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Abstract

Supermarket models are a class of parallel queueing networks with an adaptive

control scheme that play a key role in the study of resource management of, such as,

computer networks, manufacturing systems and transportation networks. When the

arrival processes are non-Poisson and the service times are non-exponential, analysis

of such a supermarket model is always limited, interesting, and challenging.

This paper describes a supermarket model with non-Poisson inputs: Markovian

Arrival Processes (MAPs) and with non-exponential service times: Phase-type (PH)

distributions, and provides a generalized matrix-analytic method which is first com-

bined with the operator semigroup and the mean-field limit. When discussing such

a more general supermarket model, this paper makes some new results and advances

as follows: (1) Providing a detailed probability analysis for setting up an infinite-

dimensional system of differential vector equations satisfied by the expected fraction

vector, where the invariance of environment factors is given as an important result.

(2) Introducing the phase-type structure to the operator semigroup and to the mean-

field limit, and a Lipschitz condition can be obtained by means of a unified matrix-

differential algorithm. (3) The matrix-analytic method is used to compute the fixed

point which leads to performance computation of this system. Finally, we use some

∗The main results of this paper will be published in ”Discrete Event Dynamic Systems” 2014. On

the other hand, the three appendices are the online supplementary material for this paper published in

”Discrete Event Dynamic Systems” 2014
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numerical examples to illustrate how the performance measures of this supermarket

model depend on the non-Poisson inputs and on the non-exponential service times.

Thus the results of this paper give new highlight on understanding influence of non-

Poisson inputs and of non-exponential service times on performance measures of more

general supermarket models.

Keywords: Randomized load balancing; Supermarket model; Matrix-analytic

method; Operator semigroup; Mean-field limit; Markovian arrival processes (MAP);

Phase-type (PH) distribution; Invariance of environment factors; Doubly exponential

tail; RG-factorization.

1 Introduction

Supermarket models are a class of parallel queueing networks with an adaptive control

scheme that play a key role in the study of resource management of, such as computer

networks (e.g., see the dynamic randomized load balancing), manufacturing systems and

transportation networks. Since a simple supermarket model was discussed by Mitzen-

macher [23], Vvedenskaya et al [32] and Turner [30] through queueing theory as well as

Markov processes, subsequent papers have been published on this theme, among which,

see, Vvedenskaya and Suhov [33], Jacquet and Vvedenskaya [8], Jacquet et al [9], Mitzen-

macher [24], Graham [5, 6, 7], Mitzenmacher et al [25], Vvedenskaya and Suhov [34],

Luczak and Norris [20], Luczak and McDiarmid [18, 19], Bramson et al [1, 2, 3], Li et al

[17], Li [13] and Li et al [15]. For the fast Jackson networks (or the supermarket networks),

readers may refer to Martin and Suhov [22], Martin [21] and Suhov and Vvedenskaya [29].

The available results of the supermarket models with non-exponential service times are

still few in the literature. Important examples include an approximate method of integral

equations by Vvedenskaya and Suhov [33], the Erlang service times by Mitzenmacher [24]

and Mitzenmacher et al [25], the PH service times by Li et al [17] and Li and Lui [16],

and the ansatz-based modularized program for the general service times by Bramson et

al [1, 2, 3].

Little work has been done on the analysis of the supermarket models with non-Poisson

inputs, which are more difficult and challenging due to the higher complexity of that

N arrival processes are superposed. Li and Lui [16] and Li [12] used the superposition

of N MAP inputs to study the infinite-dimensional Markov processes of supermarket

modeling type. Comparing with the results given in Li and Lui [16] and Li [12], this
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paper provides more necessary phase-level probability analysis in setting up the infinite-

dimensional system of differential vector equations, which leads some new results and

methodologies in the study of block-structured supermarket models. Note that the PH

distributions constitute a versatile class of distributions that can approximate arbitrarily

closely any probability distribution defined on the nonnegative real line, and the MAPs are

a broad class of renewal or non-renewal point processes that can approximate arbitrarily

closely any stochastic counting process (e.g., see Neuts [27, 28] and Li [11] for more details),

thus the results of this paper are a key advance of those given in Mitzenmacher [23] and

Vvedenskaya et al [32] under the Poisson and exponential setting.

The main contributions of this paper are threefold. The first one is to use the MAP

inputs and the PH service times to describe a more general supermarket model with non-

Poisson inputs and with non-exponential service times. Based on the phase structure, we

define the random fraction vector and construct an infinite-dimensional Markov process,

which expresses the state of this supermarket model by means of an infinite-dimensional

Markov process. Furthermore, we set up an infinite-dimensional system of differential

vector equations satisfied by the expected fraction vector through a detailed probability

analysis. To that end, we obtain an important result: The invariance of environment fac-

tors, which is a key for being able to simplify the differential equations in a vector form.

Based on the differential vector equations, we can provide a generalized matrix-analytic

method to investigate more general supermarket models with non-Poisson inputs and with

non-exponential service times. The second contribution of this paper is to provide phase-

structured expression for the operator semigroup with respect to the MAP inputs and

to the PH service times, and use the operator semigroup to provide the mean-field limit

for the sequence of Markov processes who asymptotically approaches a single trajectory

identified by the unique and global solution to the infinite-dimensional system of limiting

differential vector equations. To prove the existence and uniqueness of solution through

the Picard approximation, we provide a unified computational method for establishing a

Lipschitz condition, which is crucial in all the rigor proofs involved. The third contribution

of this paper is to provide an effective matrix-analytic method both for computing the

fixed point and for analyzing performance measures of this supermarket model. Further-

more, we use some numerical examples to indicate how the performance measures of this

supermarket model depend on the non-Poisson MAP inputs and on the non-exponential

PH service times. Therefore, the results of this paper gives new highlight on understand-
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ing performance analysis and nonlinear Markov processes for more general supermarket

models with non-Poisson inputs and non-exponential service times.

The remainder of this paper is organized as follows. In Section 2, we first introduce

a new MAP whose transition rates are controlled by the number of servers in the sys-

tem. Then we describe a more general supermarket model of N identical servers with

MAP inputs and PH service times. In Section 3, we define a random fraction vector

and construct an infinite-dimensional Markov process, which expresses the state of this

supermarket model. In Section 4, we set up an infinite-dimensional system of differential

vector equations satisfied by the expected fraction vector through a detailed probability

analysis, and establish an important result: The invariance of environment factors. In

Section 5, we show that the mean-field limit for the sequence of Markov processes who

asymptotically approaches a single trajectory identified by the unique and global solution

to the infinite-dimensional system of limiting differential vector equations. To prove the

existence and uniqueness of the solution, we provide a unified matrix-differential algo-

rithm for establishing the Lipschitz condition. In Section 6, we first discuss the stability

of this supermarket model in terms of a coupling method. Then we provide a generalized

matrix-analytic method for computing the fixed point whose doubly exponential solution

and phase-structured tail are obtained. Finally, we discuss some useful limits of the frac-

tion vector u(N) (t) as N → ∞ and t → +∞. In Section 7, we provide two performance

measures of this supermarket model, and use some numerical examples to indicate how

the performance measures of this system depend on the non-Poisson MAP inputs and

on the non-exponential PH service times. Some concluding remarks are given in Section

8. Finally, Appendices A and C are respectively designed for the proofs of Theorems 1

and 3, and Appendix B contains the proof of Theorem 2, where the mean-field limit of

the sequence of Markov processes in this supermarket model is given a detailed analysis

through the operator semigroup.

2 Supermarket Model Description

In this section, we first introduce a new MAP whose transition rates are controlled by the

number of servers in the system. Then we describe a more general supermarket model of

N identical servers with MAP inputs and PH service times.
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2.1 A new Markovian arrival process

Based on Chapter 5 in Neuts [28], the MAP is a bivariate Markov process {(N(t), J(t)) : t ≥ 0}

with state space S = {1, 2, 3, . . .}×{1, 2, . . . ,mA}, where {N(t) : t ≥ 0} is a counting pro-

cess of arrivals and {J(t) : t ≥ 0} is a Markov environment process. When J(t) = i, if

the random environment shall go to state j in the next time, then the counting process

{N(t) : t ≥ 0} is a Poisson process with arrival rate di,j for 1 ≤ i, j ≤ mA. The matrix D

with elements di,j satisfies D � 0. The matrix C with elements ci,j has negative diagonal

elements and nonnegative off-diagonal elements, and the matrix C is invertible, where ci,j

is a state transition rate of the Markov chain {J(t) : t ≥ 0} from state i to state j for i 6= j.

The matrix Q = C +D is the infinitesimal generator of an irreducible Markov chain. We

assume that Qe = 0, where e is a column vector of ones with a suitable size. Hence, we

have

ci,i = −




mA∑

j=1

di,j +

mA∑

j 6=i

ci,j


 .

Let

C =




−
mA∑
j 6=1

c1,j c1,2 · · · c1,mA

c2,1 −
mA∑
j 6=2

c2,j · · · c2,mA

...
...

. . .
...

cmA,1 cmA,2 · · · −
mA∑

j 6=mA

cmA,j




,

C(N) = C−Ndiag(De),

D(N) = ND,

where

diag(De) = diag




mA∑

j=1

d1,j ,

mA∑

j=1

d2,j , . . . ,

mA∑

j=1

dmA,j


 .

Then

Q (N) = C(N) +D(N) = [C−Ndiag(De)] +ND

is obviously the infinitesimal generator of an irreducible Markov chain with mA states.

Thus (C(N),D(N)) is the irreducible matrix descriptor of a new MAP of order mA. Note

that the new MAP is non-Poisson and may also be non-renewal, and its arrival rate at

each environment state is controlled by the number N of servers in the system.
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Note that

Q (N) e = [C−Ndiag(De)] e+NDe = 0,

the Markov chain Q (N) with mA states is irreducible and positive recurrent. Let ωN be

the stationary probability vector of the Markov chain Q (N). Then ωN depends on the

number N ≥ 1, and the stationary arrival rate of the MAP is given by NλN = NωNDe.

2.2 Model description

Based on the new MAP, we describe a more general supermarket model of N identical

servers with MAP inputs and PH service times as follows:

Non-Poisson inputs: Customers arrive at this system as the MAP of irreducible

matrix descriptor (C (N) ,D (N)) of size mA, whose stationary arrival rate is given by

NλN = NωNDe.

Non-exponential service times: The service times of each server are i.i.d. and are

of phase type with an irreducible representation (α, T ) of order mB, where the row vector

α is a probability vector whose jth entry is the probability that a service begins in phase

j for 1 ≤ j ≤ mB; T is a matrix of size mB whose (i, j)th entry is denoted by ti,j with

ti,i < 0 for 1 ≤ i ≤ mB, and ti,j ≥ 0 for i 6= j. Let T 0 = −Te =
(
t01, t

0
2, . . . , t

0
mB

)T � 0,

where “AT ” denotes the transpose of matrix (or vector) A. When a PH service time is in

phase i, the transition rate from phase i to phase j is ti,j, the service completion rate is

t0i , and the output rate from phase i is µi = −ti,i. At the same time, the mean of the PH

service time is given by 1/µ = −αT−1e.

Arrival and service disciplines: Each arriving customer chooses d ≥ 1 servers

independently and uniformly at random from the N identical servers, and waits for its

service at the server which currently contains the fewest number of customers. If there is

a tie, servers with the fewest number of customers will be chosen randomly. All customers

in any server will be served in the FCFS manner. Figure 1 gives a physical interpretation

for this supermarket model.

Remark 1 The block-structured supermarket models can have many practical applica-

tions to, such as, computer networks and manufacturing system, where it is a key to

introduce the PH service times and the MAP inputs to such a practical model, because the

PH distributions contain many useful distributions such as exponential, hyper-exponential
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Figure 1: The supermarket model with MAP inputs and PH service times

and Erlang distributions; while the MAPs include, for example, Poisson process, PH-

renewal processes, and Markovian modulated Poisson processes (MMPPs). Note that the

probability distributions and stochastic point processes have extensively been used in most

practical stochastic modeling. On the other hand, in many practical applications, the

block-structured supermarket model is an important queueing model to analyze the relation

between the system performance and the job routing rule, and it can also help to design

reasonable architecture to improve the performance and to balance the load.

3 An Infinite-Dimensional Markov Process

In this section, we first define the random fraction vector of this supermarket model. Then

we use the the random fraction vector to construct an infinite-dimensional Markov process,

which describes the state of this supermarket model.

For this supermarket model, let n
(N)
k;i,j (t) be the number of servers with at least k

customers (note that the serving customer is also taken into account), and with the MAP

be in phase i and the PH service time be in phase j at time t ≥ 0. Clearly, 0 ≤ n
(N)
0;i (t) ≤ N

and 0 ≤ n
(N)
k;i,j (t) ≤ N for k ≥ 1, 1 ≤ i ≤ mA and 1 ≤ j ≤ mB. Let

U
(N)
0;i (t) =

n
(N)
0;i (t)

N
, 1 ≤ i ≤ mA,
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and for k ≥ 1

U
(N)
k;i,j (t) =

n
(N)
k;i,j (t)

N
, 1 ≤ i ≤ mA, 1 ≤ j ≤ mB.

Then U
(N)
k;i,j (t) is the fraction of servers with at least k customers, and with the MAP be

in phase i and the PH service time be in phase j at time t. Using the lexicographic order

we write

U
(N)
0 (t) =

(
U

(N)
0;1 (t) , U

(N)
0;2 (t) , . . . , U

(N)
0;mA

(t)
)

for k ≥ 1

U
(N)
k (t) =

(
U

(N)
k;1,1 (t) , U

(N)
k;1,2 (t) , . . . , U

(N)
k;1,mB

(t) ; . . . ;

U
(N)
k;mA,1 (t) , U

(N)
k;mA,2 (t) , . . . , U

(N)
k;mA,mB

(t)
)
,

and

U (N) (t) =
(
U

(N)
0 (t) , U

(N)
1 (t) , U

(N)
2 (t) , . . .

)
. (1)

Let a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .). We write a < b if ak < bk for some

k ≥ 1; a ≤ b if ak ≤ bk for every k ≥ 1.

