (Σu\Σk)

∗ such that
wu′a∈ L, that is,wu′a is in K by controllability. Hence,sa∈ Pk(K).

Let s∈ P1+k(K), a∈ Σ1+k,u, andsa∈ L(G1) ‖ Pk(K). Then there exists a wordw in
K such thatP1+k(w) = s. By the observer property, there exists a wordu in (Σ \Σ1+k)

∗

such thatwua∈ L andP1+k(wua) = sa. By LCC, there exists another wordu′ in (Σu \
Σ1+k)

∗ such thatwu′a∈ L, that is,wu′a is in K by controllability. Hence,sa∈ P1+k(K).
The proof for the case ofk+2 is similar to that ofk+1. ⊓⊔

4.2 Conditionally closed languages

In this subsection we turn our attention to general specification languages that need not
be prefix-closed. Analogously to the notion ofLm(G)-closed languages, we recall the
notion of conditionally-closed languages defined in [8].

Definition 5. A nonempty language K overΣ is conditionally closedfor generators
G1, G2, Gk if

1. Pk(K) is Lm(Gk)-closed,
2. P1+k(K) is Lm(G1) ‖ Pk(K)-closed,



3. P2+k(K) is Lm(G2) ‖ Pk(K)-closed.

If a languageK is conditionally closed and conditionally controllable, then there
exists a nonblocking supervisorSk such thatLm(Sk/Gk) = Pk(K), which follows from
the basic theorem of supervisory control applied to languagesPk(K) andL(Gk), see [3].

As noted in [3, page 164], ifK ⊆ Lm(G) is Lm(G)-closed, then so is the supremal
controllable sublanguage ofK. However, this does not imply that the languagePk(K) is
Lm(Gk)-closed, for any generatorG = G1‖G2‖Gk such that the coordinatorGk makes
generatorsG1 andG2 conditionally independent.

Example 3.Let the event sets beΣ1 = {a1,a}, Σ2 = {a2,a}, andΣk = {a}, respectively,
and let the specification language beK = {a1a2a,a2a1a}. Then the application of pro-
jections results in languagesP1+k(K) = {a1a}, P2+k(K) = {a2a}, andPk(K) = {a},
and the languageK = P1+k(K) ‖ P2+k(K) is conditionally decomposable. Define gener-
atorsG1, G2, Gk so thatLm(G1) = P1+k(K), Lm(G2) =P2+k(K), andLm(Gk) =Pk(K) =
{ε,a}. ThenLm(G) = K and the languageK is Lm(G)-closed. However, the language
Pk(K)⊂ Pk(K) is notLm(Gk)-closed. ⊳

4.3 Existence of supervisors

The following theorem is a revised version (based on the simplification of conditional
controllability, Definition 3) of a result presented without proof in [8].

Theorem 4. Consider the setting of Problem 3. There exist nonblocking supervisors
S1, S2, Sk such that

Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)]) = K (1)

if and only if the specification language K is both conditionally controllable with respect
to generators G1, G2, Gk and uncontrollable event setsΣ1,u, Σ2,u, Σk,u, and condition-
ally closed with respect to generators G1, G2, Gk.

Proof. Let K satisfy the assumptions, and letG = G1‖G2‖Gk be the global plant. As
the languageK is a subset ofLm(G), its projectionPk(K) is a subset ofLm(Gk). By
the assumption, the languagePk(K) is Lm(Gk)-closed and controllable with respect to
L(Gk) andΣk,u. By the basic theorem of supervisory control [20] there exists a non-
blocking supervisorSk such thatLm(Sk/Gk) = Pk(K). As the languageP1+k(K) is a
subset of languagesLm(G1‖Gk) and(P1+k

k )−1Pk(K), we have thatP1+k(K) is included
in Lm(G1) ‖ Pk(K). These relations and the assumption that the system is condition-
ally controllable and conditionally closed imply the existence of a nonblocking super-
visor S1 such thatLm(S1/[G1 ‖ (Sk/Gk)]) = P1+k(K). A similar argument shows that
there exists a nonblocking supervisorS2 such thatLm(S2/[G2 ‖ (Sk/Gk)]) = P2+k(K).
SinceK andK are conditionally decomposable, it follows thatLm(S1/[G1 ‖ (Sk/Gk)]) ‖
Lm(S2/[G2 ‖ (Sk/Gk)]) = P1+k(K) ‖ P2+k(K) = K.

