
ar
X

iv
:1

80
8.

07
90

5v
1 

 [
m

at
h.

O
C

] 
 2

3 
A

ug
 2

01
8

Optimal Energy-Efficient Policies for Data Centers through

Sensitivity-Based Optimization

Jing-Yu Ma∗, Li Xia†, Quan-Lin Li

Abstract

In this paper, we propose a novel dynamic decision method by applying the

sensitivity-based optimization theory to find the optimal energy-efficient policy of

a data center with two groups of heterogeneous servers. Servers in Group 1 always

work at high energy consumption, while servers in Group 2 may either work at high

energy consumption or sleep at low energy consumption. An energy-efficient control

policy determines the switch between work and sleep states of servers in Group 2 in a

dynamic way. Since servers in Group 1 are always working with high priority to jobs,

a transfer rule is proposed to migrate the jobs in Group 2 to idle servers in Group

1. To find the optimal energy-efficient policy, we set up a policy-based Poisson equa-

tion, and provide explicit expressions for its unique solution of performance potentials

by means of the RG-factorization. Based on this, we characterize monotonicity and

optimality of the long-run average profit with respect to the policies under different

service prices. We prove that the bang-bang control is always optimal for this opti-

mization problem, i.e., we should either keep all servers sleep or turn on the servers

such that the number of working servers equals that of waiting jobs in Group 2. As an

easy adoption of policy forms, we further study the threshold-type policy and obtain

a necessary condition of the optimal threshold policy. We hope the methodology and

results derived in this paper can shed light to the study of more general energy-efficient

data centers.
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1 Introduction

Data centers have become a core part of the IT infrastructure for Internet service.

Typically, hundreds of thousands of servers are deployed in a data center to provide ubiq-

uitous computing environments. Tremendous energy consumption becomes a significant

operation expense of data centers. In 2014, the electricity consumption of data centers in

the USA estimated 70 billion KWh, accounted for 2% of the national electricity consump-

tion [43]. The data centers in the USA are expected to consume energy 140 TWh and

spend $13 billion energy bills by 2020 [37], while these figures in Europe will reach 104

TWh and $9.6 billion [7]. The energy consumption of data centers consists of three main

parts: servers, networks and cooling, while servers are the major one. It is estimated that

servers consume around 70% of the total energy consumption in a data center with tiered

architectures [26]. On the other hand, reducing the energy consumption of servers also can

help reduce the energy consumption of networking and cooling. Therefore, energy-efficient

scheduling of servers is of significance for the energy management of data centers.

During the last two decades, considerable attention has been paid to studying the

energy efficiency of data centers. An early interesting observation by Barroso and Hölzle [1]

demonstrated that a lot of data centers were designed to be able to handle the peak loads

effectively, but it directly caused that a significant number of servers (about 20%) are

often idle in the off-peak period. Although the idle servers do not provide any service,

they still consume a notable amount of energy. Therefore, it is necessary to design an

energy-efficient mechanism for effectively saving energy of idle servers. Previous studies

demonstrate that a potential power cutting could be as remarkable as 40% [4]. For this

purpose, a key technique, called an energy-efficient state ‘sleep’ or ‘off’, was introduced to

save energy for idle servers. See Gandhi et al. [14] and Kuehn and Mashaly [28] for more

interpretations. In this case, some queueing models either with server energy-efficient

states (e.g., work, idle, sleep, and off) or with server control policies (e.g., vacation, setup,

and N -policy) were developed in the study of energy-efficient data centers. Queueing

theory and Markov (reward or decision) processes become two useful mathematical tools

in analyzing energy-efficient data centers. See Gandhi [9] and Li et al. [31] for more details.

Few available studies have applied queueing theory and Markov processes to perfor-

mance analysis and optimization of energy-efficient data centers. Important examples in

the recent literature are remarked as follows. Gandhi et al. [11] considered a data cen-
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ter with multiple identical servers, the states of which include work, idle, sleep and off,

and their energy consumption have a decreasing order. One crucial technique given in

Gandhi et al. [11, 13] was to develop some interesting queueing models, for example, the

M/M/k queue with setup times. Since then, some multi-server queues have received at-

tention (for example, queues with server vacations, queues with either local setup times

or N -policy), and they were successfully applied to energy-efficient management of data

centers. Readers may refer to recent publications for more details, among which are Maz-

zucco et al. [34], Schwartz et al. [42], Gandhi and Harchol-Balter [12], Gandhi et al. [10],

Maccio and Down [33], Phung-Duc [38], Chen et al. [6], and Li et al. [31].

In the study of energy-efficient data centers, it is a key to develop effective optimal

methods and dynamic control techniques in data centers. So far, there have been two

classes of optimal methods applied to the analysis of energy-efficient data centers. The

first class is regarded as ‘static optimization’ with two basic steps. Step one is to set up

performance cost (i.e., a suitable performance-energy tradeoff) of a data center, where the

performance cost can be expressed by means of queueing indexes of the data center. Step

two is to optimize the performance cost with respect to some key parameters of the data

center by using, such as, linear programming, nonlinear programming, integer program-

ming, and bilevel programming. The second class is viewed as ‘dynamic optimization’ in

which Markov decision processes or stochastic network optimization are applied to energy-

efficient management of data centers, e.g., see Benini et al. [2] and Yao et al. [57] for more

details.

For the static optimization, some available works have been successfully conducted ac-

cording to two key points: The first key point is to emphasize how to construct a suitable

utility function for the performance-energy tradeoff, which needs to synchronously opti-

mize several different performance measures, for example, reducing energy consumption,

reducing system response time, and improving quality of service. The second key point is

to minimize performance cost with respect to some crucial parameters of data centers by

means of, such as linear programming and nonlinear programming. On such a research

line, Gandhi et al. [11] recalled two classes of performance-energy tradeoffs: (a) ERWS,

the weighted sum β1[R] + β2[E] of the mean response time [R] and the mean power cost

[E], where β1, β2 ≥ 0 are weighted coefficients; and (b) ERP, the product [R][E] of

the mean response time and the mean power cost. For the ERP, Gandhi et al. [11] first

described the data center as a queue to compute the two mean values [R] and [E], and
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then provided an optimization method to minimize the ERP. Also, they further analyzed

optimality or near-optimality of several different energy-efficient policies. In addition,

Gandhi [9] gave some extended results and a systematical summarization with respect to

minimizing the ERP. Maccio and Down [33] generalized the ERP by Gandhi [11] to a

more general performance cost function as follows.

f (β,w) =

M∑

i=1

βi ([R])wR,i ([E])wE,i ([C])wC,i ,

where [C] is the expected cycle rate, and βi, wR,i, wE,i and wC,i for 1 ≤ i ≤ M are nonneg-

ative weighted coefficients, β = (βi : 1 ≤ i ≤ M) and w = (wR,i, wE,i, wC,i : 1 ≤ i ≤ M).