For a fixed quaternary array (t,N, i, j) with t ≥ 0, N ∈ {1, 2, 3, . . .} , i ∈ {1, 2, . . . ,mA}

and j ∈ {1, 2, . . . ,mB}, it is easy to see from the stochastic order that n
(N)
k;i,j (t) ≥ n

(N)
k+1;i,j (t)

for k ≥ 1. This gives

U
(N)
1 (t) ≥ U

(N)
2 (t) ≥ U

(N)
3 (t) · · · ≥ 0 (2)

and

1 = U
(N)
0 (t) e ≥ U

(N)
1 (t) e ≥ U

(N)
2 (t) e ≥ U

(N)
3 (t) e ≥ · · · ≥ 0. (3)

Note that the state of this supermarket model is described as the random fraction

vector U (N) (t) for t ≥ 0, and
{
U (N) (t) , t ≥ 0

}
is a stochastic vector process for each

N = 1, 2, . . .. Since the arrival process to this supermarket model is the MAP and the

service times in each server are of phase type,
{
U (N) (t) , t ≥ 0

}
is an infinite-dimensional

Markov process whose state space is given by

Ω̃N =
{(
h
(N)
0 , h

(N)
1 , h

(N)
2 . . .

)
: h

(N)
0 is a probability vector of size mA,

h
(N)
1 ≥ h

(N)
2 ≥ h

(N)
3 ≥ · · · ≥ 0, h

(N)
k is a row vector of size mAmB for k ≥ 1,

1 = h
(N)
0 e ≥ h

(N)
1 e ≥ h

(N)
2 e ≥ · · · ≥ 0,

and Nh
(N)
k is a row vector of nonnegative integers for k ≥ 0

}
, (4)
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We write

u
(N)
0;i (t) = E

[
U

(N)
0;i (t)

]

and for k ≥ 1

u
(N)
k;i,j (t) = E

[
U

(N)
k;i,j (t)

]
.

Using the lexicographic order we write

u
(N)
0 (t) =

(
u
(N)
0;1 (t) , u

(N)
0;2 (t) , . . . , u

(N)
0;mA

(t)
)

and for k ≥ 1

u
(N)
k (t) =

(
u
(N)
k;1,1 (t) , u

(N)
k;1,2 (t) , . . . , u

(N)
k;1,mB

(t) ; . . . ;

u
(N)
k;mA,1 (t) , u

(N)
k;mA,2 (t) , . . . , u

(N)
k;mA,mB

(t)
)
,

u(N) (t) =
(
u
(N)
0 (t) , u

(N)
1 (t) , u

(N)
2 (t) , . . .

)
.

It is easy to see from Equations (2) and (3) that

u
(N)
1 (t) ≥ u

(N)
2 (t) ≥ u

(N)
3 (t) · · · ≥ 0 (5)

and

1 = u
(N)
0 (t) e ≥ u

(N)
1 (t) e ≥ u

(N)
2 (t) e ≥ · · · ≥ 0. (6)

In the remainder of this section, for convenience of readers, it is necessary to explain

the structure of this long paper which is outlined as follows. Part one: The limit of the

sequence of Markov processes. It is seen from (1) and (4) that we need to deal with the limit

of the sequence
{
U (N) (t)

}
of infinite-dimensional Markov processes. This is organized in

Appendix B by means of the convergence theorems of operator semigroups, e.g., see Ethier

and Kurtz [4] for more details. Part two: The existence and uniqueness of the solution. As

seen from Theorem 2 and (27), we need to study the two means E
[
U (N) (t)

]
andE [U (t)] =

limN→∞E
[
U (N) (t)

]
, or u(N) (t) and u (t) = limN→∞ u(N) (t). To that end, Section 4 sets

up the system of differential vector equations satisfied by u(N) (t), while Section 5 provides

a unified matrix-differential algorithm for establishing the Lipschitz condition, which is

a key in proving the existence and uniqueness of the solution to the limiting system of

differential vector equations satisfied by u (t) through the Picard approximation. Part

three: Computation of the fixed point and performance analysis. Section 6 discusses the

stability of this supermarket model in terms of a coupling method, and provide an effective

matrix-analytic method for computing the fixed point. Section 7 analyzes the performance

of this supermarket model by means of some numerical examples.
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4 The System of Differential Vector Equations

In this section, we set up an infinite-dimensional system of differential vector equations

satisfied by the expected fraction vector through a detailed probability analysis. Specif-

ically, we obtain an important result: The invariance of environment factors, which is a

key to rewriting the differential equations as a simple vector form.

To derive the system of differential vector equations, we first discuss an example with

the number k ≥ 2 of customers through the following three steps:

Step one: Analysis of the Arrival Processes

In this supermarket model of N identical servers, we need to determine the change

in the expected number of servers with at least k customers over a small time period

[0,dt). When the MAP environment process {J (t) : t ≥ 0} jumps form state l to state i

for 1 ≤ l, i ≤ mA and the PH service environment process {I (t) : t ≥ 0} sojourns at state

j for 1 ≤ j ≤ mB, one arrival occurs in a small time period [0,dt). In this case, the rate

that any arriving customer selects d servers with at least k − 1 customers at random and

joins the shortest one with k − 1 customers, is given by

mA∑

l=1

[
u
(N)
k−1;l,j (t) dl,i − u

(N)
k;i,j (t) (di,1, di,2, . . . , di,mA

) e
]

× L
(N)
k;l (uk−1 (t) , uk (t))Ndt, (7)

where

L
(N)
k;l (uk−1 (t) , uk (t)) =

d∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

+

d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1
∑

r1+r2+···+rmA
=d−m∑mA

i6=l
ri≥1

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




×

mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

+

d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1
m





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1
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Each of the d selected servers is at the MAP phase l, and there is at least 

one server with the shortest queue length k-1.

(Part I)

In the d selected servers, there is 

only one server with the shortest 

queue length k-1 and with the MAP 

phase l; there exists at least one 

server is at the MAP phase i l; and 

all the other d-1 selected servers

contain no less than k customers.

(Part II)

In the d selected servers with no less

than k-1 customers, there is at least

one server with the shortest queue 

length k-1, and with the MAP phase

l; there is also at least one server

w i t h the shortest queue length k-1

and with the MAP phase i l.

(Part III)

Figure 2: A set decomposition of all possible events

×
∑

n1+n2+···+nmA
=m−m1∑mA

i6=l
ni≥1

0≤nj≤m−m1,1≤j≤mA


 m−m1

n1, n2, . . . , nmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




ni

×
∑

r1+r2+···+rmA
=d−m

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

. (8)

Note that
[
u
(N)
k−1;l,j (t) dl,i − u

(N)
k;i,j (t) (di,1, di,2, . . . , di,mA

) e
]
is the rate that any arriving

customer joins one server with the shortest queue length k − 1, where the MAP goes to

phase i from phase l, and the PH service time is in phase j.

Now, we provide a detailed interpretation for how to derive (8) through a set decom-

position of all possible events given in Figure 2, where each of the d selected servers has at

least k− 1 customers, the MAP arrival environment is in phase i or l, and the PH service

environment is in phase j. Hence, the probability that any arriving customer selects d

servers with at least k−1 customers at random and joins a server with the shortest queue

length k − 1 and with the MAP phase i or l is determined by means of Figure 2 through

the following three parts:

Part I: The probability that any arriving customer joins a server with the shortest

queue length k−1 and with the MAP phase l, and the queue lengths of the other selected

11



d− 1 servers are not shorter than k − 1, is given by

d∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

,

where Cm
d = d!/ [m! (d−m)!] is a binomial coefficient, and





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1

is the probability that any arriving customer who can only choose one server makes m− 1

independent selections during the m − 1 servers with the queue length k − 1 and with

the MAP phase l at time t; while
{∑mB

j=1

[
u
(N)
k;l,j (t)

]}d−m

is the probability that there are

d−m servers whose queue lengths are not shorter than k and with the MAP phase l.

Part II: The probability that any arriving customer joins a server with the shortest

queue length k−1 and with the MAP phase l; and the queue lengths of the other selected

d − 1 servers are not shorter than k − 1, and there exist at least one server with no less

than k customers and with the MAP phase i 6= l, is given by

d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1

×
∑

r1+r2+···+rmA
=d−m∑mA

i6=l
ri≥1

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

,

where when r1 + r2 + · · · + rmA
= n,


 n

r1, r2, . . . , rmA


 =

n∏mA

i=1 ri!
is a multinomial

coefficient.

Part III: If there arem selected servers with the shortest queue length k−1 where there

are m1 servers with the MAP phase l and m−m1 servers with the MAP phases i 6= l, then

the probability that any arriving customer joins a server with the shortest queue length

k − 1 and with the MAP phase l is equal to m1/m. In this case, the probability that any

arriving customer joins a server with the shortest queue length k − 1 and with the MAP

phase l, the queue lengths of the other selected d− 1 servers are not shorter than k − 1,

12



is given by

d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1
m





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1

×
∑

n1+n2+···+nmA
=m−m1∑mA

i6=l
ni≥1

0≤nj≤m−m1,1≤j≤mA


 m−m1

n1, n2, . . . , nmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




ni

×
∑

r1+r2+···+rmA
=d−m

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

.

Using the above three parts, (7) and (8) can be obtained immediately.

For any two matrices A = (ai,j) and B = (bi,j), their Kronecker product is defined as

A⊗B = (ai,jB), and their Kronecker sum is given by A⊕B = A⊗ I + I ⊗B.

The following theorem gives an important result, called the invariance of environment

factors, which will play an important role in setting up the infinite-dimensional system of

differential vector equations. This enables us to apply the matrix-analytic method to the

study of more general supermarket models with non-Poisson inputs and non-exponential

service times.

Theorem 1

L
(N)
1;l

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
=

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(
u
(N)
0;l (t)αj − u

(N)
1;l,j (t)

)


m−1

×




mA∑

l=1

mB∑

j=1

u
(N)
1;l,j (t)



d−m

(9)

and for k ≥ 2

L
(N)
k;l

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
=

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

)


m−1

×




mA∑

l=1

mB∑

j=1

u
(N)
k;l,j (t)



d−m

. (10)

Thus L
(N)
1;l

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
and L

(N)
k;l

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
for k ≥ 2 are independent

of the MAP phase l ∈ {1, 2, . . . ,mA}. In this case, we have

L
(N)
1;l

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
def
= L

(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
(11)

13



and for k ≥ 2

L
(N)
k;l

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
def
= L

(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
. (12)

Proof: See Appendix A.

It is seen from the invariance of environment factors in Theorem 1 that Equation (7)

is rewritten as, in a vector form,

{
u
(N)
k−1 (t) (D ⊗ I)− u

(N)
k (t) [diag (De)⊗ I]

}

× L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
Ndt. (13)

Note that L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
and L

(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
are scale for k ≥ 2.

Step two: Analysis of the Environment State Transitions in the MAP

When there are at least k customers in the server, the rate that the MAP environment

process jumps from state l to state i with rate cl,j, and no arrival of the MAP occurs

during a small time period [0,dt), is given by

[
mA∑

l=1

u
(N)
k;l,j(t)cl,i + u

(N)
k,i,j(t) (di,1, di,2, . . . , di,mA

) e

]
Ndt.

This gives, in a vector form,

u
(N)
k (t) ([C + diag (De)]⊗ I)Ndt. (14)

Step three: Analysis of the Service Processes

To analyze the PH service process, we need to consider the following two cases:

Case one: One service completion occurs with rate t0l during a small time period [0,dt).

In this case, when there are at least k+1 customers in the server, the rate that a customer

is completed its service with entering PH phase j and the MAP is in phase i is given by

[
u
(N)
k+1;i,1(t)t

0
1αj + u

(N)
k+1;i,2(t)t

0
2αj + · · · + u

(N)
k+1;i,mB

(t)t0mB
αj

]
Ndt.

Case two: No service completion occurs during a small time period [0,dt), but the

MAP is in phase i and the PH service environment process goes to phase j. Thus, when

there are at least k customers in the server, the rate of this case is given by

[
u
(N)
k;i,1(t)t1,j + u

(N)
k;i,2(t)t2,j + u

(N)
k;i,3(t)t3,j + · · ·+ u

(N)
k;i,mB

(t)tmB ,j

]
Ndt.

14



Thus, for the PH service process, we obtain that in a vector form,

[
u
(N)
k (t) (I ⊗ T ) + u

(N)
k+1 (t)

(
I ⊗ T 0α

)]
Ndt (15)

Let

n
(N)
k (t) =

(
n
(N)
k;1,1(t), n

(N)
k;1,2(t), . . . , n

(N)
k;1,mB

(t); . . . ;

n
(N)
k;mA,1(t), n

(N)
k;mA,2(t), . . . , n

(N)
k;mA,mB

(t)
)
.

Then it follows from Equation (13) to (15) that

dE
[
n
(N)
k (t)

]
=
{{

u
(N)
k−1 (t) (D ⊗ I)− u

(N)
k (t) [diag (De)⊗ I]

}
L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)

+u
(N)
k (t) {[C + diag (De)]⊕ T}+ u

(N)
k+1 (t)

(
I ⊗ T 0α

)}
Ndt.

Since E
[
n
(N)
k (t)/N

]
= u

(N)
k (t) and A⊗ I + I ⊗B = A⊕B, we obtain

du
(N)
k (t)

dt
=
{
u
(N)
k−1 (t) (D ⊗ I)− u

(N)
k (t) (t) [diag (De)⊗ I]

}
L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)

+ u
(N)
k (t) {[C + diag (De)]⊕ T}+ u

(N)
k+1 (t)

(
I ⊗ T 0α

)
. (16)

Using a similar analysis to Equation (16), we obtain an infinite-dimensional system of

differential vector equations satisfied by the expected fraction vector u(N) (t) as follows:

du
(N)
1 (t)

dt
=
{[
u
(N)
0 (t)⊗ α

]
(D ⊗ I)− u

(N)
1 (t) [diag (De)⊗ I]

}
L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)

+ u
(N)
1 (t) {[C + diag (De)]⊕ T}+ u

(N)
2 (t)

(
I ⊗ T 0α

)
, (17)

and for k ≥ 2

du
(N)
k (t)

dt
=
{
u
(N)
k−1 (t) (D ⊗ I)− u

(N)
k (t) [diag (De)⊗ I]

}
L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)

+ u
(N)
k (t) {[C + diag (De)]⊕ T}+ u

(N)
k+1 (t)

(
I ⊗ T 0α

)
, (18)

with the boundary condition

du
(N)
0 (t)

dt
= u

(N)
0 (t) (C +D) , (19)

u
(N)
0 (t)e = 1; (20)

and with the initial condition

u
(N)
k (0) = gk, k ≥ 1, (21)

15



where

g1 ≥ g2 ≥ g3 ≥ · · · ≥ 0

and

1 = g0e ≥ g1e ≥ g2e ≥ · · · ≥ 0.

