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Abstract We consider the problem of controlling a set of vehicles at an intersection, in 
the presence of uncontrolled vehicles and a bounded disturbance. We begin by discretizing 
the system in space and time to construct a suitable discrete event system (DES) abstrac-
tion, and formally define the problem to be solved as that of constructing a supervisor over 
the discrete state space that is safe (i.e., collision-free), non-deadlocking (i.e., the vehicles 
all cross the intersection eventually), and maximally permissive with respect to the cho-
sen discretization. We show how to model the uncontrolled vehicles and the disturbance 
through uncontrollable events of the DES abstraction. We define two types of relations 
between systems and their abstraction: state reduction and exact state reduction. We prove 
that, when the abstraction is a state reduction of a continuous system, then we can obtain a 
safe, non-deadlocking, and maximally permissive memoryless supervisor. This is obtained 
by translating safety and non-deadlocking specifications to the abstract domain, synthesiz-
ing the supervisor in this domain, and finally translating the supervisor back to the concrete 
domain. We show that, when the abstraction is an exact state reduction, the resulting supervi-
sor will be maximally permissive among the class of all supervisors, not merely memoryless 
ones. Finally, we provide a customized algorithm and demonstrate its scalability through 
simulation.
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1 Introduction

We consider the problem of controlling a set of n vehicles in the vicinity of an intersection. 
We assume that vehicles move along a set of m intersecting two-way roads, m ≤ n, and that 
the path that each vehicle will follow is known a priori (for example, by means of reading 
the turn signal of the vehicle), and we want to supervise the vehicles’ behaviour to avoid a 
side impact of any two vehicles on intersecting paths, and a rear-end collision of any two 
vehicles on a common or on merging paths. See Fig. 1 for an example.

We assume that a certain subset of the vehicles are uncontrolled, and that there is a 
disturbance on the vehicle dynamics with a known bound. The problem to be solved consists 
of designing a supervisor that restricts the actions of the controlled vehicles such that the 
system is safe (i.e., collision-free), non-deadlocking (i.e., the vehicles must eventually cross 
the intersection), and maximally permissive.

Three common approaches to this problem include: the computation of maximally con-
trolled invariant sets; mapping the problem to that of scheduling; and abstraction/symbolic 
models. Among approaches falling in the first category, we mention, e.g., Hafner and Del 
Vecchio (2011), Verma and Del Vecchio (2011), Hafner et al. (2013). By explicitly comput-
ing the capture set, or set of states from which it is not possible to guarantee avoidance of the 
unsafe states, these approaches naturally satisfy safety, non-deadlockingness and maximal 
permissiveness, and can deal with sources of uncontrollability and also with measurement 
uncertainty. However, such approaches typically require conditions on the geometry of the 
unsafe set and on the structure of the dynamics, or else scale poorly to systems with more 
than a few dimensions. See also Tomlin et al. (2003) for an example involving a flight man-
agement system. Scheduling approaches work by allocating time intervals during which the 
vehicles can be inside the intersection. The scheduling problem is generally NP-hard but 
takes polynomial time in the special case where all jobs require the same processing time. 
Reducing the vehicle control problem to the polynomial-time scheduling case amounts to 
either an assumption of certain symmetries in the vehicle control problem set-up, or a prob-
lem relaxation where such symmetries are not satisfied. Approaches in this category include 
Colombo and Del Vecchio (2012), its extension to the case of dynamics with disturbances, 
Bruni et al. (2013), its extension to the case of uncontrolled vehicles (Ahn et al. 2014), and 
its extension to the case of networks of sufficiently spaced intersections, (Colombo 2014). 
See also (Colombo and Del Vecchio 2015), which uses precedence constraints to allow

Fig. 1 An example of the
vehicle control problem



for vehicles on common or non-intersecting trajectories to use the intersection simultane-
ously. Another approach is to pre-compute fail-safe maneuvers as in Kowshik et al. (2011), 
or evasion plans as in Au et al. (2012). These last approaches deal with some types of 
environmental uncertainty, but do not guarantee maximal permissiveness.

Our approach falls in the category of abstraction/symbolic models. Abstraction based 
methods work by mapping the continuous system model and specifications to a finite 
model and solving for a supervisor on the finite model, in such a way that the obtained 
supervisor can be used on the original (continuous) system, while preserving safety 
and non-deadlocking properties. Work in this domain includes Alur et al. (2000), Daws and 
Tripakis (1384) in the context of verification / model checking, as well as Colombo and Del 
Vecchio (2011a, b), Colombo and Girard (2013), which make use of differential flatness of 
dynamical systems to construct abstractions with provable errors bounds. Our work is most 
closely related to that of Girard et al. (2010), Pola and Tabuada (2009), Zamani et al. (2012), 
Camara et al. (2011), which construct symbolic models that satisfy simulation or alternat-
ing simulation relations with the original system. In particular, this work also makes use of 
alternating simulation relations, and variations thereof.

In this problem, the number of vehicles will typically be at least five (we provide simu-
lation results for up to six vehicles) and the bad set has a non-convex shape, which makes 
exact computation of the capture set intractable. On the other hand, the scheduling meth-
ods of Colombo and Del Vecchio (2012), Bruni et al. (2013), and Ahn et al. (2014) do not 
explicitly pre-compute sets of states from which there exist solutions to the corresponding 
scheduling problems, but instead perform verification on-line. Because the exact verifi-
cation problem is NP-hard, only the polynomial-time problem relaxations are feasible in 
practice. While also suffering from problems related to state space explosion, abstraction 
based methods nevertheless offer more scalability than capture set computation and more 
flexibility than reductions to scheduling problems.

We proceed to solve the problem by discretizing the system in space and time, thus 
obtaining a finite solution space. Using this discretization as a basis, we construct a 
discrete-event system (DES) abstraction and model the two sources of uncontrollability 
(the uncontrolled vehicles and the disturbance) through uncontrollable events. By translat-
ing the safety and non-deadlocking specifications from the continuous to the discrete-event 
domain, we formulate the problem to be solved in the context of supervisory control theory 
of DES (see Ramadge and Wonham 1987; Wonham 2013; Cassandras and Lafortune 2008). 
Specifically, we obtain a maximally permissive safe and non-deadlocking supervisor for the 
DES by solving the Basic Supervisor Control Problem in the Non-Blocking case (BSCP-
NB). The resulting supervisor is then translated back to the original (continuous) problem 
domain, preserving safety, non-deadlockingness, and maximal permissiveness with respect 
to the discretization.

To prove that safety and non-deadlockingness are preserved when translating the 
obtained supervisor from the abstract back to the continuous problem domain and to charac-
terize the sense in which the resulting solution is maximally permissive, we define two types 
of relations between systems and their abstractions: the state reduction and the exact state 
reduction. We prove that, when the abstraction is a state reduction of the original system, the 
obtained supervisor for the continuous domain problem will be safe, non-deadlocking, and 
maximally permissive among the class of memoryless supervisors. When the abstraction is 
an exact state reduction of the original system, the obtained supervisor will be maximally 
permissive among the class of all supervisors, not merely memoryless ones. In the context 
of the vehicles control problem, we show that our DES abstraction is a state reduction of 
the continuous system model. Additionally, we show that, if the bounds on the disturbance



are an integral multiple of one of the discretization parameters, then our DES abstraction 
becomes an exact state reduction of the continuous system model.

Finally, we present a formulation of the control problem as a game against nature and 
show how this results in a categorization of the discrete states as winning for the controller, 
winning for nature, or losing for both. We then make use of this through a technique based 
on iterative refinement, which consists of computing the winning sets on an abstraction with 
a coarse discretization, and refining the abstraction at states found to be losing for both the 
controller and nature. By making use of iterative refinement and the problem’s structure, 
we are able to obtain an algorithm that is faster than the standard DES supervisory control 
algorithms. We show through simulation that the algorithm is scalable in practice, with 
running times of under one minute for systems with tens of millions of states in the DES 
abstraction.

Our contributions are as follows. First, the translation of the system model and spec-
ifications to the domain of DES allows us to leverage methods from supervisory control 
theory, methods which are well-suited to finding maximally permissive supervisors in the 
presence of uncontrolled elements of the environment. Second, the notions of state reduc-
tion and exact state reduction are general notions that conserve maximal permissiveness, 
rather than merely safety and non-deadlockingness, when going from an abstraction back 
to the original system. To our knowledge, the construction of maximally permissive mem-
oryless supervisors for DES specifications through abstractions has not been considered in 
other works. Finally, the iterative refinement algorithm presented in this work diminished 
running time by a factor of over 1000 in some cases and many of the techniques used in this 
algorithm could also generalize to other problems of interest. Preliminary versions of some 
of the results presented here have appeared in Dallal et al. (2013a, b).

The organization of this paper is as follows. In Section 2, we present the system model, its 
time/space discretization, and the problem to be solved. In Section 3, we describe the set of 
collision points to be avoided. In Section 4, we define the two modeling formalisms which 
are used in this paper, namely transition systems and discrete event systems, and present 
a fixed point algorithm for computing a maximally permissive safe and non-deadlocking 
supervisor. In Section 5, we present the state reduction, exact state reduction, and associated 
theorems. In Section 6, we define the DES abstraction of the system defined in Section 2, 
prove that this abstraction is a state reduction of the system defined in Section 2, and addi-
tionally prove under what conditions the abstraction is an exact state reduction. In Section 
7, we present the problem formulation as a game against nature and describe the iterative 
refinement procedure. In Section 8, we present our algorithm for solving the vehicle control 
problem. In Section 9, we present simulation results for an implementation of our algorithm. 
Finally, we conclude in Section 10. We also include derivations of the equations used in our 
algorithms, which are contained in the Appendix.

2 Model and problem definition

Consider a set of n vehicles N = {1, . . . , n} modeled as kinematic entities (integrators) and 
described by

ẋ = v + d (1)

where x ∈ X ⊂ R
n is the state, v ∈ V ⊂ R

n is the control input, and d ∈ D ⊂ R
n is

a disturbance input representing unmodeled dynamics (for instance, the dynamic response
of the vehicle to the engine torque). That is, d models the discrepancy between the full



system model and the simple model ẋ = v. Assume that X is compact (i.e., the vehicles
are controlled in some neighbourhood of the intersection) and that D = [dmin, dmax]n, with
dmin ≤ 0 ≤ dmax . We take the set V to be the (discrete) set of vectors with elements in
the finite set {aμ, (a + 1)μ, . . . , bμ}, with a, b ∈ N and μ ∈ R+. The values aμ and
bμ are denoted by vmin and vmax , respectively. To allow for the possibility that a subset of
the vehicles cannot be controlled, let v be partitioned into two subvectors, vc ∈ Vc for the
controlled vehicles, and vuc ∈ Vuc for the uncontrolled vehicles, so that v = (vc, vuc) and
V = Vc×Vuc. Assume also that vmin+dmin ≥ μ, so that μ constitutes a lower bound on the
velocity of the vehicles. Finally, assume that the input v is kept constant over time intervals
[kτ, (k + 1)τ ), k ∈ N and discretize the above system in time with step τ , obtaining

xk+1 = xk + uk + δk (2)

with xk = x(kτ), uk = v(kτ)τ , δk = ∫ (k+1)τ
kτ

d(t)dt . Calling U = V τ and � = Dτ , we
have that uk ∈ U and δk ∈ �. In the remainder of this paper, we will also use the notation
δmin := dminτ and δmax = dmaxτ . As with the set V , we use the notation u = (uc, uuc) to
denote the controls of the controlled and uncontrolled vehicles and write U = Uc × Uuc.
Next, we discretize the system in space by defining a set of discrete states Q̃ and a mapping
� : X → Q̃ from continuous to discrete states as follows:

�i(xi) :=
⎧
⎨

⎩

(c + 1/2)τμ, for c ∈ Zs.t.
cτμ < xi ≤ (c + 1)τμ,

ifxi ≤ αk

qi,m, ifxi > αk

(3)

where k is the index of the road on which vehicle i exits the intersection (i.e., after any
turn) and αk marks the end of the intersection on road k (the shape of the intersection will
be described in more detail in Section 3). Note that, if the vehicles are to be controlled
beyond the end of the intersection, then a value greater than αk could be used in Eq. 3.
This could potentially result in more than one marked state in the definition of G (see
Section 6) and would not invalidate any results presented in this paper. Define �(x) as the
vector (�1(x1), . . . , �n(xn)) and define the notation �−1(q) = {x ∈ X : �(x) = q}. In
words, the space X is covered by a regular lattice with spacing τμ. Vehicles before the end
of the intersection are mapped to a point of this lattice whereas vehicles after the end of
the intersection are mapped to “special” states qi,m. The state qm = (q1,m, . . . , qn,m) is the
(unique) discrete state where all vehicles have crossed the intersection. Assume that, for all
q ∈ Q̃, there exists some x ∈ X such that �(x) = q. Finally, assume that there is some set
B of bad states (representing collision points) and that we would like to define a supervisor
so that x(t) /∈ B ∀ t ≥ 0. We will describe the bad set in the following section. Specifically,
we wish to solve the following problem:

Problem 1 Let X/� denote the quotient set of X with respect to the equivalence relation
R� ⊆ X × X defined by (x1, x2) ∈ R� ⇔ �(x1) = �(x2). Given Q̃, define a supervisor
σ : X/� → 2Vc that assigns to each x(kτ) ∈ X a set of inputs vc ∈ Vc allowed for the
interval [kτ, (k + 1)τ ) and constant over this time interval, with the following properties:

– if vc(t) ∈ σ(x(
t/τ�τ)) for t ∈ [kτ, (k + 1)τ ), then x(t) /∈ B in the same time interval
(safety)

– if σ(x(kτ)) �= ∅, vc(t) ∈ σ(x(
t/τ�τ)) for t ∈ [kτ, (k+1)τ ), and �(x((k+1)τ )) �= qm,
then σ(x((k + 1)τ )) �= ∅ (non-deadlockingness)

– if σ̃ �= σ and σ̃ satisfies the two properties above, then σ̃ (x) ⊆ σ(x) for all x ∈ X

(maximal permissiveness).



3 Bad set description

Let the set of roads in this system be denoted by R = {1, . . . , m}. Associated to each
vehicle i is a pair of roads (ri,1, ri,2), indicating that the vehicle starts on road ri,1 and turns
onto road ri,2 at the intersection. Each road r in this system is parametrized by the length αr

of the road that is inside the intersection. We assume that vehicles instantaneously switch
from one road to another (i.e., when turning) at point 0. Thus, vehicle i is on road ri,1 when
xi < 0, inside the intersection when xi ∈ [−αri,1 , αri,2 ], and on road ri,2 when xi > 0. We
define any two pairs of roads (ri,1, ri,2) and (rj,1, rj,2) as conflicting in one of two cases:

Case 1 If two vehicles share the same start or end road, they must maintain a minimal
separation distance of γ > 0 while on the same road. Mathematically, ri,1 =
rj,1 ⇒ (xi, xj ≤ 0 ⇒ |xi −xj | ≥ γ ) and ri,2 = rj,2 ⇒ (xi, xj ≥ 0 ⇒ |xi −xj | ≥
γ ).

Case 2 If two vehicles are on trajectories that intersect inside the intersection region while
turning, they are forbidden from being in the intersection region simultaneously.
Mathematically, (xi, xj ) /∈ (−αri,1 , αri,2) × (−αrj,1 , αrj,2).

It can be shown that, if ri,1 �= rj,1 and ri,2 �= rj,2, then case 2 occurs when an odd
number of

rj,1 ≥ ri,1, rj,1 ≥ ri,2, rj,2 ≤ ri,1, and rj,2 ≤ ri,2 (4)

are true (assuming vehicles driving on the right side of the road). We call the set of all
forbidden points the bad set, and denote it by B. Note that we do not include collision points
involving two uncontrolled vehicles in the bad set, since these cannot be prevented through
any control action. If neither case 1 nor case 2 occur for a pair of vehicles i and j (ex: both
vehicles turning right), then no constraints are placed on their joint behavior. See Fig. 2 for
a pictorial example of cases 1 and 2.