To prove the converse implication, the projectionsPk, P1+k, P2+k are applied to
(1), which can be rewritten asK = Lm(S1‖G1 ‖ S2‖G2 ‖ Sk‖Gk). Thus, the projection
Pk(K) = Pk (Lm(S1‖G1 ‖ S2‖G2 ‖ Sk‖Gk)) is a subset ofLm(Sk‖Gk) = Lm(Sk/Gk). On



the other hand,Lm(Sk/Gk) ⊆ Pk(K), cf. Problem 3. Hence, by the basic controllability
theorem, the languagePk(K) is both controllable with respect toL(Gk) andΣk,u, and
Lm(Gk)-closed. AsΣ1+k∩Σ2+k = Σk, the application of projectionP1+k to (1) and as-
sumptions of Problem 3 give thatP1+k(K)⊆ Lm(S1/[G1 ‖ (Sk/Gk)])⊆ P1+k(K). Taking
G1‖(Sk/Gk) as a new plant, we get from the basic supervisory control theorem that the
languageP1+k(K) is controllable with respect toL(G1‖(Sk/Gk)) andΣ1+k,u, and that it
is Lm(G1‖(Sk/Gk))-closed. The case of the languageP2+k(K) is analogous. ⊓⊔

5 Supremal conditionally controllable sublanguages

Necessary and sufficient conditions for the existence of nonblocking supervisorsS1,
S2, andSk that achieve a considered specification language using our coordination con-
trol architecture have been presented in Theorem 4. However, in many cases control
specifications fail to be conditionally controllable and, similarly as in the monolithic
supervisory control, supremal conditionally controllable sublanguages should be inves-
tigated.

Let supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) denote the supremal conditionally controllable
sublanguage ofK with respect toL = L(G1‖G2‖Gk) and sets of uncontrollable events
Σ1,u, Σ2,u, Σk,u. The supremal conditionally controllable sublanguage always exists,
cf. [9] for the case of prefix-closed languages.

Theorem 5. The supremal conditionally controllable sublanguage of a given language
K always exists and is equal to the union of all conditionallycontrollable sublanguages
of the language K.

Proof. Let I be an index set, and letKi , for i ∈ I , be conditionally controllable sub-
languages ofK ⊆ L(G1‖G2‖Gk). To prove that the languagePk(∪i∈I Ki) is controllable
with respect toL(Gk) andΣk,u, note that

Pk
(

∪i∈I Ki
)

Σk,u∩L(Gk) = ∪i∈I
(

Pk(Ki)Σk,u∩L(Gk)
)

⊆ ∪i∈I Pk(Ki)

= Pk
(

∪i∈I Ki
)

,

where the inclusion is by controllability of the languagePk(Ki) with respect toL(Gk)
andΣk,u. Next, to prove that

P1+k
(

∪i∈I Ki
)

Σ1+k,u∩L(G1) ‖ Pk
(

∪i∈I Ki
)

⊆ P1+k
(

∪i∈I Ki
)

,

note that

P1+k
(

∪i∈I Ki
)

Σ1+k,u∩L(G1) ‖ Pk
(

∪i∈I Ki
)

= ∪i∈I
(

P1+k(Ki)Σ1+k,u
)

∩∪i∈I
(

L(G1) ‖ Pk(Ki)
)

= ∪i∈I ∪ j∈I
(

P1+k(Ki)Σ1+k,u∩L(G1) ‖ Pk(K j )
)

.

Consider two different indexesi and j from I such that

P1+k(Ki)Σ1+k,u∩L(G1) ‖ Pk(K j) 6⊆ P1+k
(

∪i∈I Ki
)

.



Then there exist a wordx in P1+k(Ki) and an uncontrollable eventu in Σ1+k,u such that
xu belongs to the languageL(G1)‖Pk(K j), andxu does not belong toP1+k

(

∪i∈I Ki
)

. It
follows thatPk(x) belongs toPk(Ki) andPk(xu) belongs toPk(K j ). If Pk(xu) belongs to
Pk(Ki), thenxu belongs toL(G1)‖Pk(Ki), and controllability of the languageP1+k(Ki)
with respect toL(G1)‖Pk(Ki) implies thatxu belongs toP1+k

(

∪i∈I Ki
)

; hence,Pk(xu)
does not belong toPk(Ki). If the eventu does not belong toΣk,u, thenPk(xu) = Pk(x)
belongs toPk(Ki), which is not the case. Thus,u belongs toΣk,u. As Pk(Ki)∪Pk(K j ) is a
subset ofL(Gk), we get thatPk(xu) =Pk(x)u belongs toL(Gk). However, controllability
of the languagePk(Ki) with respect toL(Gk) and Σk,u implies that the wordPk(xu)
belongs toPk(Ki). This is a contradiction.

As the case for the projectionP2+k is analogous, the proof is complete. ⊓⊔

Still, it is a difficult problem to compute a supremal conditional controllable sub-
language. Consider the setting of Problem 3 and define the languages

supCk = supC(Pk(K),L(Gk),Σk,u)

supC1+k = supC(P1+k(K),L(G1) ‖ supCk,Σ1+k,u)

supC2+k = supC(P2+k(K),L(G2) ‖ supCk,Σ2+k,u)

(*)

Interestingly, the following inclusion always holds.

Lemma 3. Consider the setting of Problem 3, and languages defined in (*). Then the
language Pk(supCi+k) is a subset of the languagesupCk, for i = 1,2.

Proof. By definition, the languagePk(supCi+k) is a subset of languagessupCk and
Pk(K). To prove thatPk(supCi+k) is a subset of supCk, we prove that the language
supCk∩Pk(K) is a subset of supCk. To do this, it is sufficient to show that the language
supCk∩Pk(K) is controllable with respect toL(Gk) andΣk,u.

