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Abstract. In this paper, we revise and further investigate the coattbn control
approach proposed for supervisory control of distributisdréte-event systems
with synchronous communication based on the Ramadge-Woahtomata fra-
mework. The notions of conditional decomposability, ctindial controllability,
and conditional closedness ensuring the existence of éicolare carefully re-
vised and simplified. The paper is generalized to non-paized languages,
that is, supremal conditionally controllable sublangsagienot necessary prefix-
closed languages are discussed. Non-prefix-closed laggimtgoduce the block-
ing issue into coordination control, hence a procedure toptde a coordinator
for nonblockingness is included. The optimization probtncerning the size of
a coordinator is under investigation. We prove that to firerthinimal extension
of the coordinator event set for which a given specificataorglage is condition-
ally decomposable is NP-hard. In other words, unless P=N§>not possible to
find a polynomial algorithm to compute the minimal coordarawith respect to
the number of events.
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1 Introduction

In this paper, we revise and further investigate the coaititin control approach pro-
posed for supervisory control of distributed discretert\systems with synchronous
communication based on the Ramadge-Wonham automata fiakefv distributed

discrete-event system with synchronous communicatiorodeted as a parallel com-
position of two or more subsystems, each of which has its observation channel.
The local control synthesis consists in synthesizing locaiblocking supervisors for
each of the subsystems. It is well-known that such a puredgidtealized (often referred

* A preliminary version was presented at the 11th Internatiélorkshop on Discrete Event
Systems (WODES 2012) held in Guadalajara, MeXico [10].
** Most of this work was done when the author was with CWI, Andsden, The Netherlands.
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to as modular) approach does not work in general. Recentipdtda and Van Schup-
pen [13] have proposed a coordination control architeclsra trade-off between the
purely local control synthesis, which is not effective imgeal because the composi-
tion of local supervisors may violate the specification, treldglobal control synthesis,
which is not always possible because of the complexity reasimce the composition of
all subsystems can result in an exponential blow-up ofsfatde monolithic plant. The
coordination control approach has been developed for peddsed languages in [12]
and extended to systems with partial observations|in [9% ddse of non-prefix-closed
languages has partially been discussedlin [8]. Most of thpgmaches for prefix-closed
languages have already been implemented in the softwaee\libtbFAUDES [17].

In the last two decades several alternative approacheshware proposed for su-
pervisory control of large discrete-event systems. Amdrgdifferent control archi-
tectures are such as hierarchical control based on abetrd28,29,33], modular ap-
proaches|[4]7,14,19], decentralized control[[2R,31] al#th inferencing (conditional
decisions)[[15,32] or with communicating supervisors [2hd the so-called interface-
based approach [16]. Nowadays, these approaches are aahbiachieve even better
results, cf.[[28,24]. Our coordination control approach ba seen as a combination
of the horizontal and vertical modularity. The coordindewel corresponds to the ab-
straction (i.e., the higher level) of hierarchical contrghile the local control synthesis
is a generalization of the modular control synthesis. Meegocoordination control is
closely related to decentralized control with commun@matbecause local supervisors
communicate indirectly via a coordinator, ¢fl [1].

In this paper, the notions of conditional decomposabitityditional controllability,
and conditional closedness, which are the central notmokaracterize the solvability
of the coordination control problem, are carefully revised simplified. The paper is
generalized to non-prefix-closed languages, hence supoemditionally controllable
sublanguages of not necessary prefix-closed languagessatessed. This generality,
however, introduces the problem of nonblockingness ingocttordination control ap-
proach, therefore a part with a procedure to compute a coatati for nonblockingness
is included in the paper. The optimization problem conaegiihe size of a coordinator
is nowadays the main problem under investigation. The cocisbn of a coordinator
described in this paper depends mainly on a set of eventading the set of all shared
events. We prove that to construct the coordinator so thavient set is minimal with
respect to the number of events or, in other words, to find timmal extension of the
coordinator event set for which a given specification laggua conditionally decom-
posable, is NP-hard.

The main contributions and the organization of the paperar®llows. Sectiohl2
recalls the basics of supervisory control theory and reviee fundamental concepts.
Sectior B gives the computational complexity analysis efrtiinimal extension prob-
lem for conditional decomposability and proves that it is-hd#rd to find the minimal
extension with respect to set inclusion (Corollary 1). edf] formulates the problem
of coordination supervisory control. The notion of cormti@l controllability (Defini-
tion[) is revised and simplified, however still equivalemthe previous definition in,
e.g., [12]. Sectioml5 provides results concerning non-pm@bsed languages. Theo-
rem[8 shows that in a special case the parallel composititwcaf supervisors results



in the supremal conditionally controllable languages. Eoev, the problem how to
compute the supremal conditionally controllable sublagguin general is open. Sec-
tion[d discusses the construction of a coordinator for necihgness (Theorehi 8) and
presents an algorithm. Sectibh 7 revises the prefix-cloasd,avhere a less restrictive
condition, LCC, is used instead of OCC. The possibility te u€C instead of OCC
has already been mentioned in][12] without proofs, theeetbe proofs are provided
here. Finally, Sectiohnl8 concludes the paper.

2 Preliminaries and definitions

We assume that the reader is familiar with the basic notioiiscancepts of supervi-
sory control of discrete-event systems modeled by deteéstidrfinite automata with
partial transition functions. For unexplained notiong, thader is referred to the mono-
graph|[3].

Let 2 be a finite nonempty set whose elements are calleshtsand let>* denote
the set of all finite words (finite sequences of events) aveheempty words denoted
by €. Let|Z| denote the cardinality of.

A generatoris a quintupleG = (Q, %, f,qo,Qm), whereQ is a finite nonempty set
of states 2 is a finite set of events (agvent sét f : Q x Z — Q is apartial transition
function qp € Q is theinitial state, andQy, C Q is a set ofmarked statedn the usual
way, the transition functiori can be extended to the dom&nx >* by induction. The
behavior of generatds is described in terms of languages. The langugayeratedy
Gis the selL(G) = {se€ Z* | f(qo,s) € Q}, and the languagmarkedby G is the set
Lm(G) = {s€ Z* | f(o,S) € Qm}. ObviouslyLm(G) C L(G).

A (regular) language Lover an event sef is a setlL C >* such that there exists
a generatoG with Lyn(G) = L. The prefix closure of a languadgeover X is the set
L = {we =* | there existal € =* such thatvu € L} of all prefixes of words of the
languagd.. A language. is prefix-closedf L = L.

A controlled generatoover an event sef is a triple(G, 2., I" ), whereG is a gen-
erator overZ, 3. C X is a set ofcontrollable eventsX, = 5\ % is the set ofuncon-
trollable eventsandl” = {y C > | %, C y} is theset of control patternsA supervi-
sor for the controlled generatdiG, >¢,I") is a mapS: L(G) — . The closed-loop
systemassociated with the controlled generatG, >.,I") and the supervisdBis de-
fined as the minimal languad€S/G) such that the empty worel belongs td_(S/G),
and for any words in L(S/G) such thatsais in L(G) anda in S(s), the wordsa also
belongs toL(S/G). We define the marked language of the closed-loop systemeas th
intersectionLm(S/G) = L(S/G) NLm(G). The intuition is that the supervisor disables
some of the transitions of the generafrbut it can never disable any transition under
an uncontrollable event. If the closed-loop system is nocihg, which means that
Lm(S/G) = L(S/G), then the supervis@is callednonblocking

Given a specification languade and a plant (generato@3, the control objective
of supervisory control is to find a nonblocking superviSsuch that_,(S/G) = K.
For the monolithic case, such a supervisor exists if and drilye specificatiorK is
both controllablewith respect to the plant languagéG) and uncontrollable event set
%, thatis the inclusioi >, NL C K is satisfied, antlm(G)-closed that is the equality



K =KnNLm(G) is satisfied. For uncontrollable specifications, contiiéaublanguages
of the specification are considered instead. The notatigrC8¢,L(G), >,) denotes
the supremal controllable sublanguage of the specifictiarith respect to the plant
languagd.(G) and uncontrollable event s&;, which always exists and is equal to the
union of all controllable sublanguages of the specificaiosee[30].