Fig. 2 An example scenario
involving three vehicles on five
roads. Blue lines segments are
drawn for each vehicle indicating
starting road and ending road.
Case 1 occurs when two line
segments meet at an endpoint,
and case 2 occurs when two line
segments intersect



4 Modelling formalisms

This section defines the two types of system models that will be used in this work: tran-
sition systems and discrete-event systems. Relations between systems and abstractions are
typically described in terms of transition systems. However, the specifications we consider
and the solution computation are in the domain of discrete-event systems. Thus, this section
will give brief overviews of both types of systems and finally unify the two of them.

4.1 Transition systems

Definition 1 (Transition System) A transition system S is defined as a tuple S = (X,U, →
, Y, H), where X is the set of states, U is a set of control inputs, →⊆ X × U × X is a
transition relation, Y is an output set, and H : X → Y is the output function.

Henceforth, we will usually refer to transition systems simply as systems. For a system
S = (X,U, →, Y,H), we will use the notation Postu(x) := {x′ ∈ X : (x, u, x′) ∈→}
and U(x) := {u ∈ U : Postu(x) �= ∅}. In the remainder of this paper, it will be
assumed that all systems satisfy the property H(x1) = H(x2) ⇒ U(x1) = U(x2), for all
x1, x2 ∈ X. In words, this means that any two states with the same observation should not
be distinguishable by their available set of inputs.

Definition 2 (Run) A run ρ of length n for a system S = (X,U, →, Y,H) is a sequence
of past states and inputs (x0, u0, . . . , xn−1, un−1, xn), such that ui ∈ U(xi) and xi+1 ∈
Postui (xi) for i = 0, . . . , n − 1.

The set of runs of length n is denoted by Rn(S) and the set of runs is R(S) =⋃∞
i=0 Rn(S). We use Rn(S|x) and R(S|x) to denote the set of runs of length n start-

ing from x and the set of all runs starting from state x, respectively. For any D ⊆
X, also let Rn(S|D) := ∪x∈DRn(S|x) and R(S|D) := ∪x∈DR(S|x). Given run
ρ = (x0, u0, . . . , xn−1, un−1, xn), we define the notation tgt (ρ) := xn and ρ(k) :=
(x0, u0, . . . , xk−1, uk−1, xk), called a prefix of ρ. We will also abuse notation and write
(x, u, x ′) ∈ ρ if ρ = (x0, u0, . . . , xn−1, un−1, xn) and there exists some i = 0, . . . , n − 1
such that xi = x, ui = u, and xi+1 = x′.

Definition 3 (History) A history θ of length n for a system S = (X,U, →, Y,H) is a
sequence of past outputs and inputs (y0, u0, . . . , yn−1, un−1, yn), such that there exists a
run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is consistent with θ , in the sense that
yi = H(xi) for i = 0, . . . , n.

The set of histories of length n is denoted by �n(S) and the set of histories is
�(S) = ⋃∞

i=0 �n. We will also write θ(ρ) to mean the unique history produced by a run
ρ ∈ R. We use �n(S|x) = {θ(ρ)|ρ ∈ Rn(S|x)} and �(S|x) = {θ(ρ)|ρ ∈ R(S|x)}
to denote the set of histories of length n starting from x and the set of all histories start-
ing from state x, respectively. For any D ⊆ X, also let �n(S|D) := ∪x∈D�n(S|x) and
�(S|D) := ∪x∈D�(S|x). Given history θ = (y0, u0, . . . , yn−1, un−1, yn), we define the
notation θ(k) := (y0, u0, . . . , yk−1, uk−1, yk) and tgt (θ) := yn, as was the case with runs.

Definition 4 (Specification) A safety specification for a system S = (X,U, →, Y, H) is
a subset Saf e ⊆→ of transitions that we would like the system S to be restricted to. A



marking specification for S is a set Xm ⊆ X of “special” or marked states. We say that S is 
deadlocking if there exists a run ρ such that U(tgt  (ρ))  = ∅ and tgt (ρ) ∈/ Xm.

Definition 5 (Supervisor) A supervisor σ for a system S = (X, U, →, Y,H)  is a func-
tion σ : � → 2U which chooses which control inputs to enable/disable after each 
history. A supervisor is called memoryless if it is of the form σ : Y → 2U . A run  
ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) is allowed by supervisor σ if ui ∈ σ (θ(ρ(i))), 
for i = 0, . . . , n  − 1.

Definition 6 (Specification Satisfaction) A supervisor σ for system S = (X, U, →, Y,H)  
is safe with respect to Saf e ⊆→ if every run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ R(S) 
allowed by σ satisfies (xi , ui , xi+1) ∈ Saf e for i = 0, . . . , n  − 1. Supervisor σ is non-
deadlocking with respect to Xm ⊆ X on domain D ⊆ X if every run ρ ∈ R(S|D) allowed 
by σ satisfies σ(θ(ρ))  �= ∅ ∨ tgt (ρ) ∈ Xm.

Definition 7 (Maximal Permissiveness) Given a system S = (X, U, →, Y,H), a safety  
specification Saf e ⊆→, and a marking specification Xm ⊆ X, supervisor σ is maximally 
permissive on domain D with respect to these safety and non-deadlocking conditions if there 
does not exist a supervisor σ ′ ⊃D σ which also satisfies these conditions, where σ ′ ⊃D σ 
signifies that σ ′(θ) ⊇ σ(θ)  for all θ ∈ �(S|D) and that there exists θ ∈ �(S|D) such that 
σ ′(θ) ⊃ σ(θ). Finally, σ is safe and non-deadlocking on a maximal domain D if there does 
not exist a supervisor σ ′ that is safe and non-deadlocking on a larger domain D′ ⊃ D.

It should be noted that there exists a unique maximal domain on which a supervisor can 
be safe and non-deadlocking, and a unique maximally permissive supervisor on this domain. 
Furthermore, it is not possible to construct a supervisor that is safe, non-deadlocking, and 
strictly more permissive by considering a smaller domain. Thus, from this point forward 
we will refer to the conjunction of both the property of being maximally permissive and 
the property of being safe and non-deadlocking on a maximal domain simply as maximal 
permissiveness. These issues will become clearer in Section 4.4.

For any safe, non-deadlocking, and maximally permissive supervisor on domain D, we  
may assume (without loss of generality) σ(ρ)  = ∅ for all ρ = (x) such that x /∈ D. Under 
this assumption, there exists a domain D under which a supervisor σ is non-deadlocking 
with respect to Xm ⊆ X if and only if every non-zero length run ρ ∈ R(S) allowed by σ 
satisfies σ(θ(ρ))  �= ∅ ∨ tgt (ρ) ∈ Xm (if a zero length run ρ = (x) does not satisfy this 
condition, we may simply take x /∈ D). Moreover, to verify that a memoryless supervisor is 
non-deadlocking on some domain D, it is sufficient to consider runs of length exactly one. 
To see this, consider any run ρ = (x0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is allowed by σ . 
Clearly, since ρ is allowed by σ , it must be that σ (θ(ρ(k))) �= ∅, for  any  k < n. Hence, 
only the last state reached along ρ may be deadlocked, and this may be precluded if we 
know that the run (xn−1, un−1, xn) ∈ R1(S) is non-deadlocking. This fact will be used in 
the proof of Theorem 3.

4.2 Discrete-event systems

Definition 8 (Discrete Event System) A (deterministic) discrete event system is a tuple 
G = (X,E,ψ, x0, Xm) where X is a set of states, E is a set of events, ψ : X × E → X is a 
partial transition function, x0 ∈ X is the initial state, and Xm ⊆ X is a set of marked states 
representing the completion of some behavior of interest.



Given a set of events E,E∗ denotes the set of finite strings of events in E. A set of strings
K ⊆ E∗ is called a language. The prefix-closure of a language K ⊆ E∗, denoted by K ,
is defined by K = {s ∈ E∗ : ∃t ∈ E∗ ∧ st ∈ K}. Given a DES G = (X,E,ψ, x0, Xm),
ψ is extended from events to strings through ψ(x, se) = ψ(ψ(x, s), e). The language
generated by G, denoted by L(G), is defined as L(G) := {s ∈ E∗ : ψ(x0, s)!}, where !
means “is defined”. The language marked by G, denoted by Lm(G) ⊆ L(G) is defined by
Lm(G) := {s ∈ L(G) : ψ(x0, s) ∈ Xm}. DES G is non-blocking if Lm(G) = L(G), and
blocking otherwise.

A specification for a DES G is given by a second DES H defined over the same
event set and satisfying L(H) ⊆ L(G) and Lm(H) ⊆ Lm(G). Here, L(H) consti-
tutes the legal sublanguage of L(G), representing safe system behavior. The language
Lm(H) is usually assumed to satisfy the property Lm(H) = L(H) ∩ Lm(G) (a techni-
cal condition called Lm(G)-closure). In general, the event set of G and H , denoted by
E is partitioned into controllable events Ec and uncontrollable events Euc. Controllable
events are events which can be disabled (i.e., prevented), whereas uncontrollable events
cannot be disabled. Control in the DES domain is concerned with obtaining a supervisor
S : L(G) → 2E that is safe (i.e., L(S/G) ⊆ L(H) and Lm(S/G) ⊆ Lm(H)), non-
blocking (i.e., Lm(S/G) = L(S/G)), and maximally permissive, where S/G is the system
G controlled by S. Obtaining this supervisor consists of solving the basic supervisory con-
trol problem in the non-blocking case, or BSCP-NB, as described in Ramadge and Wonham
(1987), Cassandras and Lafortune (2008).

The solution to problem BSCP-NB is the language (Lm(H))↑C , where ↑ C denotes the
supremal controllable sublanguage operation. This is the largest sublanguage K ⊆ Lm(H)

that is controllable, which means it satisfies the property KEuc ∩ L(G) ⊆ K . Thus, K is
controllable if there exist no strings in K that can be extended by an uncontrollable event to
a string in L(G)\K . The standard algorithm which solves this problem is given in Wonham
and Ramadge (1987) and constructs a supervisor S such that Lm(S/G) = (Lm(H))↑C and
L(S/G) = (Lm(H))↑C . Notably, controllable sublanguages are closed under union, so that
a unique maximal solution indeed exists.

4.3 Translating between transition systems and discrete event systems

The previous two sections describe models for systems and specifications using the two for-
malisms of transition systems and DES. In this section, we show how to translate a system
model and specification from the domain of transition systems to the domain of DES, and
unify notation between these. In what follows, the notation ! will be used to mean that a par-
tial function is defined at a particular value. Given a system Sa = (Xa,Ua,→a, Ya,Ha),
a safety specification Saf ea ⊆→a and a marking specification Xm,a ⊆ Xa , construct sys-
tem automaton Ga := (Xa ∪ Za,Ec ∪ Euc, ψGa , xa,0, Xm,a), and specification automaton
Ha := (Xa ∪ Za,Ec ∪ Euc, ψHa , xa,0, Xm,a) satisfying the following conditions:

Ec = Ua (5)

ψHa ⊆ ψGa ⊆ (Xa × Ec × Za) ∪ (Za × Euc × (Xa ∪ Za)) (6)

ψGa (xa, ua)! ⇔ ∃x′
a ∈ Xa : (xa, ua, x

′
a) ∈→a (7)

ψHa (xa, ua)! ⇔ ∃x′
a ∈ Xa : (xa, ua, x

′
a) ∈ Saf ea (8)

∃t ∈ E∗
uc : ψGa (xa, uat) = x′

a ⇔ (xa, ua, x
′
a) ∈→a (9)

∃t ∈ E∗
uc : ψHa (xa, uat) = x′

a ⇔ (xa, ua, x
′
a) ∈ Saf ea, (10)



where Za is a set of intermediate states. The above equations can be understood to mean that 
we use uncontrollable events in Ha and Ga to model non-determinism in the transition 
relation →a . In words, Eq. 5 signifies that the controllable events of Ga and Ha are the 
control inputs of Sa , whereas Eq. 6 signifies that controllable (resp. uncontrollable) events 
are defined only from states in Xa (resp. Za) and lead only to states in Za (resp. Xa ∪ Za).
Equations 7 and 9 signify that, for every (xa, ua, x

′
a) ∈→a , event ua is defined from state xa 

of Ga and there exists some uncontrollable sequence of events following ua that takes Ga 
from ψGa (xa, ua) to x′

a . The same interpretation holds for Eqs. 8 and 10 with respect to Ha .
We remark that we did not define what the initial state xa,0 of Ga and Ha is. For now, 

we note that these will be dummy initial states without physical significance, but with 
transitions to some subset Xa,0 of initial states. We will return to this issue in Section 6.

To unify notation between systems as in Def. 1 and discrete event systems as described 
above, we will use the notation U(x)  := {u ∈ Ec : ψ(x,  u)!} and Postu(x) := {x′ ∈ Xa : (∃t 
∈ E∗

uc)(x
′ = ψ(x, ut))} for x ∈ Xa and (in an abuse of notation) will write (x, u, x′) ∈ ψ if x 

∈ Xa and x′ ∈ Postu(x). This notation allows us to work with DES of the above form in the 
context of the state reductions and exact state reductions that will be presented in the 
following sections.

4.4 Supervisor computation

In this section, we present the algorithm for solving problem BSCP-NB, recast as a state-
based maximal fixed point computation, in a manner that is more akin to existing methods 
for control problems in the context of transition systems (see, e.g., Tabuada 2009). Note 
that we use non-deadlocking specifications in this work, rather than the more general non-
blocking specifications that are normally used in DES supervisory control problems.

Consider a transition system S = (X, U, →) (we have suppressed the last two 
arguments, as they are not relevant to the following discussion), a safety specification Saf e 
⊆→, and a marking specification Xm ⊆ X, as described in Section 4.1. We will define a 
function F : 2X → 2X whose greatest fixed point is used to obtain a maximally permissive 
supervisor with respect to the safety and non-deadlocking specifications.

Recall from Section 4.2 that the solution to the supervisory control problem in DES is 
the supremal controllable sublanguage, and that a language K is controllable if there exist 
no strings in K that can be extended by an uncontrollable event to a string in L(G) \ K . 
Recall also from Section 4.3 that we use uncontrollable events to model non-determinism in 
the translation from transition systems to DES. Thus, given a state x ∈ X and a current set of 
winning states Z in the iteration of (the yet to be defined function) F , let Cont (x|Z) 
denote the set of control inputs that do not violate controllability. Mathematically,

Cont(x|Z) = {u ∈ U |∀x′ ∈ Postu(x), [(x, u, x′) ∈ Saf e ∧ x′ ∈ Z]}. (11)

We now define F : 2X → 2X by

F(Z) = {x ∈ Z|x ∈ Xm ∨ Cont(x|Z) �= ∅}. (12)

Now let Fk(Z) denote the kth iteration of F applied toZ, definable through the recursion
F 0(Z) = Z and Fk(Z) = F(F k−1(Z)). Because F is monotone, we obtain by the Knaster-
Tarski theorem that the greatest fixed point νZ.F (Z) = limk→∞ Fk(X) is well defined.



A maximally permissive supervisor σ : X → 2U for the safety and non-deadlocking
specification exists, and is given by

σ(x) = Cont(x|νZ.F (Z)). (13)

Remark 1 Typically, DES have a fixed initial state, and the supervisor computation removes 
both states that are deadlocked, as well as states that are not accessible (not reachable from 
the initial state). We note here that inaccessible states may be removed at the end of the fixed 
point algorithm, as an inaccessible state is by definition unreachable from any accessible 
state. Thus, the inaccessible states cannot affect either deadlocking properties or controlla-
bility properties of any accessible state. As a consequence, the supervisor that is computed 
through Eq. 13 will be correct at all accessible states.