They used the queueing models to compute the three mean values [R], [E] and [C], and

then provided some discussion on the optimality of cost function f (β,w). Gebrehiwot et

al. [15] made another interesting generalization of the ERP and ERWS by Gandhi [11]

through introducing the multiple intermediate sleep states. Under more general assump-

tions with general service and setup times, they computed the two mean values [R] and

[E] by means of some queueing insensitivity, and then discussed the optimality of the ERP

and ERWS. Further, Gebrehiwot et al. [16, 17] generalized the FCFS queueing results of

the data center with multiple intermediate sleep states to the processor-sharing discipline

and the shortest remaining processing time (SRPT) discipline, respectively. Different from

the ERP and ERWS, Mitrani [35,36] considered a data center of N identical servers whose

first part contains m servers. The idle or work state of servers is controlled by two different

thresholds: an up threshold U and a down threshold D. He designed a simple three-layer

queue to describe the energy-efficient data center in terms of a new performance cost:

C = c1L + c2S, where L and S are the average numbers of jobs present and of energy

consumption, respectively. He provided expressions for computing the average numbers

L and S such that the performance cost C can be optimized with respect to the three

parameters m, U and D.

However, for the dynamic optimization, little work has been done on applying Markov

decision processes to set up optimal dynamic control policies for energy-efficient data cen-

ters. In general, such a study is more interesting, difficult and challenging due to the fact

that a complicated queueing model with synchronously multiple control objectives (e.g.,

reducing energy consumption, reducing system response time and guaranteeing quality of

service) needs to be synthetically established in a Markov decision process. For a data

center with multiple identical servers, Kamitsos et al. [23–25] constructed a discrete-time

4



Markov decision process by uniformization and proved that the optimal sleep energy-

efficient policy is simply hysteretic. Hence, this problem has a double threshold structure

by means of the optimal hysteretic policy given in Hipp and Holzbaur [19] and Lu and

Serfozo [32]. On the other hand, as some close research to energy-efficient data centers,

it is worthwhile to note that the policy optimization and dynamic power management

for electronic systems or equipments were developed well by means of Markov decision

processes and stochastic network optimization. Important examples include: (a) Discrete-

time Markov decision processes by Benini et al. [2] and Yang et al. [56]; (b) Continuous-

time Markov decision processes by Qiu and Pedram [40] and Qiu et al. [41]; (c) Stochastic

network optimization by Yao et al. [57] and Huang and Neely [20]; (d) It has become in-

creasingly important to simplify the method of Markov decision processes such that more

complicated stochastic networks can be analyzed effectively. On this research line, event-

driven techniques of Markov decision processes have received high attention for the past

one decade. Important examples include the event-driven power management by Šimunić

et al. [44], and the event-driven optimization techniques by Becker et al. [3], Cao [5],

Koole [27], Engel and Etzion [8], and Xia et al. [52].

The purpose of this paper is to apply the Markov decision processes to set up an

optimal dynamic control policy for energy-efficient data centers. To do this, we first ap-

ply the sensitivity-based optimization theory in the study of data centers. Note that

the sensitivity-based optimization is greatly refined from the Markov decision processes

through re-expressing the Poisson equation (corresponding to the Bellman optimality

equation) by means of several novel tools, for instance, performance potential and perfor-

mance difference (see Cao’s book [5]). Also, the sensitivity-based optimization theory can

be effectively related to the Markov reward processes (e.g., see Li [29] and Li and Cao [30])

so that it is an effective dynamic decision method for performance optimization of many

practical Markov systems. The key idea in the sensitivity-based optimization theory is a

performance difference equation that can quantify the performance difference of a Markov

system under any two different policies. The difference equation gives a clear relation that

explains how the system performance is varying with respect to policies. See an excellent

book by Cao [5] for more details. So far, the sensitivity-based optimization theory has

been applied to performance optimization of queueing systems (or networks). Important

examples include an early invited overview by Xia and Cao [48]; the MAP/M/1 queue

by Xia et al. [50]; the closed queueing networks by Xia and Shihada [54], Xia [46] and
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Xia and Jia [51]; and the open queueing networks by Xia [47] and Xia and Chen [49].

In addition, the sensitivity-based optimization theory was also applied to network energy

management, for example, the multi-hop wireless networks by Xia and Shihada [55] and

the tandem queues with power constraints by Xia et al. [53].

The main contributions of this paper are twofold. The first one is to apply the

sensitivity-based optimization theory to study the optimal energy-efficient policies of data

centers for the first time, in which we propose a job transfer rule among the server groups

such that the sleep energy-efficient mechanism becomes more effective. Different from pre-

vious works in the literature for applying an ordinary Markov decision process to dynamic

control of data centers, we propose and develop an easier and more convenient dynamic

decision method: sensitivity-based optimization, in the study of energy-efficient data cen-

ters. Crucially, this sensitivity-based optimization method may open a new avenue to the

optimal energy-efficient policy of more complicated data centers. The second contribution

is to characterize the optimal energy-efficient policy of data centers. We set up a policy-

based Poisson equation and provide explicit expression for its unique solution by means of

the RG-factorization. Based on this, we analyze the monotonicity and optimality of the

long-run average profit with respect to the energy-efficient policies under some restrained

service prices. We obtain the structure of optimal energy-efficient policy. Specifically, we

prove that the bang-bang control is optimal for this problem, which significantly reduces

the large search space. We also provide an effective way to design and verify the threshold-

type mechanism in practice, which is of great significance to solve the mechanism design

problem of energy-efficient data centers. Therefore, the results of this paper give new

insights on understanding not only mechanism design of energy-efficient data centers, but

also applying the sensitivity-based optimization to dynamic control of data centers. We

hope that the methodology and results given in this paper can shed light to the study of

more general energy-efficient data centers.