A (natural) projection P. >* — 55, wherey is a subset of, is a homomorphism
defined so thaP(a) = ¢ for ain X\ %o, andP(a) = a for ain Xy. The projection of
a word is thus uniquely determined by projections of itselett Theinverse imagef
P is denoted byp~1: 5} — 22", For three event sets, 5j, 5/, subsets of, we use
the notationP, ™’ to denote the projection frort% U 5j)* to 5;. If 5 UZ; = 5, we
simplify the notation td?,. Similarly, the notatior®, x stands for the projection from
Z*to (XU Z)*. The projection of a generat@;, denoted by?(G), is a generator whose
behavior satisfiek(P(G)) = P(L(G)) andLn(P(G)) = P(Lm(G)).

The synchronous product of languadgesover>; andL, over 2, is defined as the
languagé s || Lo = Py 1 (L1) NPy Y(Ly), whereR : (51U 3,)* — 3 is a projection, for
i =1,2. A similar definition for generators can be foundin [3]. Te&ation between the
language definition and the generator definition is spedieithe following equations.
For generator§; and Gy, L(G1||Gz) = L(Gy) || L(Gz) andLm(G1||G2) = Lm(G1) ||
Lm(Gy). In the automata framework, where a supervBaas a finite representation as
a generator, the closed-loop system is a synchronous protitiee supervisor and the
plant. Thus, we can write the closed-loop systerh@G) = L(S) || L(G).

For a generatoB over an event sef, let 3 (G) = {a € X | there are words,v €
2* such thauave L(G)} denote the set of all events appearing in words of the largjuag
L(G). Generator$s; andG; areconditionally independentith respect to a generator
G if all events shared by the subsystems appear in the gen@&gatthat is, if the in-
clusionZ; (G1) N % (Gz) C % (Gy) is satisfied. In other words, there is no simultaneous
move in both generatofs; andG, without the generatd®y being also involved.

Now, the notion of conditional decomposability is simplifieompared to our pre-
vious work [12], but still equivalent.

Definition 1. A language K isconditionally decomposableith respect to event sets
21, 22, 2, where2, N2, C 2 C 2 U2y, if

K= P1+k(K) H P2+k(K)a
where Ry : (21U 22)* — (% U 2)* is a projection, for i= 1,2.

Note that there always exists an extensiopfvhich satisfies this conditiorgy, =
21U 2, is a trivial example. Here the indékis related to projectiof used later in
the paper. There exists a polynomial algorithm to checkabizdition, and to extend
the event set to satisfy the condition, see [11]. However gihestion which extension
is the most appropriate requires further investigatiorséatior 8, we show that to find
the minimal extension is NP-hard.

Language¥ andL aresynchronously nonconflictingK || L =K || L.

Lemma 1. Let K be a language. If the langualfeis conditionally decomposable, then
the languages R «(K) and B, «(K) are synchronously nonconflicting.



Proof. Assume that the languageis conditionally decomposable. From a simple ob-

servation thaK C Pij((P,H((K)), fori=1,2, we immediately obtain th#t C P, «(K) ||
P>, «(K). As the prefix-closure is a monotone operation,

K € Prik(K) || Posk(K) € Prik(K) || Pk(K) =K,
which proves the lemma. a

The following example shows that there exists, in genexatatation between the
conditional decomposability of languagésandK.

Example 1.Let 2; = {&3,by,a,b}, 3> = {ap,by,a,b}, andZx = {a,b} be event sets,
and define the languadfe= {aia»a, axaia, bibyb, bobib}. ThenPy ((K) = {aya, bib},
P k(K) = {apa,bob}, andK = P «(K) || P>;k(K). Notice that whereaasb; is in
Prik(K) || Po1k(K), aiby is not inK, which means that the languageis not condi-
tionally decomposable.

On the other hand, consider the language {¢,ab,ba abc bac} over the event
set{a,b,c} with 5; = {a,c}, 2, = {b,c}, 5 = {c}. ThenL = P k(L) || P>.k(L) =
Prik(L) || Pik(L), and it is obvious thalt # L. N

3 Conditional decomposability minimal extension problem

We have defined conditional decomposability only for tworg\sets, but the definition
can be extended to more event sets as follows. A langlaigeconditionally decom-
posablewith respect to event setg;)! ;, for somen > 2, and an event s&f, where
>k C UM, 2 contains all shared events, that is, it satisfies

Ss=JEngg) C 5,
i]

n
K= || Rux(K).
i=1

The conditional decomposability minimal extension problis to find a minimal
extension (with respect to set inclusion) of the eventsaif all shared events so that
the language is conditionally decomposable with respegiten event sets and the
extension os. The optimization problem can be reformulated to a decig@msion as
follows.

Problem 1 (CD MIN EXTENSION).

INSTANCE: A languageK over an event seX = U ; 5;, wheren > 2, and a positive
integerr < |Z|.

QUESTION: Is the language conditionally decomposable with respect to event sets
(2, andZsU %, where| 3| <r?



We now prove that the CD MIN EXTENSION problem is NP-compléthis then
immediately implies that the optimization problem of finglilhe minimal extension of
the event seks is NP-hard. On the other hand, it is not hard to see that tHenattion
problem is in PSPACE. Indeed, we can check all subsets gedevae by one using
the polynomial algorithm described in [11].

To prove NP-completeness, we reduce the MINIMUM SET COVEBbfam to
the CD MIN EXTENSION problem; the MINIMUM SET COVER problens iNP-
complete([6].

Problem 2 (MINIMUM SET COVER).

INSTANCE: A collectionC of subsets of a finite s& and a positive integer< |C|.
QUESTION: Does the collectio@ contain a cover for the s&of cardinalityt or less,
that is, a subse®’ with |C'| <t such that every element of the &¥elongs to at least
one member of'?

Theorem 1. The CD MIN EXTENSION problem is NP-complete.

Proof. First, we show that CD MIN EXTENSION is in NP. To do this, a Tagima-
chine guesses a s&t of cardinality at most and uses Algorithm 1 of [11] to verify
in polynomial time whether the given language is conditliyndecomposable with re-
spect to the given event sets.

To prove the NP-hardness, consider an instaf®€) of the MINIMUM SET
COVER problem as defined in Probldm 2 such that the union ddlathents of the
collectionC covers the seb (otherwise it is trivial to solve the problem). Denote

S={by,by,...,by} and C={cy,Cy,...,Cm}.

We now construct a languade over the event sésU {g | i = 1,2,...,n} UCU{a}
as follows. For eacly in S, letCy, = {cj | bj € ¢;} be the set of all elements of the
collectionC containing the elemertt;. Then, forCy, = {cil,ciz,...,cibi }, where we
assume without loss of generality that< i> < ... <y, add the two words;aly and
8iCi; Cij - - - Ciy, ato the languag&. Then the languagé is

n
K= Zl(aiah +8Ci,Ci, - - - iy a).
i=

To demonstrate the construction, &t {bs,by, bs,bs,bs} andC = {c; = {b1,by, b3},
Cp = {by,bs},c3 = {bs,bs},cs = {bs,bs}}. The generator for languagdeis depicted
in Fig.[d. Note thafcy,c4} is the minimum set cover. Next, we define two event sets

Zy=Su{atu{a|i=12,...,n}
and
>=Cu{alu{a|i=12,...,n}.
As the intersectiorBNC is empty, it gives that the event s&t = {a} U{a | i =
1,2,...,n}. We now prove that there exists a minimum set cover of calitiret mostr

if and only if there exists an extension of the eventsgif cardinality at most making
the languag& conditionally decomposable.
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Fig.1. The generator for languagk corresponding to the MINIMUM SET COVER in-
stance(SC), whereS = {b17b27b37b47b5} andC = {C]_ = {lﬁ);L7t)27t):_J,}7 C = {b27b4}703 =
{bs,bs},cq4 = {bg,bs}}.