Remark 2 It is necessary to explain some probability setting for the invariance of envi-

ronment factors. It follows from Theorem 1 that

L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
=

[
u
(N)
0 (t) e

]d
−
[
u
(N)
1 (t) e

]d

u
(N)
0 (t) e− u

(N)
1 (t) e

and for k ≥ 2

L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
=

[
u
(N)
k−1 (t) e

]d
−
[
u
(N)
k (t) e

]d

u
(N)
k−1 (t) e− u

(N)
k (t) e

.

Note that the two expressions will be useful in our later study, for example, establishing

the Lipschitz condition, and computing the fixed point. Specifically, for d = 1 we have

L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
= 1

and for k ≥ 2

L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
= 1.

For d = 2 we have

L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
= u

(N)
0 (t) e+ u

(N)
1 (t) e > 1

and for k ≥ 2

L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
= u

(N)
k−1 (t) e+ u

(N)
k (t) e.

This shows that
(
L
(N)
1

(
u
(N)
0 (t)⊗ α, u

(N)
1 (t)

)
, L

(N)
2

(
u
(N)
1 (t) , u

(N)
2 (t)

)
, . . .

)
is not a prob-

ability vector.

5 The Lipschitz Condition

In this section, we show that the mean-field limit of the sequence of Markov processes

asymptotically approaches a single trajectory identified by the unique and global solution

to the infinite-dimensional system of limiting differential vector equations. To that end,
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we provide a unified matrix-differential algorithm for establishing the Lipschitz condition,

which is a key in proving the existence and uniqueness of the solution by means of the

Picard approximation according to the basic results of the Banach space.

Let TN (t) be the operator semigroup of the Markov process
{
U(N)(t), t ≥ 0

}
. If

f : ΩN → C1, where ΩN =
{
g ∈ Ω̃N : ge < +∞

}
, then for g ∈ ΩN and t ≥ 0

TN (t)f(g) = E [f(UN (t) | UN (0) = g] .

We denote by AN the generating operator of the operator semigroup TN (t), it is easy

to see that TN (t) = exp {AN t} for t ≥ 0. In Appendix B, we will provide a detailed

analysis for the limiting behavior of the sequence {(U(N)(t), t ≥ 0} of Markov processes

for N = 1, 2, 3, . . ., where two formal limits for the sequence {AN} of generating operators

and for the sequence {TN (t)} of operator semigroups are expressed as A = limN→∞AN

and T (t) = limN→∞TN (t) for t ≥ 0, respectively.

We write

L1 (u0 (t)⊗ α, u1 (t)) =

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(u0,l (t)αj − u1;l,j (t))



m−1 


mA∑

l=1

mB∑

j=1

u1;l,j (t)



d−m

,

for k ≥ 2

Lk (uk−1 (t) , uk (t)) =

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(uk−1;l,j (t)− uk;l,j (t))



m−1

×




mA∑

l=1

mB∑

j=1

uk;l,j (t)



d−m

.

Let u(t) = limN→∞ u(N)(t) where uk (t) = limN→∞ u
(N)
k (t) for k ≥ 0 and t ≥ 0. Based

on the limiting operator semigroup T (t) or the limiting generating operator A, as N → ∞

it follows from Equations (17) to (21) that u(t) is a solution to the system of differential

vector equations as follows:

du1(t)

dt
= {[u0(t)⊗ α] (D ⊗ I)− u1 (t) [diag (De)⊗ I]}L1 (u0(t)⊗ α, u1 (t))

+ u1(t) {[C + diag (De)]⊕ T}+ u2 (t)
(
I ⊗ T 0α

)
, (22)

and for k ≥ 2

duk(t)

dt
= {uk−1 (t) (D ⊗ I)− uk (t) [diag (De)⊗ I]}Lk (uk−1 (t) , uk (t))

+ uk (t) {[C + diag (De)]⊕ T}+ uk+1 (t)
(
I ⊗ T 0α

)
, (23)
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with the boundary condition

u
(N)
0 (t) = u

(N)
0 (0) exp {(C +D) t} , (24)

u
(N)
0 (t) e = 1, (25)

and with initial condition

uk (0) = gk, k ≥ 0. (26)

Based on the solution u(t,g) to the system of differential vector equations (22) to (26),

we define a mapping: g → u(t,g). Note that the operator semigroup T(t) acts in the

space L, where L = C(Ω̃) is the Banach space of continuous functions f : Ω̃ → R with

uniform metric ‖f‖ = max
u∈Ω̃

|f(u)|, and

Ω̃ = {u : u1 ≥ u2 ≥ u3 ≥ · · · ≥ 0; 1 = u
(N)
0 e ≥ u

(N)
1 e ≥ u

(N)
2 e ≥ · · · ≥ 0}

for the vector u = (u0, u1, u2, . . .) with u0 be a probability vector of size mA and the size

of the row vector uk be mAmB for k ≥ 1. If f ∈ L and g ∈ Ω̃, then

T(t)f(g) = f (u(t,g)) .

The following theorem uses the operator semigroup to provide the mean-field limit in

this supermarket model. Note that the mean-field limit shows that there always exists the

limiting process {U (t) , t ≥ 0} of the sequence {U (N) (t) , t ≥ 0} of Markov processes, and

also indicates the asymptotic independence of the block-structured queueing processes in

this supermarket model.

Theorem 2 For any continuous function f : Ω → R and t > 0,

lim
N→∞

sup
g∈Ω

|TN (t)f(g)− f(u(t;g))| = 0,

and the convergence is uniform in t with any bounded interval.

Proof: See Appendix B.

Finally, we provide some interpretation on Theorem 2. If limN→∞U (N) (0) = u(0) =

g ∈ Ω in probability, then Theorem 2 shows that U (t) = limN→∞ U (N) (t) is concentrated

on the trajectory Γg = {u(t,g) : t ≥ 0}. This indicates the functional strong law of large

numbers for the time evolution of the fraction of each state of this supermarket model,
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thus the sequence
{
U (N) (t) , t ≥ 0

}
of Markov processes converges weakly to the expected

fraction vector u(t,g) as N → ∞, that is, for any T > 0

lim
N→∞

sup
0≤s≤T

∥∥∥U (N) (s)− u(s,g)
∥∥∥ = 0 in probability. (27)

In the remainder of this section, we provide a unified matrix-differential algorithm for

establishing a Lipschitz condition for the expected fraction vector f : R∞
+ → C1

(
R∞

+

)
.

The Lipschitz condition is a key for proving the existence and uniqueness of solution to

the infinite-dimensional system of limiting differential vector equations (22) to (26). On

the other hand, the proof of the existence and uniqueness of solution is standard by means

of the Picard approximation according to the basic results of the Banach space. Readers

may refer to Li, Dai, Lui and Wang [15] for more details.

To provide the Lipschitz condition, we need to use the derivative of the infinite-

dimensional vector G : R∞
+ → C1

(
R∞

+

)
. Thus we first provide some definitions and

preliminaries for such derivatives as follows.

For the infinite-dimensional vector G : R∞
+ → C1

(
R∞

+

)
, we write x = (x1, x2, x3, . . .)

and G(x) = (G1(x), G2(x), G3(x), . . .), where xk and Gk(x) are scalar for k ≥ 1. Then the

matrix of partial derivatives of the infinite-dimensional vector G(x) is defined as

DG(x) =
∂G(x)

∂x
=




∂G1(x)

∂x1

∂G2(x)

∂x1

∂G3(x)

∂x1
· · ·

∂G1(x)

∂x2

∂G2(x)

∂x2

∂G3(x)

∂x2
· · ·

∂G1(x)

∂x3

∂G2(x)

∂x3

∂G3(x)

∂x3
· · ·

...
...

...




, (28)

if each of the partial derivatives exists.

For the infinite-dimensional vector G : R∞
+ → C1

(
R∞

+

)
, if there exists a linear operator

A : R∞
+ → C1

(
R∞

+

)
such that for any vector h ∈ R∞ and a scalar t ∈ R

lim
t→0

||G (x+ th)−G (x)− thA||

t
= 0,

then the function G (x) is called to be Gateaux differentiable at x ∈ R∞
+ . In this case, we

write the Gateaux derivative A = DG(x) =
∂G(x)

∂x
.
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Let t = (t1, t2, t3, . . .) with 0 ≤ tk ≤ 1 for k ≥ 1. Then we write

DG(x+t⊘ (y − x)) =




∂G1(x+ t1 (y − x))

∂x1

∂G2(x+ t2 (y − x))

∂x1

∂G3(x+ t3 (y − x))

∂x1
· · ·

∂G1(x+ t1 (y − x))

∂x2

∂G2(x+ t2 (y − x))

∂x2

∂G3(x+ t3 (y − x))

∂x2
· · ·

∂G1(x+ t1 (y − x))

∂x3

∂G2(x+ t2 (y − x))

∂x3

∂G3(x+ t3 (y − x))

∂x3
· · ·

...
...

...




.

If the infinite-dimensional vector G : R∞
+ → C1

(
R∞

+

)
is Gateaux differentiable, then

there exists a vector t = (t1, t2, t3, . . .) with 0 ≤ tk ≤ 1 for k ≥ 1 such that

G (y)−G (x) = (y − x)DG(x+ t⊘ (y − x)). (29)

Furthermore, we have

||G (y)−G (x) || ≤ sup
0≤t≤1

||DG(x+ t (y − x))|| ||y − x||. (30)

For convenience of description, Equations (22) to (26) are rewritten as an initial value

problem as follows:

d

dt
u1 = {(u0 ⊗ α) (D ⊗ I)− u1 [diag (De)⊗ I]}L1 (u0 ⊗ α, u1)

+ u1 {[C + diag (De)]⊕ T}+ u2
(
I ⊗ T 0α

)
(31)

and for k ≥ 2,

d

dt
uk = {uk−1 (D ⊗ I)− uk [diag (De)⊗ I]}Lk (uk−1, uk)

+ uk {[C + diag (De)]⊕ T}+ uk+1

(
I ⊗ T 0α

)
, (32)

with the initial condition

uk (0) = gk, k ≥ 0, (33)

where for t ≥ 0

u0 (t) = u0 (0) exp {(C +D) t}

and

u0 (t) e = 1.

Let x = (x1, x2, x3, . . .) = (u1, u2, u3, . . .) and F (x) = (F1(x), F2(x), F3(x), . . .), where

F1(x) = {(u0 ⊗ α) (D ⊗ I)− x1 [diag (De)⊗ I]}L1 (u0 ⊗ α, x1)

+ x1 {[C + diag (De)]⊕ T}+ x2
(
I ⊗ T 0α

)
(34)
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and for k ≥ 2

Fk(x) = {xk−1 (D ⊗ I)− xk [diag (De)⊗ I]}Lk (xk−1, xk)

+ xk {[C + diag (De)]⊕ T}+ xk+1

(
I ⊗ T 0α

)
. (35)

Note that u0 = g0 exp {(C +D) t} may be regarded as a given vector. Thus F (x) is in

C2
(
R∞

+

)
, and the system of differential vector equations (31) to (33) is rewritten as

d

dt
x = F (x) (36)

with the initial condition

x (0) = g̃ = (g1, g2, g3, . . .) . (37)

In what follows we show that the expected fraction vector F (x) is Lipschitz.

Based on the definition of the Gateaux derivative, it follows from (34) and (35) that

∂F (x)

∂x
=




∂F1(x)

∂x1

∂F2(x)

∂x1
∂F1(x)

∂x2

∂F2(x)

∂x2

∂F3(x)

∂x2
∂F2(x)

∂x3

∂F3(x)

∂x3

∂F4(x)

∂x3
. . .

. . .
. . .




.

We write

DF (x) =




A1(x) B1(x)

C2(x) A2(x) B2(x)

C3(x) A3(x) B3(x)

. . .
. . .

. . .




=
∂F (x)

∂x
. (38)

where Ak (x), Bk (x) and Cj (x) are the matrices of size mAmB for k ≥ 1 and j ≥ 2.

To compute the matrix DF (x), we need to use two basic properties of the Gateaux

derivative as follows:

Property one
∂xk
∂xk

= I,
∂xkS

∂xk
= S,

where S is a matrix of size mAmB.

Note that

L1 (u0 ⊗ α, x1) =
(u0e)

d − (x1e)
d

u0e− x1e
=

1− (x1e)
d

1− x1e

21



and for k ≥ 2

Lk (xk−1, xk) =
(xk−1e)

d − (xke)
d

xk−1e− xke
.

Let y1 = x1e. Then

∂L1 (u0 ⊗ α, x1)

∂x1
=
∂y1
∂x1

∂L1 (u0 ⊗ α, x1)

∂y1

= e

[
(u0e)

d − (x1e)
d
]
− d (x1e)

d−1 (u0e− x1e)

(u0e− x1e)
2 .

Similarly, for k ≥ 2 we can obtain

∂Lk (xk−1, xk)

∂xk−1
= e

d (xk−1e)
d−1 (xk−1e− xke)−

[
(xk−1e)

d − (xke)
d
]

(xk−1e− xke)
2

and

∂Lk (xk−1, xk)

∂xk
= e

[
(xk−1e)

d − (xke)
d
]
− d (xke)

d−1 (xk−1e− xke)

(xk−1e− xke)
2 .