The remainder of this paper is organized as follows. In Section 2, we describe the

problem of an energy-efficient data center with two groups of different servers. In Section

3, for the energy-efficient data center, we first establish a policy-based continuous-time

birth-death process with finite states. Then we define a suitable reward function with

respect to states and policies of the birth-death process. Based on this, we formulate a

dynamic optimization problem to find the optimal energy-efficient policy of the data center.

In Section 4, we set up a policy-based Poisson equation and provide explicit expression for
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its unique solution by means of the RG-factorization. In Section 5, we define a perturbation

realization factor of the policy-based control process of the data center, and analyze how

the service price impacts on the perturbation realization factor. In Section 6, we use the

Poisson equation to derive a useful performance difference equation. Based on this, we

discuss the monotonicity and optimality of the long-run average profit with respect to the

energy-efficient policies, and prove the optimality of the bang-bang control. In Section 7,

we use the Poisson equation to further study a class of threshold energy-efficient policies,

and obtain the necessary condition of the optimal threshold policy. Finally, we give some

discussions and conclude this paper in Section 8.

2 Problem Description

In this section, we give a problem description of the energy-efficient problem in data

centers. As the large variation of working loads in data centers, it is widely adopted to

organize and operate the data center in a multiple-tier architecture such that the on/off

scheduling can be performed in different tiers to save energy [26]. In this paper, we study

a data center with two groups of heterogeneous servers. There is no waiting room for

jobs in the data center, which can be viewed as a loss queue. The assumption of loss

queue model is reasonable for data centers and it is also widely used in telephone systems,

computer networks, cloud computing, and so on [18,21,45]. In what follows we provide a

detailed problem description for the data center.

Server groups: The data center contains two server groups: Groups 1 and 2, each of

which is also one of the interactive subsystems of the data center. Groups 1 and 2 contain

n and m servers, respectively. Hence the data center contains n+m servers. Servers in the

same group are homogeneous and in different groups are heterogeneous. Note that Group

1 is viewed as a base-line group whose servers are always at the work state to guarantee a

necessary service capacity in the data center. Each server in Group 1 consumes an amount

of energy per unit of time. By contrast, Group 2 is regarded as a reserved group whose

servers may either work or sleep so that each of the m servers can switch its state between

work and sleep. If one server in Group 2 is at the sleep state, then it consumes a smaller

amount of energy to maintain the sleep state.

Power consumption: The power consumption rates (i.e., power consumption per

unit of time) for the two groups of servers are described as: P1,W and P2,W for the work
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state in Groups 1 and 2, respectively; and P2,S only for the sleep state in Group 2. We

assume that 0 < P2,S < P2,W .

Arrival processes: The arrivals of jobs at the data center are a Poisson process with

arrival rate λ. Each arriving job is assigned to a server of the two groups according to the

following allocation rules:

(a) Each server in Group 1 must be fully utilized so that Group 1 provides a priority

service over Group 2. If Group 1 has some idle servers, then the arriving job immediately

enters the idle server in Group 1 and receives service there. Furthermore, if all the servers

of Group 1 are busy but Group 2 has some idle servers, then the arriving job immediately

enters an idle server in Group 2 and receives service there.

(b) No waiting room. A job can be served at an idle server or wait at a sleeping server

in Group 2. If all the servers of Groups 1 and 2 are occupied, then any arriving job must

be lost immediately. Note that each server may contain only one job, hence the total

number of jobs in the data center cannot exceed the number n+m.

(c) Opportunity cost. Once the data center contains n+m jobs, then any arriving job

has to be lost immediately due to no waiting room. This leads to an opportunity cost

with respect to the job loss.

Service processes: In Groups 1 and 2, the service times provided by each server are

independent and exponential with the service rate µ1 and µ2, respectively. We assume

that µ1 ≥ µ2 as a fast condition, which makes the prior use of servers in Group 1.

Once a job enters the data center to receive or wait for service, it has to pay a holding

cost in Group 1 or Group 2. We assume a so-called cheap condition that the holding cost

in Group 1 is always cheaper than that in Group 2. The fast and cheap conditions are

intuitive to guarantee the prior use of servers in Group 1. That is, the servers in Group 1

are not only faster but also cheaper than those in Group 2.

If a job finishes its service at a server and leaves the system, then the data center can

obtain a fixed service revenue from each served job. The service discipline of each server

in the data center is First Come First Serve (FCFS).

Transfer rule: Based on prior use of servers in Group 1, whenever a server in Group

1 becomes idle, an incomplete-service job (if exists) in Group 2 should be transferred to

the idle server in Group 1 to save processing time. When a job is transferred from Group

2 to Group 1, the data center needs to pay a transfer cost.

Independence: We assume that all the random variables defined above in the data
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center are independent.

Finally, the data center, together with its operational mode and mathematical nota-

tions, are simply depicted in Figure 1.

Figure 1: Energy-efficient management of data centers.

Remark 1 A further interpretation for the transfer rule: When a job is being served

at a server of Group 2, it can be transferred to one idle server of Group 1 and restart

its service when an idle server in Group 1 is available. Note that each server in Group

1 is not only faster but also cheaper than that in Group 2, that is, the fast and cheap

conditions guarantee that servers in Group 1 have priority than those in Group 2. From

the memoryless property of exponential distributions, the restarting service in Group 1 is

still faster and cheaper than its original service in Group 2. Therefore, this transfer rule

effectively supports energy-efficient management of the data center due to the fact that the

servers of Group 1 are fully utilized while servers of Group 2 are kept in sleep state as

many as possible.
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Remark 2 Although some authors (e.g., see Gandhi et al. [11], Mitrani [35, 36] and

Maccio and Down [33]) analyzed the energy-efficient data center with two groups of servers,

where one is the base-line group and the other is the reserved or subsidiary group, all the

servers in the two groups given in their papers are assumed to be identical. From such

a point of view, it is easy to understand that those queueing models given in their works

are the same as only Group 2 of our paper. On the other hand, it is noted that for our

queueing model, Group 1 has a large influence on analysis of Group 2 due to introducing

new transfer rules. In fact, our queueing model here has been discussed in Li et al. [31]

with a more general setting.