Thus, consider a words in supCk∩Pk(K), an uncontrollable eventu in Σk,u, and the
wordsu in L(Gk). By controllability of supCk, the wordsubelongs tosupCk, which is
a subset ofPk(K). That is, there exists a wordv such thatsuv is in supCk, which is a
subset ofPk(K). This means that the wordsuvbelongs tosupCk∩Pk(K), which implies

that the wordsu is in supCk∩Pk(K). This completes the proof. ⊓⊔

It turns out that if the converse inclusion also holds, then we immediately obtain the
supremal conditionally-controllable sublanguage.

Theorem 6. Consider the setting of Problem 3, and languages defined in (*). If supCk
is a subset of Pk(supCi+k), for i = 1,2, then

supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) .

Proof. Let supcC= supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) and M = supC1+k ‖ supC2+k. To
prove thatM is a subset of supcC, we show that (i)M is a subset ofK and (ii)M is con-
ditionally controllable with respect to generatorsG1, G2, Gk and uncontrollable event
setsΣ1,u, Σ2,u, Σk,u. To this aim, notice thatM is a subset ofP1+k(K) ‖ P2+k(K) = K,
becauseK is conditionally decomposable. Moreover, by Lemmas 9 and 3,the language



Pk(M) = Pk(supC1+k)∩Pk(supC2+k) = supCk, which is controllable with respect to
L(Gk) and Σk,u. Similarly, Pi+k(M) = supCi+k ‖ Pk(supCj+k) = supCi+k ‖ supCk =

supCi+k, for j 6= i, which is controllable with respect toL(Gi) ‖ Pk(M). Hence,M is a
subset of supcC.

To prove the opposite inclusion, it is sufficient, by Lemma 10, to show that the
languagePi+k(supcC) is a subset of supCi+k, for i = 1,2. To prove this note that the
languageP1+k(supcC) is controllable with respect toL(G1) ‖ Pk(supcC) andΣ1+k,u,
and the languageL(G1) ‖ Pk(supcC) is controllable with respect toL(G1) ‖ supCk and
Σ1+k,u by Lemma 7, because the languagePk(supcC) being controllable with respect
to L(Gk) implies that it is also controllable with respect tosupCk, which is a subset of
L(Gk). By Lemma 8, the languageP1+k(supcC) is controllable with respect toL(G1) ‖
supCk andΣ1+k,u, which implies thatP1+k(supcC) is a subset of supC1+k. The other
case is analogous. Hence, the language supcC is a subset ofM and the proof is complete.

⊓⊔

Example 4.This example demonstrates that the language supCk is not always included
in the languagePk(supCi+k). Moreover, it does not hold even if projections are ob-
servers or satisfy the LCC property.

Consider systemsG1 andG2 shown in Fig. 2, and the specificationK as shown
in Fig. 3. Controllable events areΣc = {a1,a2,c}, and coordinator events areΣk =

1

2 3

4 5

a1

u1

c u

(a) GeneratorG1.

1

2 3

4 5

a2

u2

c u

(b) GeneratorG2.

Fig. 2. GeneratorsG1 andG2.

1

2 3 4

5 6 7

a1

a2 u2

a2 a1 u1

Fig. 3.SpecificationK.

{a1,a2,c,u}. Construct the coordinatorGk = Pk(G1) ‖ Pk(G2). It can be verified that
K is conditionally decomposable, supCk = {a1a2,a2a1}, supC1+k = {a2a1u1}, and
supC2+k = {a1a2u2}. Hence, supCk is not a subset ofPk(supCi+k).

It can be verified that projectionsPk, P1+k, P2+k areL(G1‖G2)-observers and LCC
for the languageL(G1‖G2). ⊳



Recall that it is still open how to compute the supremal conditionally-controllable
sublanguage for a general, non-prefix-closed language. Consider the example above
and note that the wordsa1a2 anda2a1 from supCk do not appear in the projection of
the supremal conditionally-controllable sublanguage, that is, no words with both letters
a1 anda2 appear in the supremal conditionally-controllable sublanguage. Thus, we can
remove these words from supCk (basically from the coordinator) and recompute the
supremal controllable sublanguage (denoted by supC′

k), that is,

supC′k = supC(∩i=1,2Pk(supCi+k),L(Gk),Σk,u) = {ε}

and, similarly, recompute supCi+k using supC′k instead of supCk. Note that the plant is
changed because the coordinator restricts it more than before. An application of The-
orem 6 could thus be as follows. If supCk 6⊆ Pk(supCi+k), then the natural approach
seems to be to remove from supCk all words violating the inclusion, and to recompute
supCi+k, for i = 1,2, with respect to this new supC′k, that is

supC′k = supC(Pk(supC1+k)∩Pk(supC2+k),L(Gk),Σk,u)

supC′1+k = supC(supC1+k,L(G1) ‖ supC′k,Σ1+k,u)

supC′2+k = supC(supC2+k,L(G2) ‖ supC′k,Σ2+k,u)

(**)

In our example, we get that supC′1+k = {ε} and supC′2+k = {ε} satisfy the assumption
that supC′k ⊆ Pk(supC′i+k), for i = 1,2, hence Theorem 6 applies. It is not yet clear
whether this method can be used in general, namely whether italways terminates and
the result is the supremal conditionally-controllable sublanguage. It is only known that
if it terminates, the result is conditionally controllable(see the end of Section 6 for more
discussion). Another problem is that it requires to computethe projection, which can be
exponential in general, because the observer property is not ensured. One of the natural
investigations of this problem is to work with nondeterministic representations. Several
attempts in this direction were done in the literature although they usually handle the
case where only the plant is nondeterministic, while the specification is deterministic,
see, e.g., [26,27]. Even more, it is a question how to test theinclusion from Theorem 6.