Assume that there exists a minimum set ca®e«= {c;,,Ci,,..., G, } C C of cardi-
nality r. We prove that the languadeis conditionally decomposable with respect to
21, X, andZy = 35U {ci,,Ci,,.. ., G, }. The application of projectioRy to language
K results in the language

n

PLik(K) = Zl(aaah +aiPLik(Ciy G, -Gy, )3)

and the application of projectidp i to language results in the language

P2+k(K) =

(aa+ aiCiyCiy - -Ci, 8).

HM:



Note that the wordP (i, Ci, . . . Cip, ) € C"* is nonempty because at least one set of the
collectionC’ covers the elemet;, foralli=1,2,...,n. Let

X =C\C

denote the complement of the collecti@h then the intersectioX N Sis empty. As
Gy, NC # 0, for each elemert; of the setS, the Ianguf'zlg@l;lkPHk(ci1ci2 . "Cibi) is not
asubset of the languagé. It can be seen that the intersectiie;, S°ci,S". .. S*cibi SN
X* =0 is empty, that the intersecticﬁfjkPHk(cilci2 - Ci, )NS" =0 is empty, and that

the intersectio|ﬁ>1jr1kP1+k(cilci2 - Ciy, )nSs‘c,S'¢,S"...S'q, S"={ci,Ci, ... Cip, }.Then
the parallel composition of both projections of the Iangukg

P1+k(K) || P2+k(K)

n
— _Zl(x*aix*ax*bix* + X &P (PLik(GiyCiy - Gy, ))AXY)
=
n
N Z(S“aS*aS*#—S‘*a;S*cilS*cizS* ...S'c, S'as)
i=
n
= i;(a;abi +a0i;Ci, ... G, 8) =K,

is equal toK.

On the other hand, I1ef; C SUC be an extension of the event sgtof cardinality
r such that the languadéis conditionally decomposable with respect to event &gfs
25, and Xy = 25U 2. Consider a symbdb and two corresponding wordgaby and
aiCi; Ciy - ..cibiafrom the languag&. If = N {bi,cil,ciz,...,cibi} = 0, then the projec-
tions of these words to event séksU 5 andX; U5y are, respectively, «(ajab) = aa
and Py (& i, Gi, - iy, a) = a;a. But then the wordc;;Ci, . - Cip, ab ¢ K belongs to
Pk (K) || P4k(K), which is a contradiction. Hence, at least one of the symiots,
Cigs - -+ Cip, must belong to the seX,. In other words, at least one of these symbols
covers the symbds. We can now construct a coveri@j C C of cardinality at most
as follows. For eachk in %, add the set to the coveringC’, and for eactb in %, add
any seftc from the setC;, to the coveringC'. It is then easy to see that the collectioh
covers the ses. O

Note that an immediate consequence of the constructioraighie minimal exten-
sion problem is NP-hard even for finite languages and twoteseds.

Corollary 1. The minimal extension problem is NP-hard.

Similar minimal extension problems have been shown to behale-in the litera-
ture, e.g., the minimal extension of observable event betsguarantees observability
of alanguage. However, unlike coobservability of decdizied control, conditional de-
composability has an important property for large systeamposed of many concur-
rent components—it can be checked in polynomial time in thmlper of components
as shown in[[11]. In addition, an algorithm is presenteddhercompute an extension



(but not necessarily the minimal one) of the shared evensseh that the language
under consideration becomes conditionally decomposaipterespect to the original
event setg; and>; and the new (coordinator) event st

4 Coordination control synthesis

In this section, we recall the coordination control probland revise the necessary
and sufficient conditions established [in [8.9,12] underohtthe problem is solvable.
This revision leads to a simplification of existing notionsdgproofs, e.g., compare
Definition[3 with [8, Definition 9] or the proof of Propositid with the proof of [8,
Proposition 10].

We now summarize the results of this section compared toxiséreg results. The
coordination control problem for non-prefix-closed langes was formulated iri_[8,
Problem 7]. The contribution of this paper is a simplificataf the problem statement,
namely, the prefix-closed part of the closed-loop systerh sitoordinator is shown to
be a consequence of the non-prefix-closed case (see thealotethe problem state-
ment). The original definition of conditional controllaibjlis simplified in Definitior3.
A simplified proof of Propositiofi]1 is presented. Proposifibis new. Theoreinl4 is a
simplified version of Theorem 18 stated lin [8] without proof.

Problem 3 (Coordination control problemfonsider generatoi§; and G, over 2;
and 2, respectively, and a generat@g (called acoordinaton over 2. Assume that
generatorss; and G, are conditionally independent with respect to coordin&@gr
and that a specificatio C Lm(G1||G2||Gk) and its prefix-closur& are conditionally
decomposable with respect to event sB{s>,, and 2. The aim of the coordination
control synthesis is to determine nonblocking supervi§prs,, andS, for respective
generators such that

Lm(S/Gk) CRA(K)  and  Lm(S/[Gi || (S/G)]) € R+k(K),i=1,2,

and the closed-loop system with the coordinator satisfies

Lin(S1/[G1 [ (S/CGD) || Ln(S/[G2 || (S/GW)]) =K.

<

_ One could expect that the equalltyS; /[Gy || (S¢/G)]) | L(S/[Gz || (Se/Gi)]) =
K for prefix-closed languages should also be required in @terstent of the problem.

However, it is really sufficient to require only the equafibty marked languages since it

then implies that the equality(S;/[G1 || (Sc/Gk)]) || L(S/[G2 || (S/Gk)]) = K holds
true because

K =Ln(S/[G1 || (S/GK)]) | Lm(S/[G2 || (S¢/G)])
CLm(S/[G1 || (S/Gi)]) | Lm(S/[G2 | (S¢/Gk)])
C Prik(K) || P24k(K)

I
A



Moreover, if such supervisors exist, their synchronouslpodis a nonblocking super-
visor for the global plant, cf[]8].

Note that several conditions are required in the statemfethieoproblem, namely,
(i) the generators are conditionally independent with eesfo the coordinator and (ii)
the specification and its prefix-closure are conditionadig@mposable with respect to
event sets 1, 2,, and>y. These conditions can easily be fulfilled by the choice of an
appropriate coordinator event sBt. The reader is referred tb [11] for a polynomial
algorithm extending a given event set so that the languagenhes conditionally de-
composable.

In the statement of the problem, we have mentioned the nofiartoordinator. The
fundamental question is the construction of such a cootdiné/e now discuss one of
the possible constructions of a suitable coordinator, iwhias already been discussed
in the literature([8,9,12]. We recall it here for the complatss.

Algorithm 2 (Construction of a coordinator) Consider generators Gand G over
23 and Xy, respectively, and let K be a specification. Construct ameset>y, and a
coordinator G as follows:

1. Set>y = 21N 2, to be the set of all shared events.

2. ExtendXy so that K andK are conditional decomposable, for instance using a
method described in[11].

3. Let the coordinator = R(G1) || F(G2).

So far, the only known condition ensuring that the projegiederator is smaller
than the original one is the observer property. Therefoesmight need to add step (2b)
to extend the event s&f so that the projectioRy is anL(G;)-observer, foi = 1,2, cf.
Definition[2 below.

Note that if we generalize this approach to more than twoyatbms, the seXy of
step 1 is replaced with the s&t of all shared events defined in Sectidn 3 above.

Definition 2 (Observer).The projection P: >* — >}, whereZy is a subset of, is an
L-observefor a language L oveg if, for all words t in R(L) and s inL, the word R(S)
is a prefix of t implies that there exists a word wih such that su is in L and{Psu) =t.

For a generato& with n states, the time and space complexity of the verification
whether a projectioR is anL(G)-observer i(n?), see[[18,2]. An algorithm extending
the event set to satisfy the property runs in ti@@?) and linear space. The most
significant consequence of the observer property is theviilg theorem.

Theorem 3 ([28]).If a projection P is an IG)-observer, for a generator G, then the
minimal generator for the languaggB(G)) has no more states than the generator G.

This is an important result because it guarantees that thedit@tor computed in
Algorithm[2Z is smaller than the plant whenever the projetkpis anL(G;) || L(Gz)-
observer.