3 Optimization Model Formulation

In this section, for the energy-efficient data center, we first establish a policy-based

continuous-time Markov process, and show that its infinitesimal generator has the simple

structure of a birth-death process with finite states. Then, we define a suitable reward

function with respect to both states and policies of the birth-death process. Based on this,

we set up a dynamic optimization model to deal with the optimal energy-efficient policy

of the data center.

In the data center with Group 1 of n servers and Group 2 of m servers, we need to

introduce both ‘states’ and ‘policies’ to express stochastic dynamics of this data center. Let

I (t) and J (t) be the number of jobs in Groups 1 and 2, respectively. Then, (I (t) , J (t))

is regarded as the state of the data center at time t. Let all the cases of state (I (t) , J (t))

form a state space as follows.

Ω = {(0, 0) , (1, 0) , . . . , (n, 0) , (n, 1) , . . . , (n,m)} .

Note that such a state (n− i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m does not exist according

to the transfer rule. However, the policies are defined with a little bit more complication.

Let di,j be the number of servers turned on in Group 2 at the state (I (t) , J (t)) = (i, j),

for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. From the problem description in Section 2, it is

easy to see that

di,j =







0, i = 0, 1, . . . , n− 1, j = 0,

0, i = n, j = 0,

0, 1, . . . ,m, i = n, j = 1, 2, . . . ,m.

(1)
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Now, we provide an interpretation for the above expression: If I (t) = 0, 1, . . . , n− 1, then

J (t) = 0 due to the transfer rule. In this case with i = 0, 1, . . . , n, di,0 is taken as zero

due to the energy-efficient cause. While once I (t) = n, J (t) may be any element in the

set {0, 1, . . . ,m}. In this case with i = n and j 6= 0, dn,j may be taken as any element in

the set {0, 1, . . . ,m}.

Corresponding to each case of state (I (t) , J (t)) at time t, we define a time-homogeneous

policy as

d = (d0,0, d1,0, . . . , dn,0; dn,1, dn,2, . . . , dn,m) .

It follows from (1) that

d = (0, 0, . . . , 0; dn,1, dn,2, . . . , dn,m) . (2)

Let all the possible policies d given in (2) compose a policy space as follows.

D = {d : d = (0, 0, . . . , 0; dn,1, dn,2, . . . , dn,m) , di,j ∈ {0, 1, . . . ,m} , (i, j) ∈ Ω} .

Let X(d)(t) = (I (t) , J (t))(d) be the system state at time t under any given policy d ∈ D.

Then, {X(d)(t) : t ≥ 0} is a policy-based continuous-time birth-death process on the state

space Ω whose infinitesimal generator is given by

B(d) =






















−λ λ

µ1 − (λ+ µ1) λ

. . .
. . .

. . .

nµ1 − (λ+ nµ1) λ

ν (dn,1) − [λ+ ν (dn,1)] λ

. . .
. . .

. . .

ν (dn,m−1) − [λ+ ν (dn,m−1)] λ

ν (dn,m) −ν (dn,m)






















,

(3)

where ν (dn,j) = nµ1 + (dn,j ∧ j)µ2 for j = 1, 2, . . . ,m, and a∧ b denotes the minimal one

between two real numbers a and b. Note that dn,j ≥ 0, it is clear that ν (dn,j) ≥ nµ1 > 0.

Thus, the birth-death process B(d) must be irreducible, aperiodic and positive recurrent

for any given policy d ∈ D. In this case, we write the stationary probability vector of the

Markov process
{
X(d)(t) : t ≥ 0

}
under a policy d ∈ D.

π(d) =
(

π(d) (0, 0) , π(d) (1, 0) , . . . , π(d) (n, 0) , π(d) (n, 1) , . . . , π(d) (n,m)
)

. (4)
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Obviously, the stationary probability vector π(d) is the unique solution to the system

of linear equations: π(d)B(d) = 0 and π(d)e = 1, where e is a column vector of ones with

proper dimension. We write

ξi,0 =
λi

i!µi
1

, i = 0, 1, . . . , n, (5)

and

ξ
(d)
n,j =

λn

n!µn
1

λj

j

Π
i=1

ν (dn,i)

, j = 1, 2, . . . ,m, (6)

b(d) =
n∑

i=0

ξi,0 +
m∑

j=1

ξ
(d)
n,j . (7)

It follows from Subsection 1.1.4 of Chapter 1 in Li [29] that

π(d) (i, 0) =
1

b(d)
ξi,0, i = 0, 1, . . . , n; (8)

π(d) (n, j) =
1

b(d)
ξ
(d)
n,j , j = 1, 2, . . . ,m. (9)

For any two vectors a = (a1, a2, . . . , aK) and b = (b1, b2, . . . , bK), we say that a ≥ b if

ai ≥ bi for any 1 ≤ i ≤ K. The following proposition provides an interesting observation

on how a policy d ∈ D influences the stationary probability vector π(d).

Proposition 1 For any two given policies d1,d2 ∈ D with d1 ≥ d2, then

π(d1) (i, 0) ≥ π(d2) (i, 0) , i = 0, 1, . . . , n.

Proof: For any two given policies d1,d2 ∈ D with d1 ≥ d2, then it follows from (5)

that

ξ
(d1)
i,0 = ξ

(d2)
i,0 =

λi

i!µi
1

, i = 0, 1, . . . , n.