5 State reductions and supervisory control

In this section, we define two types of relations between systems: state reductions and 
exact state reductions, and prove theorems relating safety, non-deadlockness, and maximal 
permissiveness of supervisors for systems related through state reductions and exact state 
reductions. The state reduction and exact state reduction relations are based on the notions 
of alternating similarity relations, as defined in (Tabuada 2009). The theorems proven in 
this section will be used later in this paper to establish the correctness of our solution to 
Problem 1.

We begin with a motivating example.

Example 1 Consider the simple transition system T = (X, U, →, Y, H ), with

X = [0, 1)
U = {low, high}
→ =

{

(x, u, x′) ∈ X × U × X

∣
∣
∣
∣

(u = low ∧ x′ = x/2)
∨(u = high ∧ x′ = (1 + x)/2)

}

Y = {y}
H(x) = y, ∀x ∈ X.

Let us suppose that there is no initial state information about the system. Given a state
estimate of [a, b), the state estimate following control input low will be [a/2, b/2), whereas
the state estimate following control input high will be [(1+a)/2, (1+b)/2). In either case,
the estimate has been reduced from an interval of size b − a to one of size (b − a)/2. Thus,
every single past input that is remembered by a controller yields exactly 1 bit of information
about the current state. Notably, there is no finite number of past control decisions over a
run beyond which no further information about the current state is obtained. For such an
example, maximally permissive control could require not only memory, but infinite memory
and hence an infinite state space.

Because abstractions of systems typically have large state spaces, non-memoryless super-
visors will typically be computationally infeasible. As the above example demonstrates,
there exist very simple systems under which even finite memory supervisors are insuf-
ficient to the problem of obtaining maximally permissive supervisors. In this work, we



therefore concentrate on determining conditions under which maximally permissive mem-
oryless supervisors can be obtained, and also address the problem of finding conditions
on system dynamics under which there is no loss by restricting attention to memoryless
supervisors.

5.1 The state reduction

Definition 9 (State Reduction) Given two systems Sa and Sb with Ya = Yb = Y , we say
that Sa is a state reduction of Sb with state relation R ⊆ Xa × Xb and output dependent
control relation C : Y → 2Ua×Ub (hereafter referred to only as control relation) if:

1. R−1 = {(xb, xa) ⊆ Xb × Xa : (xa, xb) ∈ R} is a function.
2. For every y ∈ Y , the relation C(y) ⊆ Ua × Ub is a bijection relation.
3. Ha(xa) = Hb(xb) if and only if (xa, xb) ∈ R.
4. ∀(xa, ua, x

′
a) ∈→a , ∃(xb, ub, x

′
b) ∈→b such that (xa, xb) ∈ R, (ua, ub) ∈ C(Ha(xa)),

and (x′
a, x

′
b) ∈ R.

5. ∀(xb, ub, x
′
b) ∈→b, ∃(xa, ua, x

′
a) ∈→a such that (xa, xb) ∈ R, (ua, ub) ∈ C(Hb(xb)),

and (x′
a, x

′
b) ∈ R.

Remark 2 The state reduction was first defined in Dallal et al. (2013b), where we used 
slightly different conditions. In this work, we have changed notation for the control relation 
C to resolve ambiguity. Furthermore, condition 5) was previously stated as: ∀(xa, xb) ∈ R,
(ua, ub) ∈ C and x′

b ∈ Postub (xb), ∃x′
a ∈ Postua (xa) such that (x′

a, x
′
b) ∈ R. The  two

conditions can be shown to be equivalent under conditions 1) and 2).

In words, condition 1) signifies that every xb ∈ Xb is in relation with exactly one xa ∈
Xa , condition 5) signifies that, for every (xb, ub, x

′
b) ∈→b, there exists (xa, ua, x

′
a) ∈→a

which models (xb, ub, x
′
b) ∈→b, and condition 4) signifies that every transition in →a

models some transition in →b. Significantly, conditions 4) and 5) can be achieved by con-
struction for any system Sb, and relations R and C satisfying conditions 1), 2), and 3).
Furthermore, the system Sa is the quotient system of Sb with respect to R and C in the case
of alternating simulation, and is therefore uniquely defined.

Definition 10 (Induced Specification) Given system Sb with state reduction Sa , along with
safety and marking specifications Saf eb ⊆→b and Xm,b ⊆ Xb on system Sb, define the
induced specification on Sa as follows:

(xa, ua, x
′
a) ∈ Saf ea ⊆→a

⇔
{

(xb, ub, x
′
b) ∈→b s.t.(xa, xb) ∈ R

∧(ua, ub) ∈ C(Ha(xa)) ∧ (x′
a, x

′
b) ∈ R

}

⊆ Saf eb (14)

xa ∈ Xm,a ⊆ Xa ⇔ {xb ∈ Xb s.t.(xa, xb) ∈ R} ⊆ Xm,b (15)

The usefulness of Def. 9 is illustrated in the following theorem:

Theorem 1 Suppose that system Sa is a state reduction of system Sb with state rela-
tion R and control relation C and that we are given safety and marking specifications
Saf eb ⊆→b and Xm,b ⊆ Xb for system Sb. Let Saf ea and Xm,a be the corresponding



induced specifications for system Sa and suppose that we additionally have the property
(xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). Finally, let σa : Y → 2Ua be the max-
imally permissive, safe, and non-deadlocking supervisor, where Y is the (common) output
space, and define the supervisor σb : Y → 2Ub by ub ∈ σb(y) iff ∃ua ∈ σa(y) such
that (ua, ub) ∈ C(y). Then σb is safe, non-deadlocking, and maximally permissive among
memoryless supervisors of the form σb : Y → 2Ub .

Proof We proceed in three claims. The first two claims show that σa is non-deadlocking
(resp., safe) if and only if σb is non-deadlocking (resp., safe). The last claim uses mono-
tonicity of the mapping from σa to σb to show that the first two claims imply maximal
permissiveness of σb.

Claim 1 σa is non-deadlocking iff σb is non-deadlocking.
As per the discussion following Def. 6, it suffices to consider runs of length one when

verifying non-deadlockingness. Thus, the property to be proven is as follows
{ ∀xa ∈ Xa,∀ua ∈ σa(Ha(xa)),∀x′

a ∈ Postua (xa),[
x′
a ∈ Xm,a ∨ σa(Ha(x

′
a)) �= ∅]

}

⇔
{ ∀xb ∈ Xb,∀ub ∈ σb(Hb(xb)),∀x′

b ∈ Postub
(xb),[

x′
b ∈ Xm,b ∨ σb(Hb(x

′
b)) �= ∅]

}

.

(16)

(⇒) Consider any xb ∈ Xb, any ub ∈ σb(Hb(xb)), any x′
b ∈ Postub

(xb), and let y =
Hb(xb) and y′ = Hb(x

′
b). By property (5) of Def. 9, there exist xa ∈ Xa , ua ∈ Ua ,

and x′
a ∈ Postua (xa) such that (xa, xb) ∈ R, (ua, ub) ∈ C(y), and (x′

a, x
′
b) ∈ R.

By property (3) of Def. 9, Ha(xa) = Hb(xb) = y and Ha(x
′
a) = Hb(x

′
b) = y′.

Since (ua, ub) ∈ C(y) and ub ∈ σb(y), we have that ua ∈ σa(y), and hence that
x′
a ∈ Xm,a ∨ σa(y

′) �= ∅. By definition of Xm,a in Eq. 15, we have that x′
a ∈

Xm,a ∧ (x′
a, x

′
b) ∈ R ⇒ x′

b ∈ Xm,b. By definition of σb, we have that σa(y
′) �= ∅ ⇒

σb(y
′) �= ∅. Thus, x′

a ∈ Xm,a ∨ σa(y
′) �= ∅ implies x′

b ∈ Xm,b ∨ σb(y
′) �= ∅ and we

are done.
(⇐) Suppose that there exist xa ∈ Xa , ua ∈ σa(Ha(xa)), and x′

a ∈ Postua (xa) such that
x′
a /∈ Xm,a and σa(Ha(x

′
a)) = ∅. Let y = Ha(xa) and y′ = Ha(x

′
a). By property (4)

of Def. 9, there exist xb ∈ Xb, ub ∈ Ub, and x′
b ∈ Postub

(xb) such that (xa, xb) ∈ R,
(ua, ub) ∈ C(y), and (x′

a, x
′
b) ∈ R. Since (ua, ub) ∈ C(y) and ua ∈ σa(y), we

have that ub ∈ σb(y). By property (3) of Def. 9, Hb(xb) = Ha(xa) = y and
Hb(x

′
b) = Ha(x

′
a) = y′. By definition of σb, σa(y

′) = ∅ ⇒ σb(y
′) = ∅. By

assumption, (xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). Since (x′
a, x

′
b) ∈ R and

x′
a /∈ Xm,a , it follows that x′

b /∈ Xm,b, and we are done.

Claim 2 σa is safe iff σb is safe.
Mathematically, this requires proving

{∀xa ∈ Xa,∀ua ∈ σa(Ha(xa)),∀x′
a ∈ Postua (xa), (xa, ua, x

′
a) ∈ Saf ea

}

⇔ {∀xb ∈ Xb,∀ub ∈ σb(Hb(xb)),∀x′
b ∈ Postub

(xb), (xb, ub, x
′
b) ∈ Saf eb

}
.

(17)

(⇒) Consider any xb ∈ Xb, any ub ∈ σb(Hb(xb)), any x′
b ∈ Postub

(xb), and let y, y′,
xa , ua , and x′

a be as in (⇒) of Claim 1. Then (xa, ua, x
′
a) ∈ Saf ea and by Eq. 14,

(xb, ub, x
′
b) ∈ Saf eb.

(⇐) Suppose that there exist xa ∈ Xa , ua ∈ σa(Ha(xa)), and x′
a ∈ Postua (xa) such that

(xa, ua, x
′
a) /∈ Saf ea . By Eq. 14, there exists (xb, ub, x

′
b) ∈→b such that (xa, xb) ∈



R, (ua, ub) ∈ C(y), (x′
a, x

′
b) ∈ R, and (xb, ub, x

′
b) /∈ Saf eb. Since (xa, xb) ∈ R,

we have, by property (3) of Def. 9, that Ha(xa) = Hb(xb) = y. By definition of σb

and the fact that (ua, ub) ∈ C(y), we have that ub ∈ σb(y) and we are done.

Claim 3 σb is maximally permissive.

Given any supervisor σ ′
b : Y → 2Ub , let σ ′

a : Y → 2Ua be defined by ua ∈ σ ′
a(y) iff

∃ub ∈ σ ′
b(y) such that (ua, ub) ∈ C(y) and let the function σb→a be the mapping which

takes a supervisor σ ′
b for system b to the supervisor σ ′

a for system a in this way. Clearly,
σ ′

b ⊆ σb ⇔ σb→a(σ
′
b) ⊆ σb→a(σb) = σa . Thus, if there exists a safe and non-deadlocking

supervisor σ ′
b � σb then it follows that σa is not maximally permissive, a contradiction.

The above theorem shows that it is possible to compute a supervisor for a system with
a large or infinite state space by abstracting that system to one with a finite state space,
computing a supervisor for the reduced system, and translating back. Furthermore, this pro-
cess conserves not only safety and non-deadlockingness in the translation, but also maximal
permissiveness.

Remark 3 The above theorem characterizes a controller σ as safe and non-deadlocking
for system S = (X,U, →, Y,H), safety specification Saf e, and marking specification
Xm if and only if ∀x ∈ X, ∀u ∈ σ(H(x)), ∀x′ ∈ Postu(x), we have that (x, u, x′) ∈
Saf e∧(σ (H(x′)) �= ∅∨x′ ∈ Xm). This is a sufficient condition for a system to be safe and
non-deadlocking, but it is not necessary if the supervisor can use initial state information,
even if we restrict attention to memoryless supervisors. For an example of such a situation,
see Example 2.

Example 2 Figure 3 shows an example of a system (left) and its corresponding state
reduction (right). If we assume that there is only a marking specification and no safety spec-
ification, then the maximally permissive supervisor σ1 for the state reduction would enable
{a, b} from state {1, 2} and {a} from state {3, 4, 5}. It can be seen that this would indeed
be a maximally permissive memoryless solution for the left system if there were no initial
state information. If, however, the initial state is known a priori to be one of {1, 2}, then
there exists a strictly more permissive memoryless supervisor σ2 for the left system which
also enables b from states {3, 4, 5}. It is possible to be more permissive from states {3, 4, 5}
by making use of the fact that the initial states are {1, 2} and event c was disabled from
states {1, 2}, making state 5 unreachable. Another safe memoryless supervisor σ3 enables
{a} from states {1, 2} and {a, b, c} from states {3, 4, 5}. Thus, it is possible to enable more
from states {3, 4, 5} by enabling less from states {1, 2}.

Consistent with the discussion of Remark 3, both of these supervisors violate the prop-
erty of Eqs. 16 and 17, namely that ∀x ∈ X, ∀u ∈ σ(H(x)), ∀x′ ∈ Postu(x), we have that 
(x, u, x′) ∈ Saf e ∧ (σ (H (x′)) �= ∅ ∨ x′ ∈ Xm). In particular, σ2 and σ3 both allow b from 
state 5, despite the fact that this allows (5, b,  8), and state 8 is deadlocked. Furthermore, the 
union of σ2 and σ3 is deadlocking, since it allows the string bc, which leads to dead-locked 
state 8. Thus, there does not exist a maximally permissive safe and non-deadlocking 
supervisor which uses the initial state information in this case. The key point is that the 
property of Eqs. 16 and 17 is based on the discussion following Def. 6, which requires that 
the suffix of a run (including, in particular, suffixes of length 1) also be a run. Clearly, this is 
something which does not apply when there is initial state information.



Fig. 3 A system and its corresponding state reduction. States of the left system with the same output are
placed in a common box. We use the usual DES convention of denoting marked states with a double circle
and initial states with an incoming arrow that has no source state

Note that the system on the left is accessible, deterministic, and has both initial and
marked states which respect the partition of states determined by the output map. This exam-
ple is very closely related to the problem of obtaining maximally permissive supervisors of
the form S : XG → 2E for a discrete event system G, subject to specification automaton
H , which would normally require the supervisor to be defined over the state space of the
product automaton G × H .

5.2 The exact state reduction

Definition 11 (Exact State Reduction (2)) Given two systems Sa and Sb with Ya = Yb = Y ,
we say that Sa is an exact state reduction (2) of Sb with state relation R ⊆ Xa × Xb and
control relation C : Y → 2Ua×Ub if Sa is a state reduction of Sb with state and control
relations R and C and:

6. ∀(xa, ua, x
′
a) ∈→a , ∀x′

b ∈ Xb : (x′
a, x

′
b) ∈ R, ∃(xb, ub, x

′
b) ∈→b such that (xa, xb) ∈

R and (ua, ub) ∈ C(Ha(xa)).

The above condition is akin to a time-reversed alternating similarity condition, in the 
sense that it requires that every transition of Sa have a corresponding transition in Sb, for  
every pair of related target states, rather than for every pair of related source states. Lemma 
1 demonstrates its usefulness.

Remark 4 The exact state reduction was first defined in Dallal et al. (2013b), where we 
used a normal (i.e., non time-reversed) alternating similarity condition. We have added the 
“(2)” in this work to differentiate between these.

Lemma 1 Suppose that system Sb has an exact state reduction (2) Sa . Then, for any history 
θb for system Sb and any xb ∈ Xb such that H(xb) = tgt (θb), there exists a run ρb such 
that θb = θ(ρb) and xb = tgt (ρb).