It is easy to check that

A1(x) = [C + diag (De)]⊕ T + [diag (De)⊗ I]
(u0e)

d − (x1e)
d

u0e− x1e

+ ex1 [diag (De)⊗ I]

[
(u0e)

d − (x1e)
d
]
− d (x1e)

d−1 (u0e− x1e)

(u0e− x1e)
2 , (39)

B1(x) = (D ⊗ I)
(x1e)

d − (x2e)
d

x1e− x2e
+ e {x1 (D ⊗ I)− x2 [diag (De)⊗ I]}

×
d (x1e)

d−1 (x1e− x2e)−
[
(x1e)

d − (x2e)
d
]

(x1e− x2e)
2 ; (40)

and for k ≥ 2

Ck(x) = I ⊗ T 0α, (41)

Bk(x) = (D ⊗ I)
(xke)

d − (xk+1e)
d

xke− xk+1e
+ e {xk (D ⊗ I)− xk+1 [diag (De)⊗ I]}

×
d (xke)

d−1 (xke− xk+1e)−
[
(xke)

d − (xk+1e)
d
]

(xke− xk+1e)
2 , (42)

Ak(x) = [C + diag (De)]⊕ T + [diag (De)⊗ I]
(xk−1e)

d − (xke)
d

xk−1e− xke

+ e {xk−1 (D ⊗ I)− xk [diag (De)⊗ I]}

×

[
(xk−1e)

d − (xke)
d
]
− d (xke)

d−1 (xk−1e− xke)

(xk−1e− xke)
2 . (43)
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Note that ‖A‖ = maxi

{
∑
j

|ai,j|

}
, it follows from (38) that

||DF (x) || = max

{
‖A1 (x)‖+ ‖B2 (x)‖ , sup

k≥2
{||Ak (x) ||+ ||Bk (x) ||+ ||Ck (x) ||}

}
. (44)

Since u0e ≤ 1 and x1e ≤ 1, we obtain

(u0e)
d − (x1e)

d

u0e− x1e
=

d−1∑

j=0

(u0e)
j (x1e)

d−1−j ≤ d,

[
(u0e)

d − (x1e)
d
]
− d (x1e)

d−1 (u0e− x1e)

(u0e− x1e)
2 =

d−2∑

k=0

k∑

j=0

(u0e)
j (x1e)

k−j ≤
(d− 1) (d− 2)

2
;

(xk−1e)
d − (xke)

d

xk−1e− xke
≤ d,

[
(xk−1e)

d − (xke)
d
]
− d (xke)

d−1 (xk−1e− xke)

(xk−1e− xke)
2 ≤

(d− 1) (d− 2)

2
.

Thus it follows from (39) and (40) that

‖A1(x)‖ ≤ ‖C + diag (De)‖+
2d+ (d− 1) (d− 2)

2
‖D‖+ ‖T‖ ,

‖B1(x)‖ ≤ [d+ (d− 1) (d− 2)] ‖D‖ ,

‖A1(x)‖ + ‖B1(x)‖ ≤ ‖C + diag (De)‖+

[
2d+

3 (d− 1) (d− 2)

2

]
‖D‖+ ‖T‖ .

It follows from (41) to (43) that for k ≥ 2

‖Ak(x)‖ ≤ ‖C + diag (De)‖+ [d+ (d− 1) (d− 2)] ‖D‖+ ‖T‖ ,

‖Bk(x)‖ ≤ [d+ (d− 1) (d− 2)] ‖D‖ ,

‖Ck(x)‖ =
∥∥T 0α

∥∥ ,

hence we have

‖Ak(x)‖ + ‖Bk(x)‖+ ‖Ck(x)‖

≤ ‖C + diag (De)‖+ 2 [d+ (d− 1) (d− 2)] ‖D‖+ ‖T‖+
∥∥T 0α

∥∥ .

Let

M = max
{
‖C + diag (De)‖+ 2 [d+ (d− 1) (d− 2)] ‖D‖+ ‖T‖+

∥∥T 0α
∥∥} .
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Then

‖A1(x)‖ + ‖B1(x)‖ ≤M

and for k ≥ 2

‖Ak(x)‖+ ‖Bk(x)‖ + ‖Ck(x)‖ ≤M.

Hence, it follows from Equation (44) that

||DF (x) || ≤M.

Note that x = u, this gives that for u ∈ Ω̃

‖DF (u)‖ ≤M. (45)

For u,v ∈ Ω̃,

||F (u)− F (v) || ≤ sup
0≤t≤1

||DF (u+ t (v − u))|| ||u− v||

≤M ||u− v||. (46)

This indicates that the function F (u) is Lipschitz for u ∈ Ω̃.

Note that x = u, it follows from Equations (31) and (33) that for u ∈ Ω̃

u (t) = u (0) +

∫ t

0
F (u (ξ)) dξ,

this gives

u (t) = g̃ +

∫ t

0
F (u (ξ)) dξ. (47)

Using the Picard approximation as well as the Lipschitz condition, it is easy to prove

that there exists the unique solution to the integral equation (47) according to the basic

results of the Banach space. Therefore, there exists the unique solution to the system of

differential vector equations (31) to (33) (that is, (22) to (26)).

6 A Matrix-Analytic Solution

In this section, we first discuss the stability of this supermarket model in terms of a

coupling method. Then we provide a generalized matrix-analytic method for computing

the fixed point whose doubly exponential solution and phase-structured tail are obtained.

Finally, we discuss some useful limits of the fraction vector u(N) (t) as N → ∞ and

t→ +∞.
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6.1 Stability of this supermarket model

In this subsection, we provide a coupling method to study the stability of this supermarket

model of N identical servers with MAP inputs and PH service times, and give a sufficient

condition under which this supermarket model is stable.

Let Q and R denote two supermarket models with MAP inputs and PH service times,

both of which have the same parameters N, d,mA, C,D,mB , α, T , and the same initial

state at t = 0. Let d (Q) and d (R) be two choice numbers in the two supermarket models

Q and R, respectively. We assume d (Q) = 1 and d (R) ≥ 2. Thus, the only difference

between the two supermarket models Q and R is the two different choice numbers: d (Q) =

1 and d (R) ≥ 2.

For the two supermarket models Q and R, we define two infinite-dimensional Markov

processes
{
U

(Q)
N (t) : t ≥ 0

}
and

{
U

(R)
N (t) : t ≥ 0

}
, respectively. The following theorem

sets up a coupling between the two processes
{
U

(Q)
N (t) : t ≥ 0

}
and

{
U

(R)
N (t) : t ≥ 0

}
.

Theorem 3 For the two supermarket models Q and R, there is a coupling between the

two processes
{
U

(Q)
N (t) : t ≥ 0

}
and

{
U

(R)
N (t) : t ≥ 0

}
such that the total number of cus-

tomers in the supermarket model R is no greater than the total number of customers in

the supermarket model Q at time t ≥ 0.

Proof: See Appendix C.

Remark 3 Note that the N queueing processes in this supermarket model is symmetric,

it is easy to see from Theorem 3 that the queue length of each server in the supermarket

model R is no greater than that in the supermarket model Q at time t ≥ 0.

Since this supermarket model with MAP inputs and PH service times is more general,

it is necessary to extend the coupling method given in Turner [30] and Martin and Suhov

[22] through a detailed probability analysis given in Appendix C. We show that such

a coupling method can be applied to discussing stability of more general supermarket

models.

Note that the stationary arrival rate of the MAP of irreducible matrix descriptor (C,D)

is given by λ = ωDe, and the mean of the PH service time is given by 1/µ = −αT−1e.

The following theorem provides a sufficient condition under which this supermarket model

is stable.
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Theorem 4 This supermarket model of N identical servers with MAP inputs and PH

service times is stable if ρ = λ/µ < 1.

Proof: From the two different choice numbers: d (Q) = 1 and d (R) ≥ 2, we set up two

different supermarket models Q and R, respectively. Note that the supermarket model Q

is the set of N parallel and independent MAP/PH/1 queues. Obviously, the MAP/PH/1

queue is described as a QBD process whose infinitesimal generator is given by

Q =




C D ⊗ α

I ⊗ T 0 C ⊕ T D ⊗ I

I ⊗
(
T 0α

)
C ⊕ T D ⊗ I

. . .
. . .

. . .



.

Note that

A = A−1 +A0 +A1 = (C +D)⊕
(
T + T 0α

)
,

where

A−1 = I ⊗
(
T 0α

)
, A0 = C ⊕ T, A1 = D ⊗ I,

thus it is easy to check that ω⊗θ is the stationary probability vector of the Markov chain A,

where θ is the stationary probability vector of the Markov chain T + T 0α. Using Chapter

3 of Li [11], it is clear that the QBD process Q is stable if (ω ⊗ θ)A−1e > (ω ⊗ θ)A2e,

that is, ρ = λ/µ < 1. Hence, the supermarket model Q is stable if ρ < 1. It is seen

from Theorem 3 and Remark 3 that the queue length of each server in the supermarket

model R is no greater than that in the supermarket model Q at time t ≥ 0, this shows

that the supermarket model R is stable if the supermarket model Q is stable. Thus the

supermarket model R is stable if ρ = λ/µ < 1. This completes the proof.

6.2 Computation of the fixed point

A row vector π = (π0, π1, π2, . . .) is called a fixed point of the infinite-dimensional system

of differential vector equations (22) to (26) satisfied by the limiting fraction vector u (t) if

π = limt→+∞ u (t), or πk = limt→+∞ uk (t) for k ≥ 0.

It is well-known that if π is a fixed point of the vector u (t), then

lim
t→+∞

[
d

dt
u (t)

]
= 0.
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Let

L1 (π0 ⊗ α, π1) =

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(π0;lαj − π1;l,j)



m−1 


mA∑

l=1

mB∑

j=1

π1;l,j



d−m

for k ≥ 2

Lk (πk−1, πk) =
d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(πk−1;l,j − πk;l,j)



m−1 


mA∑

l=1

mB∑

j=1

πk;l,j



d−m

.

Then

L1 (π0 ⊗ α, π1) =
1− (π1e)

d

1− π1e

and for k ≥ 2

Lk (πk−1, πk) =
(πk−1e)

d − (πke)
d

πk−1e− πke
.

To determine the fixed point π = (π0, π1, π2, . . .), as t → +∞ taking limits on both

sides of Equations (22) to (26) we obtain the system of nonlinear vector equations as

follows:

π0 (C +D) = 0, π0e = 1, (48)

{(π0 ⊗ α) (D ⊗ I)− π1 [diag (De)⊗ I]}L1 (π0 ⊗ α, π1)

+ π1 {[C + diag (De)]⊕ T}+ π2
(
I ⊗ T 0α

)
= 0, (49)

for k ≥ 2

{πk−1 (D ⊗ I)− πk [diag (De)⊗ I]}Lk (πk−1, πk)

+ πk {[C + diag (De)]⊕ T}+ πk+1

(
I ⊗ T 0α

)
= 0. (50)

Since ω is the stationary probability vector of the Markov chain C + D, then it follows

from (48) that

π0 = ω. (51)

For the fixed point π = (π0, π1, π2, . . .), (π0e, π1e, π2e, · · · ) is the tail vector of the

stationary queue length distribution. The following theorem shows that the tail vector

(π0e, π1e, π2e, · · · ) of the stationary queue length distribution is doubly exponential.

Theorem 5 If ρ = λ/µ < 1, then the tail vector (π0e, π1e, π2e, · · · ) of the stationary

queue length distribution is doubly exponential, that is, for k ≥ 0

πke = ρ
dk−1
d−1 . (52)
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Proof: Multiplying both sides of the equation (50) by the vector e, and noting that

[C + diag (De)] e = 0 and Te = −T 0, we obtain that

[(π0 ⊗ α) (De⊗ e)− π1 (De⊗ e)]Lk (π0⊗, π1)− µ
[
π1
(
e⊗ T 0

)
− π2

(
e⊗ T 0

)]
= 0 (53)

for k ≥ 2,

[πk−1 (De⊗ e)− πk (De⊗ e)]Lk (πk−1, πk)− µ
[
πk
(
e⊗ T 0

)
− πk+1

(
e⊗ T 0

)]
= 0. (54)

Let πk = ηk (ω ⊗ θ) for k ≥ 1, and ζ1 = L1 (π0 ⊗ α, π1) and ζk = Lk (πk−1, πk) for k ≥ 2.

Note that λ = ωDe, µ = θT 0 and ρ = λ/µ, it follows from (54) that

ρ
(
1− ηd1

)
− (η1 − η2) = 0

and

ρ
(
ηdk−1 − ηdk

)
− (ηk − ηk+1) = 0.

This gives

πke = ηk = ρ
dk−1
d−1 .

This completes the proof.

Note that

ζk =
ρ

dk−d
d−1 − ρ

dk+1−d
d−1

ρ
dk−1−1

d−1 − ρ
dk−1
d−1

, k ≥ 1,

we obtain

Bk = [C + (1− ζk) diag (De)]⊕ T

and

Q =




B1 ζ2 (D ⊗ I)

I ⊗
(
T 0α

)
B2 ζ3 (D ⊗ I)

I ⊗
(
T 0α

)
B3 ζ4 (D ⊗ I)

. . .
. . .

. . .



.

Then the level-dependent QBD process is irreducible and transient, since

ζ1 > ζ2 > ζ3 > · · · > 0,

[B1 + ζ2 (D ⊗ I)] e = − (ζ1 − ζ2) [(De)⊗ e]− e⊗ T 0 � 0

and
[
I ⊗

(
T 0α

)
+Bk + ζk (D ⊗ I)

]
e = − (ζk − ζk+1) [(De)⊗ e] � 0.

28



In what follows we provide the UL-type of RG-factorization of the QBD process Q

according to Chapter 1 in Li [11] or Li and Cao [14]. Applying the UL-type of RG-

Factorization, we can give the maximal non-positive inverse of matrix Q, which leads to

the matrix-product solution of the fixed point (π0, π1, π2, · · · ) by means of the R- and

U -measures.

Let the matrix sequence {Rk, k ≥ 1} be the minimal nonnegative solution to the non-

linear matrix equations

ξk+1 (D ⊗ I) +RkBk+1 +RkRk+1

[
I ⊗

(
T 0α

)]
= 0,

and the matrix sequence {Gk, k ≥ 2} be the minimal nonnegative solution to the nonlinear

matrix equations

I ⊗
(
T 0α

)
+BkGk + ξk+1 (D ⊗ I)Gk+1Gk = 0.

Let the matrix sequence {Uk, k ≥ 0} be

Uk = Bk+1 + [ζk+2 (D ⊗ I)] [−Uk+1]
−1 [I ⊗

(
T 0α

)]

= Bk+1 +Rk+1

[
I ⊗

(
T 0α

)]

= Bk+1 + [ζk+2 (D ⊗ I)]Gk+1.