Finally, if supCi+k and supC′k are nonconflicting, the language supCi+k‖supC′k is

controllable with respect toL(Gi)‖supCk‖supC′k = L(Gi)‖supC′k by Lemma 7. This
observation gives the following result for prefix-closed languages.

Lemma 4. Let K= K ⊆ L = L(G1‖G2‖Gk), where Gi is a generator overΣi , for i =
1,2,k. Assume that K is conditionally decomposable, and define the languagessupCk,
supC1+k and supC2+k as in (*). If supCk 6⊆ Pk(supCi+k), for i ∈ {1,2}, define the
languagesupC′k as in (**). Then the language

supC1+k ‖ supC2+k ‖ supC′k

is conditionally controllable with respect to G1,G2,Gk andΣ1,u,Σ2,u,Σk,u.

Note that if we have any specificationK, which is conditionally decomposable, then
the specificationK ‖ L is also conditionally decomposable. The opposite is not true.



Lemma 5. Let K be conditionally decomposable with respect to event sets Σ1, Σ2, Σk,
and let L= L1 ‖ L2 ‖ Lk, where Li is overΣi , for i = 1,2,k. Then the language K‖ L is
conditionally decomposable with respect to event setsΣ1, Σ2, Σk.

Proof. By the assumption we have thatK = P1+k(K)‖P2+k(K). Then

K‖L = P1+k(K)‖P2+k(K)‖L1‖L2‖Lk

= P1+k(K)‖L1‖Lk ‖ P2+k(K)‖L2‖Lk

= P1+k(K‖L1‖Lk) ‖ P2+k(K‖L2‖Lk)

where the last equality is by Lemma 9. By Lemma 12,K‖L is conditionally decompos-
able with respect to event setsΣ1, Σ2, andΣk. ⊓⊔

S1 S2x1 x3

x4 x2

Fig. 4. A railway crossroad

Example 5.Consider a situation at a railway station. There are severaltracks that cross
each other at some points. Obviously, the traffic has to be controlled at those points. For
simplicity, we consider only two one-way tracks that cross at some point, that is, trains
going from west to east use track one, while trains going fromeast to west use track
two. The traffic is controlled by traffic lights.

Thus, consider the railway crossroad with two traffic lights, S1 andS2, and two entry
pointsx1,x3 and two exit pointsx2,x4, as depicted in Fig. 4. Each traffic light has values
gi (green) andr i (red), fori = 1,2. Colors of the traffic lights are controllable. The plant
is then given as a parallel composition of two systemsG1 andG2 depicted in Fig. 5. For
safety reasons, each system is able to set the traffic light tored at any moment. It can
set the traffic light to green and the trains are detected entering (x1 or x3) and leaving
(x2 or x4) the crossroad.

1 2

r1,x2
g1

r1

x1,x2

1 2

r2,x4
g2

r2

x3,x4

Fig. 5.GeneratorsG1 andG2

To define the specification, it is natural that a train is allowed to enter the crossroad
only if its traffic light is green. The purpose of the entry andexit pointsxi , i = 1,2,3,4,



is to allow a limited number of trains in the crossroad area from the direction of the
green light. The light can turn red at any moment, but the other traffic light can be set
to green only if all the trains have left the crossroad area. In this example, we consider
the case where at most three trains are allowed to enter the crossroad area on one green
light. For this purpose, the entry points must also be controllable to protect another
train to enter. This part of the specification is modeled by buffers depicted in Fig. 6.
Another part of the specification governs the behavior of thetraffic lights. First, both
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r1,g2,x2

x1

x2

x1

x2

x1

x2

r1 r1 r1

1 2 3 4

r2,g1,x4
x3

x4

x3

x4

x3

x4

r2 r2 r2

Fig. 6. The two buffers

lights must be red before one of the traffic lights is set to green, stay green for a while,
and then must be set to red again. The traffic lights should take turns, so that no trains
are waiting for ever, see Fig. 7. For simplicity, we do not model the mechanism (such
as a clock) that sets the traffic lights to green for a specific amount of time units. The
overall specification is then depicted in Fig. 8. The set of uncontrollable events is thus
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x2,x4

x2,x4

x2,x4

Fig. 7. The traffic lights’ part of the specification

Σu = {x2,x4}; all other events are controllable.
To make the specification controllable with respect toΣ1, Σ2, andΣk (whereΣk is

initialized to the empty set), we need to takeΣk = {g1,g2, r1}. Now we can compute
the coordinator as the projectionPk(G1)‖Pk(G2), and the languages supCk, supC1+k
and supC2+k as defined in (*), see Figs. 9, 10, and 11. It can be verified thatsupCk ⊆
Pk(supCi+k), for i = 1,2, hence Theorem 6 applies and the result (that is, in the mono-
lithic notation, the language supC1+k‖supC2+k) is the supremal conditionally-controll-
able sublanguage of the specification, cf. Fig. 12. Note thatthe difference with the
specification is the correct marking of the states.
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Fig. 8. The overall specification
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Fig. 9. Supervisor supCk

6 Coordinator for nonblockingness

So far, we have only considered a coordinator for safety. In this section, we discuss a
coordinator for nonblockingness. To this end, we first provea fundamental theoretical
result and then give an algorithm to construct a coordinatorfor nonblockingness.