Proof The proof is by induction on the length of θb. The base case is trivially true. Assume
that the lemma holds up to histories of length n and consider a pair of histories θb ∈ �n(Sb)

and θ ′
b ∈ �n+1(Sb) such that θb is a prefix of θ ′

b. Also define y = tgt (θb), y′ = tgt (θ ′
b), and

let ρ′
b = (x0

b , . . . , xn
b , un

b, x
n+1
b ) ∈ Rn+1(Sb) be such that θ ′

b = θ(ρ′
b). Note that, in particu-

lar, this implies Hb(x
n
b ) = y and Hb(x

n+1
b ) = y′. Since (xn

b , un
b, x

n+1
b ) ∈→b, we have from

property (5) that ∃(xn
a , un

a, x
n+1
a ) ∈→a such that (xn

a , xn
b ) ∈ R, (un

a, u
n
b) ∈ C(Hb(x

n
b )) =

C(y) and (xn+1
a , xn+1

b ) ∈ R. From property (3), we have Ha(x
n
a ) = Hb(x

n
b ) = y and

Ha(x
n+1
a ) = Hb(x

n+1
b ) = y′. Now consider any x′

b ∈ Xb such that H(x′
b) = tgt (θ ′

b) = y′.
Using property (3) again, we have that (xn+1

a , x′
b) ∈ R. From property (6) we therefore

have that ∃(xb, ub, x
′
b) ∈→b such that (xn

a , xb) ∈ R and (un
a, ub) ∈ C(Ha(x

n
a )) = C(y).

From property (3), we have that Hb(xb) = Ha(x
n
a ) = y and from property (2) we have

that ub = un
b . From the induction hypothesis, there exists a run ρb such that θb = θ(ρb)

and tgt (ρb) = xb. Thus we can form the run ρ′′
b := ρb.ub.x

′
b satisfying θ ′

b = θ(ρ′′
b ) and

tgt (ρ′′
b ) = x′

b, which completes the proof.

In words, the above lemma implies that, when there exists an exact state reduction (2) 
for system Sb, a history θb gives no more information about the current state of Sb than does 
the last output tgt (θb).

Theorem 2 Suppose that system Sa is an exact state reduction (2) of system Sb and that all 
other conditions of Thm. 1 are satisfied, except for the requirement that (xa, xb) ∈ R ⇒ 
(xa ∈ Xm,a ⇔ xb ∈ Xm,b). Then the obtained supervisor σb will be safe, non-deadlocking, 
and maximally permissive among supervisors of the form σb : �(Sb) → 2Ub .

Proof Lemma 1 shows that nothing is gained through a supervisor of the form σb : 
�(Sb) → 2Ub over a memoryless one. What remains to be proven is that the result of 
Thm. 1 holds true for the case of an exact state reduction (2), without the requirement that 
(xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). This requirement is used only in the proof of 
(⇐) in Claim 1. We therefore rewrite this part of the proof, using the exact state reduction 
(2).
(⇐) Suppose that there exist xa ∈ Xa , ua ∈ σa(Ha(xa)), and x′

a ∈ Postua (xa) such that x′
a ∈/ 

Xm,a and σa(Ha (x
′
a)) = ∅. Let y = Ha(xa) and y′ = Ha (x

′
a). From Eq.  15 and x′

a ∈/ Xm,a , 
there must exist some x′

b ∈ Xb such that (x′
a, x

′
b) ∈ R and x′

b ∈/ Xm,b. By property (6) of Def. 
11, there exist xb ∈ Xb and ub ∈ Ub such that (xa, xb) ∈ R,
(ua, ub) ∈ C(y), and x′

b ∈ Postub (xb). Since (ua, ub) ∈ C(y) and ua ∈ σa (y), we have that  
ub ∈ σb(y). By property (3) of Def. 9, Hb(xb) = Ha (xa) = y and Hb(x

′
b) = Ha (x

′
a) = y′. 

By definition of σb, σa(y
′) = ∅ ⇒ σb(y

′) = ∅, and we are done.

Remark 5 As in the case of (non-exact) state reductions, the obtained supervisor will not 
generally be maximally permissive if the supervisor can use initial state information. In 
particular, if the set of initial states X0,b gives more information than the initial output 
y0, then there may exist more permissive supervisors. Note however that, if H(xb,1) = 
H(xb,2) ⇒ [xb,1 ∈ X0,b ⇔ xb,2 ∈ X0,b], then  X0,b gives no more information than the 
initial output y0, and hence the resulting supervisor will still be maximally permissive. This 
is contrary to the case of non-exact state reductions, in which case the above condition is 
still not sufficient to guarantee maximal permissiveness of the supervisor σ2 obtained in 
Theorem 1, as is demonstrated in Example 2.



(a) (b)

Fig. 4 A depiction of the state reduction (left) and exact state reduction (right) for a simple system Sb =
({1, . . . , 8}, {u}, →b, {A,B},Hb), where Hb(x) = A for x ∈ {1, . . . , 4} and Hb(x) = B for x ∈ {5, . . . , 8}.
In both the left and right cases, there is a transition (x, u, x′) ∈→b with x ∈ H−1

b (A) and x′ ∈ H−1
b (B),

and hence a transition from A to B in the corresponding state reduction. The system on the right contains
some transition (x, u, x′) ∈→b with x ∈ H−1

b (A), for every x′ ∈ H−1
b (B). For the system on the left, the

occurrence of a transition fromA toB in the state reduction allows us to determine that Sb is in state 7. For the
system on the right, this transition only allows to determine that the system is some state in the set H−1

b (B)

Figure 4 depicts an example of a state reduction and an example of an exact state 
reduction.

5.3 Comparison of system relations

Consider the three systems S1, S2, and Sa of Figs. 5 and 6. The difference between S1 and S2 
is the label on the transition between states 1 and 4 and on the transition between states 2 and 
3. It can be verified that Sa is an exact state reduction (2) of S1, and that it alternatingly 
bisimulates S2. Moreover, Sa is not an exact state reduction of S2, and does not alternatingly 
bisimulate S1. Consider the safety specification Saf ei =→i \{(3, a,  6)}. For system S1, 
there exists a unique maximally permissive memoryless supervisor σ which achieves this 
specification, namely the supervisor which disables event a on output H(3) = H(4). As 
per Thm. 2, this supervisor is also maximally permissive among supervisors with memory. 
On the other hand, there does not exist a maximally permissive memoryless supervisor for 
system S2. If event a is enabled upon output H(1) = H(2), then a must be disabled upon 
output H(3) = H(4). On the other hand, if a is disabled upon output H(1) = H(2), then 
state 3 becomes unreachable and a can be enabled upon output H(3) = H(4). This occurs 
because the abstraction is not “aligned” (normally referred to as proposition preserving)

(a) (b)

Fig. 5 Systems S1 and S1, demonstrating the difference between exact state reduction and alternating
bisimulation



Fig. 6 System Sa , which is both an exact state reduction (2) of system S1 of Fig. 5 and alternatingly bisim-
ulates system S2 of Fig. 5. This system is not an exact state reduction (2) of S2, and does not alternatingly 
bisimulate system S1. Finally, Sa is also bisimilar to both S1 and S2. It follows that the three relations do not 
coincide

with the specification, in the sense that there exist states xi,1, xi,2 and control input ui of
each system Si , i = 1, 2, such that Hi (xi,1) = Hi (xi,2), but {xi,1} × {ui} × Postui (xi,1) ⊆ 
Saf ei � {xi,2} × {ui} × Postui (xi,2) ⊆ Saf ei .

This example demonstrates a key point in abstraction based synthesis. To obtain max-
imally permissive supervisors with respect to the abstraction, it is typically required that 
the abstraction be aligned not only with the dynamics of the system to be abstracted, but 
also with the specification. In particular, this means that a change of specification requires 
reconstructing the abstraction if one wishes to maintain maximal permissiveness. This is 
not the case with exact state reductions, since exact state reductions produce maximally 
permissive solutions without requiring that abstractions be aligned with specifications. 
Note, however, that abstraction techniques that produce maximally permissive supervisors 
when the abstractions are aligned with the specifications produce solutions that are maxi-
mally permissive with respect to the original system, not merely with respect to the chosen 
discretization.

6 Discrete abstraction

Returning to the vehicle control problem of Section 2, we construct a DES G that models 
the behavior of the continuous time system, using the lattice Q̃ as the set of discrete states.

To construct a DES abstraction of the continuous-time system, we use a three-layered 
transition function ψ . The first layer consists of events in the set Uc, for the actions of the 
controlled vehicles. The second layer consists of events in the set Uuc, for the actions of the 
uncontrolled vehicles. It remains to model the disturbance d . We achieve this by 
discretizing the set � to obtain a set of “discretized disturbances” W . Specifically, let

W = {kτμ : k ∈ Z ∧ 
δmin/(τμ)� ≤ k ≤ �δmax/(τμ)�}n. (18)

This set W makes up the third layer of G’s transition structure. For any q ∈ Q̃, uc ∈ Uc,
uuc ∈ Uuc, and w ∈ W , we define

ψ(q, ucuucw) := q + u + w, (19)

Q

Q

Q

where u = (uc, uuc). In Section 6.1, we will show that ψ(q,  ucuucw) = q′ if and only if 
there exist x ∈ X, δ ∈ �, and  x′ ∈ X such that x′ = x + u + δ, q = �(x), and q ′ = �(x′)
(see Prop. 1). To define the discrete system state in between the occurrence of events in 
Uc and Uuc and in between the occurrence of events in Uuc and W (all of which occur 
simultaneously in the continuous-time system), we introduce two sets of “intermediate” 
states QI 1 and QI 2 (disjoint from each other and from ˜ and with no physical meaning), 
and three intermediate transition functions: ψ1 : ˜ × Uc → QI 1, ψ2 : QI 1 × Uuc → QI 2, 
and ψ3 : QI 2 × W → ˜ , defined only by ψ(q,  uc, uuc, w)  = ψ3(ψ2(ψ1(q, uc), uuc), w). 
See Fig. 7 for a depiction of the transition function ψ . We take the set of marked states to be 
the set Qm = {qm}. Finally, we define a set Q0 of possible initial states, which we



Fig. 7 The transition function ψ

model by introducing a dummy initial state q0 and having transitions from q0 to each state
q ∈ Q0 with event label eq . We denote this set of events by EQ := {eq : q ∈ Q0} and
define ψ(q0, eq) := q. The final DES is defined as:

G := (Q, EQ ∪ Uc ∪ Uuc ∪ W,ψ, q0, Qm) (20)

where Q = {q0}∪Q̃∪QI1∪QI2. The sets of events Uc is taken to be controllable, whereas
the sets of events Uuc and W are taken to be uncontrollable. Note that, in the context of
supervisory control problems of DES, a supervisor is obtained which does not choose a
particular event from any given state, but rather chooses which events to enable (allow) and
which ones to disable (prevent). An uncontrollable event is an event that cannot be disabled.

Remark 6 Although the initial state can not be chosen by the system, we take the set of
events EQ to also be controllable. In the following section, we will use G in a supervisory
control problem. If EQ were defined as uncontrollable, we would obtain an empty solution
to the supervisory control problem whenever there was any initial state from which there
was no solution, even if there existed solutions from some of them. By defining the set EQ

as controllable, the computed supervisor will contain a transition from q0 to q for every
q ∈ Q0 from which there exists a solution to the supervisory control problem.



6.1 Relations between the time-discretized and discrete event systems

Proposition 1 Define the observation maps H
Q̃

(q) := q, HX(x) := �(x), the relation

R := {(q, x) ∈ Q̃ × X : �(x) = q}, and the control relation C(q) := {(uc, vc) : vcτ =
uc ∈ Uc}, for all q ∈ Q̃. Then DES G of Section 6 is a state reduction of system (2).

Proof Properties (1), (2), and (3) follow immediately from the definitions of HX , HQ, �, R,
and C.
Property (4): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, and w ∈ W , with q ′ =
ψ(q, uc, uuc, w) = q+u+w (where u = (uc, uuc)). We construct x ∈ X, x′ ∈ X and δ ∈ �

such that �(x) = q, �(x′) = q ′, and x + u + δ = x′ by considering each co-ordinate in turn.
There are three cases, depending on where wi lies with respect to the interval [δmin, δmax]
(recall from Eq. 18 that wi may be smaller than δmin or larger than δmax when these values
are not integer multiples of μτ , because of the floor and ceiling operations).

Case 1: δmin ≤ wi ≤ δmax . Take xi = qi , δi = wi , and x′
i = q ′

i .
Case 2: wi > δmax . Take xi = qi + μτ/2, δi = δmax , and x′

i = xi + ui + δmax .
From the definition of �, we have that �i(xi) = qi . With these values, we obtain
q ′
i − x′

i = (qi + ui + wi) − (xi + ui + δmax) = wi − δmax − μτ/2. From
the definition of W , we know that δmax < wi < δmax + μτ , or equivalently
that 0 < wi − δmax < μτ . From this and the previous statement, we obtain
−μτ/2 < q ′

i − x′
i < μτ/2, from which it follows that �(x′

i ) = q ′
i .

Case 3: wi < δmin. Take x′
i = q ′

i + μτ/2, δi = δmin, and xi = x′
i − ui − δmin. The same

reasoning as in the previous case shows that �(x) = q and that �(x′) = q ′.

Property (5): Consider any x ∈ X, uc ∈ Uc, uuc ∈ Uuc, and δ ∈ �, with x′ = x + u + δ

(where u = (uc, uuc)). Take q = �(x), q ′ = �(x′), and w = q ′ − q − u. It suffices to
show that w ∈ W . From q = �(x) and q ′ = �(x′), we have −μτ/2 < x − q ≤ μτ/2
and −μτ/2 < x′ − q ′ ≤ μτ/2 (component-wise). Combining these inequalities with w =
q ′ − q − u and δ = x′ − x − u, we obtain w = δ + (x − q) − (x ′ − q ′) and hence:

−τμ + δ < w < δ + τμ.

It follows that w is a vector whose components are all integer multiples of τμ and in the
interval (δmin − μτ, δmax + μτ). But from Eq. 18, this set of vectors is precisely equal to
W , proving that w ∈ W .

Proposition 2 Define HX(·), H
Q̃

(·), R, and C as in Prop. 1. If δmin and δmax are both
integer multiples of τμ, then DES G of Section 6 is an exact state reduction (2) of system
(2).

Proof Property (6): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, w ∈ W , and x′ such that
q ′ = q + u + w = �(x′), where u = (uc, uuc). We construct x ∈ X and δ ∈ � such that
q = �(x) and x′ = x + u + δ. Simply take δ = w and x = x′ − u − δ. As remarked
in the proof of Prop. 1, w must be a vector whose components are integer multiples of τμ

and in the interval (δmin − μτ, δmax + μτ). If δmin and δmax are multiples of τμ, then it
follows that the components of w are in the (closed) interval [δmin, δmax]. Thus δ ∈ �.
Furthermore, x′ − x = q ′ − q = u + w, so that x − q = x′ − q ′, from which it follows that
q ′ = �(x′) ⇒ q = �(x).



Given the above results, we can solve Prob. 1. Before presenting the relevant theorems,
we define the notations Ax,vc,x′(t) and Aq,uc,q ′(t) as follows:

Ax,vc,x′(t) =
⎧
⎨

⎩
x′′ ∈ X

∣
∣
∣
∣
∣
∣

∃vuc ∈ Vuc, ∃d ∈ D[0,τ ] :
x + vτ + ∫ τ

0 d(s)ds = x′
∧x′′ = x + vt + ∫ t

0d(s)ds

⎫
⎬

⎭
, (21)

Aq,uc,q ′(t) =
⎧
⎨

⎩
x′′ ∈ X

∣
∣
∣
∣
∣
∣

∃x ∈ �−1(q), ∃vuc ∈ Vuc, ∃d ∈ D[0,τ ] :
x + vτ + ∫ τ

0 d(s)ds ∈ �−1(q ′)
∧x′′ = x + vt + ∫ t

0d(s)ds

⎫
⎬

⎭
, (22)

where v = (vc, vuc) = (uc/τ, vuc). In words, Ax,vc,x′(t) is the set of possible vehicle
positions at time t when they are at x at time 0, at x′ at time τ , and control input vc is
chosen. Similarly, Aq,uc,q ′(t) is the set of possible vehicle positions at time t when they
are at some x ∈ �−1(q) at time 0, at some x′ ∈ �−1(q ′) at time τ , and control input uc is
chosen.