Hence we obtain

R0 = ζ1 (D ⊗ I) (−U1)
−1

and

G1 = (−U0)
−1 [I ⊗

(
T 0α

)]
.

Based on theR-measure {Rk, k ≥ 0}, G-measure {Gk, k ≥ 1} and U -measure {Uk, k ≥ 0},

we can get the UL-type of RG-factorization of the matrix Q as follows

Q = (I −RU )UD (I −GL) ,

where

RU =




0 R0

0 R1

0 R2

. . .
. . .



,

UD = diag (U0, U1, U2, . . .)
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and

GL =




I

G1 I

G2 I

. . .
. . .

. . .



.

Using the RG-factorization, we obtain the maximal non-positive inverse of the matrix

Q as follows

Q−1 = (I −GL)
−1 U−1

D (I −RU )
−1 , (55)

where

(I −RU )
−1 =




I X
(0)
1 X

(0)
2 X

(0)
3 · · ·

I X
(1)
1 X

(1)
2 · · ·

I X
(2)
1 · · ·

I · · ·

. . .




,

X
(l)
k = RlRl+1Rl+2 · · ·Rl+k−1, k ≥ 1, l ≥ 0;

U−1
D = diag

(
U−1
0 , U−1

1 , U−1
2 , . . .

)
;

(I −GL)
−1 =




I

Y
(1)
1 I

Y
(2)
2 Y

(2)
1 I

Y
(3)
3 Y

(3)
2 Y

(3)
1 I

...
...

...
...

. . .




,

Y
(l)
k = GlGl−1Gl−2 · · ·Gl−k+1, l ≥ k ≥ 1.

The following theorem illustrates that the fixed point (π0, π1, π2, · · · ) is matrix-product.

Theorem 6 If ρ < 1, then the fixed point π = (π0, π1, π2, . . .) is given by

π0 = ω,

π1 = ζ1 (ω ⊗ α) (D ⊗ I) (−U0)
−1 (56)

and for k ≥ 2

πk = ζ1 (ω ⊗ α) (D ⊗ I) (−U0)
−1R0R1 · · ·Rk−2. (57)
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Proof: It follows from (54) that

(π1, π2, π3, . . .)




B1 ζ2 (D ⊗ I)

I ⊗
(
T 0α

)
B2 ζ3 (D ⊗ I)

I ⊗
(
T 0α

)
B3 ζ4 (D ⊗ I)

. . .
. . .

. . .




= − (ζ1 (ω ⊗ α) (D ⊗ I) , 0, 0, . . .) .

This gives

(π1, π2, π3, . . .) = − (ζ1 (ω ⊗ α) (D ⊗ I) , 0, 0, . . .) (I −GL)
−1 U−1

D (I −RU )
−1 .

Thus we obtain

π1 = ζ1 (ω ⊗ α) (D ⊗ I) (−U0)
−1

and for k ≥ 2

πk = ζ1 (ω ⊗ α) (D ⊗ I) (−U0)
−1R0R1 · · ·Rk−2.

This completes the proof.

In what follows we consider the block-structured supermarket model with Poisson

inputs and PH service times. In this case, we can give an interesting explicit expression

of the fixed point.

Note that C = −λ, D = λ, it is clear that ω = 1 and π0 = 1. It follows from Equations

(49) and (50) that

λ (θ − π1)
1− (π1e)

d

1− (π1e)
+ π1T + π2T

0α = 0

and for k ≥ 2

λ (πk−1 − πk)
(πk−1e)

d − (πke)
d

(πk−1e)− (πke)
+ πkT + πk+1T

0α = 0.

Thus we obtain

(π1, π2, π3, . . .)Θ = λ

(
(θ − π1)

1− (π1e)
d

1− (π1e)
, (π1 − π2)

(π1e)
d − (π2e)

d

(π1e)− (π2e)
, . . .

)
, (58)

where

Θ =




−T

−T 0α −T

−T 0α −T

. . .
. . .



.
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Since

Θ−1 =




(−T )−1

(eα) (−T )−1 (−T )−1

(eα) (−T )−1 (eα) (−T )−1 (−T )−1

(eα) (−T )−1 (eα) (−T )−1 (eα) (−T )−1 (−T )−1

...
...

...
...

. . .




.

It follows from (58) that

π1

[
I + λ

1− (π1e)
d

1− (π1e)
(−T )−1

]
= λ

1− (π1e)
d

1− (π1e)
θ (−T )−1 + λα (−T )−1 (π1e)

d (59)

and for k ≥ 2

πk

[
I + λ

(πk−1e)
d − (πke)

d

(πk−1e)− (πke)
(−T )−1

]
= λ

(πk−1e)
d − (πke)

d

(πk−1e)− (πke)
θ (−T )−1+λα (−T )−1 (πke)

d .

(60)

Note that the matrices I+λ1−(π1e)
d

1−(π1e)
(−T )−1 and I+λ

(πk−1e)
d−(πke)

d

(πk−1e)−(πke)
(−T )−1 for k ≥ 2 are

all invertible, it follows from (59) and (60) that

π1 =

[
λ
1− (π1e)

d

1− (π1e)
ω (−T )−1 + λα (−T )−1 (π1e)

d

][
I + λ

1− (π1e)
d

1− (π1e)
(−T )−1

]−1

.

and for k ≥ 2

πk =

[
λ
(πk−1e)

d − (πke)
d

(πk−1e)− (πke)
ω (−T )−1 + λα (−T )−1 (πke)

d

]

×

[
I + λ

(πk−1e)
d − (πke)

d

(πk−1e)− (πke)
(−T )−1

]−1

.

Thus we obtain

π1 =
[
λζ1ω (−T )−1 + λα (−T )−1 ρd

] [
I + λζ1 (−T )

−1
]−1

(61)

and for k ≥ 2

πk =

[
λζkω (−T )−1 + λα (−T )−1 ρ

dk+1−d
d−1

] [
I + λζk (−T )

−1
]−1

. (62)

Remark 4 For this block-structured supermarket model, the fixed point is matrix-product

and depends on the R-measure {Rk, k ≥ 0}, see (56) and (57). However, when the input

is a Poisson process, we can give the explicit expression of the fixed point by (61) and

(62). This explains the reason why the MAP input makes the study of block-structured

supermarket models more difficult and challenging.
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6.3 The double limits

In this subsection, we discuss some useful limits of the fraction vector u(N) (t) as N → ∞

and t → +∞. Note that the limits are necessary for using the stationary probabilities

of the limiting process to give an effective approximate performance of this supermarket

model.

The following theorem gives the limit of the vector u(t,g) as t→ +∞, that is,

lim
t→+∞

u(t,g) = lim
t→+∞

lim
N→∞

u(N)(t,g).

Theorem 7 If ρ < 1, then for any g ∈ Ω

lim
t→+∞

u(t,g) = π.

Furthermore, there exists a unique probability measure ϕ on Ω, which is invariant under

the map g 7−→ u(t,g), that is, for any continuous function f : Ω → R and t > 0
∫

Ω
f(g)dϕ(g) =

∫

Ω
f(u(t,g))dϕ(g).

Also, ϕ = δπ is the probability measure concentrated at the fixed point π.

Proof: It is seen from Theorem 6 that the condition ρ < 1 guarantees the existence of

solution in Ω to the system of nonlinear equations (48) to (50). This indicates that if ρ < 1,

then as t → +∞, the limit of u(t,g) exists in Ω. Since u(t,g) is the unique and global

solution to the infinite-dimensional system of differential vector equations (22) to (26) for

t ≥ 0, the vector limt→+∞ u(t,g) is also a solution to the system of nonlinear equations

(48) to (50). Note that π is the unique solution to the system of nonlinear equations (48)

to (50), hence we obtain that limt→+∞ u(t,g) = π. The second statement in this theorem

can be immediately given by the probability measure of the limiting process {U(t), t ≥ 0}

on state space Ω. This completes the proof.

The following theorem indicates the weak convergence of the sequence {ϕN} of sta-

tionary probability distributions for the sequence
{
U (N)(t), t ≥ 0

}
of Markov processes to

the probability measure concentrated at the fixed point π.

Theorem 8 (1) If ρ < 1, then for a fixed number N = 1, 2, 3, . . ., the Markov process
{
U (N)(t), t ≥ 0

}
is positive recurrent, and has a unique invariant distribution ϕN .

(2) {ϕN} weakly converges to δπ, that is, for any continuous function f : Ω → R

lim
N→∞

EϕN
[f(g)] = f (π) .
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Proof: (1) From Theorem 3, this supermarket model of N identical servers is stable

if ρ < 1, hence this supermarket model has a unique invariant distribution ϕN .

(2) Since Ω̃ is compact under the metric ρ (u,u′) given in (67), so is the set P
(
Ω̃
)

of probability measures. Hence the sequence {ϕN} of invariant distributions has limiting

points. A similar analysis to the proof of Theorem 5 in Martin and Suhov [22] shows that

{ϕN} weakly converges to δπ and limN→∞EϕN
[f(g)] = f (π). This completes the proof.

Based on Theorems 7 and 8, we obtain a useful relation as follows

lim
t→+∞

lim
N→∞

u(N)(t,g) = lim
N→∞

lim
t→+∞

u(N)(t,g) = π.

Therefore, we have

lim
N→∞
t→+∞

u(N)(t,g) = π,

which justifies the interchange of the limits of N → ∞ and t→ +∞. This is necessary in

many practical applications when using the stationary probabilities of the limiting process

to give an effective approximate performance of this supermarket model.

7 Performance Computation

In this section, we provide two performance measures of this supermarket model, and use

some numerical examples to show how the two performance measures of this supermarket

model depend on the non-Poisson MAP inputs and on the non-exponential PH service

times.

7.1 Performance measures

For this supermarket model, we provide two simple performance measures as follows:

(1) The mean of the stationary queue length in any server

The mean of the stationary queue length in any server is given by

E [Qd] =
∞∑

k=1

πke =
∞∑

k=1

ρ
dk−1
d−1 . (63)

(2) The expected sojourn time that any arriving customer spends in this

system
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Note that u
(N)
0 (0) ≥ 0 and u

(N)
0 (0) e = 1, it is clear that

lim
t→+∞

u
(N)
0 (t) = lim

t→+∞
u
(N)
0 (0) exp {(C +D) t} = ω.

For the PH service times, any arriving customer finds k customer in any server whose

probability is given by (ω ⊗ α− π1)Ld (ω ⊗ α, π1) e for k = 0 and (πk − πk+1)Ld (πk, πk+) e

for k ≥ 1. When k ≥ 1, the head customer in the server has been served, and so its service

time is residual and is denoted as XR. Let X be of phase type with irreducible represen-

tation (α, T ). Then XR is also of phase type with irreducible representation (θ, T ), where

θ is the stationary probability vector of the Markov chain T + T 0α. Clearly, we have

E [X] = α (−T )−1 e, E [XR] = θ (−T )−1 e.

Thus it is easy to see that the expected sojourn time that any arriving customer spends

in this system is given by

E [Td] = (ω ⊗ α− π1)Ld (ω ⊗ α, π1) eE [X]

+

∞∑

k=1

(πk − πk+1)Ld (πk, πk+) e {E [XR] + kE [X]}

=(1− ρ)E [X] +

∞∑

k=1

(
ρ

dk−1
d−1 − ρ

dk+1−1
d−1

)
{E [XR] + kE [X]} .

=E [X] + ρE [XR] + E [X]

∞∑

k=2

ρ
dk−1
d−1 . (64)

From (63) and (64), we obtain

E [Td] = E [X]E [Qd] + ρ {E [XR]− E [X]} . (65)

Specifically, if E [XR] = E [X] (for example, the exponential service times), then

E [Td] = E [X]E [Qd] , (66)

which is the Little’s formula in this supermarket model.

It is seen from (63) that E [Qd] only depends on the traffic intensity ρ = λ/µ, where

λ = ωDe and µ = −αT−1e; and from (64) that E [Td] depends not only on the traffic

intensity ρ but also on the mean E [XR] of the residual PH service time, where E [XR] =

θ (−T )−1 e. Based on this, it is clear that performance numerical computation of this

supermarket model can be given easily for more general MAP inputs and PH service

times, although here our numerical examples are simple.
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Figure 3: E[Qd] vs η for (m,d) = (2, 2), (3, 2), (4, 2) and (2, 10)

7.2 Numerical examples

In this subsection, we provide some numerical examples which are used to indicate how

the performance measures of this supermarket model depend on the non-Poisson MAP

inputs and on the non-exponential PH service times.

Example one: The Erlang service times

In this supermarket model, the customers arrive at this system as a Poisson process

with arrival rate Nλ, and the service times at each server are an Erlang distribution

E[m, η]. Let λ = 1. Then ρ = m/η. When ρ < 1, we have η > m. Figure 3 shows how

E [Qd] depends on the different parameter pairs (m,d) = (2, 2) , (3, 2) , (4, 2) and (2, 10),

respectively. It is seen that E [Qd] decreases as d increases or as η increases, and it increases

as m increases.

Example two: Performance comparisons between the exponential and PH

service times

We consider two related supermarket models with Poisson inputs of arrival rate Nλ:

one with exponential service times, and another with PH service times. For the two super-

market models, our goal is to observe the influence of different service time distributions

on the performance of this supermarket model. To that end, the parameters of this system
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Figure 4: Performance comparison between the exponential and PH service times

are taken as

µ = 3.4118, α =

(
1

2
,
1

2

)
, T =


 −5 3

2 −7


 .

Under the exponential and PH service times, Figure 4 depicts how E [Qd] and E [Td]

depend on the arrival rate λ ∈ [1, 3] with λ < µ, and on the choice number d = 1, 2. It is

seen that E [Qd] and E [Td] decrease as d increases, while E [Qd] and E [Td] increase as λ

increases.

Example three: The role of the PH service times

In this supermarket model with d = 2, the customers arrive at this system as a Poisson

process with arrival rate Nλ, and the service times at each server are a PH distribution

with irreducible representation (α, T (i)), α = (1/2, 1/2),

T (1) =


 −5 3

2 −7


 , T (2) =


 −4 3

2 −7


 , T (3) =


 −4 4

2 −7


 .

It is seen that some minor changes are designed in the first rows of the matrices T (i) for

i = 1, 2, 3. Let λ = 1. Then

ρ (1) = 0.2931, ρ (2) = 0.3636, ρ (3) = 0.4250.