4.1 Conditional controllability

The concept of conditional controllability introduced|i8] and later studied in [8/9,12]
plays the central role in the coordination control approdeihis paper, we revise and
simplify this notion. In what follows, we use the notatian, = 2 N %, to denote the
set of locally uncontrollable events of the eventSet

Definition 3. Let G; and G be generators oveF; and>,, respectively, and let be
a coordinator oversy. A language KC L(G1]||G2||Gk) is conditionally controllabléor
generators G, Gy, G¢ and uncontrollable event sels , 2o, 2k if

1. R(K) is controllable with respect to(Gy) and 3y,
2. Pk(K) is controllable with respect to(G1 ) || B«(K) and Xy iy,

3. P«(K) is controllable with respect to(Gy) || R(K) and 25k,
wherei = (5jUZ) Ny, fori=1,2.

The difference between Definitidh 3 and the definition in pyas papers is that in
item 2 we writeL(G1) || P«(K) instead ofL(G1) || F(K) || Pf*k(L(Gz)HR((K)). This

is possible because the assumptior. L(G1 |G| Gk) implies the inclusiorP(K) C
(P ,)~1P2 ,(L(Gy)), which results in the equality

R (K) [[PZT(L(G2)[IR(K))

R(K)||PE2(L(G2))

&K)ﬂ (P2) 'R2(L(G))

~RK)

by Lemmd® (see the Appendix). Hence we have the following.

Lemma 2. Definition[3 and|[[8, Definition 9] of conditional controllality are equiva-
lent.

The following proposition demonstrates that every condgily controllable and
conditionally decomposable language is controllable.

Proposition 1. Let G be a generator oveE;, for i = 1,2,k, and let G= G;||Gy||Gx.
Let K C Lin(G) be such a specification that the langudges conditionally decom-
posable with respect to event setg 2, >, and conditionally controllable for gen-
erators G, Gy, G¢ and uncontrollable event sefs, ,, 25, 3. Then the language
K is controllable with respect to the plant languagé3d) and uncontrollable event set
Ju= Zl,u U Zz"u.

Proof. Since the languag@, . «(K) is controllable with respect th(G1) || A(K) and
14k andPs i (K) is controllable with respect to(G,) || R(K) and 2,y ,, LemméT

implies that the languad€ = Py, «(K) || P, «(K) is controllable with respect to(G; ) ||
A(K) || L(G2) || F(K) =L(G) || A(K) andXy, where the equality is by commutativity
of the synchronous product and by the fact fgK) C L(Gy). As the languagB(K) is
controllable with respect tb(Gx) and 2, by Definition(3, the languade(G) || R(K)

is controllable with respect to(G) || L(Gk) = L(G) by LemmdY. Finally, by Lemn{d 8,
K is controllable with respect tb(G) andZ,, which means tha is controllable with
respecttd_(G) and>,,. O




On the other hand, controllability does not imply conditiboontrollability.

Example 2.Let G be a generator such thaG) = {au} || {bu} = {abu bau}. Then the
languageK = {a} is controllable with respect th(G) and %, = {u}. Moreover, both
languageK andK are conditionally decomposable with respect to event &ts},
{b,u}, andXy = {u}, but the languagB(K) = {&} is not controllable with respect to
L(G) = R(L(G)) = {u} andZicy = {u}. X

However, we show below that if the observer property andllo@atrol consistency
(LCC) are satisfied, the previous implication holds. To rthis, we need the following
definition of LCC. Note that unlike our previous papers, we asweaker notion of
local control consistency (LCC) presented|ini[24] instebduiput control consistency
(OCC).

Definition 4 (LCC). Let L be a prefix-closed language o\vErand let>, be a subset
of 2. The projection p: >* — 2 is locally control consistenLCC) with respect to a
word se L if for all eventsoy € ZpN X, such that B(s)ay € Py(L), it holds that either
there does not exist any wordau(X \ Xp)* such that say € L, or there exists a word
ue (X,\ Zp)* such that say € L. The projection pis LCC with respect to a language
L if Py is LCC for all words of L.

Now the opposite implication to the one proven in Propos(ficcan be stated.

Proposition 2. Let L be a prefix-closed language o\verand let KC L be a language
that is controllable with respect to L ang,. If, for i € {k,1+k,2+k}, the projection
P is an L-observer and LCC for L, then the language K is condiity controllable.

Proof. Let s € A(K), a € Z, andsac F(L). Then there exists a wona in K such
that R«(w) = s. By the observer property, there exists a warith (X \ X)* such that
wuae L andR(wua) = sa By LCC, there exists another woudin (%, \ Zx)* such that
wua e L, thatis,wuais in K by controllability. Hencesae P(K).

Letse Pr(K), a€ 2144, andsac L(Gy) || A(K). Then there exists a wowsd in
K such thaPy, «(w) = s. By the observer property, there exists a woiid (= \ 7 ,x)*
such thatvuae L andPyk(wua) = sa By LCC, there exists another wordin (%, \
Z1.k)* such thatvua € L, thatis,wu/ais in K by controllability. Hencesac Py, «(K).

The proof for the case &+ 2 is similar to that ok + 1. O

4.2 Conditionally closed languages

In this subsection we turn our attention to general spetificdanguages that need not
be prefix-closed. Analogously to the notionlgf(G)-closed languages, we recall the
notion of conditionally-closed languages defined_in [8].

Definition 5. A nonempty language K over is conditionally closedor generators
Gy, Gy, G if

1. R(K) is Lm(Gk)-closed,
2. BLk(K) is Lm(G1) || P(K)-closed,



3. Buk(K) is Lm(G2) || Fk(K)-closed.

If a languageK is conditionally closed and conditionally controllablaen there
exists a nonblocking supervis§¢ such that.(Sc/Gk) = R(K), which follows from
the basic theorem of supervisory control applied to langeBg K) andL(Gy), seel[3].

As noted in [3, page 164], K C Ln(G) is Lm(G)-closed, then so is the supremal
controllable sublanguage &f. However, this does not imply that the langu&RK) is
Lm(Gk)-closed, for any generat@ = G ||Gz||Gk such that the coordinat@y makes
generator$s; andG, conditionally independent.

Example 3.Letthe eventsets b, = {&;,a}, 3» = {ay,a}, andX, = {a}, respectively,
and let the specification languagele= {a;aa, aaya}. Then the application of pro-
jections results in languagés (K) = {a1a}, P> k(K) = {aza}, andR(K) = {a},
and the languagé = Py, «(K) || P..«(K) is conditionally decomposable. Define gener-
atorsGy, Gz, G so thatlm(Gy) = PLik(K), Lm(G2) = Po1k(K), andLm(Gy) = R(K) =
{g,a}. ThenLm(G) = K and the languagK is L(G)-closed. However, the language
R(K) C R(K) is notLm(Gy)-closed. N

4.3 Existence of supervisors

The following theorem is a revised version (based on the Ifficgtion of conditional
controllability, Definition3) of a result presented withqaroof in [8].

Theorem 4. Consider the setting of Problel 3. There exist nonblockingesrisors
S, S, & such that

Ln(S1/[G1 || (Se/GW))) I Lm(S2/[G2 || (Se/Gw)]) =K 1)

if and only if the specification language K is both conditittyaontrollable with respect
to generators @, Gy, G¢ and uncontrollable event sel , 5>, 5, and condition-
ally closed with respect to generatorg G, Gy.

Proof. Let K satisfy the assumptions, and Bt= G; | G2||Gy be the global plant. As
the languag« is a subset of.,(G), its projectionR(K) is a subset of.n(Gy). By
the assumption, the languaBgK) is Lm(Gk)-closed and controllable with respect to
L(Gk) and 2y . By the basic theorem of supervisory contriol|[20] there tsxésnon-
blocking superviso§ such thatln(S/Gk) = F(K). As the languagé®; k(K) is a
subset of languagés,(G1 || Gx) and (PX%)~1R(K), we have thaPy (K) is included
in Lm(G1) || F(K). These relations and the assumption that the system istandi
ally controllable and conditionally closed imply the egiste of a nonblocking super-
visor S; such thatLm(S1/[G1 || (S/Ck)]) = Prik(K). A similar argument shows that
there exists a nonblocking supervis®rsuch thatllm(S/[G: || (S/Gk)]) = Pork(K).
SinceK andK are conditionally decomposable, it follows that(S; /[G1 || (S¢/Gk)]) ||
Lm(S2/[G2 || (S¢/G)]) = Prik(K) || Po4k(K) =K.