Theorem 3 Define the automaton H := (Q, EQ ∪ Uc ∪ Uuc ∪ W,ψsaf e, q0, Qm) � G,
where ψsaf e ⊆ ψ is defined by:

(q, uc, q
′) ∈ ψsaf e ⇔ �t ∈ [0, τ ] : Aq,uc,q ′(t) ∩ B �= ∅. (23)

Solve for the supremal controllable sublanguage (Lm(H))↑C of Lm(H) with respect to
L(G) and uncontrollable event set Euc = Uuc ∪ W , obtaining a maximally permissive safe
and non-deadlocking supervisor S : Q̃ → 2Uc . Then the supervisor σ : X/� → 2Vc defined
by vc ∈ σ(x) ⇔ uc = τvc ∈ S(�(x)) solves Problem 1.

Proof Solving Prob. 1 requires finding the maximally permissive safe and non-deadlocking
supervisor σ for System Sb = (X, Vc,→b, Q̃, �) subject to safety specification Saf eb and
marking Xm,b, where:

(x, vc, x
′) ∈→b⇔ (∃vuc ∈ Vuc)(∃δ ∈ �) : x + τv + δ = x ′, v = (vc, vuc), (24)

(x, vc, x
′) ∈ Saf eb ⇔ �t ∈ [0, τ ] : Ax,vc,x′(t) ∩ B �= ∅, (25)

and Xm,b = �−1(qm). Thus, it suffices to apply Thm. 1, and we proceed to verify its con-
ditions. Proposition 1 shows that G is a state reduction of Sb, with the state and control
relations R = {(q, x) ∈ Q̃ × X : q = �(x)} and C(q) = {(uc, vc) ∈ Uc × Vc : uc = vcτ }.
Comparing Eqs. 21 and 22, we see that the safety specification Saf ea defined by Eq. 23
does indeed satisfy the condition (q, uc, q

′) ∈ Saf ea if and only if, for all (x, vc, x
′) ∈→b

such that (q, x) ∈ R, (uc, vc) ∈ C(q) and (q ′, x′) ∈ R, we have that (x, vc, x
′) ∈ Saf eb.

Finally, the set Qm of marked states for G and H obviously satisfies the condition q ∈ Qm

if and only if x ∈ Xm,b for all x ∈ Xb such that (q, x) ∈ R, since Qm = {qm},
Xm,b = �−1(qm), and (q, x) ∈ R ⇔ q = �(x). Thus, G is a state reduction of Sb, and
Saf ea and Xm,a = Qm are induced specifications, satisfying the conditions of Theorem
1.

Theorem 4 If δmin and δmax are both integer multiples of τμ, then the supervisor σ of
Theorem 3 solves Problem 1, and is maximally permissive among the class of all supervi-
sors, not merely memoryless ones.

Proof Immediate from Proposition 2, Theorem 2, and the proof of Theorem 3.



Q

7 Iterative refinement

In this section, we describe a procedure for iterative refinement of the discrete state space of 
the abstraction. At a high level, the iterative refinement procedure consists of constructing 
an abstraction with a coarse discretization, categorizing each state of the abstraction as either 
winning, losing, or undetermined, refining the abstraction with a finer discretization at the 
undetermined states, and repeating. We present this method in the context of the vehicle 
control problem, but the method can be extended to other problems with little modification. 
The method is similar to those of (Nilsson and Ozay 2014; Shoham and Grumberg 2003).

The categorization of states into winning, losing, and unknown requires considering the 
control problem of Prob. 1 as a game against nature. The control problem for nature is 
to cause the vehicles to enter the bad set B, before they have all crossed the intersection. 
Thus, the set of “good” states for nature are the bad states of the controller and vice-versa. 
Additionally, the control properties of the various inputs are also reversed. That is, nature 
chooses the inputs for the uncontrolled vehicles and the disturbance, but does not choose 
the inputs of the controlled vehicles.
In what follows, let Gτ

C and Hτ
C respectively denote the DES abstraction G of Section 6 and 

the DES abstraction H defined in the statement of Thm. 3, parametrized by τ . Similarly,
let �τ , ˜ 

τ , Qτ , EQτ , ψτ , qτ,0, Qτ,m, and ψτ,saf e be τ parametrized versions of the relevant 
functions, events, relations, states, or sets. We define DES Gτ

N and Hτ
N , which are the 

relevant automata of the control problem for nature that consists of forcing vehicles into
the bad set. Because only the specification changes, and not the dynamics, Gτ

N is defined 
almost identically to Gτ

C . Given Gτ
C = (Qτ , EQτ ∪Uc ∪Uuc ∪W,  ψτ , qτ,0,Qτ,m) as in Eq. 

20, define

GN
τ = (Qτ ,EQτ ∪ Uc ∪ Uuc ∪ W,ψτ , qτ,0,Q

N
τ,m), (26)

with QN
τ,m given by

QN
τ,m = {q ∈ Q̃ : �−1(q) ⊆ B}. (27)

Thus, a discrete state is marked for nature only if it is entirely contained in the bad set.
A discrete state that only partially intersects the bad set may be split into some combination
of states that are winning for nature and states that are winning for the controller. Similarly,

HN
τ = (Qτ ,EQτ ∪ Uc ∪ Uuc ∪ W,ψN

τ,saf e, qτ,0,Q
N
τ,m), (28)

where ψN
τ,saf e is defined by

(q, uc, q
′) ∈ ψN

τ,saf e ⇔
⎛

⎝
∃vuc ∈ Vuc, ∃d ∈ D[0,τ ],∀x ∈ �−1(q)

s.t.x′ = x + vτ + ∫ τ

0 d(t)dt ∈ �−1(q ′),
x(t) = x + vt + ∫ t

0d(t ′)dt ′ /∈ �−1(Qτ,m), ∀t ∈ [0, τ ]

⎞

⎠ ,

(29)
where v = (uc/τ, vuc). As noted above, Uc is taken to be uncontrollable whereas Uuc and
W are taken to be controllable inGN

τ andHN
τ . Note that, in Eq. 29, the set of safe transitions

are still parametrized by uc, which is not controlled by nature, and not on uuc and w. This  
is because the DES model allows for nature to choose uuc and W in response to uc. Thus, a 
state is winning for the controller if there exists a control input uc that is safe for all possible 
uuc and w chosen by nature. On the other hand, a state is winning for nature if, for all 
possible uc chosen by the controller, there exists a safe choice of uuc and w.
    Given a particular time discretization τ , the set of winning states for the controller are 
obtained through the fixed point of Eqs. 12 and 11. The set of winning states for nature



can be characterized analogously. Given transition system S = (X,U, →) and safety and
marking specifications Saf eN and XN

m , define

ContN(x|Z) = {u ∈ U |∃x′ ∈ Postu(x), [(x, u, x′) ∈ Saf eN ∧ x′ ∈ Z]}, (30)

and let FN : 2X → 2X be defined by

FN(Z) = {x ∈ Z|x ∈ XN
m ∨ ContN(x|Z) = U}. (31)

Q

Q

Consistent with the discussion above regarding the reversal of universal and existential 
quantifiers, Eq. 30 is identical to Eq. 11, except that ∀ becomes ∃, and Eq. 31 is identical to 
Eq. 12, except that Cont (x|Z) �= ∅ becomes ContN (x|Z) = U .

Thus, for a given time discretization τ , it is possible to categorize the discrete states as 
winning (for the controller), losing (i.e., winning for nature), and undetermined (i.e., losing 
for both). Refinement is performed by refining the discretization at the undetermined states. 
This is done by taking τ ′ = τ/2, which results in a lattice of discrete states ˜ ′ with space 
discretization of μτ ′ = μτ/2. It can be shown that Gτ will be a state reduction of Gτ/2 (with 
C being the identity map and R defined in the obvious way), or an exact state reduction if 
dmin and dmax are integer multiples of μ. The proof is very similar to that of Props. 1 and 2, 
and is therefore omitted.

Importantly, the fact that τ is diminished by half at each iteration means that all control 
inputs of the refined supervisor σ for the continuous time system are still feasible for τ ′ = 
τ/2. That is, a control input of vc that is held for time τ is identical to two consecutive 
control inputs vc, each of which is held for time τ/2. Thus, if �τ (x) is winning for a time 
discretization of τ , then  �τ/2(x) is winning for a time discretization of τ/2.

The process of refinement is continued up until some desired stopping condition has been 
reached (e.g., a minimal value of τ ), at which point the set of allowed control inputs is 
deter-mined by Eq. 13 and the set of states that are winning for the controller. Any 
indeterminate states remaining at this point must be treated as losing states by the controller.

Remark 7 For non-deadlocking specifications, it is possible in general to have discrete 
states that are winning for both the controller and nature (e.g., in the case of a livelock that 
does not violate either safety specification). In the vehicle control problem under consider-
ation, however, the fact that vehicles have strictly positive velocity implies that the vehicles 
will eventually cross the intersection if they do not collide first. Thus, either the controller 
or nature will eventually lose.

8 Algorithmic implementation

In past work, (Dallal et al. 2013a), we provided an algorithm for computing the DES super-
visor S of Thm. 3 that is based on a depth-first search (DFS) and has a lower asymptotic 
complexity than the standard algorithm. This customized algorithm was based on the fol-
lowing three observations: the vehicle’s velocities are bounded by μ >  0; the specification 
automaton H is a sub-automaton of G; and each pair of events uucw ∈ UucW is feasible 
after each event Uc from each state q ∈ ˜ . The first observation implies that the system 
is acyclic, and hence livelock-free. This allows for solving problem BSCP-NB in time lin-
ear in the size of G × H , rather than quadratic (see, e.g. Hadj-Alouane et al. (1994)). The 
second observation implies that the product automaton H × G is isomorphic to H which, 
combined with the first observation, allows for the problem to be solved through a DFS 
on G. Finally, the third observation implies that there is no need to determine the safety



Q

Q

of each string ucuucw ∈ UcUucW from each state q. Instead, a single test of safety for 
each uc ∈ Uc and state q ∈ ˜ suffices. The algorithm’s running time was shown to be

O 
(
| ˜ ||Uc| 

[|Postuc (q)| +  n2
])
.

Remark 8 In fact, the DES supervisor S of Thm. 3 could be computed in time linear in the 
size of G × H , even if the system were not acyclic. This can be seen from Eqs. 11 and 12, 
which are very similar to the well known controllable predecessor operator whose iteration 
reaches a fixed point in linear time for safety properties. The formulation of the algorithm 
for computing S as a DFS is, however, reliant on the system being acyclic.

In this work, we adapt the algorithm of (Dallal et al. 2013a) to the problem of computing 
the set of discrete states that are winning for the controller, using the iterative refinement 
technique described in Section 7.

In what follows, let �τ be the discretization function of Eq. 3, parametrized by τ ,
and let Q̃τ be the resulting set of discrete states. As per the discussion of Section 7,
we can model the control problem to be solved as a game against nature. To that end,
let φτ : Q̃τ ∪ (Q̃τ × Uc) ∪ (Q̃τ × Uc × Q̃τ ) → {−1, 0, 1} denote the value (to the
controller) of states, control inputs, or transitions. More specifically, φτ (q), φτ (q, uc),
and φτ (q, uc, q

′) each take a value of -1, 1, or 0 to denote a victory for nature, a
victory for the controller, or a loss for both. These are defined through the following
equations:

φτ (q, uc, q
′) =

⎧
⎨

⎩

1, if(q, uc, q
′) ∈ ψτ,saf e ∧ φτ (q

′) = 1
−1, if(q, uc, q

′) ∈ ψN
τ,saf e ∧ φτ (q

′) = −1
0, else

(32)

φτ (q, uc) = min
q ′∈Postuc (q)

φτ (q, uc, q
′) (33)

φτ (q) =
⎧
⎨

⎩

1, ifq ∈ Qτ,m

−1, ifq ∈ QN
τ,m

maxuc∈Uc φτ (q, uc), else
(34)

Q

Q τ , ψN
τ,saf e

Theorem 5 In Eqs. 11–12, take  X, U , →, Saf e, and Xm to be ˜ τ , Uc, ψτ , ψτ,saf e, and 
Qτ,m. Similarly, in Eqs. 30–31, take  X, U , →, Saf e, and Xm to be ˜ τ , Uc, ψN ,

and QN
τ,m. Then there exists a unique solution to Eqs. 32–34, and this solution satisfies

φτ (q) = 1 ⇔ q ∈ νZ.F (Z), φτ (q) = −1 ⇔ q ∈ νZ.FN(Z), φτ (q, uc) = 1 ⇔ uc ∈
Cont(q|νZ.F (Z)), and φτ (q, uc) = −1 ⇔ uc ∈ ContN(q|νZ.FN(Z)), for all q ∈ Q̃τ

and uc ∈ Uc.

Proof We proceed in two claims. The first claim shows that there is a solution for φτ

satisfying the required constraints. The second claim shows that φτ has a unique solution.

Claim 4 Suppose that some sets M ⊆ Q̃τ and N ⊆ Q̃τ are fixed points of Eqs. 12 and 31,
respectively. Then

φτ (q) =
⎧
⎨

⎩

1, ifq ∈ M

−1, ifq ∈ N

0, else
(35)



φτ (q, uc) =
⎧
⎨

⎩

1, ifuc ∈ Cont(q|M)

−1, ifuc ∈ ContN(q|N)

0, else
(36)

φτ (q, uc, q
′) =

⎧
⎨

⎩

1, if(q, uc, q
′) ∈ ψτ,saf e ∧ q ′ ∈ M

−1, if(q, uc, q
′) ∈ ψN

τ,saf e ∧ q ′ ∈ N

0, else
(37)

constitutes a solution to Eqs. 32–34.
Clearly, Eqs. 35 and 37 imply Eq. 32. Recall from Eq. 11 that

Cont(q|M) = {uc ∈ Uc|∀q ′ ∈ Postuc (q), [(q, uc, q
′) ∈ ψτ,saf e ∧ q ′ ∈ M]}

= {uc ∈ Uc|∀q′ ∈ Postuc (q), φτ (q, uc, q
′) = 1},

from which it follows that φτ (q, uc) = 1 if and only if minq′∈Postuc (q) φτ (q, uc, q
′) = 1, as 

required by Eq. 33. It can similarly be shown from Eq. 30 defining ContN (q|N)  that
φτ (q, uc) = −1 if and only if minq′∈Postuc (q) φτ (q, uc, q

′) = −1. Thus, Eq. 33 is satisfied. 
Now, since M is a fixed point of Eq. 12, we have that

M = {q ∈ Q̃τ |q ∈ Q̃τ,m ∨ Cont(q|M) �= ∅}
= {q ∈ Q̃τ |q ∈ Q̃τ,m ∨ ∃uc ∈ Uc : φτ (q, uc) = 1}

Q

Q

It follows that φτ (q) = 1 if and only if either q ∈ ˜ τ,m or maxuc∈Uc φτ (q, uc) = 1 holds. It 
can similarly be shown from the fact that N is a fixed point of Eq. 31 that φτ (q) = −1 if
and only if either q ∈ ˜ N or maxuc∈Uc φτ (q, uc) = −1.τ,m

Claim 2: There is a unique solution to Eqs. 32–34.
The set Q̃τ is finite, since it is the discretization of a compact space. Furthermore,

the requirement that vehicles have a positive velocity implies that there can be no cycles 
of states, and the vehicles must eventually cross the intersection (if there is no collision 
first). Thus, there are no cyclical dependencies in Eqs. 32–34, and one may solve them by
backwards induction starting from Q̃τ,m ∪ Q̃N

τ,m.

Algorithm 2 below is based on Eqs. 32–34, but with the following optimizations. For 
each one, we provide a description and applicable line numbers for Alg. 2. Note that some 
lines have multiple optimizations used simultaneously.