Recall that a generatorG is nonblocking ifLm(G) = L(G).

Theorem 7. Consider languages L1 over Σ1 and L2 over Σ2, and let the projection
P0 : (Σ1 ∪Σ2)

∗ → Σ∗
0 , with Σ1 ∩ Σ2 ⊆ Σ0, be an Li-observer, for i= 1,2. Let G0 be

a nonblocking generator with Lm(G0) = P0(L1)‖P0(L2). Then the composed language
L1‖L2‖Lm(G0) is nonblocking, that is,L1‖L2‖Lm(G0) = L1‖L2‖Lm(G0).

Proof. Let L0 = Lm(G0). By Lemma 11,L1‖L2‖L0 = L1‖L2‖L0 if and only if

P0(L1)‖P0(L2)‖L0 = P0(L1)‖P0(L2)‖L0 .

However, for our choice of the coordinator, this equality always holds because both
sides of the later equation areL0. ⊓⊔
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Fig. 10.Supervisor supC1+k
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This result is demonstrated in the following example.

Example 6.Consider two nonblocking generatorsG1 andG2 depicted in Fig. 13. Their
synchronous product is shown in Fig. 14. One can see that the generatorG1‖G2 is
blocking because no marked state is reachable from state 3. It can be verified that the
projectionP : {a,b,c,d}∗ →{a,b,d}∗ is anL(G1)- andL(G2)-observer. The generator
G0 is then a nonblocking (trimmed) part of the synchronous product P(G1)‖P(G2) of
generators depicted in Fig. 15, that isLm(G0) = {a}, and the synchronous product of
G1‖G2 with G0 is shown in Fig. 16. One can see that the result is nonblocking. It is
important to notice that eventb belongs to the event set of the generatorG0.

The previous example shows that even thought the result is nonblocking, it is dis-
putable whether such a coordinator is acceptable. If we assume that eventb is uncon-
trollable, then the coordinator prevents an uncontrollable event from happening and the
result depicted in Fig. 16 is not controllable with respect to the plant depicted in Fig. 14.
Although it is not explicitly stated that a coordinator is not allowed to do so, we further
discuss this issue and suggest a solution useful in our coordination control framework.

In general, local supervisors supC1+k and supC2+k computed in Section 5 might be
blocking. However, we can always choose the language

LC = supC(P0(supC1+k) ‖ P0(supC2+k), P0(supC1+k) ‖ P0(supC2+k), Σ0,u) , (2)

where the projectionP0 is a supCi+k-observer, fori = 1,2. The following result shows
that the language supC1+k‖supC2+k‖LC is nonblocking and controllable.
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Fig. 12.The supremal conditionally-controllable sublanguage supC1+k‖supC2+k
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Fig. 13.GeneratorsG1 andG2

Theorem 8. Consider the notation as defined in Problem 3, Algorithm 2, (*), and (2).
Then the language

supC1+k ‖ supC2+k ‖ LC = supC1+k ‖ supC2+k ‖ LC

is controllable with respect to the plant language L(G1)‖L(G2).

Proof. To prove nonblockingness, we use Lemma 11 in two steps. Namely, it holds
thatsupCi+k‖LC = supCi+k‖LC if and only if P0(supCi+k)‖LC = P0(supCi+k)‖LC, for
i = 1,2, which always holds because both sides of the later equation are equal toLC.
Using Lemma 11 again,

supC1+k‖LC ‖ supC2+k‖LC = supC1+k‖LC ‖ supC2+k‖LC

if and only if

P0(supC1+k‖LC) ‖ P0(supC2+k‖LC) = P0(supC1+k‖LC) ‖ P0(supC2+k‖LC) (3)
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because if the projectionP0 is a supCi+k-observer, fori = 1,2, and anLC-observer
(since it is an identity), then the projectionP0 is also an supCi+k‖LC-observer by [19].
But (3) always holds becauseP0(supCi+k‖LC) = P0(supCi+k)‖LC = LC, by Lemma 9,
hence both sides are equal toLC. Thus, summarized, we have that

supC1+k‖supC2+k‖LC = supC1+k‖LC ‖ supC2+k‖LC

= supC1+k‖LC ‖ supC2+k‖LC

= supC1+k‖supC2+k‖LC .