To prove the converse implication, the projectidhs Pk, P,k are applied to
(@), which can be rewritten a§ = Lin(S]|G1 || $||G2 || &||Gk). Thus, the projection
A(K) = R (Lm(Stl|G1 || S2l[Gz | SIGw)) is @ subset ofm(Scl|Gi) = Lm(Sc/Gk). On



the other hand,m(S«/Gk) C R(K), cf. ProbleniB. Hence, by the basic controllability
theorem, the languad&(K) is both controllable with respect 10/Gy) and %, and
Lm(Gk)-closed. As>;, N 2,k = 2, the application of projectioRy . to (@) and as-
sumptions of Problef 3 give thBt, «(K) C Lm(S1/[G1 || (S/Ck)]) C Prik(K). Taking
G1|/(S«/Gk) as a new plant, we get from the basic supervisory controrémeahat the
languagéPy ,(K) is controllable with respect th(Gy || (S¢/Gk)) and 21,k 4, and that it

is Lm(G1]|(S/Gxk))-closed. The case of the langud®e(K) is analogous. O

5 Supremal conditionally controllable sublanguages

Necessary and sufficient conditions for the existence oblumking supervisors,,

S, andS that achieve a considered specification language usingomudination con-
trol architecture have been presented in Thedrem 4. Howivenany cases control
specifications fail to be conditionally controllable anan#arly as in the monolithic
supervisory control, supremal conditionally controlblublanguages should be inves-
tigated.

Let supcQK,L,(21,u,224,2ku)) denote the supremal conditionally controllable
sublanguage dk with respect td. = L(G1]||G2||Gk) and sets of uncontrollable events
Z1u Z2u Zku- The supremal conditionally controllable sublanguageagisvexists,
cf. [9] for the case of prefix-closed languages.

Theorem 5. The supremal conditionally controllable sublanguage ofeeg language
K always exists and is equal to the union of all conditionatintrollable sublanguages
of the language K.

Proof. Let | be an index set, and &, for i € I, be conditionally controllable sub-
languages oK C L(Gy||G,||Gy). To prove that the languad(UicKi) is controllable
with respect td_(Gx) and2y,, note that

A (Uie1Ki) ZkuNL(Gk) = Uil (A(Ki) Zku NL(GK))
C Uier A(Ki)
=R (Uielﬁ) )

where the inclusion is by controllability of the languaggK;) with respect td_(Gy)
and2y . Next, to prove that

Prik (UielKi) Z14uNL(G1) || R (UialKi) € Prik (Uil Ki)
note that
Prok (UierKi) Z14cuNL(Gy) || Re (LiarKi)
= Uiet (Pros(K) Z1cu) N Uier (L(Ga) || R(KD)
= Uiel Ujal (Prk(K) Z111uNL(Ga) || A(K])) -

Consider two different indexésand j from | such that

Prik(K) 211k uNL(Gy) || R(K)) € Pk (Uial Ki) -



Then there exist a worklin Py (K;) and an uncontrollable eveain Z14xu Such that
xu belongs to the languad€G1)||R(K;), andxu does not belong t& (UiciKi). It
follows thatR(x) belongs td(K;) andR(xu) belongs ta(K;). If R(xu) belongs to
R (Ki), thenxu belongs toL (G1)||P(Ki), and controllability of the languad@ , «(Ki)
with respect toL(Gy) || R(Ki) implies thatxu belongs toPy« (Ui Ki); hence P(xu)
does not belong t8}(K;). If the eventu does not belong tdy ,, thenR(xu) = R(x)
belongs td&(K;), which is not the case. Thusbelongs ta% . As R (Ki) UR(Kj) is a
subset ot (Gy), we get thaFk(xu) = F(x)u belongs td_(Gk). However, controllability
of the languagé(K;) with respect toL(Gx) and 2 implies that the word3(xu)
belongs td(K;). This is a contradiction.

As the case for the projectid®_  is analogous, the proof is complete. a

Still, it is a difficult problem to compute a supremal conaiital controllable sub-
language. Consider the setting of Prob[dm 3 and define tlyeitages

sup G = sup QR(K),L(Gx), Zku)
SUP Gy = SUp QP k(K),L(G1) || SUp G, Z14ku) *)
sup G, = supQPk(K),L(G2) || sup G, Z21ku)

Interestingly, the following inclusion always holds.

Lemma 3. Consider the setting of Problenh 3, and languages defindd)inT{ten the
language R(sup G, ) is a subset of the languagep G, fori = 1,2.

Proof. By definition, the languag&(supG,) is a subset of languagesipG and
A«(K). To prove thatR(supG,y) is a subset of supC we prove that the language
sup GNR(K) is a subset of supCTo do this, it is sufficient to show that the language
sup G NR(K) is controllable with respect tb(Gy) and Xy ,.

Thus, consider a worslin sup G N R(K), an uncontrollable eventin >y ,, and the
wordsuin L(Gy). By controllability of sup G, the wordsubelongs tasup G, which is

a subset oR(K). That is, there exists a wondsuch thatsuvis in sup G, which is a
subset ofR(K). This means that the woslivbelongs tasup G N F(K), which implies

that the wordsuis in sup G N R(K). This completes the proof. O

It turns out that if the converse inclusion also holds, therimvmediately obtain the
supremal conditionally-controllable sublanguage.

Theorem 6. Consider the setting of Probldm 3, and languages defindd)irf(3up G
is a subset of Psup G, ), fori = 1,2, then

SupG i || sup G = supcQK,L, (Z1u,Z2u, 2ku)) -

Proof. Let supcC= supcQK,L,(Z14,22u,2ku)) andM = supG . || supG. . To
prove thatM is a subset of supcC, we show thati)is a subset oK and (ii) M is con-
ditionally controllable with respect to generat@s, G,, Gk and uncontrollable event
setsXy y, Zou, Zku. TO this aim, notice thaWl is a subset oPy«(K) || P1k(K) =K,
becaus« is conditionally decomposable. Moreover, by Leminas 9anleSlanguage



A«(M) = R(sup G x) NR(sup G, k) = supG, which is controllable with respect to
L(Gk) and Z . Similarly, B k(M) = sup G || R(supG.x) = supG.y || supG =
supG,,, for j # i, which is controllable with respect 10G;) || P«((M). HenceM is a
subset of supcC.

To prove the opposite inclusion, it is sufficient, by Leming @show that the
languageP  k(supcQ is a subset of sup,G,, for i = 1,2. To prove this note that the
languagePy, k(supcQ is controllable with respect th(G1) || F(supcQ and X3k,
and the language(Gs) || P(supcQ is controllable with respect tb(G;) || supG, and
>14u by LemmdY, because the langudgiésupcQ being controllable with respect
to L(Gx) implies that it is also controllable with respectdop G, which is a subset of
L(Gk). By Lemmd3, the languad® , «(supcQ is controllable with respect tb(G;) ||
sup G and Xy, which implies thaPy,(supcQ is a subset of supC,. The other
case is analogous. Hence, the language sup cC is a subsamafthe proofis complete.

O

Example 4.This example demonstrates that the language gigbt always included
in the languagék(supG_,). Moreover, it does not hold even if projections are ob-
servers or satisfy the LCC property.
Consider system&; and G, shown in Fig[2, and the specificatith as shown
in Fig.[3. Controllable events arE. = {aj,ap,c}, and coordinator events adg =

@\ \/c' /\ u ,/'5\
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(a) Generatof; . (b) GeneratoGZ.

Fig. 2. Generator$; andG,.
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Fig. 3. SpecificatiorkK.

{a1,az,c,u}. Construct the coordinat@y = R(G1) || F(Gy). It can be verified that
K is conditionally decomposable, sup€ {aiay, aar}, supG , = {axaius}, and
supG_ = {a1auy}. Hence, supis not a subset df(sup G, ).