If d1 ≥ d2, then for each j = 1, 2, . . . ,m, it is clear that d1n,j ≥ d2n,j, this gives

ν
(
d1n,j

)
= nµ1 +

(
d1n,j ∧ j

)
µ2 ≥ nµ1 +

(
d2n,j ∧ j

)
µ2 = ν

(
d2n,j

)
,

hence it follows from (6) that

ξ
(d1)
n,j =

λn

n!µn
1

λj

j

Π
i=1

ν
(

d1n,i

) ≤
λn

n!µn
1

λj

j

Π
i=1

ν
(

d2n,i

) = ξ
(d2)
n,j .
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It is easy to see from (7) that

b(d1) =
n∑

i=0

ξi,0 +
m∑

j=1

ξ
(d1)
n,j ≤

n∑

i=0

ξi,0 +
m∑

j=1

ξ
(d2)
n,j = b(d2).

Thus, it follows (8) that for each i = 0, 1, . . . , n,

π(d1) (i, 0) =
1

b(d1)
ξi,0 ≥

1

b(d2)
ξi,0 = π(d2) (i, 0) .

This completes the proof.

The following theorem provides a useful observation that some special policies d ∈ D

have no effect on both the infinitesimal generator B(d) and the stationary probability

vector π(d). Note that this theorem will be necessary and useful for the analysis of policy

monotonicity and optimality in our later study, for example, the proof of Theorem 3.

Theorem 1 Suppose that two policies d1,d2 ∈ D satisfy the following two conditions:

For each j = 1, 2, . . . ,m, (a) if d1n,j ∈ {1, 2, . . . , j − 1}, then we take d2n,j = d1n,j; and (b) if

d1n,j ∈ {j, j + 1, . . . ,m}, we take d2n,j as any element of the set {j, j + 1, . . . ,m}. We have

B(d1) = B(d2), π(d1) = π(d2).

Proof: It is easy to see from (3) that the first n + 1 rows of the matrix B(d1) is the

same as those of the matrix B(d2).

In what follows we compare the latter m rows of the matrix B(d1) with those of the

matrix B(d2). For the two policies d1,d2 ∈ D satisfying the two conditions (a) and (b),

by using ν (dn,j) = nµ1 + (dn,j ∧ j)µ2, it is clear that for j = 1, 2, . . . ,m,

ν
(
d1n,j

)
= nµ1 + jµ2 = ν

(
d2n,j

)
.

Thus, it follows from (3) that B(d1) = B(d2), this also gives that π(d1) = π(d2). This

completes the proof.

Based on the problem description in Section 2, we define a suitable reward function for

the energy-efficient data center. For convenience of readers, here we explain both energy

consumption cost and system operational cost with respect to some key factors of the data

center. We summarize five classes of costs in the data center as follows.

(a) Energy consumption cost. It is seen from Section 2 that P1,W and P2,W are the

energy consumption rates for the work state in Group 1 and Group 2, respectively; while
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P2,S is the energy consumption rate for the sleep state only in Group 2. In addition, C1

is the energy consumption price.

(b) Holding cost. Each job in the data center has to pay a holding cost C
(1)
2 (resp. C

(2)
2 )

per unit of sojourn time in Group 1 (resp. Group 2). Moreover, we have two assumed

conditions: A fast condition µ1 ≥ µ2, and a cheap condition C
(1)
2 ≤ C

(2)
2 .

(c) Transfer cost. If there are some idle servers in Group 1, then the jobs in the servers

in Group 2 must be transferred to the idle servers in Group 1 as many as possible. In this

case, such each transfer needs to pay a transfer cost C3 for each job.

(d) Opportunity cost. Once the data center has contained n+m jobs, then any arriving

job has to be lost immediately. This leads to an opportunity cost due to the job loss, hence

C4 is an opportunity cost for each lost job.

(e) Service price. If a job finishes its service at a server and leaves this system, then

the data center gains a fixed service revenue (or earnings) R for each served job, that is,

R is the service price.

Based on the above cost and price definition, a reward function with respect to both

states and policies is defined as a profit rate (i.e. the total revenues minus the total costs

per unit of time). Therefore, the reward function at state (I (t) , J (t))(d) under policy d

is defined as

f (d) (i, j) =R [iµ1 + (j ∧ di,j)µ2]− [nP1,W + di,jP2,W + (m− di,j)P2,S ]C1

−
[

iC
(1)
2 + jC

(2)
2

]

− iµ11{j>0}C3 − λ1{i=n,j=m}C4, (10)

where 1{·} is an indicator function whose value is 1 when the event in {·} happens, other-

wise its value is 0. Furthermore, the job transfer rate from Group 2 to Group 1 is given

by iµ11{j>0}. If 0 ≤ i ≤ n− 1, then j = 0 and iµ11{j>0}C3 = 0. If i = n and j = 0, then

iµ11{j>0}C3 = 0. If i = n and 1 ≤ j ≤ m, then iµ11{j>0}C3 = nµ1C3.

For convenience of readers, it is necessary to explain the reward function from four

different cases as follows.

Case (a): For i = 0 and j = 0,

f (0, 0) = − (nP1,W +mP2,S)C1. (11)

Case (b): For i = 1, 2, . . . , n and j = 0,

f (i, 0) = Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2 . (12)
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Note that in Cases (a) and (b), there is no job in Group 2, thus each server of Group

2 is at the sleep state. However, in the following two cases (c) and (d), there are some

jobs in Group 2, hence the policy d will play a key role in opening or closing some servers

of Group 2 in order to effectively save energy.