To prove controllability, note that supCi+k is controllable with respect tosupCi+k,
for i = 1,2, andLC is controllable with respect toP0(supC1+k)‖P0(supC2+k). Now we
use Lemma 7 several times, and the nonconflictness shown above, to obtain that

– supCi+k ‖ LC is controllable with respect to(supCi+k) ‖ (P0(supC1+k)‖P0(supC2+k)),
for i = 1,2,

– (supC1+k‖LC) ‖ (supC2+k‖LC) = supC1+k‖supC2+k‖LC is controllable with re-
spect to(supC1+k‖P0(supC1+k)‖P0(supC2+k)) ‖ (supC2+k‖P0(supC1+k)‖P0(supC2+k))
that can be simplified tosupC1+k‖supC2+k,

– supC1+k ‖ supC2+k is controllable with respect to(L(G1)‖supCk) ‖ (L(G2)‖supCk)=
L(G1)‖L(G2)‖supCk, and

– L(G1)‖L(G2)‖supCk is controllable with respect toL(G1)‖L(G2)‖L(Gk) because
the language supCk is controllable with respect toL(Gk).

0 1 2
a c

Fig. 16.Synchronous productG1‖G2‖G0



Using transitivity of controllability, Lemma 8, we obtain that supC1+k‖supC2+k‖LC is
controllable with respect toL(G1)‖L(G2)‖L(Gk) = L(G1)‖L(G2), because the coordi-
natorGk is constructed in such a way that it does not change the plant. ⊓⊔

To demonstrate this improvement, we consider Example 6.

Example 7.Consider the generators of Example 6. Note thatG1‖G2‖G0, Fig. 16, is
not controllable with respect to the plantG1‖G2, Fig. 14, if b is uncontrollable. The
generatorG0 = P(G1)‖P(G2) is depicted in Fig. 17. It is not hard to see that ifb is

1 2 3
a b

Fig. 17.GeneratorP(G1)‖P(G2)

not controllable, then the supremal controllable sublanguage ofLm(G0) with respect to
L(G0) is LC = {ε}, because eventa must be prevent from happening. Therefore, the
language ofL(G1‖G2)‖LC = {ε} as expected.

We can now summarize this method as an algorithm.

Algorithm 9 (Coordinator for nonblockingness) Consider the notation above.

1. ComputesupC1+k andsupC2+k as defined in (*).
2. LetΣ0 := Σk and P0 := Pk.
3. Extend the event setΣ0 so that the projection P0 is both asupC1+k- and asupC2+k-

observer.
4. Define the coordinator C as the minimal nonblocking generator such that Lm(C) =

supC(P0(supC1+k) ‖ P0(supC2+k), P0(supC1+k) ‖ P0(supC2+k), Σ0,u).

This algorithm (Step 1) is based on the computation of the languages supC1+k and
supC2+k defined in (*), which can be computed using a standard algorithm for the
computation of supremal controllable sublanguages. If theassumption of Theorem 6
is satisfied, the computed languages are the languages of local supervisors that are the
candidates to solve the problem. However, the composition supC1+k‖supC2+k can be
blocking, and a coordinator for nonblockingness is required.

In Step 2, we define a new event setΣ0 (and the corresponding projection) that is
initialized to be the event setΣk used in the computation in Step 1.

In Step 3 of the algorithm, the event setΣ0 must be extended so that the projection
P0 is both a supC1+k- and supC2+k-observer. Thus, in consequence of the extension
operation,Σk can become a proper subset ofΣ0. Even though the computation of such a
minimal extension is NP-hard, a polynomial algorithm computing a reasonable exten-
sion exists, cf. [5] for more details and the algorithm.

Finally, in Step 4, the coordinator generatorC is defined as the minimal nonblocking
generator accepting the supremal controllable sublanguage of the languageP0(supC1+k) ‖

P0(supC2+k) with respect to the languageP0(supC1+k) ‖ P0(supC2+k). This idea has



been used by Feng in [4]. In other words, ifS1 andS2 are generators for languages
supC1+k and supC2+k, respectively, then the coordinatorC is computed as the genera-
tor for the supremal controllable sublanguage ofP0(S1)‖P0(S2). SinceP0 is an observer,
the computation can be done in polynomial time, cf. [30].

Remark 1.In the previous section we discussed the case when supCk 6⊆ Pk(supCi+k),
for i = 1,2. Note that the coordinatorLC discussed in this section can also be used
in that case because supC1+k‖LC and supC2+k‖LC then form synchronously noncon-
flicting local supervisors such that their overall behavioris controllable with respect to
the global plant. Hence, although this solution may not be optimal, it presents a solu-
tion in the case of (non-prefix-closed) languages that do notsatisfy the assumptions of
Theorem 6, or of those of Section 7 in the case of prefix-closedlanguages.

7 Supremal prefix-closed languages

In this section, we revise the case of prefix-closed languages. We use the local control
consistency property (LCC) instead of the output control consistency property (OCC),
cf. [12]. The reason for this is that LCC is a less restrictivecondition than OCC, as
shown in [24, Lemma 4.4]. Moreover, the extension of our approach to an arbitrary
number of local plants is sketched.

Theorem 10. Let K be a prefix-closed sublanguage of the plant language L, where L=
L(G1‖G2‖Gk), and Gi is a generator overΣi , for i = 1,2,k. Assume that the language
K is conditionally decomposable, and define the languagessupCk, supC1+k, supC2+k

as in (*). Let the projection Pi+k
k be an(Pi+k

i )−1(L(Gi))-observer and LCC for the
language(Pi+k

i )−1(L(Gi)), for i = 1,2. Then

supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) .