It can be verified that projectior, Py, P>,k areL(G1|/Gz)-observers and LCC
for the languagé (G ||Gy). q



Recall that it is still open how to compute the supremal cbodally-controllable
sublanguage for a general, non-prefix-closed languagesi@enthe example above
and note that the wordsa; andapa; from sup G do not appear in the projection of
the supremal conditionally-controllable sublanguagat iy no words with both letters
a; anday appear in the supremal conditionally-controllable suglage. Thus, we can
remove these words from sup (basically from the coordinator) and recompute the
supremal controllable sublanguage (denoted by gipkat is,

sup G = supQNi—12R(SupG ), L(Gk), Zku) = {€}

and, similarly, recompute sup using sup & instead of sup & Note that the plant is
changed because the coordinator restricts it more thaméoefo application of The-
orem[® could thus be as follows. If sup& R(supG,,), then the natural approach
seems to be to remove from sup@l words violating the inclusion, and to recompute
sup G, fori = 1,2, with respect to this new sughat is

supG = supQR(supG ) NR(sup G ), L(Ck), Zku)
sup C1+k =supQsupG,,L(G1) || supG, Z11ku) **)
sUpG. i = supGsup Gy, L(G) | sup G, Z2ku)

In our example, we get that supG = {€} and sup G, = {¢} satisfy the assumption
that supG C R(supG, ), fori = 1,2, hence Theoref 6 applies. It is not yet clear
whether this method can be used in general, namely whethivalys terminates and
the result is the supremal conditionally-controllablelanguage. It is only known that
if it terminates, the result is conditionally controllalféee the end of Sectidh 6 for more
discussion). Another problemis that it requires to compheprojection, which can be
exponential in general, because the observer propertyt snsored. One of the natural
investigations of this problem is to work with nondeterrstid representations. Several
attempts in this direction were done in the literature altgifothey usually handle the
case where only the plant is nondeterministic, while thesifigation is deterministic,
see, e.9./[26.27]. Even more, it is a question how to teshitiesion from Theorerl6.

Finally, if supG,, and sup¢ are nonconflicting, the language supisupG is
controllable with respect ta(Gj)||supG/|lsupG = L(Gi)||supG by Lemma¥. This
observation gives the following result for prefix-closeddaages.

Lemma 4. Let K=K C L = L(G;||G||Gk), where G is a generator oves;, for i =
1,2,k. Assume that K is conditionally decomposable, and defméatiguagesup G,

supG_ andsupG, as in (). If supG Z R(supG,y), for i € {1,2}, define the
languagesup G as in ). Then the language

supG k|| supG. || supG
is conditionally controllable with respect t0:35,, Gy and >y, 2o y, 2k u-

Note that if we have any specificatiéh which is conditionally decomposable, then
the specificatioK || L is also conditionally decomposable. The opposite is n&t tru



Lemma 5. Let K be conditionally decomposable with respect to evastge >,, 5y,
and let L=L; || Lo || Lk, where i is overZ;, for i = 1,2 k. Then the language KL is
conditionally decomposable with respect to event gt2,, 2.

Proof. By the assumption we have thét= P, «(K)||P..«(K). Then
KIIL = Pok(K) [ P24k (K) [[La | L2/ L

= Prik(K)[[La Lk || Poyk(K)|L2]| Lk
= Prik(K||La[[Lk) || Poyk(K]IL2[[Lk)

where the last equality is by Lemih 9. By Lemimé& K2L is conditionally decompos-

able with respect to event sefs, 2,, and 2. O
X I

Fig. 4. A railway crossroad

Example 5.Consider a situation at a railway station. There are sewerels that cross
each other at some points. Obviously, the traffic has to beaited at those points. For
simplicity, we consider only two one-way tracks that crolssamne point, that is, trains
going from west to east use track one, while trains going feast to west use track
two. The traffic is controlled by traffic lights.

Thus, consider the railway crossroad with two traffic ligi$isandS,, and two entry
pointsxz, X3 and two exit points,, X4, as depicted in Fig]4. Each traffic light has values
gi (green) and; (red), fori = 1,2. Colors of the traffic lights are controllable. The plant
is then given as a parallel composition of two syst@asaindG, depicted in Fig.b. For
safety reasons, each system is able to set the traffic ligletkat any moment. It can
set the traffic light to green and the trains are detectediagtéx; or x3) and leaving
(X2 Or X4) the crossroad.

l1,X2 X1,X2 2,%Xq X3, X4

01 02
LA ¥O®O
1 2

Fig. 5. Generator$s; andG;

To define the specification, it is natural that a train is a#dvto enter the crossroad
only if its traffic light is green. The purpose of the entry andt pointsx;, i = 1,2,3,4,



is to allow a limited number of trains in the crossroad areanfthe direction of the
green light. The light can turn red at any moment, but therdiiadfic light can be set
to green only if all the trains have left the crossroad ane#his example, we consider
the case where at most three trains are allowed to enterdksroad area on one green
light. For this purpose, the entry points must also be cdiatite to protect another
train to enter. This part of the specification is modeled bffdra depicted in Figl16.
Another part of the specification governs the behavior oftth#ic lights. First, both

1,02,X2 r r2,01,X4
Gndndad  fndndnd
Uu\/ /&J\U \/M/k)\/

Fig. 6. The two buffers

lights must be red before one of the traffic lights is set tegretay green for a while,
and then must be set to red again. The traffic lights shoulel tiadas, so that no trains
are waiting for ever, see Figl 7. For simplicity, we do not midtie mechanism (such
as a clock) that sets the traffic lights to green for a spedcifiownt of time units. The
overall specification is then depicted in Hig. 8. The set afamrollable events is thus

X2, X4 X1,X2,X4

o

X27

Fig. 7. The traffic lights’ part of the specification

2, = {x2,%4}; all other events are controllable.

To make the specification controllable with respeckio 2,, and >y (whereZy is
initialized to the empty set), we need to take= {gi,02,r1}. Now we can compute
the coordinator as the projectiéh(G,)||R(Gz), and the languages supGup G, «
and sup G, as defined in[{*), see Figsl @110, end 11. It can be verifiedsp C
P(supG,y), fori = 1,2, hence Theorefd 6 applies and the result (that is, in the mono
lithic notation, the language sup G||sup G_) is the supremal conditionally-controll-
able sublanguage of the specification, cf. Eigl 12. Note thatdifference with the
specification is the correct marking of the states.
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Fig. 9. Supervisor supfc

6 Coordinator for nonblockingness

So far, we have only considered a coordinator for safetyhim section, we discuss a

coordinator for nonblockingness. To this end, we first prayandamental theoretical

result and then give an algorithm to construct a coordirfatononblockingness.
Recall that a generat@ is nonblocking ifLm(G) = L(G).

Theorem 7. Consider languagesiLover >; and L, over >, and let the projection
Po: (21U )" — 2§, with 23N X, C 3, be an L-observer, for i= 1,2. Let &G be

a nonblocking generator with(Gp) = Po(L1)||Po(L2). Then the composed language
L1||L2||Lm(Go) is nonblocking, that isl, 1 ||L2||Lm(Go) = L1||L2||Lm(Go)-

Proof. Let Lo = Lm(Go). By LemmaIl )4 ||Lo|/Lo = L1||L2||Lo if and only if
Po(La)[Po(L2)[|Lo = Po(L1)[[Po(L2) | Lo-

However, for our choice of the coordinator, this equalitywa}s holds because both
sides of the later equation de. O




Fig. 11. Supervisor sup&, ¢

This result is demonstrated in the following example.

Example 6.Consider two nonblocking generatdss andG, depicted in Fig_13. Their
synchronous product is shown in F[g.14. One can see thatehergtorG, ||G; is
blocking because no marked state is reachable from statean lbe verified that the
projectionP: {a,b,c,d}* — {a,b,d}* is anL(G;)- andL(G,)-observer. The generator
G is then a nonblocking (trimmed) part of the synchronous pcoB(G;)||P(G,) of
generators depicted in Fig.]15, thatlig(Gp) = {a}, and the synchronous product of
G1||G2 with Gg is shown in FigIBb. One can see that the result is nonblocking
important to notice that evebtbelongs to the event set of the generagr

The previous example shows that even thought the resultriblacking, it is dis-
putable whether such a coordinator is acceptable. If wenasdhat evenb is uncon-
trollable, then the coordinator prevents an uncontrofi@vkent from happening and the
result depicted in Fig.16 is not controllable with respedtie plant depicted in Fig. 14.
Although it is not explicitly stated that a coordinator istatlowed to do so, we further
discuss this issue and suggest a solution useful in our gwioin control framework.