1. The algorithm uses parameters τmax and τmin, where it is assumed that τmax = 2r τmin,
for some non-negative integer r . When working at any discretization level τ > τmin, the
algorithm correctly classifies states as winning for the controller, winning for nature,
or losing for both. When τ = τmin, the algorithm does not differentiate between states
which are winning for nature and states which are losing for both nature and the con-
troller, terminating at state q ∈ Q̃τmin as soon as it is determined that φτmin(q) ≤ 0.
Lines 7, 15–18, 32.

2. The algorithm uses a version of α−β pruning, a technique for accelerating computation
of winning strategies in min-max games by not exploring game subtrees that can be
determined to not have any bearing on the value of a state. Thus, once it has been
determined that φτ (q, uc) ≤ φτ (q), then the algorithm ceases to examine any other



successors q ′ ∈ Postuc (q), as these can only result in a smaller value of φτ (q, uc). Line
32.

3. Other than verifying if states are contained in the winning sets for the controller and 
nature, we also verify if states have a non-empty intersection with these sets. This 
allows for the determination that a state is losing for the controller and/or losing for 
nature, restricting the possible values for φτ (q). When used with α − β pruning, this 
can potentially diminish the number of control inputs uc or successor states q′ that must 
be examined. Lines 11–22.

4. From Eqs. 32 and 33, we have that  φτ (q, uc) = 1 requires that (q, uc, q
′) ∈ ψτ,saf e, 

for each q′ ∈ Postuc (q). Rather than checking if (q, uc, q
′) ∈ ψτ,saf e, for each q′ ∈ 

Postuc (q), we aggregate all these tests into a single test on q and uc. By Eq. 23,(q, 
uc, q

′) ∈ ψτ,saf e if and only if �t ∈ [0, τ ] :  Aq,uc,q′ (t) ∩ B �= ∅. Thus we define 
Aq,uc (t) = ∪q′∈Postuc (q)Aq,uc,q′ (t) and instead verify if �t ∈ [0, τ ] :  Aq,uc (t) ∩ B 
�= ∅. Parametrized by τ , the set Aτ,q,uc (t) is given by

Aτ,q,uc (t) = (q − 1μτ/2 + vuc
t, q + 1μτ/2 + vuc t], (38)

where 1 denotes the n = |N | dimensional vector (1, . . . , 1),

vuc,i
=

{
uc,i/τ + dmin, vehicle i is controlled
vmin + dmin, vehicle i is uncontrolled

(39)

vuc,i =
{

uc,i/τ + dmax, vehicle i is controlled
vmax + dmax, vehicle i is uncontrolled

(40)

and, for any a, b ∈ Rn, (a, b] := {c ∈ Rn|ai < ci ≤ bi , i  = 1, . . . , n}. Equations for 
verifying the condition �t ∈ [0, τ ] : Aτ,q,uc (t) ∩ B �= ∅ are given in the Appendix. The 
general idea is to check intersection with the bad set for each pair of vehicles, so that 
the test takes O(n2) time. Lines 28–30.

5. Recall that φτ (q
′) = −1 if it is possible for nature to force the vehicles to enter the

bad set (for any strategy of the controller), and that (q, uc, q
′) ∈ ψN

τ,saf e if there is at
least one vehicle that does not cross the intersection for this transition. Because vehicles
always move at strictly positive velocity, it is not possible for all the vehicles to cross the
intersection and then enter the bad set. Thus φτ (q

′) = −1 ⇒ (q, uc, q
′) ∈ ψN

τ,saf e in
Eq. 32. It follows that it is possible to conclude that φτ (q, uc, q

′) = −1 if φτ (q
′) = −1,

without additionally verifying if (q, uc, q
′) ∈ ψN

τ,saf e. Line 35.

Algorithm 1 Initialization

1: Procedure DoInit min, max
2: max max
3: while do
4: Dequeue(queue)
5: DoDFS min
6: end while
7: end procedure



Our algorithm uses a number of subroutines, which we explain below.

– ContVic(q, τ ) returns true if �−1
τ (q) consists entirely of states where all vehicles have

crossed the intersection (i.e., it checks if q ∈ Qτ,m).
– NatVic(q, τ ) returns true if �−1

τ (q) ⊆ B (i.e., it checks if q ∈ QN
τ,m).

– ContLoss(q, τ ) returns true if �−1
τ (q) ∩ B �= ∅.

– NatLoss(q, τ ) returns true if �−1
τ (q) contains any states where all vehicles have crossed

the intersection.
– EnqueueRefined(q, τ, queue) is called when φτ (q) = 0 and τ > τmin, in which case

the set of refined states {q ′ ∈ Q̃τ/2|�−1
τ/2(q

′) ⊆ �−1
τ (q)} are added to queue.

Proposition 3 Let τmax = 2r τmin and let n = |N |, the number of vehicles. Then the running
time of Algorithms 1 and 2 is in O

(
1−2−(r+1)n

1−2−n |Q̃τmin ||Uc|
[|Postuc (q)| + n2

])
.

Proof At a particular level of discretization τ , Alg. 2 is executed at most |Q̃τ | times,
once for each examined q ∈ Q̃τ . All subroutines of lines 2–22 run in time at most
O(n2). The outer for loop (lines 23–38) is executed |Uc| times and consists of verifying
the condition [Aq,uc (t) ∩ B �= ∅] and executing the inner for loop. Verifying the condi-
tion �t ∈ [0, τ ] : Aq,uc (t) ∩ B �= ∅ (line 28) takes O(n2) time (see Appendix). The
inner for loop (lines 31–36) is executed |Postuc (q)| times, each of which takes O(1) time
beyond that of the recursive call. The total running time at discretization level τ is there-
fore O(|Q̃τ ||Uc|

[|Postuc (q)| + n2
]
). Taking τ ′ = τ/2 means refining each state into two,

along each of n dimensions. Thus, |Q̃τ | = 2−n|Q̃τ/2|. The total running time is therefore
in

O

(
r∑

i=0

2−ni |Q̃τmin ||Uc|
[
|Postuc (q)| + n2

]
)

= O

(
1 − 2−(r+1)n

1 − 2−n
|Q̃τmin ||Uc|

[
|Postuc (q)| + n2

]
)

.

Remark 9 Because the particular state q ∈ Q̃ and control action uc ∈ Uc do not restrict the
set of possible actions of the uncontrolled vehicles Uuc or the set of possible disturbance
events W , the value |Postuc (q)| is independent of the particular q ∈ Q̃ and uc ∈ Uc. This
value is, however, dependent on the number of vectors of actions of the uncontrolled vehi-
cles (which determines |Uuc|), as well as on the bounds of the disturbance (which determines
|W |).

We note that the expression 1−2−(r+1)n

1−2−n will typically be quite small, meaning that even

if iterative refinement yields no benefit (i.e., if φτ (q) = 0 for all q ∈ Q̃τ , for all
τ > τmin), there will be little overhead. In the worst case, r → ∞ and n = 2, yielding

limr→∞ 1−2−(r+1)n

1−2−n = 4
3 .



Algorithm 2 DFS Computation

1: ProcedureDoDFS , , min,
2: if then
3: return
4: Else If ContVic then
5: 1
6: return 1
7: else If min NatVic then
8: 1
9: return -1
10: end If
11: 1
12: 1
13: if ContLoss then
14: 0
15: if min then
16: 0
17: return 0
18: end if
19: end if
20: if NatLoss then
21: 0
22: end if
23: for all do
24: if then
25: break
26: end if
27: 1
28: if 0 then
29: 0
30: end if
31: for all Post do
32: if min 0 then
33: break
34: end if
35: min DoDFS min
36: end for
37: max
38: end for
39:
40: if 0 min then
41: EnqueueRefined
42: end if
43: return
44: end procedure



Q

9 Simulation results

In this section, we present results from simulations run in C++. Simulations sought to com-
pare running time for an algorithm using iterative refinement compared to one which does 
not; and for an algorithm which uses an optimization based on capture set computation 
(described in the Appendix), to one which does not. Thus four simulation were run for each 
problem instance, consisting of the four possible combinations. Briefly, the capture set opti-
mization consists of computing the capture set (the complement of the maximal controlled 
invariant set) for each pair of vehicles that cannot simultaneously be inside the intersection. 
This can be done easily for such pairs of vehicles, since the bad set is bounded and convex 
in this case (N.B., for more than two vehicles, the bad set is a union of inverse projections 
of sets, which is neither bounded nor convex). The changes to Alg. 2 from using the capture 
set optimization consist of replacing the two subroutines NatVic and ContLoss. Recall that 
NatVic (resp., ContLoss) tests whether a discrete state is contained in (resp., intersects) the 
bad set. In the capture set version, NatVic (resp., ContLoss) tests whether a discrete state is 
contained in (resp., intersects) the capture set. We focus on this optimization in particular 
since it is the only one which can affect the level of discretization at which some part of the 
state space is classified as winning for nature. That is, it is possible that φτ (q) will be eval-
uated to be -1 when the capture set optimization is used, but evaluated to be 0 without the 
capture set optimization (perhaps only to have all φτ/2(q

′) evaluated to be -1 for the refined 
states). Thus, one would expect that the use of the capture set optimization might increase 
the benefit of using iterative refinement. The five optimizations of the previous section, on 
the other hand, may affect running time, but will have no effect on the value of φτ (q) that 
is computed for any τ and any q ∈ ˜ 

τ .

9.1 Simulation descriptions

In each case, we used μ = 1 and τmin = 1 for the space and time discretization. For sim-
ulations which used iterative refinement, τmax was chosen automatically at run time, and 
was determined so that the entire state space was covered with a single discrete state. We

Fig. 8 The intersection and
vehicle paths used in each of the
simulations of this section. Blue
lines are drawn for each vehicle
indicating starting road and
ending road



consider three different scenarios: the first has no disturbance and no uncontrolled vehicles; 
the second has uncontrolled vehicles but no disturbance; the third has no uncontrolled vehi-
cles but has a disturbance. We do not present a scenario which includes both uncontrolled 
vehicles and a disturbance, since these often result in empty solutions. For each scenario, 
we used four different problem instances, where we varied the number of vehicles among 
2, 3, 4, and 6. For the six vehicle cases, the intersection consisted of six roads arranged in 
a regular hexagonal pattern. Vehicles cross from one road to the road opposite their starting 
road. Specifically, if the set of vehicles is N = {1, . . . , 6}, then vehicle i ∈ N starts on 
road ri,1 = i and ends on road ri,2 = 1 + [(i + 2) mod 6]. Thus, the three pairs of vehicles 
(1, 4), (2, 5), and  (3, 6) can occupy the intersection simultaneously, but vehicles from dif-
ferent pairs cannot (see Fig. 8). Problem instances with 2, 3, and 4 vehicles used the same 
intersection, but restricted to the sets of vehicles {1, 2}, {1, 2, 3}, and  {1, 2, 4, 5}, respec-
tively. In problem instances with uncontrollable vehicles, the uncontrollable vehicles were 
chosen to be vehicles 1 and 4. In problem instances with a disturbance, we used dmin = −1 
and dmax = 1. Different problem instances used different road lengths and values of αr 
(recall that αr is the length of road r that is inside the intersection), but these were constant 
for all roads in a particular problem instance. As an example, a road length of l = 20 with 
α = 2 would mean that a vehicle starting at the beginning of the road would travel a dis-
tance of l − α = 18 to reach the intersection, a further distance of α = 2 to reach the center 
of the intersection, and a final distance of α = 2 to exit the intersection.

For each problem instance, we provide the following data: road length, α, total number of 
discrete states, total number of transitions, and number of winning states for the controller. 
The last three values are determined at the τ = 1 level of discretization. See Table 1.

Table 1 List of problem instances

Instance Road length α Total states Total transitions Safe states

ŪD̄2 6870 1374 6.80 × 107 2.72 × 108 5.29 × 107

ŪD̄3 357 51 6.84 × 107 5.47 × 108 4.69 × 107

ŪD̄4 82.5 7.5 6.86 × 107 1.10 × 109 5.55 × 107

ŪD̄6 19 1 8.58 × 107 5.49 × 109 6.31 × 107

UD̄2 6870 1374 6.80 × 107 2.72 × 108 3.02 × 107

UD̄3 357 51 6.84 × 107 5.47 × 108 1.60 × 107

UD̄4 82.5 7.5 6.86 × 107 1.10 × 109 1.59 × 107

UD̄6 19 1 8.58 × 107 5.49 × 109 9.56 × 106

ŪD2 2500 500 9.01 × 106 1.30 × 109 5.34 × 106

ŪD3 178.5 25.5 8.62 × 106 1.49 × 1010 3.31 × 106

ŪD4 49.5 4.5 9.15 × 106 1.90 × 1011 5.36 × 106

ŪD6 9.5 0.5 1.77 × 106 5.29 × 1012 1.83 × 105

Problem instances are denoted as {U, Ū}{D, D̄}{2, 3, 4, 6} where: U or Ū denotes the presence or absence
of uncontrollable vehicles; D or D̄ denotes the presence or absence of a disturbance; and {2, 3, 4, 6} denotes
the number of vehicles. Parameters were chosen so as to make the number of states approximately the same
for simulations with 2, 3, or 4 vehicles, for each of the three scenarios considered. Simulations with 6 vehicles
had more states in the scenarios without a disturbance, and far fewer states in the scenario with a disturbance.
All instances with two vehicles had values for l (road length) and α chosen so that vehicles would be inside
the intersection for 1/3 of their path (i.e., 2α/(l + α) = 1/3). For 3, 4, and 6 vehicles the corresponding
ratios were chosen to be 1/4, 1/6, and 1/10, respectively



Table 2 List of simulations

Simulation Running time Examined states Winning states

ŪD̄2C̄R̄ 82.6 6.80 × 107 5.29 × 107

ŪD̄2C̄R 0.0962 1.27 × 105 1.37 × 104

ŪD̄2CR̄ 73.8 6.80 × 107 5.29 × 107

ŪD̄2CR 0.0382 8.57 × 104 1.37 × 104

ŪD̄3C̄R̄ 90.1 6.84 × 107 4.69 × 107

ŪD̄3C̄R 3.65 2.94 × 106 3.00 × 105

ŪD̄3CR̄ 68.9 6.84 × 107 4.69 × 107

ŪD̄3CR 1.01 2.01 × 106 3.00 × 105

ŪD̄4C̄R̄ 69.7 6.86 × 107 5.55 × 107

ŪD̄4C̄R 14.8 7.56 × 106 9.64 × 105

ŪD̄4CR̄ 52.3 6.86 × 107 5.55 × 107

ŪD̄4CR 2.84 6.41 × 106 9.64 × 105

ŪD̄6C̄R̄ 153 8.58 × 107 6.31 × 107

ŪD̄6C̄R 128 3.30 × 107 9.65 × 106

ŪD̄6CR̄ 81.5 8.58 × 107 6.31 × 107

ŪD̄6CR 41.8 3.30 × 107 9.65 × 106

UD̄2C̄R̄ 122 6.80 × 107 3.02 × 107

UD̄2C̄R 0.106 2.03 × 107 1.40 × 104

UD̄2CR̄ 57.0 6.80 × 107 3.02 × 107

UD̄2CR 0.0488 1.08 × 105 1.40 × 104

UD̄3C̄R̄ 109 6.84 × 107 1.60 × 107

UD̄3C̄R 2.83 3.69 × 107 2.82 × 105

UD̄3CR̄ 42.8 6.84 × 107 1.60 × 107

UD̄3CR 0.993 3.95 × 106 2.82 × 105

UD̄4C̄R̄ 98.0 6.86 × 107 1.59 × 107

UD̄4C̄R 13.0 3.92 × 107 1.95 × 106

UD̄4CR̄ 45.4 6.86 × 107 1.59 × 107

UD̄4CR 4.18 9.20 × 106 1.95 × 106

UD̄6C̄R̄ 257 8.58 × 107 9.56 × 106

UD̄6C̄R 271 8.13 × 107 3.43 × 106

UD̄6CR̄ 59.1 8.58 × 107 9.56 × 106

UD̄6CR 39.5 8.13 × 107 3.43 × 106

ŪD2C̄R̄ 21.6 9.01 × 106 5.34 × 106

ŪD2C̄R 0.272 9.95 × 104 8.23 × 103

ŪD2CR̄ 10.5 9.01 × 106 5.34 × 106

ŪD2CR 0.0657 4.50 × 104 8.23 × 103

ŪD3C̄R̄ 61.4 8.62 × 106 3.31 × 106

ŪD3C̄R 15.3 1.67 × 106 2.08 × 105

ŪD3CR̄ 17.9 8.62 × 106 3.31 × 106

ŪD3CR 6.17 1.20 × 106 2.08 × 105

ŪD4C̄R̄ 154 9.15 × 106 5.36 × 106

ŪD4C̄R 138 4.30 × 106 8.19 × 105



Table 2 (continued)

Simulation Running time Examined states Winning states

ŪD4CR̄ 73.5 9.15 × 106 5.36 × 106

ŪD4CR 38.9 3.10 × 106 8.19 × 105

ŪD6C̄R̄ 288 1.77 × 106 1.83 × 105

ŪD6C̄R 349 1.79 × 106 1.55 × 105

ŪD6CR̄ 128 1.77 × 106 1.83 × 105

ŪD6CR 162 1.79 × 106 1.55 × 105

Simulations are denoted as {U, Ū}{D, D̄}{2, 3, 4, 6}{C, C̄}{R, R̄} where: C or C̄ denotes the use or non-use
of the capture set optimization and R or R̄ denotes the use or non-use of iterative refinement. The first three
elements of this notation were defined in the description of Table 1

9.2 Results & analysis

For each simulation, we provide the running time in seconds, the total number of discrete 
states examined and the number of these found to be winning for the controller. For sim-
ulations not using iterative refinement, these last two values will be as in Table 1. For  
simulations using iterative refinement, these values are summed over all levels of discretiza-
tion. Thus, for the total number of discrete states, we include all states, including those 
which were classified as losing for both the controller and nature and were later refined. See 
Table 2.