Proof. In this proof, let supcC denote the supremal conditionally controllable language
supcC(K,L,(Σ1,u,Σ2,u,Σk,u)), andM the parallel composition supC1+k ‖ supC2+k. It
is shown in [12, Theorem 11] that supcC is a subset ofM and thatM is a subset of
K. To prove thatPk(M)Σk,u ∩L(Gk) is a subset ofPk(M), consider a wordx in Pk(M)
and an uncontrollable eventa in Σk,u such that the wordxa is in L(Gk). To show that
the wordxa is in Pk(M) = P1+k

k (supC1+k)∩P2+k
k (supC2+k), note that there exists a

word w in M such thatPk(w) = x. It is shown in [12, Theorem 11] that there ex-
ists a wordu in (Σ1 \Σk)

∗ such that the wordP1+k(w)ua is in (P1+k
1 )−1(L(G1)) and

the wordP1+k(w) is in L(G1) ‖ supCk. As the projectionP1+k
k is LCC for the lan-

guage(P1+k
1 )−1(L(G1)), there exists a wordu′ in (Σu \Σk)

∗ such thatP1+k(w)u′a is
in (P1+k

1 )−1(L(G1)). Then, controllability of supC1+k implies thatP1+k(w)u′a is in
supC1+k, that is,xa is in P1+k

k (supC1+k). Analogously, we can prove thatxa is in
P2+k

k (supC2+k). Thus,xa is in Pk(M). The rest of the proof is the same as in [12, The-
orem 11]. ⊓⊔

In this Theorem, a relatively large number of properties that the coordinator, the lo-
cal plants and the specification have to satisfy is assumed. However, a polynomial algo-
rithm extending the coordinator event set so that the languageK becomes conditionally



decomposable has already been discussed, see [11]. In addition, to ensure that the pro-
jectionPi+k

k is an(Pi+k
i )−1(L(Gi))-observer and LCC for the language(Pi+k

i )−1(L(Gi)),
the coordinator event set can again be extended so that the conditions are fulfilled [24,5].

Conditions of Theorem 10 imply that the projectionPk is LCC for the languageL.

Lemma 6. Let Gi over Σi be generators, for i= 1,2. Let Σ = Σ1 ∪ Σ2, and let Pi :
Σ∗ → Σ∗

i , for i = 1,2,k andΣk ⊆ Σ , be projections. IfΣ1 ∩Σ2 is a subset ofΣk and
the projection Pi+k

k is LCC for the language(Pi+k
i )−1(L(Gi)), for i = 1,2, then the

projection Pk is LCC for the language L= L(G1‖G2‖Gk).

Proof. For a words in L and an eventσu in Σk,u, assume that there exists a wordu in (Σ \

Σk)
∗ such thatsuσu is in L. ThenPi+k(suσu) = Pi+k(s)Pi+k(u)σu is in (Pi+k

i )−1(L(Gi))
implies that there exists a wordvi in (Σi+k,u \Σk)

∗, for i = 1,2, such thatPi+k(s)viσu

is in (Pi+k
i )−1(L(Gi)). As Pk(vi) = ε, Pi(vi) = vi and we get thatPi(s)Pi(vi)Pi(σu) is in

L(Gi), for i = 1,2,k. Consider a wordu′ in {v1}‖{v2}. ThenPi(u′) = vi and, thus,su′σu

is in L. Moreover,u′ is in (Σu \Σk)
∗. ⊓⊔

It is an open problem how to verify that the projectionPi+k is LCC for the language
L without computing the whole plant. In such a case and with thecoordinator language
included in the corresponding projection of the plant language, the solution computed
using our coordination control architecture coincides with the global optimal solution
given by the supremal controllable sublanguage of the specification.

Theorem 11. Consider the setting of Theorem 10. If, in addition, L(Gk) is a subset of
Pk(L) and the projection Pi+k is LCC for the language L, for i= 1,2, then

supC(K,L,Σu) = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) .

Proof. It was shown in [12, Theorem 15] that the projectionPk is anL-observer. More-
over, by Lemma 6, the projectionPk is LCC for the languageL. Let supC denote
supC(K,L,Σu). We prove that the languagePk(supC) is controllable with respect to
L(Gk). Consider a wordt in Pk(supC) and an eventa in Σk,u such that the wordta is
in L(Gk), which is a subset ofPk(L). We proved in [12, Theorem 15] that there exist
wordss in supC andu in (Σ \Σk)

∗ such thatsuais in L andPk(sua) = ta. By the LCC
property of the projectionPk, there exists a wordu′ in (Σu \Σk)

∗ such thatsu′a is in L.
By controllability of the language supC with respect toL, the wordsu′a is in supC, that
is, Pk(su′a) = ta is in Pk(supC). Thus, (1) of Definition 3 holds. By [12, Theorem 15],
the projectionPi+k is anL-observer, fori = 1,2. To prove (2) of Definition 3, consider a
word t in Pi+k(supC), for 1≤ i ≤ 2, and an eventa in Σi+k,u such that the wordta is in
L(Gi) ‖ Pk(supC). We proved in [12, Theorem 15] that there exist wordss in supC and
u in (Σ \Σk)