In general, local supervisors sup§ and sup G, , computed in Sectidn 5 might be
blocking. However, we can always choose the language

Lc =supQPRo(supG i) || Po(sup G, x), Po(supG i) || Po(supG.i), 2ou), (2)

where the projectioR, is a sup ¢_-observer, foii = 1,2. The following result shows
that the language sug G|/sup G «||Lc is nonblocking and controllable.
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Fig. 13.Generator$s; andG,

Theorem 8. Consider the notation as defined in Problem 3, AlgorifBni, &hd [2).
Then the language

supG k[ Sup G,k [ Lc =sup Gk || supG k|| Lc
is controllable with respect to the plant languagéds ) ||L(Gz).

Proof. To prove nonblockingness, we use Lemma 11 in two steps. Nartéiolds
thatsup G, y[[lLc = sup G, [Lc if and only if Py(sup G, ) [|Lc = Po(sup G, ) l|Lc, for
i = 1,2, which always holds because both sides of the later equat® equal td_c.
Using LemmaIll again,

supG «llLc || sup G kllLc =sup G lILc || sup G «llLc

if and only if
Po(sup G llLe) | Po(sup G llLe) = Po(sup G kllLc) || Po(sup G klile)  (3)
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because if the projectioR, is a sup ¢, (-observer, fori = 1,2, and anlLc-observer
(since it is an identity), then the projecti®y is also an sup C,||Lc-observer by([19].
But (3) always holds becausg(sup G, y||Lc) = Po(supG y)||Lc = Lc, by Lemmd.®,
hence both sides are equallg. Thus, summarized, we have that

supG kllsup G kllLc = supG llLc || sup G «llLe
=supCGllLlc || supGillLc
=supG ylsupG kllLc.

To prove controllability, note that sup( is controllable with respect tsup G,

fori= 1,2, andLc is controllable with respect tB(sup G, ) ||[Po(sup G, ). Now we
use Lemma&]7 several times, and the nonconflictness showe atieasbtain that

— supG | Lc is controllable with respect teup G, ) || (Po(Sup G, ) [[Po(sup G ).
fori=1,2,

— (supG_kllLe) || (supGkllLc) = sup G «|lsup G k||Lc is controllable with re-
specttasup G, /|Po(SUp G ) [[Po(SUP G ) [| (SUP G kl[Po(SUP G i) [[Po(SUP G i)
that can be simplified teupG_  ||[sup G «,

— sup G || supG.is controllable with respect td.(G1 ) ||supG) || (L(G2)|[sup &) =
L(G1)|[L(G2)||sup &, and

— L(G1)|IL(G2)|Isup G is controllable with respect tb(G1)||L(G2)||L(Gk) because
the language supGs controllable with respect to(Gy).

Fig. 16.Synchronous produ; |Gz ||Go




Using transitivity of controllability, Lemm@al8, we obtaihdt sup G, ||supG_||Lc is
controllable with respect th(G1)||L(Gz)||L(Gk) = L(G1)||L(Gz), because the coordi-
natorGy is constructed in such a way that it does not change the plant. a

To demonstrate this improvement, we consider Exafmple 6.

Example 7.Consider the generators of Example 6. Note BatG,|Go, Fig.[18, is
not controllable with respect to the pla@t||G,, Fig.[14, if b is uncontrollable. The
generatoiGy = P(G;)||P(G,) is depicted in FiglZ7. It is not hard to see thabifs

A b
—(12(2)=(3)

Fig. 17.GeneratoP(G;)||P(G,)

not controllable, then the supremal controllable sublaggufLm(Gp) with respect to
L(Gp) is Lc = {€}, because everst must be prevent from happening. Therefore, the
language of (G1||Gy)||Lc = {€} as expected.

We can now summarize this method as an algorithm.

Algorithm 9 (Coordinator for nonblockingness) Consider the notation above.

1. Computesup G, andsup G, as defined in[{*).

2. LetXy:=2and R := R

3. Extend the event s& so that the projectionds both asup G , - and asupG, -
observer.

4. Define the coordinator C as the minimal nonblocking getwersuch that | (C) =

sup GPo(sup G i) || Po(supG), Po(sup G i) || Po(supGok), Zow)-

This algorithm (Step 1) is based on the computation of thguages supC , and
sup G, defined in [(¥), which can be computed using a standard algaoritor the
computation of supremal controllable sublanguages. Ifag®imption of Theorefd 6
is satisfied, the computed languages are the languagesabSigoervisors that are the
candidates to solve the problem. However, the compositipiCs, |sup G, can be
blocking, and a coordinator for nonblockingness is reglire

In Step 2, we define a new event ggt(and the corresponding projection) that is
initialized to be the event s&f used in the computation in Step 1.

In Step 3 of the algorithm, the event sgt must be extended so that the projection
P is both a sup g, - and supG, (-observer. Thus, in consequence of the extension
operation 2y can become a proper subsetgf Even though the computation of such a
minimal extension is NP-hard, a polynomial algorithm cotiqpya reasonable exten-
sion exists, cf.[[6] for more details and the algorithm.

Finally, in Step 4, the coordinator generaos defined as the minimal nonblocking
generator accepting the supremal controllable sublaregofthe languagey (sup G, ) ||

Po(supG_ ) with respect to the languad®(supG_ ) || Po(sup G, ). This idea has




been used by Feng inl[4]. In other words Sf and S, are generators for languages
sup G and supG, , respectively, then the coordinat®iis computed as the genera-
tor for the supremal controllable sublanguag®@gfs, ) ||P)(S:). SinceR, is an observer,
the computation can be done in polynomial time, [cf] [30].

Remark 1.In the previous section we discussed the case when sdpi(supG, ),

for i = 1,2. Note that the coordinatdic discussed in this section can also be used
in that case because sup§l||Lc and supG,||Lc then form synchronously noncon-
flicting local supervisors such that their overall behavsozontrollable with respect to
the global plant. Hence, although this solution may not biéntad, it presents a solu-
tion in the case of (hon-prefix-closed) languages that dsatisfy the assumptions of
Theorent B, or of those of Sectibh 7 in the case of prefix-cléemeguages.

7 Supremal prefix-closed languages

In this section, we revise the case of prefix-closed langaaddye use the local control
consistency property (LCC) instead of the output contreisistency property (OCC),
cf. [12]. The reason for this is that LCC is a less restricttemdition than OCC, as
shown in [24, Lemma 4.4]. Moreover, the extension of our apph to an arbitrary
number of local plants is sketched.

Theorem 10. Let K be a prefix-closed sublanguage of the plant languagénkerev.—=
L(G1]|G2||Gk), and G is a generator ovel;, for i = 1,2,k. Assume that the language
K is conditionally decomposable, and define the languagesy, supG ., supG_
as in [¥). Let the projection P¥ be an (P"")~1(L(G;))-observer and LCC for the
language(P ) ~1(L(Gy)), for i = 1,2. Then

SUpG i || sup G = supcQK,L, (214,224, Zku)) -

Proof. In this proof, let supcC denote the supremal conditionallytoollable language
supcQGK,L, (21, Z2u, Zku)), andM the parallel composition supG, || supG. . It

is shown in [12, Theorem 11] that supcC is a subse¥aénd thatM is a subset of
K. To prove thaB (M), NL(G) is a subset oR(M), consider a worc in R(M)
and an uncontrollable eveatin Xy, such that the worda is in L(Gy). To show that
the wordxa is in R(M) = PX*(sup G, ) NP#¥(sup G, note that there exists a
word w in M such thatR(w) = x. It is shown in [12, Theorem 11] that there ex-
ists @ wordu in (23 \ )* such that the word (w)ua is in (PL™)~1(L(G;)) and
the word Py, «(w) is in L(G1) || supG. As the projectiorPk1+k is LCC for the lan-
guage(PHK)"1(L(Gy)), there exists a word’ in (5 \ Zk)* such thatPy(w)u'a is

in (Pl”k)*l(L(Gl)). Then, controllability of sup g, , implies thatPy«(w)u'a is in
sup Gy, that is,xa is in Pk”k(sup G..x)- Analogously, we can prove thag is in
Pk2+k(supC2+k). Thus,xais in B(M). The rest of the proof is the same aslin|[12, The-
orem 11]. a

In this Theorem, a relatively large number of properties$ the coordinator, the lo-
cal plants and the specification have to satisfy is assumeaeirker, a polynomial algo-
rithm extending the coordinator event set so that the lagglkiebecomes conditionally



decomposable has already been discussed, see [11]. livadtitensure that the pro-

jectionP.™is an(P"%)~1(L(G;))-observer and LCC for the languad@™)~1(L(G))),

the coordinator event set can again be extended so thatridéions are fulfilled[[24,5].
Conditions of Theoref 10 imply that the projectignis LCC for the language.