This gives

ρ (1) < ρ (2) < ρ (3) .

Figure 5 indicates how E [Td] depends on the different transition rate matrices T (i) for

i = 1, 2, 3, and

E [Td (1)] < E [Td (2)] < E [Td (3)] .
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Figure 5: E [Td(i)] vs the transition rate matrices T (i) for i = 1, 2, 3

It is seen that E [Td] decreases as d increases.

Example four: The role of the MAP inputs

In this supermarket model, the service time distribution is exponential with service

rate µ = 1, and the arrival processes are the MAP of irreducible matrix descriptor

(C (N) ,D (N)), where

C =


 −5− 2

7λ 5

7 −7− 2λ


 , D =




2
7λ 0

0 2λ


 .

It is easy to check that ω = (7/12, 5/12), and the stationary arrival rate λ∗ = ωDe = λ.

If µ = 1 and ρ = λ∗/µ = λ < 1, then λ ∈ (0, 1).

Figure 6 shows how E [Qd] and E [Td] depend on the parameter λ of the MAP under

different choice numbers d = 1, 2, 5, 10. It is seen that E [Qd] and E [Td] decrease as d

increases, while E [Qd] and E [Td] increase as λ increases.

8 Concluding Remarks

In this paper, we analyze a more general block-structured supermarket model with non-

Poisson MAP inputs and with non-exponential PH service times, and set up an infinite-

dimensional system of differential vector equations satisfied by the expected fraction vector
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Figure 6: The role of the MAP inputs

through a detailed probability analysis, where an important result: The invariance of envi-

ronment factors is obtained. We apply the phase-structured operator semigroup to proving

the phase-structured mean-field limit, which indicates the asymptotic independence of the

block-structured queueing processes in this supermarket model. Furthermore, we pro-

vide an effective algorithm for computing the fixed point by means of the matrix-analytic

method. Using the fixed point, we provide two performance measures of this supermarket

model, and use some numerical examples to illustrate how the two performance measures

depend on the non-Poisson MAP inputs and on the non-exponential PH service times.

From many practical applications, the block-structured supermarket model is an impor-

tant queueing model to analyze the relation between the system performance and the

job routing rule, and it can also help to design reasonable architecture to improve the

performance and to balance the load.

Note that this paper provide a clear picture for how to use the phase-structured mean-

field model as well as the matrix-analytic method to analyze performance measures of more

general supermarket models. We show that this picture is organized as three key parts:

(1) Setting up system of differential equations, (2) necessary proofs of the phase-structured

mean-field limit, and (3) performance computation of this supermarket model through the

fixed point. Therefore, the results of this paper give new highlight on understanding per-

formance analysis and nonlinear Markov processes for more general supermarket models

with non-Poisson inputs and with non-exponential service times. Along such a line, there

are a number of interesting directions for potential future research, for example:
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• analyzing non-Poisson inputs such as renewal processes;

• studying non-exponential service time distributions, for example, general distribu-

tions, matrix-exponential distributions and heavy-tailed distributions; and

• discussing the bulk arrival processes, such as BMAP inputs, and the bulk service

processes, where effective algorithms for the fixed point are necessary and interesting.

Up to now, we believe that a larger gap exists when dealing with either renewal inputs

or general service times in a supermarket model, because a more challenging infinite-

dimensional system of differential equations need be established, a more complicated mean-

field limit need be proved, and computation of the fixed point will be more interesting,

difficult and challenging.
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Three Appendices

Appendix A: Proof of Theorem 1

To prove Equations (9) to (12) in Theorem 1, we need the following computational steps.

Note that

d∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

= Cd
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




d−1

+
d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m
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and

d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

+
d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1

×
∑

r1+r2+···+rmA
=d−m∑mA

i6=l
ri≥1

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

=

d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

,

since
{∑mB

j=1

[
u
(N)
k;l,j (t)

]}d−m

corresponds to the case with
∑mA

i 6=l ri = 0 and rl = d −m,

and





mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

+
∑

r1+r2+···+rmA
=d−m∑mA

i6=l
ri≥1

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

=
∑

r1+r2+···+rmA
=d−m

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

[
u
(N)
k;i,j (t)

]




ri

=





mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

.
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we obtain

Cd
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




d−1

+

d−1∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

u
(N)
k;l,j (t)





d−m

=

d∑

m=1

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

= C1
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−1

+
d∑

m=2

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1

×





mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

.

Using m1
m
Cm1
m = Cm1−1

m−1 , we can obtain

d∑

m=2

Cm
d





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1
m





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1

×
∑

n1+n2+···+nmA
=m−m1∑mA

i6=l
ni≥1

0≤nj≤m−m1,1≤j≤mA


 m−m1

n1, n2, . . . , nmA




×

mA∏

i=1





mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




ni

×
∑

r1+r2+···+rmA
=d−m

0≤rj≤d−m,1≤j≤mA


 d−m

r1, r2, . . . , rmA




mA∏

i=1





mB∑

j=1

u
(N)
k;i,j (t)





ri
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=

d∑

m=2

Cm
d

m∑

m1=1

Cm1−1
m−1





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1

×
∑

n1+n2+···+nmA
=m−m1

0≤nj≤m−m1,1≤j≤mA


 m−m1

n1, n2, . . . , nmA




×

mA∏

i=1





mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




ni




mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−m

=

d∑

m=2

Cm
d

m∑

m1=1

m1

m
Cm1
m





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1

×





mA∑

i 6=l

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−m1




mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

=

d∑

m=2

Cm
d

m−1∑

m1−1=0

Cm1−1
m−1





mB∑

j=1

[
u
(N)
k−1;l,j (t)− u

(N)
k;l,j (t)

]




m1−1

×





mA∑

i 6=l

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−1−(m1−1)


mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

=
d∑

m=2

Cm
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

,

we have

C1
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k;l,j (t)

]




d−1

+
d∑

m=2

Cm
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

=
d∑

m=1

Cm
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−1


mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

.
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Thus for k ≥ 1 we obtain

L
(N)
k;l

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
=

d∑

m=1

Cm
d





mA∑

i=1

mB∑

j=1

[
u
(N)
k−1;i,j (t)− u

(N)
k;i,j (t)

]




m−1

×





mA∑

i=1

mB∑

j=1

[
u
(N)
k;i,j (t)

]




d−m

,

which is independent of phase l ∈ {1, 2, . . . ,mA}. Thus we have

L
(N)
k

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
= L

(N)
k;l

(
u
(N)
k−1 (t) , u

(N)
k (t)

)
.

Similarly, for phase l ∈ {1, 2, . . . ,mA}, we have

L
(N)
1;l

([
u
(N)
0 (t)⊗ α

]
, u

(N)
1 (t)

)
=

d∑

m=1

Cm
d




mA∑

i=1

mB∑

j=1

(
u
(N)
0;i (t)αj − u

(N)
1;i,j (t)

)


m−1

×




mA∑

i=1

mB∑

j=1

u
(N)
1;i,j (t)



d−m

.

This gives

L
(N)
1

([
u
(N)
0 (t)⊗ α

]
, u

(N)
1 (t)

)
= L

(N)
1;l

([
u
(N)
0 (t)⊗ α

]
, u

(N)
1 (t)

)

This completes the proof.

Appendix B: The Mean-Field Limit

In this appendix, we use the operator semigroup to provide a mean-field limit for the

sequence of Markov processes {U(N)(t), t ≥ 0}, which indicates the asymptotic indepen-

dence of the block-structured queueing processes in this supermarket model. Note that

the limits of the sequences of Markov processes can usually be discussed by the three

main techniques: Operator semigroups, martingales, and stochastic equations. Readers

may refer to Ethier and Kurtz [4] for more details.

To use the operator semigroups of Markov processes, we first need to introduce some

state spaces as follows. For the vectors u(N) =
(
u
(N)
0 , u

(N)
1 , u

(N)

2 (t) . . .
)
where u

(N)
0 is a

probability vector of size mA and the size of the row vector u
(N)
k is mAmB for k ≥ 1, we
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write

Ω̃N =
{
u(N) : u

(N)
1 ≥ u

(N)
2 ≥ u

(N)
3 ≥ · · · ≥ 0,

1 = u
(N)
0 e ≥ u

(N)
1 e ≥ u

(N)
2 e ≥ · · · ≥ 0,

Nu
(N)
k is a vector of nonnegative integers for k ≥ 0

}
.

and

ΩN =
{
u(N) ∈ Ω̃N : u(N)e < +∞

}
.

At the same time, for the vector u = (u0, u1, u2, . . .) where u0 is a probability vector of

size mA and the size of the row vector uk is mAmB for k ≥ 1, we set

Ω̃ = {u : u1 ≥ u2 ≥ u3 ≥ · · · ≥ 0; 1 = u
(N)
0 e ≥ u

(N)
1 e ≥ u

(N)
2 e ≥ · · · ≥ 0}

and

Ω =
{
u ∈ Ω̃ : ue < +∞

}
.

Obviously, ΩN $ Ω $ Ω̃ and ΩN $ Ω̃N $ Ω̃.

In the vector space Ω̃, we take a metric

ρ
(
u,u′

)
= max

{
max

1≤i≤mA

{
|u0;i − u′0;i|

}
,

max
0≤i≤mA
0≤j≤mB

sup
k≥1

{
|uk;i,j − u′k;i,j|

k + 1

}
 (67)

for u,u′ ∈ Ω̃. Note that under the metric ρ (u,u′) , the vector space Ω̃ is separable and

compact.

B.1: The operator semigroup

For g ∈ ΩN , we write

L1 (g0 ⊗ α, g1) =

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(g0;l (t)αj − g1;l,j)



m−1


mA∑

l=1

mB∑

j=1

g1;l,j




d−m

,

and for k ≥ 2

Lk (gk−1, gk) =

d∑

m=1

Cm
d




mA∑

l=1

mB∑

j=1

(gk−1;l,j − gk;l,j)



m−1 


mA∑

l=1

mB∑

j=1

gk;l,j



d−m

.
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Now, we consider the infinite-dimensional Markov process {U(N)(t), t ≥ 0} on state

space ΩN (or Ω̃N in a similar analysis) for N = 1, 2, 3, . . .. Note that the stochastic

evolution of this supermarket model of N identical servers is described as the Markov

process
{
U(N)(t), t ≥ 0

}
, where

d

dt

(
U(N)(t)

)
= AN f

(
U(N)(t)

)
,

where AN acting on functions f : ΩN → C1 is the generating operator of the Markov

process
{
U(N)(t), t ≥ 0

}
,

AN = AA-In
N +AA-Transition

N +AS-Transition
N +AS-Out

N , (68)

for g ∈ ΩN

AA-In
N f(g) =N

∞∑

k=2

mB∑

j=1

mA∑

i=1




mA∑

l=1


gk−1;l,jdl,i − gk;i,j

mA∑

q=1

di,q


Lk (gk−1, gk)




×
[
f
(
g +

ek;i,j
N

)
− f (g)

]

+N

mB∑

j=1

mA∑

i=1




mA∑

l=1


g0;ldl,iαj − g1;i,j

mA∑

q=1

di,q


L1 (g0 ⊗ α, g1)




×
[
f
(
g +

e1;i,j
N

)
− f (g)

]
, (69)

AA-Transition
N =N

∞∑

k=1

mB∑

j=1

mA∑

i=1

mA∑

l=1


gk;l,jcl,i + gk;i,j

mA∑

q=1

di,q




×
[
f
(
g −

ek;l,j
N

+
ek;i,j
N

)
− f (g)

]

+N

mA∑

i=1

mA∑

l=1


g0;lcl,i + g0,i

mA∑

q=1

di,q




×
[
f
(
g −

e0;l
N

+
e0;i
N

)
− f (g)

]
, (70)

AS-Transition
N = N

∞∑

k=1

mA∑

i=1

mB∑

j=1

mB∑

r=1

(gk;i,rtr,j)

×
[
f(g −

ek;i,r
N

+
ek;i,j
N

)− f(g)
]

(71)

and

AS-Out
N = N

∞∑

k=1

mA∑

i=1

mB∑

j=1

mB∑

r=1

(
gk+1;i,rt

0
rαj

) [
f(g)− f(g−

ek;i,j
N

)
]
, (72)
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where ek;l,j is a row vector of infinite size with the (k; i, j)th entry being one and all others

being zero. Thus it follows from Equations (68) to (72) that

ANf(g) =N
∞∑

k=2

mB∑

j=1

mA∑

i=1




mA∑

l=1


gk−1;l,jdl,i − gk;i,j

mA∑

q=1

di,q


Lk (gk−1, gk)




×
[
f
(
g +

ek;i,j
N

)
− f (g)

]

+N

mB∑

j=1

mA∑

i=1




mA∑

l=1


g0;ldl,iαj − g1;i,j

mA∑

q=1

di,q


L1 (g1 ⊗ α, g1)




×
[
f
(
g +

e1;i,j
N

)
− f (g)

]

+N

∞∑

k=1

mB∑

j=1

mA∑

i=1

mA∑

l=1


gk;l,jcl,i + gk;i,j

mA∑

q=1

di,q




×
[
f
(
g −

ek;l,j
N

+
ek;i,j
N

)
− f (g)

]

+N

mA∑

i=1

mA∑

l=1


g0;lcl,i +

mA∑

q=1

di,q



[
f
(
g −

e0;l
N

+
e0;i
N

)
− f (g)

]

+N

∞∑

k=1

mA∑

i=1

mB∑

j=1

mB∑

r=1

{
(gk;i,rtr,j)

[
f(g −

ek;i,r
N

+
ek;i,j
N

)− f(g)
]

+
(
gk+1;i,rt

0
rαj

) [
f(g)− f(g −

ek;i,j
N

)
]}

. (73)

Remark 5 If the MAP is a Poisson process, then mA = 1 and C = −λ and D = λ; and

if the PH service time distribution is exponential, then mB = 1, T = −µ and T 0α = µ.