∗ such thatsuais in L andPi+k(sua) = ta. As the projectionPi+k is LCC for
the languageL, there exists a wordu′ in (Σu \Σ1+k)

∗ such thatsu′a is in L. Then con-
trollability of supC with respect toL implies thatsu′a is in supC, that is,Pi+k(su′a) = ta
is in Pi+k(supC). The other inclusion is the same as in [12, Theorem 15]. ⊓⊔

Finally, a natural and simple extension to more than two local subsystems with
one central coordinator is sketched. All concepts and results carry over to this general
case ofn subsystems, where the coordinator event setΣk should contain all shared



events (events common to two or more subsystems). Conditional decomposability is
then simply decomposability with respect to event sets(Σi)

n
i=1 andΣk, cf. Section 3. It is

a very good news for large systems that conditional decomposability can be checked in
polynomial time with respect to the number of components as has been noticed in [11].
Note that unlike the previous form of conditional controllability, Definition 3 can be
extended to the general case ofn subsystems in an obvious way. Namely, conditions (2)
and (3) are replaced byn conditions of the formPi+k(K) is controllable with respect to
L(Gi) ‖ Pk(K) andΣi+k,u.

Note, however, that for many large-scale systems a single central coordinator might
be of little (if any) help due to too many events to be includedin the coordinator event
sets so that the conditions presented in this paper are satisfied (in particular, conditional
decomposability, LCC, and observer conditions). It is always possible to relax some of
the assumptions with the price of losing optimality, but in future publications we will
rather propose multi-level coordination architectures with several layers of coordina-
tors together with different optimality conditions corresponding to a given multi-level
coordination architecture.

8 Conclusion

We have revised, simplified, and extended the coordination control scheme for dis-
crete-event systems. These results have been used, for the case of prefix-closed lan-
guages, in the implementation of the coordination control plug-in for libFAUDES. We
have identified cases, where supremal conditionally-controllable sublanguages can be
computed even in the case of non-prefix-closed specificationlanguages, and proposed
coordinators for nonblockingness in addition to coordinators for safety developed in
our earlier publications. Note that a general procedure forthe computation of supremal
conditionally-controllable sublanguages in the case of non-prefix-closed specification
languages is still missing.

Another aspect that requires further investigation is the generalization of coordina-
tion control from the current case of one central coordinator to multilevel coordination
control with several coordinators on different levels. In fact, one central coordinator is
typically not enough in the case of large number of local subsystems, because too many
events must be communicated (added into the coordinator event set) between the coor-
dinator and local subsystems. This general architecture will be computationally more
efficient, because less events need to be communicated. In the multi-level coordina-
tion control the subsystems will be organized into different groups and each group will
have a coordinator meaning that only events from a given group will be communicated
among subsystems of the same group via the coordinator.

A Auxiliary results

In this section, we list auxiliary results required in the paper.

Lemma 7 (Proposition 4.6, [4]).Let Li overΣi , for i =1,2, be prefix-closed languages,
and let Ki be a controllable sublanguage of Li with respect to Li and Σi,u. Let Σ =



Σ1 ∪Σ2. If K1 and K2 are synchronously nonconflicting, then K1 ‖ K2 is controllable
with respect to L1 ‖ L2 andΣu.

Lemma 8 ([12]).Let K be a subset of a language L, and L be a subset of a language M
overΣ such that K is controllable with respect toL andΣu, and L is controllable with
respect toM andΣu. Then K is controllable with respect toM andΣu.

Lemma 9 ([30]). Let Pk : Σ∗ → Σ∗
k be a projection, and let Li be a language overΣi ,

whereΣi is a subset ofΣ , for i = 1,2, andΣ1∩Σ2 is a subset ofΣk. Then Pk(L1‖L2) =
Pk(L1)‖Pk(L2).

Lemma 10 ([12]).Let Li be a language overΣi , for i = 1,2, and let Pi : (Σ1∪Σ2)
∗ → Σ∗

i
be a projection. Let A be a language overΣ1∪Σ2 such that P1(A) is a subset of L1 and
P2(A) is a subset of L2. Then A is a subset of L1 ‖ L2.

Lemma 11 ([19]).Let Li be a language overΣi , for i ∈ J, and let∪k6=ℓ
k,ℓ∈J(Σk∩Σℓ)⊆ Σ0.

If Pi,0 : Σ∗
i → (Σi ∩Σ0)

∗ is an Li -observer, for i∈ J, then‖i∈JLi = ‖i∈JLi if and only if
‖i∈JPi,0(Li) = ‖i∈JPi,0(Li).

Lemma 12 ([9]).A language K⊆ (Σ1∪Σ2∪ . . .∪Σn)
∗ is conditionally decomposable

with respect to event setsΣ1, Σ2,. . . ,Σn, Σk if and only if there exist languages Mi+k ⊆
Σ∗

i+k, i = 1,2, . . . ,n, such that K=‖n
i=1 Mi+k.
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