Lemma 6. Let G over ; be generators, for &= 1,2. Let> = 2, U2, and let P:

Z* = 5 fori=12kand C 5, be projections. 1, N5, is a subset ofy and
the projection P is LCC for the languagéP™)~1(L(G))), for i = 1,2, then the
projection R is LCC for the language k L(G1||G2||Gy).

Proof. Forawordsin L and an evendy, in 3y, assume that there exists a waorit (X
5y)* such thasuoy is in L. ThenP(suoy) = Pk(S)Rk(u)ay is in (PH*)~L(L(G))
implies that there exists a wosgl in (Zi iy \ Zx)*, fori = 1,2, such thalR «(s)vioy
is in (P ~"YL(G)). AsR(vi) = &, R(vi) = vi and we get thaR (S)P (Vi )R (0y) is in
L(Gi), fori = 1,2 k. Consider a word'’ in {v; }||{v2}. ThenR, (') = v; and, thussu gy,
isin L. Moreovery' is in (X, \ Zx)*. 0

Itis an open problem how to verify that the projectiny is LCC for the language
L without computing the whole plant. In such a case and witlctrwedinator language
included in the corresponding projection of the plant leagg) the solution computed
using our coordination control architecture coincideshwite global optimal solution
given by the supremal controllable sublanguage of the fpation.

Theorem 11. Consider the setting of Theorém| 10. If, in additioGk) is a subset of
R(L) and the projection Ry is LCC for the language L, for+ 1,2, then

supQK,L,2,) =supcQK,L, (214,22, Zku)) -

Proof. 1t was shown in[[12, Theorem 15] that the projectfris anL-observer. More-
over, by Lemmd6, the projectiof, is LCC for the languagé. Let supC denote
supQK,L,Z2,). We prove that the languad&(supQ is controllable with respect to
L(Gk). Consider a word in F(supQ and an even& in X, such that the wordia is

in L(Gk), which is a subset d®(L). We proved in[[12, Theorem 15] that there exist
wordssin supC andiin (X\ %)* such thasuais in L andP(sua =ta. By the LCC
property of the projectioR, there exists a word’ in (£, \ Z)* such thasuais in L.
By controllability of the language sup C with respecttahe wordsuais in sup C, that
is, F(sUa) =tais in B(supQ. Thus, (1) of Definitiod B holds. By [12, Theorem 15],
the projectiorP_ i is anL-observer, foi = 1,2. To prove (2) of Definition3, consider a
wordt in P (supQ, for 1<i < 2, and an everdin 3, such that the worta s in
L(Gi) || A(supQ. We proved in[[1R2, Theorem 15] that there exist wosdts sup C and
uin (2\ Zx)* such thasuais in L andP,, (sua =ta. As the projectior?_ is LCC for
the language, there exists a word’ in (5, \ Z1,k)* such thasuais in L. Then con-
trollability of sup C with respect tk implies thatsuais in supC, that isB  (sUa) =ta

is in B k(supQ. The other inclusion is the same as[inl[12, Theorem 15]. a

Finally, a natural and simple extension to more than twollsadsystems with
one central coordinator is sketched. All concepts and tesalry over to this general
case ofn subsystems, where the coordinator eventXeshould contain all shared



events (events common to two or more subsystems). Conditdetomposability is
then simply decomposability with respect to event $&t§' ; and>y, cf. SectioB. Itis

a very good news for large systems that conditional decoatplity can be checked in
polynomial time with respect to the number of componentssadideen noticed in [11].
Note that unlike the previous form of conditional contrbiliy, Definition[3 can be
extended to the general casenafubsystems in an obvious way. Namely, conditions (2)
and (3) are replaced hyconditions of the fornP_(K) is controllable with respect to
L(Gi) [| F(K) andZj ;i u.

Note, however, that for many large-scale systems a singlgaleoordinator might
be of little (if any) help due to too many events to be includethe coordinator event
sets so that the conditions presented in this paper aréea{im particular, conditional
decomposability, LCC, and observer conditions). It is gisvpossible to relax some of
the assumptions with the price of losing optimality, butiufre publications we will
rather propose multi-level coordination architecturethveieveral layers of coordina-
tors together with different optimality conditions compesding to a given multi-level
coordination architecture.

8 Conclusion

We have revised, simplified, and extended the coordinatinirol scheme for dis-
crete-event systems. These results have been used, foagheot prefix-closed lan-
guages, in the implementation of the coordination conthadsin for libFAUDES. We
have identified cases, where supremal conditionally-ofiatrle sublanguages can be
computed even in the case of non-prefix-closed specificédinguages, and proposed
coordinators for nonblockingness in addition to coordinsifor safety developed in
our earlier publications. Note that a general proceduré&f@icomputation of supremal
conditionally-controllable sublanguages in the case of-pefix-closed specification
languages is still missing.

Another aspect that requires further investigation is tieegalization of coordina-
tion control from the current case of one central coordinttanultilevel coordination
control with several coordinators on different levels. dctf one central coordinator is
typically not enough in the case of large number of local gatesns, because too many
events must be communicated (added into the coordinatat sef) between the coor-
dinator and local subsystems. This general architectulidoericomputationally more
efficient, because less events need to be communicatede Imtiti-level coordina-
tion control the subsystems will be organized into diffémgroups and each group will
have a coordinator meaning that only events from a givengvall be communicated
among subsystems of the same group via the coordinator.

A Auxiliary results

In this section, we list auxiliary results required in theopa

Lemma 7 (Proposition4.6,[4]).LetL; overZ;, fori= 1,2, be prefix-closed languages,
and let K be a controllable sublanguage of with respect to Land % . Let > =



2, U, If K1 and K are synchronously nonconflicting, then KK is controllable
with respectto L || L, and %,.

Lemma 8 ([12]).LetK be a subset of alanguage L, and L be a subset of a language M
over s such that K is controllable with respect toand 5, and L is controllable with
respect taVl and . Then K is controllable with respect M and 5.

Lemma9 ([30]).Let R : >* — 5 be a projection, and letjLbe a language ovek;,
whereZ; is a subset of, fori = 1,2, and>; N X, is a subset o&y. Then R(L1||Ly) =
(L) [|P(L2).

Lemma 10 ([12]).LetL; be alanguage oveX;, fori=1,2, andletP: (Z1UX)" — X
be a projection. Let A be a language ovErU >, such that P(A) is a subset of Land
P»(A) is a subset of . Then A is a subset ofi || L.

Lemma 11 ([19]).LetL be alanguage ovex;, fori e J, and Ietutjé(zkﬁ&) C 2.

If Po: X — (5N Zp)* is an Li-observer, for ic J, then|licsLi = ||icali if and only if
licaPo(Li) = [lieaPo(Li)-

Lemma 12 ([9]).A language KC (X3 U2, U...UZXs)* is conditionally decomposable

with respect to event selsy, 2,,..., 2, 2 if and only if there exist languages M C
i=1,2,...,n, suchthat K=|" ; M.

*
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