Case (c): For i = n, j = 1, 2, . . . ,m− 1; and dn,j = 0, 1, . . . ,m,

f (d) (n, j) = R [nµ1 + (j ∧ dn,j)µ2]− [nP1,W + dn,jP2,W + (m− dn,j)P2,S ]C1

−
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3. (13)

To further simplify or compute (13), we need to especially deal with j ∧ dn,j . To this end,

if dn,j = 1, 2, . . . , j, then j ∧ dn,j = dn,j, hence we have

f (d) (n, j) = Rnµ1 + [Rµ2 − (P2,W − P2,S)C1] dn,j

− (nP1,W +mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3; (14)

while if dn,j = j + 1, j + 2, . . . ,m, then j ∧ dn,j = j, hence we have

f (d) (n, j) = R (nµ1 + jµ2)− (P2,W − P2,S)C1dn,j

− (nP1,W +mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3. (15)

Case (d): For i = n and j = m; and dn,m = 0, 1, . . . ,m, we obtain that m ∧ dn,m =

dn,m, and we have

f (d) (n,m) = R (nµ1 + dn,mµ2)− [nP1,W + dn,mP2,W + (m− dn,m)P2,S ]C1

−
[

nC
(1)
2 +mC

(2)
2

]

− nµ1C3 − λC4

= Rnµ1 + [Rµ2 − (P2,W − P2,S)C1] dn,m

− (nP1,W +mP2,S)C1 −
[

nC
(1)
2 +mC

(2)
2

]

− nµ1C3 − λC4. (16)

We define an (n+m+ 1)-dimensional column vector composed of the elements f (i, j)

and f (d) (i, j) as

f (d) =
(

f (0, 0) , f (1, 0) , . . . , f (n, 0) , f (d) (n, 1) , . . . , f (d) (n,m)
)T

, (17)

where aT denotes transpose of vector or matrix a.

In the remainder of this section, the long-run average profit of the data center (or

the policy-based continuous-time birth-death process
{
X(d)(t) : t ≥ 0

}
) under an energy-
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efficient policy d is defined as

ηd = lim
T→+∞

E

{
1

T

∫ T

0
f (d)

(

(I (t) , J (t))(d)
)

dt

}

= lim
T→+∞

E

{
1

T

∫ T

0
f (d)

(

X(d)(t)
)

dt

}

= π(d)f (d), (18)

where π(d) and f (d) are given by (4) and (17), respectively.

We observe that as the number of working servers in Group 2 decreases, the total

revenues and the total costs in the data center will decrease synchronously, vice versa.

Thus, there is a tradeoff between the total revenues and the total costs. This motivates us

to study an optimal mechanism design for the energy-efficient data center. The objective

is to find an optimal energy-efficient policy d∗ such that the long-run average profit ηd is

maximize, that is,

d∗ = argmax
d∈D

{

ηd
}

. (19)

In fact, it is difficult and challenging to analyze the properties of the optimal energy-

efficient policy d∗, and to provide an effective algorithm for computing the optimal policy

d∗. In the next section, we will introduce the sensitivity-based optimization theory to

study this energy-efficient optimization problem.

4 The Poisson Equation and Its Explicit Solution

In this section, for the energy-efficient data center, we set up a Poisson equation which

is derived by means of the law of total probability focusing on some stop times. It is

worth noting that the Poisson equation provides a useful relation between the sensitivity-

based optimization and the Markov decision processes (MDPs). Also, we use the RG-

factorization, given in Li and Cao [30] or Li [29], to solve the Poisson equation and provide

the explicit expression for its unique solution.

For d ∈ D, it follows from Chapter 2 in Cao [5] that for the policy-based continuous-

time Markov process
{
X(d)(t) : t ≥ 0

}
, we define the performance potential as

g(d) (i, j) = E

{∫ +∞

0

[

f (d)
(

(I (t) , J (t))(d)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (i, j)

}

= E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
X(d) (0) = (i, j)

}

, (20)
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where ηd is defined in (18). It is seen from Cao [5] that for any policy d ∈ D, g(d) (i, j)

quantifies the contribution of the initial state (i, j) to the long-run average profit of the

data center. Here g(d) (i, j) is also called the relative value function or the bias in the

traditional MDP theory, see, e.g. Puterman [39]. We further define a column vector g(d)

with elements g(d) (i, j) for (i, j) ∈ Ω as

g(d) =
(

g(d) (0, 0) , g(d) (1, 0) , . . . , g(d) (n, 0) , g(d) (n, 1) , . . . , g(d) (n,m)
)T

. (21)

We define the first departure time from state (i, j) as

τ = inf
{

t ≥ 0 : (I (t) , J (t))(d) 6= (i, j)
}

,

where (I (0) , J (0))(d) = (i, j). Clearly, τ is a stop time of the Markov process
{
X(d)(t) : t ≥ 0

}
.

Based on this, if (i, j) = (0, 0), then it is seen from (3) that state (0, 0) is the upper bound-

ary state of the birth-death process B(d), hence (I (τ) , J (τ))(d) = (1, 0). Similarly, we get

a basic relation for the stop time τ as follows.

(I (τ) , J (τ))(d) =







(1, 0) , (i, j) = (0, 0) ,

(i− 1, 0) , (i+ 1, 0) , (i, j) = (i, 0) , i = 1, 2, . . . , n− 1,

(n− 1, 0) , (n, 1) , (i, j) = (n, 0) ,

(n, j − 1) , (n, j + 1) , (i, j) = (n, j) , j = 1, 2, . . . ,m− 1,

(n,m− 1) , (i, j) = (n,m) .

(22)

Now, we derive a Poisson equation to compute the column vector g(d) in terms of

the stop time τ and the basic relation (22). By a similar computation to that in Li and

Cao [30] or Xia et al. [50], our analysis is decomposed into five parts as follows.
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For i = 1, 2, . . . , n− 1 and j = 0, we have

g(d) (i, 0) =E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (i, 0)

}

=E {τ | I (t) = i, J (t) = 0}
[

f (i, 0) − ηd
]

+ E

{∫ +∞

τ

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (τ) , J (τ))(d)

}

=
1

λ+ iµ1

[

f (i, 0) − ηd
]

+
λ

λ+ iµ1
E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (i+ 1, 0)

}

+
iµ1

λ+ iµ1
E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (i− 1, 0)

}

=
1

λ+ iµ1

[

f (i, 0) − ηd
]

+
λ

λ+ iµ1
g(d) (i+ 1, 0) +

iµ1

λ+ iµ1
g(d) (i− 1, 0) , (23)

where for the birth-death process
{
X(d)(t) : t ≥ 0

}
, it is easy to see that

∫ τ

0

[

f (d)
(

(I (t) , J (t))(d)
)

− ηd
]

dt = τ
[

f (i, 0)− ηd
]

,

E {τ | I (t) = i, J (t) = 0} =
1

λ+ iµ1
.