The results of Table 2 show that iterative refinement usually improves running time. 
Furthermore, the improvement in running time was large for simulations with two vehi-
cles (ranging from a factor of 79 to a factor of 1150 without the capture set optimization, 
and from a factor of 160 to a factor of 1932 with the capture set optimization), and dimin-
ishing as the number of vehicles increased. The reason for this is not a lack of scalability 
of the method, but a consequence of the fact that road lengths were shorter in simulations 
with more vehicles. Intuitively, a finer discretization is needed when closer to the bound-
ary between winning states for the controller and winning states for nature. Thus, iterative 
refinement works best when there is a significant portion of the state set that is “far” from 
the bad set. Problem instances with more vehicles used shorter road lengths, and hence 
states were generally closer to the boundary between winning sets in these instances. Indeed, 
simulations (not shown here) conducted with few vehicles and small road lengths showed 
improvement by a much smaller factor than for the same number of vehicles and long road 
lengths.

There are two problem instances (out of 12) where iterative refinement did not improve 
running time. In both cases, these instances are with six vehicles and with a source of non-
determinism. Predictably, the number of states examined through iterative refinement in 
these two problem instances was high relative to the number of states examined without 
iterative refinement. The relevant proportions were 94.8 % for instance UD̄ 6 and 101 % for 
instance ŪD6. In no other instance was this proportion greater than 57.1 %.

As per the discussion at the beginning of this section, the use of the capture set optimiza-
tion did indeed increase the benefit of using iterative refinement. In all but two problem 
instances, the ratio of running time without iterative refinement to running time with itera-
tive refinement was higher with the capture set optimization than without. The exceptions



were instance ŪD3, where the relevant ratios were 2.90 and 4.01, and instance ŪD6, where
the relevant ratios were 0.790 and 0.825.

10 Conclusion

We considered the problem of supervising a set of vehicles approaching an intersection so as
to avoid collisions, in the presence of environmental uncertainty in the form of uncontrolled
vehicles and a disturbance. We solved this problem by constructing a DES abstraction
and leveraging supervisory control methods of DES, a natural formulation for problems
involving uncontrolled elements in which it is desired to obtain maximally permissive safe
and non-deadlocking supervisors. We described the state reduction and exact state reduc-
tion relations between systems and abstractions, and used these to show that translating
the supervisor for the abstraction back to the original problem domain preserves not only
safety and non-deadlockingness, but also maximal permissiveness. Finally, we presented an
algorithm for solving this supervisory control problem, based on a technique called iter-
ative refinement, and demonstrated its scalability through simulation. This works extends
the range of applications of DES. Moreover, to the best of our knowledge, it is the first
DES application where the discrete event model is obtained by building a state reduction
abstraction of the underlying continuous system model. Future work includes the extension
of this work to the case of measurement uncertainty, second order dynamics, and stochastic
problem formulations.
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1138860).

Appendix: Equations for checking safety

This appendix provides the equations that were used in the simulations of Section 9 for
verifying the safety of DES transitions (Part 1), and the equations for the pair-wise capture
sets for vehicles that cannot simultaneously be inside the intersection (Part 2).
Part 1: Verifying if Aq,uc (t) ∩ B = ∅ for all t ∈ [0, τ ].

In part 1 of this appendix, we prove the equations used for verifying the safety of tran-
sitions. As stated in Section 8, there are equations for each pair of vehicles i, j ∈ N , and
verifying the safety of a DES transition for some initial state q ∈ Q̃ and uc ∈ Uc is done
by verifying the corresponding equations for each pair of vehicles. We consider three cases
(see Section 3): xi, xj ≤ 0, |xi − xj | < γ (case 1a), xi, xj ≥ 0, |xi − xj | < γ (case 1b),
and [−αri,1 < xi < αri,2 ] ∧ [−αrj,1 < xj < αrj,2 ] (case 2). The equations for these cases
are provided in Props. (5)–(7), respectively. Note that there is no “case 1c” when xi ≤ 0 and
xj ≥ 0, since the vehicles would then be on different roads.

We begin by defining the set Aq,uc ([0, τ ]) := ⋃
t∈[0,τ ] Aq,uc (t). Because the bad set is

defined as a union of sets of linear inequalities, with one set for each pair of vehicles, we
verify Aq,uc ([0, τ ]) ∩ B = ∅ by considering each pair of vehicles in turn. For any vehicle
i ∈ N and any set P ⊆ X, let πi(P ) denote the projection of P onto the xi axis. Similarly,
for any pair of vehicles i, j ∈ N and a set P ⊆ X, let πi,j (P ) denote the projection of P

onto the xi − xj plane. Also recall the notation vuc,i
and vuc,i defined in Eqs. 39 and 40.



Proposition 4 (xi, xj ) ∈ πi,j (Aq,uc ([0, τ ])) iff all of the following inequalities hold:

xi > qi − μτ/2 (41)

xj > qj − μτ/2 (42)

xi ≤ qi + μτ/2 + vuc,iτ (43)

xj ≤ qj + μτ/2 + vuc,j τ (44)

vuc,i (xj − qj + μτ/2) − vuc,j
(xi − qi − μτ/2) > 0 (45)

vuc,j (xi − qi + μτ/2) − vuc,i
(xj − qj − μτ/2) > 0 (46)

Proof From Eqs. 39, 40 and the assumption that vmin + dmin ≥ μ > 0, we have that
πi(Aq,uc (t)) = (qi − μτ/2 + vuc,i

t, qi + μτ/2 + vuc,i t] is an interval whose lower and
upper bounds are increasing in time, for every i ∈ N . It follows that, for any xi , the set
{t ∈ R : xi ∈ πi(Aq,uc (t)} will have the form [ti,min, ti,max), where ti,min := inf{t ∈ R :
xi ∈ πi(Aq,uc (t))} and ti,max := sup{t ∈ R : xi ∈ πi(Aq,uc (t))} are given by:

ti,min = xi − qi − μτ/2

vuc,i

(47)

ti,max = xi − qi + μτ/2

vuc,i

(48)

Now define tj,min and tj,max analogously to ti,min and ti,max . Then:

∃t ∈ [0, τ ] s.t.[xi ∈ πi(Aq,uc (t))] ∧ [xj ∈ πj (Aq,uc (t))]
⇔ [0, τ ] ∩ [ti,min, ti,max) ∩ [tj,min, tj,max) �= ∅
⇔ [ti,max > 0] ∧ [tj,max > 0] ∧ [ti,min ≤ τ ] ∧ [tj,min ≤ τ ]

∧[tj,max > ti,min] ∧ [ti,max > tj,min]
and these last six inequalities give Eqs. 41–46, in order.

As stated above, we can check if Aq,uc ([0, τ ]) ∩ B = ∅ by considering each pair of
vehicles in turn. There are three types of constraints to consider:
Case 1a: xi, xj ≤ 0, |xi − xj | < γ .

Lemma 2 Consider any xi, xi, xj , xj ∈ R. Then:

(∃xi ∈ (xi, xi])(∃xj ∈ (xj , xj ])(xi ≤ 0 ∧ xj ≤ 0 ∧ |xi − xj | < γ )

⇔ [xi < xi ∧ xi < 0 ∧ xj < xj ∧ xj < 0 ∧ xi − xj < γ ∧ xj − xi < γ ] (49)

Proof (⇒):

xi ∈ (xi, xi] ⇒ xi < xi ≤ xi ⇒ xi < xi

xi < xi ∧ xi ≤ 0 ⇒ xi < 0

xj ∈ (xj , xj ] ⇒ xj < xj ≤ xj ⇒ xj < xj

xj < xj ∧ xj ≤ 0 ⇒ xj < 0

xi − xj < γ ∧ xi < xi ∧ xj ≤ xj ⇒ xi − xj < γ

xj − xi < γ ∧ xj < xj ∧ xi ≤ xi ⇒ xj − xi < γ



(⇐) It cannot be that both xi − xj ≥ γ and xj − xi ≥ γ , as this would imply 0 ≥ 2γ > 0.
Thus, at least one of xi − xj < γ , or xj − xi < γ holds. If they both hold, we may
take xi = xi + ε and xj = xj + ε for some sufficiently small ε > 0 and we are done.
Suppose without loss of generality then that xi − xj < γ but xj − xi ≥ γ . Let xi =
xj − γ . Thus, xj − xi = γ , xi − xj = −γ < γ and xi < 0 (since xj < 0). We may
therefore take xi = xi + 2ε and xj = xj + ε for some sufficiently small ε > 0 and we are
done.

Proposition 5 The set {(xi, xj ) ∈ πi,j (Aq,uc ([0, τ ])) : xi, xj ≤ 0 ∧ |xi − xj | < γ } is
non-empty iff all of the following inequalities hold:

qi < μτ/2 (50)

qj < μτ/2 (51)

vuc,j
(qi + μτ/2 + γ ) − max{vuc,i , vuc,j

}(qj − μτ/2) > 0 (52)

vuc,i
(qj + μτ/2 + γ ) − max{vuc,j , vuc,i

}(qi − μτ/2) > 0 (53)

[qi + μτ/2 + γ + τ max{vuc,i , vuc,j
}] − [qj − μτ/2 + τvuc,j

] > 0 (54)

[qj + μτ/2 + γ + τ max{vuc,j , vuc,i
}] − [qi − μτ/2 + τvuc,i

] > 0 (55)

Proof Let πi(Aq,uc (t)) = (xi(t), xi(t)] and πj (Aq,uc (t)) = (xj (t), xj (t)]. By Lemma 2,
it is necessary and sufficient to find some t ∈ [0, τ ] such that xi(t) < 0, xj (t) < 0,
xi(t) − xj (t) < γ , and xj (t) − xi(t) < γ . Now define ti,max , tj,max , ti−j , and tj−i by
xi(ti,max) = 0, xj (tj,max) = 0, xi(ti−j ) − xj (ti−j ) = γ , and xj (tj−i ) − xi(tj−i ) = γ .
These are given by:

ti,max = −qi − μτ/2

vuc,i

(56)

tj,max = −qj − μτ/2

vuc,j

(57)

ti−j = (qi − μτ/2) − (qj + μτ/2 + γ )

vuc,j − vuc,i

(58)

tj−i = (qj − μτ/2) − (qi + μτ/2 + γ )

vuc,i − vuc,j

(59)

Obviously, ti−j is only well defined when vuc,j �= vuc,i
and tj−i is only well defined when

vuc,i �= vuc,j
. Because xi(t) and xj (t) are increasing in time, we have that:

xi(t) < 0 ⇔ t < ti,max (60)

xj (t) < 0 ⇔ t < tj,max (61)

On the other hand, xi(t) − xj (t) is increasing in time if vuc,j < vuc,i
, decreasing in time if

vuc,j > vuc,i
, and constant if vuc,j = vuc,i

. It therefore follows that:

xi(t) − xj (t) < γ ⇔
⎧
⎨

⎩

t < ti−j , vuc,j < vuc,i

t > ti−j , vuc,j > vuc,i

(qj + μτ/2 + γ ) > (qi − μτ/2), vuc,j = vuc,i

(62)



Similarly,

xj (t) − xi(t) < γ ⇔
⎧
⎨

⎩

t < tj−i , vuc,i < vuc,j

t > tj−i , vuc,i > vuc,j

(qi + μτ/2 + γ ) > (qj − μτ/2), vuc,i = vuc,j

(63)

This would give nine cases to consider, but three are impossible, since vuc,j < vuc,i
⇒

vuc,j
≤ vuc,j < vuc,i

≤ vuc,i ⇒ vuc,j
< vuc,i and similarly, vuc,i < vuc,j

⇒ vuc,i
<

vuc,j . We will consider each of the six remaining cases in turn, but first prove the following
claims:

tj−i < tj,max ∧ ti,max > 0 ⇒ tj−i < ti,max (64)

ti−j < ti,max ∧ tj,max > 0 ⇒ ti−j < tj,max (65)

ti−j > 0 ∧ vuc,j < vuc,i
⇒ tj−i < ti−j (66)

tj−i > 0 ∧ vuc,i < vuc,j
⇒ ti−j < tj−i (67)

Clearly, Eq. 64 holds if tj−i ≤ 0. If tj−i > 0, then xi(tj−i ) < xi(tj−i ) = xj (tj−i ) − γ <

xj (tj−i ). From Eq. 61, we have that tj−i < tj,max ⇔ xj (tj−i ) < 0. Hence, xi(tj−i ) <

xj (tj−i ) < 0 and therefore tj−i < ti,max follows from Eq. 60, proving Eq. 64. Equation 65
is proven similarly. To prove Eq. 66, suppose to the contrary that tj−i ≥ ti−j > 0. As before,
tj−i > 0 ⇒ xi(tj−i ) < xj (tj−i ). From vuc,j < vuc,i

, tj−i ≥ ti−j , and Eq. 62, we have that
xi(tj−i ) ≥ xj (tj−i ) + γ > xj (tj−i ). Thus we have xj (tj−i ) > xi(tj−i ) > xj (tj−i ), which
is a contradiction since it cannot be that xj (tj−i ) > xj (tj−i ) for tj−i > 0, proving Eq. 66.
Equation 67 is proven similarly. We now proceed with the six cases. In what follows, note
that Eqs. 52 and 54 both reduce to (qi + μτ/2 + γ ) > (qj − μτ/2) when vuc,i ≤ vuc,j

and that Eqs. 53 and 55 similarly both reduce to (qj + μτ/2 + γ ) > (qi − μτ/2) when
vuc,j ≤ vuc,i

.
Case (i): vuc,j = vuc,i

and vuc,i = vuc,j
.