In this case, it is easy to check from (73) that

ANf(g) =λN
(
1− gd1

) [
f
(
g +

e1
N

)
− f (g)

]

+ λN

∞∑

k=2

(
gdk−1 − gdk

) [
f
(
g +

ek
N

)
− f (g)

]

− µN

∞∑

n=1

(gn − gn+1)
[
f (g)− f

(
g −

en
N

)]
,

which is the same as (1.5) for d = 2 in Vvedenskaya et al [32].
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B.2: The mean-Field limit

We compute

lim
N→∞

f
(
g +

ek;i,j
N

)
− f (g)

1

N

=
∂

∂gk;i,j
f(g),

lim
N→∞

f (g)− f
(
g−

ek;i,j
N

)

1

N

=
∂

∂gk;i,j
f(g)

and

lim
N→∞

f
(
g−

ek;l,j
N

+
ek;i,j
N

)
− f (g)

1

N

=
∂

∂gk;i,j
f(g)−

∂

∂gk;l,j
f(g).

The operator semigroup of the Markov process
{
U(N)(t), t ≥ 0

}
is defined as TN (t),

where if f : ΩN → C1, then for g ∈ ΩN and t ≥ 0

TN (t)f(g) = E [f(UN (t) | UN (0) = g] . (74)

Note that AN is the generating operator of the operator semigroup TN (t), it is easy to

see that TN (t) = exp {AN t} for t ≥ 0.

Definition 1 A operator semigroup {S (t) : t ≥ 0} on the Banach space L = C(Ω̃) is said

to be strongly continuous if limt→0 S (t) f = f for every f ∈ L; it is said to be a contractive

semigroup if ‖S (t)‖ ≤ 1 for t ≥ 0.

Let L = C(Ω̃) be the Banach space of continuous functions f : Ω̃ → R with uniform

metric ‖f‖ = max
u∈Ω̃

|f(u)|, and similarly, let LN = C(ΩN ). The inclusion ΩN ⊂ Ω̃ induces

a contraction mapping ΠN : L→ LN ,ΠNf(u) = f(u) for f ∈ L and u ∈ ΩN .

Now, we consider the limiting behavior of the sequence {(U(N)(t), t ≥ 0} of Markov

processes for N = 1, 2, 3, . . .. Two formal limits for the sequence {AN} of generating

operators and for the sequence {TN (t)} of semigroups are expressed as A = limN→∞AN
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and T (t) = limN→∞TN (t) for t ≥ 0, respectively. It follows from (73) that as N → ∞

Af(g) =
∞∑

k=2

mB∑

j=1

mA∑

i=1




mA∑

l=1


gk−1;l,jdl,i − gk;i,j

mA∑

q=1

di,q


Lk (gk−1, gk)


 ∂

∂gk;i,j
f(g)

+

mB∑

j=1

mA∑

i=1




mA∑

l=1


g0;ldl,iαj − g1;i,j

mA∑

q=1

di,q


L1 (g0 ⊗ α, g1)


 ∂

∂g1;i,j
f(g)

+
∞∑

k=1

mB∑

j=1

mA∑

i=1

mA∑

l=1


gk;l,jcl,i + gk;i,j

mA∑

q=1

di,q



[

∂

∂gk;i,j
f(g)−

∂

∂gk;l,j
f(g)

]

+

mA∑

i=1

mA∑

l=1


g0;lcl,i + g0,i

mA∑

q=1

di,q



[

∂

∂g0;i
f(g)−

∂

∂g0;l
f(g)

]

+
∞∑

k=1

mA∑

i=1

mB∑

j=1

mB∑

r=1

{
(gk;i,rtr,j)

[
∂

∂gk;i,j
f(g)−

∂

∂gk;r,r
f(g)

]

+
(
gk+1;i,rt

0
rαj

) ∂

∂gk;i,j
f(g)

}
. (75)

We define a mapping: g → u(t,g), where u(t,g) is a solution to the system of differ-

ential vector equations (22) to (26). Note that the operator semigroup T(t) acts in the

space L, thus if f ∈ L and g ∈ Ω̃, then

T(t)f(g) = f (u(t,g)) . (76)

From (73) and (75), it is easy to see that the operator semigroups TN (t) and T(t)

are strongly continuous and contractive, see, for example, Section 1.1 in Chapter one of

Ethier and Kurtz [4]. We denote by D(A) the domain of the generating operator A. It

follows from (76) that if f is a function from L and has the partial derivatives
∂

∂gk;i,j
f (g)

∈ L for k ≥ 1, 1 ≤ i ≤ mA, 1 ≤ j ≤ mB , and supk≥1,1≤i≤mA,1≤j≤mB

{∣∣∣∣
∂

∂gk;i,j
f(g)

∣∣∣∣
}
<∞,

then f ∈ D(A).

Let D be the set of all functions f ∈ L that have the partial derivatives
∂

∂gk;i,j
f (g)

and
∂2

∂gk1;m,n∂gk2;r;s
f(g), and there exists C = C(f) < +∞ such that

sup
k≥1

1≤i≤mA,1≤j≤mB

g∈Ω̃

{∣∣∣∣
∂

∂gk;i,j
f(g)

∣∣∣∣
}
< C (77)
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and

sup
k1,k2≥1

1≤m,r≤mA,1≤n,s≤mB

g∈Ω̃

{∣∣∣∣
∂2

∂gk1;m,n∂gk2;r;s
f(g)

∣∣∣∣
}
< C. (78)

We call that f ∈ L depends only on the first K subvectors if for g(1), g(2) ∈ Ω̃, it

follows from g
(1)
i = g

(2)
i for 1 ≤ i ≤ K that f(g(1)) = f(g(2)), where g

(1)
i and g

(2)
i are row

vectors of size mAmB for 1 ≤ i ≤ K. A similar and simple proof of that in Proposition 2

in Vvedenskaya et al [32] can show that the set of functions from L that depends on the

first finite subvectors is dense in L.

The following lemma comes from Proposition 1 in Vvedenskaya et al [32]. We restated

it here for convenience of description.

Lemma 1 Consider an infinite-dimensional system of differential equations: For k ≥ 0,

zk (0) = ck

and
dzk(t)

dt
=

∞∑

i=0

zi(t)ai,k(t) + bk(t),

and let
∞∑
i=0

|ai,k(t)| ≤ a, |bk(t)| ≤ b0 exp {bt} , |ck| ≤ ̺, b0 ≥ 0 and a < b. Then

zk(t) ≤ ̺ exp {at}+
b0

b− a
[exp {bt} − exp {at}] .

Definition 2 Let A be a closed linear operator on the Banach space L = C(Ω̃). A subspace

D of D (A) is said to be a core for A if the closure of the restriction of A to D is equal to

A, i.e., A|D = A.

For any matrix A = (ai,j), we define its norm as follows:

‖A‖ = max
i




∑

j

|ai,j|



 .

It is easy to compute that

‖I ⊗A‖ = ‖A‖ ,

‖A⊗ I‖ = ‖A‖ ,

‖diag (De)‖ = ‖D‖ .
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We introduce some notation

M1 =

d∑

m=1

Cm
d = 2d − 1,

M2 = mAmB

d∑

m=1

Cm
d (d+m− 2) ,

a =
∥∥T 0α

∥∥+ ‖[C + diag (De)]⊕ T‖+ 2 ‖D‖ (M1 +M2) .

The following lemma is a key to prove that the set D is a core for the generating

operator A.

Lemma 2 Let u(t) be a solution to the system of differential vector equations (22) to

(23). Then

sup
k,k1≥1

1≤i,m≤mA,1≤j,n≤mB

{∣∣∣∣
∂uk;i,j(t,g)

∂gk1;m,n

∣∣∣∣
}

≤ ̺ exp {at} , (79)

and

sup
k,k1,k2≥1

1≤i,m,r≤mA
1≤j,n,s≤mB

{∣∣∣∣
∂2uk;i,j(t,g)

∂gk1;m,n∂gk2;r;s

∣∣∣∣
}

≤ ̺̂exp {at}+ 2 ‖D‖

a
(exp {2at} − exp {at}) . (80)

Proof: We only prove Inequalities (79), while Inequalities (80) can be proved similarly.

Notice that u(t) is a solution to the system of differential vector equations (22) to

(23) and possesses the derivatives
∂uk;i,j(t,g)

∂gk1;m,n

and
∂2uk;i,j(t,g)

∂gk1;m,n∂gk2;r;s
. For simplicity of

description, we set u′k;i,j,k1;m,n =
∂uk;i,j(t,g)

∂gk1;m,n
. It follows from (22) to (23) that for k, k1 ≥

1, 1 ≤ i,m ≤ mA and 1 ≤ j, n ≤ mB,

du′k;i,j,k1;m,n

dt
=

mA∑

l=1


u′k−1;l,j,k1;m,ndl,i − u′k;i,j,k1;m,n

mA∑

q=1

di,q


Lk (uk−1 (t) , uk (t))

+

mA∑

l=1


uk−1;l,jdl,i − uk;l,j

mA∑

q=1

di,q


L′

k (uk−1 (t) , uk (t))

+

mA∑

l=1

u′k;l,j,k1;m,ncl,i + u′k;i,j,k1;m,n

mA∑

q=1

di,q

+

mB∑

s=1

u′k;i,s,k1;m,nts,j +

mB∑

s=1

u′k+1;i,s,k1;m,nt
0
sαj,
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and

L′
k (uk−1 (t) , uk (t)) =

d∑

m=1

Cm
d (m− 1)




mA∑

l=1

mB∑

j=1

(uk−1;l,j − uk;l,j)



m−2

×




mA∑

l=1

mB∑

j=1

uk;l,j



d−m 


mA∑

l=1

mB∑

j=1

(
u′k−1;l,j,k1;m,n − u′k;l,j,k1;m,n

)



+

d∑

m=1

Cm
d (d−m)




mA∑

l=1

mB∑

j=1

(uk−1;l,j − uk;l,j)



m−1

×




mA∑

l=1

mB∑

j=1

uk;l,j



d−m−1 


mA∑

l=1

mB∑

j=1

u′k;l,j,k1;m,n


 .

Using Lemma 1, we obtain Inequalities (79) with

a =
∥∥I ⊗ T 0α

∥∥ + ‖[C + diag (De)]⊕ T‖

+ [‖D ⊗ I‖+ ‖diag (De)⊗ I‖] (M1 +M2)

=
∥∥T 0α

∥∥+ ‖[C + diag (De)]⊕ T‖+ 2 ‖D‖ (M1 +M2) ,

b0 = 0

and

̺ = sup
k,k1≥1

1≤i,m≤mA,1≤j,n≤mB

{∣∣u′k;i,j,k1;m,n (0)
∣∣} .

This completes this proof.

Lemma 3 The set D is a core for the operator A.

Proof: It is obvious that D is dense in L and D ∈ D(A). Let D0 be the set of

functions from D which depend only on the first K subvectors of size mAmB. It is easy

to see that D0 is dense in L. Therefore, Using proposition 3.3 in Chapter 1 of Ethier and

Kurtz [4], it can show that for any t ≥ 0, the operator T(t) does not bring D0 out of

D. Select an arbitrary function ϕ ∈ D0 and let f(g) = ϕ(u(t;g)), g ∈Ω̃. It follows form

Lemma 2 that f has partial derivatives
∂

∂gk;i,j
f (g) and

∂2

∂gk1;m,n∂gk2;r;s
f(g) that satisfy

conditions (77) and (78). Therefore f ∈ D. This completes the proof.

In what follows we can prove Theorem 2 given in Section 5.

Proof of Theorem 2: This proof is to use the convergence of operator semigroups

as well as the convergence of their corresponding generating generators, e.g., see Theorem
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6.1 in Chapter 1 of Ethier and Kurtz [4]. Lemma 3 shows that the set D is a core for the

generating operator A. For any function f ∈ D, we have

N
[
f
(
g −

en;i,j
N

)
− f (g)

]
−

∂

∂gn;i,j
f (g) = −

γ
(1)
n;i,j

N

∂2f
(
g − γ

(2)
n;i,j

)

∂g2n;i,j
,

and ∣∣∣∣∣∣

∣∣∣∣∣∣
γ
(1)
n;i,j

N

∂2f
(
g − γ

(2)
n;i,j

)

∂g2n;i,j

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

ℜ

N
.

Thus we obtain

|ANf(g)− f(g)| ≤
ℜ

N





∞∑

k=2

mB∑

j=1

mA∑

i=1




mA∑

l=1


gk−1;l,jdl,i − gk;i,j

mA∑

q=1

di,q


Lk (gk−1, gk)




+

mB∑

j=1

mA∑

i=1




mA∑

l=1


g0;ldl,iαj − g1;i,j

mA∑

q=1

di,q


L1 (g0 ⊗ α, g1)




+

∞∑

k=1

mB∑

j=1

mA∑

i=1

mA∑

l=1


gk;l,j |cl,i|+ gk;i,j

mA∑

q=1

di,q




+

mA∑

i=1

mA∑

l=1


g0;l |cl,i|+ g0,i

mA∑

q=1

di,q




+

∞∑

k=1

mA∑

i=1

mB∑

j=1

mB∑

l=1

(
gk;i,l |tl,j|+ gk+1;i,lt

0
l αj

)


 .

Note that

L1 (g0 ⊗ α, g1) =
(g0e)

d − (g1e)
d

g0e− g1e
≤ d

and

L1 (gk−1, gk) =
(gk−1e)

d − (gke)
d

gk−1e− gke
≤ d,

we obtain

|ANf(g)− f(g)| ≤
ℜ

N


d

∞∑

k=2

mB∑

j=1

mA∑

i=1

mA∑

l=1

gk−1;l,jdl,i + d

mB∑

j=1

mA∑

i=1

mA∑

l=1

g0;ldl,iαj

+
(
‖C‖+mA ‖D‖+ ‖T‖+

∥∥T 0α
∥∥)

∞∑

k=0

gke

]

≤
ℜ

N

[
(
‖C‖+ (d+mA) ‖D‖+ ‖T‖+

∥∥T 0α
∥∥)

∞∑

k=0

gke

]
.
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For g ∈ Ω, it is clear that ge =
∞∑
k=0

gke < +∞. Thus we get

lim
N→∞

sup
g∈Ω

|ANf(g)−Af(g)| = 0.

This gives

lim
N→∞

sup
g∈Ω

|TN (t)f(g)− f(u(t;g))| = 0.

This completes the proof.

Appendix C: Proof of Theorem 3

To prove Theorem 3, we need to extend the coupling method given in Turner [30] and

Martin and Suhov [22] such that this coupling method can be applied to discussing stability

of more general block-structured supermarket models.