Thus, we obtain

iµ1g
(d) (i− 1, 0) − (λ+ iµ1) g

(d) (i, 0) + λg(d) (i+ 1, 0) = ηd − f (i, 0) . (24)

Base on (23), with a boundary consideration, for i = 0 and j = 0, we have

− λg(d) (0, 0) + λg(d) (1, 0) = ηd − f (0, 0) . (25)

For i = n and j = 0, we have

nµ1g
(d) (n− 1, 0) − (λ+ nµ1) g

(d) (n, 0) + λg(d) (n, 1) = ηd − f (n, 0) . (26)
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For i = n and j = 1, 2, . . . ,m− 1, we have

g(d) (n, j) =E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (n, j)

}

=E {τ | I (t) = n, J (t) = j}
[

f (d) (n, j)− ηd
]

+ E

{∫ +∞

τ

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (τ) , J (τ))(d)

}

=
1

λ+ ν (dn,j)

[

f (d) (n, j)− ηd
]

+
λ

λ+ ν (dn,j)
E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (n, j + 1)

}

+
ν (dn,j)

λ+ ν (dn,j)
E

{∫ +∞

0

[

f (d)
(

X(d)(t)
)

− ηd
]

dt

∣
∣
∣
∣
(I (0) , J (0))(d) = (n, j − 1)

}

=
1

λ+ ν (dn,j)

[

f (d) (n, j)− ηd
]

+
λ

λ+ ν (dn,j)
g(d) (n, j + 1)

+
ν (dn,j)

λ+ ν (dn,j)
g(d) (n, j − 1) , (27)

where

E {τ | I (t) = n, J (t) = j} =
1

λ+ ν (dn,j)
. (28)

It follows from (27) that

ν (dn,j) g
(d) (n, j − 1)− [λ+ ν (dn,j)] g

(d) (n, j) + λg(d) (n, j + 1) = ηd − f (d) (n, j) . (29)

For i = n and j = m, with a boundary consideration, a similar analysis to (29) gives

ν (dn,m) g(d) (n,m− 1)− ν (dn,m) g(d) (n,m) = ηd − f (d) (n,m) . (30)

Note that ν (dn,m) = nµ1 + (dn,m ∧m)µ2 = nµ1 + dn,mµ2 due to the fact that dn,m ∈

{0, 1, . . . ,m}.

It follows from (24), (25), (26), (29) and (30) that

B(d)g(d) = ηde− f (d)

or

−B(d)g(d) = f (d) − ηde, (31)

where f (d) is given in (17) and B(d) is given in (3).

To solve the system of linear equations (31), we note that rank
(
B(d)

)
= n + m and

det
(
B(d)

)
= 0 due to that the size of the matrix B(d) is n+m+1. Hence, this system of
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linear equations (31) exists infinitely-many solutions with a free constant of an additive

term. Let B be a matrix obtained through omitting the first row and the first column

vectors of the matrix B(d). Then,

B =






















− (λ+ µ1) λ

2µ1 − (λ+ 2µ1) λ

. . .
. . .

. . .

nµ1 − (λ+ nµ1) λ

ν (dn,1) − [λ+ ν (dn,1)] λ

. . .
. . .

. . .

ν (dn,m−1) − [λ+ ν (dn,m−1)] λ

ν (dn,m) −ν (dn,m)






















.

Obviously, rank(B) = n+m and the size of the matrix B is n +m. Hence, the matrix B

is invertible.

Let h(d) and ϕ(d) be two column vectors of size n+m obtained through omitting the

first element of the two column vectors f (d)−ηde and g(d) with size n+m+1, respectively.

Then,

h(d) =

















f (1, 0) − ηd

...

f (n, 0)− ηd

f (d) (n, 1)− ηd

...

f (d) (n,m)− ηd

















def
=

















h
(d)
1
...

h
(d)
n

h
(d)
n+1
...

h
(d)
n+m

















, ϕ(d) =

















g(d) (1, 0)
...

g(d) (n, 0)

g(d) (n, 1)
...

g(d) (n,m)

















.

Therefore, it follows from (31) that

− Bϕ(d) = h(d) + µ1e1g
(d) (0, 0) , (32)

where e1 is a column vector with the first element be one and all the others be zero. Note

that the matrix −B is invertible and (−B)−1 > 0, thus, the system of linear equations

(32) always exists one unique solution

ϕ(d) = (−B)−1
h(d) + µ1 (−B)−1

e1 · ℑ, (33)

where g(d) (0, 0) = ℑ is any given constant. For convenience of computation, we take

g(d) (0, 0) = ℑ = 1. In this case, we have

ϕ(d) = (−B)−1
h(d) + µ1 (−B)−1

e1. (34)
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To provide an explicit expression for the unique solution to the system of linear equa-

tions (32), it is easy to see from (34) that we need to first establish an explicit expression

for the invertible matrix (−B)−1. While the explicit expression of the invertible matrix

(−B)−1 can be obtained by means of the RG-factorization, which is given in Li and Cao [30]

for QBD processes, and more generally, Li [29] for general Markov processes.

To express the invertible matrix (−B)−1, we write the UL-type U -measure as

Un+m = −ν (dn,m) ,

Un+m−1 = − [λ+ ν (dn,m−1)] + λ (−Un+m)−1 ν (dn,m) ,

Uk = A
(k)
1 + λ (−Uk+1)

−1 A
(k+1)
2 , k = n+m− 2, n +m− 3, . . . , 1,

and the UL-type R- and G-measures as

Rk = λ (−Uk+1)
−1 , k = 1, 2, . . . , n+m− 1,

Gk = (−Uk)
−1 A

(k)
2 , k = 2, 3, . . . , n+m,

where

A
(k)
1 =







− (λ+ kµ1) , k = 1, 2, . . . , n,

− [λ+ ν (dn,k−n)] , k = n+ 1, n + 2, . . . , n+m− 1,

A
(k)
2 =







kµ1, k = 2, 3, . . . , n,

ν (dn,k−n) , k = n+ 1, n+ 2, . . . , n+m.

Thus, the UL-type RG-factorization of the birth-death process B is given by

B = (I −RU )UD (I −GL) ,

where

RU =














0 R1

0 R2

. . .
. . .