∃t ∈ [0, τ ] s.t.[xi(t) < 0] ∧ [xj (t) < 0]
∧[xi(t) − xj (t) < γ ] ∧ [xj (t) − xi(t) < γ ]

⇔
[0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) �= ∅

∧[(qj + μτ/2 + γ ) > (qi − μτ/2)]
∧[(qi + μτ/2 + γ ) > (qj − μτ/2)]

(Eqs. (60)–(63))

⇔
[0 < ti,max] ∧ [0 < tj,max]

∧[(qj + μτ/2 + γ ) > (qi − μτ/2)]
∧[(qi + μτ/2 + γ ) > (qj − μτ/2)]

⇔ [(50)] ∧ [(51)] ∧ [(53) ∧ (55)] ∧ [(52) ∧ (54)]
Case (ii): vuc,j > vuc,i

and vuc,i = vuc,j
.

∃t ∈ [0, τ ] s.t.[xi(t) < 0] ∧ [xj (t) < 0]
∧[xi(t) − xj (t) < γ ] ∧ [xj (t) − xi(t) < γ ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j , ∞) �= ∅
∧[(qi + μτ/2 + γ ) > (qj − μτ/2)] (Eqs. (60)–(63))

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ ] ∧ [ti−j < ti,max] ∧ [ti−j < tj,max]
∧[(qi + μτ/2 + γ ) > (qj − μτ/2)]

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ ] ∧ [ti−j < ti,max]
∧[(qi + μτ/2 + γ ) > (qj − μτ/2)] (Eq. (65))

⇔ [(50)] ∧ [(51)] ∧ [(55)] ∧ [(53)] ∧ [(52) ∧ (54)]
Case (iii): vuc,j = vuc,i

and vuc,i > vuc,j
.



This is case is symmetrical to Case (ii).

Case (iv): vuc,j < vuc,i
and vuc,i > vuc,j

.

∃t ∈ [0, τ ] s.t.[xi(t) < 0] ∧ [xj (t) < 0]
∧[xi(t) − xj (t) < γ ] ∧ [xj (t) − xi(t) < γ ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (−∞, ti−j ) ∩ (tj−i ,∞) �= ∅ (Eqs. (60)–(63))

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j ] ∧ [tj−i < τ ]
∧[tj−i < ti,max] ∧ [tj−i < tj,max] ∧ [tj−i < ti−j ]

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j ] ∧ [tj−i < τ ] ∧ [tj−i < tj,max] (Eqs. (64), (66))
⇔ [(50)] ∧ [(51)] ∧ [(53) ∧ (55)] ∧ [(54)] ∧ [(52)]
Case (v): vuc,j > vuc,i

and vuc,i < vuc,j
.

This is case is symmetrical to Case (iv).
Case (vi): vuc,j > vuc,i

and vuc,i > vuc,j
.

∃t ∈ [0, τ ] s.t.[xi(t) < 0] ∧ [xj (t) < 0]
∧[xi(t) − xj (t) < γ ] ∧ [xj (t) − xi(t) < γ ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j , ∞) ∩ (tj−i ,∞) �= ∅ (Eqs. (60)–(63))

⇔
[0 < ti,max] ∧ [0 < tj,max]

∧[tj−i < τ ] ∧ [tj−i < ti,max] ∧ [tj−i < tj,max]
∧[ti−j < τ ] ∧ [ti−j < ti,max] ∧ [ti−j < tj,max]

⇔
[0 < ti,max] ∧ [0 < tj,max]

∧[tj−i < τ ] ∧ [tj−i < tj,max]
∧[ti−j < τ ] ∧ [ti−j < ti,max]

(Eqs. (64), (65))

⇔ [(50)] ∧ [(51)] ∧ [(54)] ∧ [(52)] ∧ [(55)] ∧ [(53)]

Case 1b: xi, xj ≥ 0, |xi − xj | < γ .

Proposition 6 The set {(xi, xj ) ∈ πi,j (Aq,uc ([0, τ ])) : xi, xj ≥ 0 ∧ |xi − xj | < γ } is
non-empty iff all of the following inequalities hold:

qi ≥ −μτ/2 − vuc,iτ (68)

qj ≥ −μτ/2 − vuc,j τ (69)

max{vuc,i , vuc,j
}(qi + μτ/2 + τvuc,i )

−vuc,i (qj − μτ/2 − γ + τvuc,j
) > 0

(70)

max{vuc,j , vuc,i
}(qj + μτ/2 + τvuc,j )

−vuc,j (qi − μτ/2 − γ + τvuc,i
) > 0

(71)

(qi + μτ/2 + τ max{vuc,j
, vuc,i})

−(qj − μτ/2 − γ + τvuc,j
) > 0

(72)

(qj + μτ/2 + τ max{vuc,i
, vuc,j })

−(qi − μτ/2 − γ + τvuc,i
) > 0

(73)

Proof The proof is similar to that of Prop. 5, and is omitted.

Case 2: [−αri,1 < xi < αri,2 ] ∧ [−αrj,1 < xj < αrj,2 ].



Proposition 7 The set {(xi, xj ) ∈ πi,j (Aq,uc ([0, τ ])) : [−αri,1 < xi < αri,2 ] ∧ [−αrj,1 <

xj < αrj,2 ]} is non-empty iff all of the following inequalities hold:

qi < αri,2 + μτ/2 (74)

qj < αrj,2 + μτ/2 (75)

qi > −αri,1 − μτ/2 − vuc,iτ (76)

qj > −αrj,1 − μτ/2 − vuc,j τ (77)

vuc,j
(qi + μτ/2 + αri,1) − vuc,i (qj − μτ/2 − αrj,2) > 0 (78)

vuc,i
(qj + μτ/2 + αrj,1) − vuc,j (qi − μτ/2 − αri,2) > 0 (79)

Proof We proceed similarly to the proof of Prop. 4. From Eqs. 39, 40 and the assumption
that vmin + dmin ≥ μ > 0, we have that πi(Aq,uc (t)) = (qi − μτ/2 + vuc,i

t, qi + μτ/2 +
vuc,i t] is an interval whose lower and upper bounds are increasing in time, for every i ∈ N .
It follows that the set {t ∈ R : (−αri,1 , αri,2) ∩ πi(Aq,uc (t)) �= ∅} will have the form
(t2i,min, t

2
i,max), where t2i,min := inf{t ∈ R : (−αri,1 , αri,2) ∩ πi(Aq,uc (t)) �= ∅} and t2i,max :=

sup{t ∈ R : (−αri,1 , αri,2) ∩ πi(Aq,uc (t)) �= ∅} are given by:

t2i,min = −qi − αri,1 − μτ/2

vuc,i

(80)

t2i,max = −qi + αri,2 + μτ/2

vuc,i

(81)

Now define t2j,min and t2j,max analogously to t2i,min and t2i,max . Then:

∃t ∈ [0, τ ] s.t.[(−αri,1 , αri,2) ∩ πi(Aq,uc (t))] ∧ [(−αrj,1 , αrj,2) ∩ πj (Aq,uc (t))]
⇔ [0, τ ] ∩ (t2i,min, t

2
i,max) ∩ (t2j,min, t

2
j,max) �= ∅

⇔ [t2i,max > 0] ∧ [t2j,max > 0] ∧ [t2i,min < τ ] ∧ [t2j,min < τ ]
∧t2j,max > t2i,min ∧ t2i,max > t2j,min

and these last six inequalities give Eqs. 74–79, in order.

Part 2: The Capture Set Optimization

Here we describe the capture set optimization which replaces subroutines NatVic and 
ContLoss in Alg. 2. The optimization is based on the observation that the bad set is convex 
(rectangular) for a pair of vehicles which cannot simultaneously be inside the intersec-
tion (Case 2 of Part 1). Thus it is straight-forward to compute the capture set of states 
from which no supervisor can ensure avoidance of the bad set for such a pair of vehicles. 
Before stating the theorem, we define the minimal and maximal velocities which can be 
forced by the supervisor, given that it does not control the uncontrolled vehicles or the 
disturbance:

vc
i =

{
vmin + dmax, vehicle i is controlled
vmax + dmax, vehicle i is uncontrolled

(82)

vc
i =

{
vmax + dmin, vehicle i is controlled
vmin + dmin, vehicle i is uncontrolled

(83)



Proposition 8 Given two vehicles i and j on different roads, there does not exist any safe
and non-deadlocking supervisor σ : Q̃ → 2Uc with σ(q) �= ∅, for any q ∈ Q̃ such that
∃x ∈ �−1(q) satisfying all of the following equations:

xi < αri,2 (84)

xj < αrj,2 (85)

vc
i (xj + αrj,1) − vc

j (xi − αri,2) > 0 (86)

vc
j (xi + αri,1) − vc

i (xj − αrj,2) > 0 (87)

Proof First, it follows from the definitions of vc
i and vc

i that, for any x satisfying Eqs.
84–87 and uc ∈ Uc, there exists some uuc ∈ Uuc and d : [0, τ ] → D such that
x(t) = x + u(t/τ ) + d(t) either remains inside the set given by Eqs. 84–87 for t ∈
[0, τ ], or enters the bad set for some t ∈ [0, τ ] (see Fig. 9). Second, it follows from
vmin + dmin > 0 that no control strategy can prevent the vehicles from eventually enter-
ing the set xi > −αri,1 ∧ xj > −αrj,1 . Thus either the system eventually reaches

some state q ′ ∈ Q̃ such that σ(q ′) = ∅, or σ allows the system to enter the bad
set.

To obtain the set of states q for which �−1(q) is contained in the set of Eqs. 84–87, we can
take this set and “deflate it” by μτ/2, to capture the effect of the discretization. This yields
the equations used in the capture set version of the NatVic subroutine in Alg. 2. Similarly,
we can obtain the set of states q for which there exists some x ∈ �−1(q) satisfying Eqs.
84–87 by taking this set and “inflating it” by μτ/2. This yields the equations used in the
capture set version of the ContLoss subroutine in Algorithm 2.

(a) (b)

Fig. 9 The capture sets of Eqs. 84–97 in the open (left) and closed (right) cases. The blue square denotes the 
bad set. The set of Eqs. 84–87 is depicted with solid lines, and its inflation by μτ/2 is depicted in dashed 
lines. Right: If dmin and dmax are integer multiples of μ, then Eqs. 96 and 97 are unnecessary, which is shown 
by the dotted lines



In the former case (NatVic), the equations become

qi < αri,2 − μτ/2 (88)

qj < αrj,2 − μτ/2 (89)

vc
i (qj + αrj,1 − μτ/2) − vc

j (qi − αri,2 + μτ/2) > 0 (90)

vc
j (qi + αri,1 − μτ/2) − vc

i (qj − αrj,2 + μτ/2) > 0 (91)

The latter case (ContLoss) results in one of two possibilities, depending on whether the

set of Eqs. 84–87 is open or closed. The set will be open if
vc

j

vc
i

≤ vc
j

vc
i
and closed if

vc
j

vc
i

>
vc

j

vc
i
.

If the set is open, the equations become:

qi < αri,2 + μτ/2 (92)

qj < αrj,2 + μτ/2 (93)

vc
i (qj + αrj,1 + μτ/2) − vc

j (qi − αri,2 − μτ/2) > 0 (94)

vc
j (qi + αri,1 + μτ/2) − vc

i (qj − αrj,2 − μτ/2) > 0 (95)

If the set is closed, then two more equations must be added in general (see Fig. 9)

qi >
vc

i v
c
jαri,1 + vc

i v
c
i αrj,2 + vc

i v
c
i αrj,1 + vc

i v
c
jαri,2

vc
i v

c
j − vc

i v
c
j

− μτ/2 (96)

qj >
vc

i v
c
jαrj,1 + vc

j v
c
jαri,2 + vc

j v
c
jαri,1 + vc

i v
c
jαrj,2

vc
i v

c
j − vc

i v
c
j

− μτ/2 (97)

If dmin and dmax are integer multiples of μ, then it can be shown these last two equations
become unnecessary. We first prove a lemma.

Lemma 3 If dmin and dmax are integer multiples of μ,
vc

j

vc
i

>
vc

j

vc
i
, and q ∈ Q̃ satisfies Eqs.

94 and 95 then, for any uc ∈ Uc, there exists q ′ ∈ Postuc (q) that also satisfies Eqs. 94 and
95.

Proof First note from Eqs. 82 and 83 that, if either vehicle is uncontrolled, then
vc

j

vc
i

≤ 1 and
vc

j

vc
i

≥ 1, violating
vc

j

vc
i

>
vc

j

vc
i
. It follows that both vehicles are controlled, and that vc

i = vc
j >

vc
i = vc

j . We prove the following claim:
Claim: For any uc ∈ Uc, there exists some di ∈ [dmin, dmax] such that uc,i/τ +di ∈ [vc

i , v
c
i ]

and uc,i/τ + di is an integer multiple of μ.
It suffices to prove that, for any uc ∈ Uc, [vc

i −uc,i/τ, v
c
i −uc,i/τ ]∩[dmin, dmax] contains

some integral multiple of μ, since we may then take such a value as di . Clearly, uc,i/τ ∈
[vmin, vmax], from which it follows that vc

i −uc,i/τ = vmin+dmax −uc,i/τ ≤ dmax and that
vc

i −uc,i/τ = vmax +dmin −uc,i/τ ≥ dmin. Thus, [vc
i −uc,i/τ, v

c
i −uc,i/τ ]∩ [dmin, dmax]

is non-empty. Since it is non-empty, there must be at least one of dmin and vc
i −uc,i/τ in the

intersection of the two sets. Since both dmin and vc
i − uc,i/τ are multiples of μ, the claim is

proven. Constructing di and dj as in the claim, we obtain

vc
j

vc
i

≥ uc,j /τ + dj

uc,i/τ + di

≥ vc
j

vc
i

.



It follows that we can take w ∈ W such that wi = diτ and wj = dj τ , obtaining q ′ with
q ′
i = qi + uc,i + wi , q ′

j = qj + uc,j + wj such that q ′ ∈ Postuc (q) satisfies Eqs. 94 and
95.

Corollary 1 If dmin and dmax are integer multiples of μ then, given two vehicles i and j on
different roads, there does not exist any safe and non-deadlocking supervisor σ : Q̃ → 2Uc

with σ(q) �= ∅, for any q ∈ Q̃ satisfying Eqs. 92–95 only (i.e., without satisfying Eqs. 96

and 97), even when
vc

j

vc
i

>
vc

j

vc
i
.

Proof We have already shown that the result holds if
vc

j

vc
i

≤ vc
j

vc
i
, or

vc
j

vc
i

>
vc

j

vc
i
and q satisfies

Eqs. 92–97. It remains to be shown that the result also holds if dmin and dmax are integer

multiples of μ,
vc

j

vc
i

>
vc

j

vc
i
, and q satisfies Eqs. 92–95, but not Eqs. 96 and 97. Consider any

uc ∈ Uc. By Lemma 3, there exists q ′ ∈ Postuc (q) that also satisfies Eqs. 94 and 95. There
are now three cases to consider:

Case 1: q ′ satisfies Eqs. 92–97.
We have shown in this case there exists no safe and non-deadlocking supervisor from q ′.

Case 2: q ′ satisfies Eqs. 92–95, but not both of Eqs. 96 and 97.
Because dmin + vmin > 0, Lemma 3 can be applied repeatedly, until a q ′ is obtained

which satisfies Eqs. 96 and 97.
Case 3: q ′ does not satisfy both of Eqs. 92 and 93.

In this case, the line segment from q to q ′ either crosses the bad set, or comes within a
distance of μτ/2 of it (see Fig. 9). In the latter case, we can find some pair x ∈ �−1(q) and
x′ ∈ �−1(q ′) such that the line segment from x to x′ crosses the bad set.

Figure 9 depicts the set described by Eqs. 84–87 of Prop. 8, the inflated set of Eqs. 92–
97, and the special case of Cor. 1. The simulations of Section 9 satisfied the property that
dmin and dmax were integer multiples of μ, and hence the code used Eqs. 92–95 only.
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