In the two supermarket modelsQ andR, they have the same parameters: N, d,mA, C,D,

mB, α, T , and the same initial state at t = 0; while the only difference between both of

them is their choice numbers: d (Q) = 1 and d (R) ≥ 2.

To set up a coupling between the two infinite-dimensional Markov processes
{
U

(Q)
N (t) : t ≥ 0

}

and
{
U

(R)
N (t) : t ≥ 0

}
, we need introduce some notation as follows. For a supermarket

model S with k ≥ 1, 1 ≤ i ≤ mA and 1 ≤ i ≤ mB , we denote by A
(i,j)
k (S) and D

(i,j)
k (S)

the kth arrival time and the kth departure time when the MAP environment process is at

state i and the PH service environment process is at state j.

As discussed in Section 4 of Martin and Suhov [22], we introduce the notation of

”shadow” customers to build up the coupling relation between the two supermarket models

Q and R. For k and (i, j), the time of the shadow customer arriving at the supermarket

model Q is written as A
(i,j)
k (R), and at time A

(i,j)
k (Q) the shadow customer is replaced by

the real customer immediately. The relationship between the shadow and real customers

are described by Figure 8 (a), while there will not exist a shadow customer in Figure 8

(b).

From the two supermarket models Q and R, we construct a new supermarket model

Q with shadow customers such that at environment state pair (i, j), each arrival time in

the supermarket model Q is the same time as that in the supermarket model R, while

each departure time is the same time as that in supermarket model Q. Based on this,
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Real task
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A Q
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(b)   Shadow task does not exist

,i j

k
A Q

,i j

k
A R

Shadow task

SM Q

SM Q

SM R

Real task
Real task

Shadow task

Remark: SM denotes supermarket model

Figure 7: The shadow and real tasks

we can set up a coupling between the two supermarket models R and Q by means of the

supermarket model Q.

For a supermarket model S and for k ≥ 1, 1 ≤ i ≤ mA, 1 ≤ i ≤ mB , x ≥ 0, we define

ψ(i,j)
x (S, t) =

N∑

n=1

[
l(i,j)n (S, t)− x

]
+
,

where l
(i,j)
n (S, t) is the queue length of the nth server with environment state pair (i, j) at

time t, and [y]+ = max(y, 0).

The following lemma gives a useful property of ψ
(i,j)
x (S, t) for the two supermarket

models Q and R.

Lemma 4 If ψ
(i,j)
y (R, t) ≤ ψ

(i,j)
y (Q, t) for all y and ψ

(i,j)
x (R, t) = ψ

(i,j)
x (Q, t), then

#
{
n : l(i,j)n (R, t) ≤ x

}
≤ #

{
n : l(i,j)n (Q, t) ≤ x

}
(81)

and

#
{
n : l(i,j)n (R, t) ≥ x

}
≤ #

{
n : l(i,j)n (Q, t) ≥ x

}
, (82)

where # {A} means the number of elements in the set A.

Proof: If ψ
(i,j)
y (R, t) ≤ ψ

(i,j)
y (Q, t) for all y and ψ

(i,j)
x (R, t) = ψ

(i,j)
x (Q, t), then for

y = x+ 1

−ψ
(i,j)
x+1(R, t) ≥ −ψ

(i,j)
x+1(Q, t),
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using ψ
(i,j)
x (R, t) = ψ

(i,j)
x (Q, t) we get

ψ(i,j)
x (R, t)− ψ

(i,j)
x+1(R, t) ≥ ψ(i,j)

x (Q, t)− ψ
(i,j)
x+1(Q, t). (83)

Similarly, for y = x− 1 we have

ψ(i,j)
x (R, t)− ψ

(i,j)
x−1(R, t) ≤ ψ(i,j)

x (Q, t)− ψ
(i,j)
x−1(Q, t). (84)

Since

ψ(i,j)
x (S, t) =

N∑

n=1

[
l(i,j)n (S, t)− x

]
+
,

we obtain

ψ(i,j)
x (S, t)− ψ

(i,j)
x+1(S, t) =

N∑

n=1

{[
l(i,j)n (S, t)− x

]
+
−
[
l(i,j)n (S, t)− (x+ 1)

]
+

}
.

To calculate ψ
(i,j)
x (S, t)− ψ

(i,j)
x+1(S, t), we analyze the following two cases:

Case one: If l
(i,j)
n (S, t) ≤ x, then

[
l
(i,j)
n (S, t)− x

]
+
=
[
l
(i,j)
n (S, t)− (x+ 1)

]
+
= 0.

Case two: If l
(i,j)
n (S, t) > x, then

[
l
(i,j)
n (S, t)− x

]
+
−
[
l
(i,j)
n (S, t)− (x+ 1)

]
+
= 1.

If
∑N

n=1

{[
l
(i,j)
n (S, t)− x

]
+
−
[
l
(i,j)
n (S, t)− (x+ 1)

]
+

}
= k, then k is the number of

servers whose queue length is bigger than x. That is #
{
n : l

(i,j)
n (S, t) > x

}
= k. Hence,

we obtain

ψ(i,j)
x (S, t)− ψ

(i,j)
x+1(S, t) =

N∑

n=1

{[
l(i,j)n (S, t)− x

]
+
−
[
l(i,j)n (S, t)− (x+ 1)

]
+

}

= #
{
n : l(i,j)n (S, t) > x

}
. (85)

It follows from (83) to (85) that

#
{
n : l(i,j)n (R, t) > x

}
≥ #

{
n : l(i,j)n (Q, t) > x

}
,

this gives

#
{
n : l(i,j)n (R, t) ≤ x

}
≤ #

{
n : l(i,j)n (Q, t) ≤ x

}
.

Similarly, it follows from (84) to (85) that

#
{
n : l(i,j)n (R, t) > x− 1

}
≤ #

{
n : l(i,j)n (Q, t) > x− 1

}
,
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which follows

#
{
n : l(i,j)n (R, t) ≥ x

}
≤ #

{
n : l(i,j)n (Q, t) ≥ x

}
.

This completes the proof.

The following lemma sets up the coupling between the two supermarket models R and

Q, which is based on the arrival and departure processes.

Lemma 5 For the two supermarket models R and Q and for x, t ≥ 0, 1 ≤ i ≤ mA, 1 ≤

i ≤ mB, we have

ψ(i,j)
x (R, t) ≤ ψ(i,j)

x (Q, t). (86)

Proof: To prove (86), we need to discuss the departure process and the arrival process,

respectively.

(1) The departure process

Note that the two supermarket models R and Q have the same initial state at t = 0,

thus (86) holds at time t = 0.

In the departing process, it is easy to see from the above coupling that at environment

state pair (i, j), if given the server orders in supermarket models Q and R according to

the queue length of each server (including shadow tasks), then the customer departures

always occur at the same order servers. For example, if the customer departure occurs

from the server with the shortest queue length in supermarket model Q, then a customer

departure must also occur from the server with the shortest queue length in supermarket

model R. Note that the customer departures will be lost either from an empty server or

from one containing only shadow customers.

Let D be a potential departure time at environment state pair (i, j), and suppose that

(86) holds for t < D. Then we hope to show that (86) holds for t = D.

Suppose that (86) does not hold at a departure point D. Then we have ψ
(i,j)
x (R,D) >

ψ
(i,j)
x (Q,D).

Since (86) holds for t < D, we get that ψ
(i,j)
x (Q,D−) ≤ ψ

(i,j)
x (R,D−). Based on this,

we discuss the two cases: ψ
(i,j)
x (Q,D−) = ψ

(i,j)
x (R,D−) and ψ

(i,j)
x (Q,D−) < ψ

(i,j)
x (R,D−),

and indicate how the two cases influence the departure process at time D.

Case one: If ψ
(i,j)
x (Q,D−) = ψ

(i,j)
x (R,D−) and ψ

(i,j)
x (R,D) > ψ

(i,j)
x (Q,D), then

a departure at time D makes that ψ
(i,j)
x (R,D) does not change, while ψ

(i,j)
x (Q,D) is

diminished. Let a and b be the queue lengths at time D in the two supermarket models
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Q and R, respectively. Then for x = 0, 1, . . . , a− 1, it is seen that

ψ(i,j)
x (Q,D−) =

N∑

n=1

[
l(i,j)n (Q, t)− x

]
+

reduces 1. Similarly, for x = 0, 1, . . . , b− 1,

ψ(i,j)
x (R,D−) =

N∑

n=1

[
l(i,j)n (R, t)− x

]
+

also reduce 1. Therefore, when x is b, b + 1, . . . , a − 1 (that is b ≤ x < a), we have

ψ
(i,j)
x (R,D) > ψ

(i,j)
x (Q,D). However, when ψ

(i,j)
x (Q,D−) = ψ

(i,j)
x (R,D−), both from that

(81) holds for t < D and from that the departure channels are at a coupling, it is clear

that the condition: ψ
(i,j)
x (R,D) > ψ

(i,j)
x (Q,D) for b ≤ x < a, is impossible.

Case two: ψ
(i,j)
x (R,D−) < ψ

(i,j)
x (Q,D−). In this case, when a customer departs the

system, the two numbers ψ
(i,j)
x (R,D−) and ψ

(i,j)
x (Q,D−) have only two cases: Unchange

and diminish 1. Note that ψ
(i,j)
x (R,D−) < ψ

(i,j)
x (Q,D−), we get that ψ

(i,j)
x (R,D−) + 1 ≤

ψ
(i,j)
x (Q,D−). Hence, we can not obtain that ψ

(i,j)
x (R,D) > ψ

(i,j)
x (Q,D).

(2) The arrival process

In a similar way to the above analysis in ”(1) The departure process”, we discuss the

coupling for the arriving process as follows.

Let A = A
(i,j)
k be an arrival time. Then (86) holds for t < A. We hope to show that

(86) holds for t = A.

This proof is similar to the above analysis in ”(1) The departure process”. Let a and

b be the queue lengths at time A in the two supermarket models Q and R, respectively.

Then ψ
(i,j)
x (R,A−) = ψ

(i,j)
x (Q,A−) holds for some x for a < x ≤ b. Thus, it follows from

(82) that

#
{
n : l(i,j)n (R,A−) ≥ x

}
≤ #

{
n : l(i,j)n (Q,A−) ≥ x

}

and

#
{
n : l(i,j)n (R,A−) ≥ b

}
≤ #

{
n : l(i,j)n (Q,A−) ≥ a

}
.

However, the condition: #
{
n : l

(i,j)
n (R,A−) ≥ b

}
≤ #

{
n : l

(i,j)
n (Q,A−) ≥ a

}
, is impossi-

ble, because it follows from the above coupling that for a < x ≤ b

#
{
n : l(i,j)n (R,A−) ≥ b

}
> #

{
n : l(i,j)n (Q,A−) ≥ a

}
.
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Since the queue length a was chosen at the arrival time, it is seen that the queue length a

must exist in the supermarket modelQ. In this case, we get that #
{
n : l

(i,j)
n (Q,A−) = a

}
≥

1. Therefore, this leads to a contradiction.

Note that there are some shadow customers in supermarket model Q, the shadow

customers do not affect the queue lengths in the supermarket model Q at the arrival time

A
(i,j)
k (Q), thus (86) holds. This completes the proof.

The following lemma provides the coupling between the two supermarket models Q

and R, which is based on the arrival and departure processes.

Lemma 6 In the two supermarket models Q and R, for k > 0, 1 ≤ i ≤ mA, 1 ≤ j ≤ mB

we have

D
(i,j)
k (R) ≤ D

(i,j)
k (Q) (87)

and

A
(i,j)
k (R) ≤ A

(i,j)
k (Q) . (88)

Proof: Using the above coupling, now we continue to discuss the two supermarket

models Q and R.

Note that the two supermarket modelsQ andR have the same parametersN,m, ci,j , di,j , µi

for 1 ≤ i, j ≤ m and the same initial state at t = 0, the departure or arrival of the kth

customer and the Markov environment process in the supermarket model Q correspond

to those in the supermarket model R. This ensures that if (87) holds for the departure

process up to a given time, then so does (88) for the arrival process up to that time.

Now, we use (86) to prove (87).

Suppose that (87) is false, that is, D
(i,j)
k (R) > D

(i,j)
k (Q). Then the number of customer

departures before time D from the supermarket model R must be the same as that in the

supermarket model Q. Since the arrivals in the two supermarket models R and Q occur at

the same times, there must be the same total number of customers in the two supermarket

models R and Q. Hence, ψ
(i,j)
0 (R,D−) = ψ

(i,j)
0 (Q,D−). But, it is seen from (81) that

the number of servers with non-zero queue length in the supermarket model Q is bigger

than that in the supermarket model R, this indicates that the number of servers with

empty server in the supermarket model Q is less than that in the supermarket model

R. Therefore, if a departure occurs in the supermarket model Q, then there must be a

departure in the supermarket model R. On the contrary, if a departure occurs in the
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supermarket model R, then it is possible not to have a departure in the supermarket

model Q. Note that the departure time in the supermarket model Q is the same as that

in the supermarket model Q, hence the departure time in the supermarket model R is

earlier than that in the supermarket model Q, that is, D
(i,j)
k (R) ≤ D

(i,j)
k (Q). This leads

to a contradiction of the assumption D
(i,j)
k (R) > D

(i,j)
k (Q). Hence (87) holds. Similarly,

we can prove (88). This completes the proof.

Proof of Theorem 3: Using the lemma 6, we know that D
(i,j)
k (R) ≤ D

(i,j)
k (Q) and

A
(i,j)
k (R) ≤ A

(i,j)
k (Q). This indicates that for any two corresponding servers in the two

supermarket models Q and R, the arrival and departure times in the supermarket model

R are earlier than those in the supermarket model Q. Hence, the queue length of any

server in the supermarket model R is shorter than that of the corresponding server in the

supermarket model Q. This shows that the total number of customers in the supermarket

model R is no greater than the total number of customers in the supermarket model Q

at time t ≥ 0. Based on this, we obtain a coupling between the processes {U
(N)
Q (t)} and

{U
(N)
R (t)}: For all t ≥ 0, the total number of customers in the supermarket model R is

no greater than that in the supermarket model Q. This completes the proof.
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