0 Rn+m−1

0














, GL =














0

G2 0

G3 0

. . .
. . .

Gn+m 0














,

and

UD = diag (U1, U2, . . . , Un+m) .

Therefore, we obtain

(−B)−1 = (I −GL)
−1 (−UD)

−1 (I −RU )
−1 .
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Let

X
(l)
k = RlRl+1 · · ·Rl+k−2, 1 ≤ l ≤ n+m− 1, 2 ≤ k ≤ n+m,

Y
(l)
k = GlGl−1 · · ·Gl−k+2, 2 ≤ k ≤ l ≤ n+m.

Then,

(I −GL)
−1 =














1

Y
(2)
2 1

Y
(3)
3 Y

(3)
2 1

...
...

. . .
. . .

Y
(n+m)
n+m Y

(n+m)
n+m−1 · · · Y

(n+m)
2 1














,

(I −RU )
−1 =














1 X
(1)
2 X

(1)
3 · · · X

(1)
n+m

1 X
(2)
2 · · · X

(2)
n+m−1

1 · · · X
(3)
n+m−2

. . .
...

1














,

and

(−UD)
−1 = diag

(

(−U1)
−1 , (−U2)

−1 , . . . , (−Un+m)−1
)

.

Thus, we obtain the explicit expression

(−B)−1 =














1

Y
(2)
2 1

Y
(3)
3 Y

(3)
2 1

...
...

. . .
. . .

Y
(n+m)
n+m Y

(n+m)
n+m−1 · · · Y

(n+m)
2 1














diag
(

(−U1)
−1 , (−U2)

−1 , . . . , (−Un+m)−1
)

·














1 X
(1)
2 X

(1)
3 · · · X

(1)
n+m

1 X
(2)
2 · · · X

(2)
n+m−1

1 · · · X
(3)
n+m−2

. . .
...

1














. (35)

It is worthwhile to note that for the U -, R- and G-measures discussed above, each

of them depends on the policy d ∈ D. For simplification of descriptions, we omit such

superscript d in their formulae or equations.
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Remark 3 In general, it is difficult to solve the high-dimensional system of linear equa-

tions (32) for a general Markov process. However, the RG-factorization method is usually

very effective for solving such problem for a level-dependent QBD process, in which the

expression of the invertible matrix (−B)−1 is similar to that in (35) with elements changed

from scalar to block matrices. In addition, it is also a key that the vector ϕ(d) can be nu-

merically computed from (33) and (35) by using the RG-factorization. See Li and Cao [30]

for more details.

The following theorem provides an explicit expression for the vector ϕ(d) under a

constraint condition g(d) (0, 0) = 1. Note that this expression is very useful for applications

of the sensitivity-based optimization theory in our later study.

Theorem 2 If g(d) (0, 0) = 1, then for k = 1,

g(d) (1, 0) = (−U1)
−1



h
(d)
1 +

m+n∑

j=2

X
(1)
j h

(d)
j



+G1;

For 2 ≤ k ≤ n,

g(d) (k, 0) = (−Uk)
−1



h
(d)
k +

m+n−k+1∑

j=2

X
(k)
j h

(d)
j+k−1





+

k−1∑

i=1

Y
(k)
k−i+1 (−Ui)

−1



h
(d)
i +

m+n−i+1∑

j=2

X
(i)
j h

(d)
j+i−1



+

k∏

j=1

Gj ;

For n+ 1 ≤ k ≤ n+m− 1,

g(d) (n, k − n) = (−Uk)
−1



h
(d)
k +

m+n−k+1∑

j=2

X
(k)
j h

(d)
j+k−1





+

k−1∑

i=1

Y
(k)
k−i+1 (−Ui)

−1



h
(d)
i +

m+n−i+1∑

j=2

X
(i)
j h

(d)
j+i−1



+

k∏

j=1

Gj ;

For k = n+m,

g(d) (n,m) = (−Un+m)−1 h
(d)
n+m +

n+m−1∑

i=1

Y
(n+m)
n+m−i+1 (−Ui)

−1

×



h
(d)
i +

m+n−i+1∑

j=2

X
(i)
j h

(d)
j+i−1



+

n+m∏

j=1

Gj .

23



Proof: It is seen from (34) that we need to compute two parts: µ1 (−B)−1
e1 and

(−B)−1
h(d). For the first part, we obtain

µ1 (−B)−1
e1 = µ1 (−U1)

−1
(

1, Y
(2)
2 , Y

(3)
3 , . . . , Y

(n+m)
n+m

)T

.

Since G1 = (−U1)
−1 µ1 and Y

(k)
k =

∏k
j=2Gj , we obtain

µ1 (−B)−1
e1 =



G1, G2G1, G3G2G1, . . . ,

m+n∏

j=1

Gj





T

.

For the second part, we have

(−B)−1 h(d) =




















(−U1)
−1

[

h
(d)
1 +

∑m+n
j=2 X

(1)
j h

(d)
j

]

...

(−Uk)
−1

[

h
(d)
k +

∑m+n−k+1
j=2 X

(k)
j h

(d)
j+k−1

]

+
∑k−1

i=1 Y
(k)
k−i+1 (−Ui)

−1
[

h
(d)
i +

∑m+n−i+1
j=2 X

(i)
j h

(d)
j+i−1

]

...

(−Un+m)−1 h
(d)
n+m +

∑n+m−1
i=1 Y

(n+m)
n+m−i+1 (−Ui)

−1

×
[

h
(d)
i +

∑m+n−i+1
j=2 X

(i)
j h

(d)
j+i−1

]




















.

Therefore, a simple computation for the vector ϕ(d) = (−B)−1
h(d) + µ1 (−B)−1

e1 can

derive our desired results. This completes the proof.

Remark 4 (1) Theorem 2 provides an effective method of solving the continuous-time

Poisson equation −B(d)g(d) = f (d) − ηde, through an equation transformation







g(d) (0, 0) = ℑ,

ϕ(d) = (−B)−1
h(d) + µ1 (−B)−1

e1 · ℑ,
(36)

where ℑ is any given constant, and (−B)−1 can be effectively computed by means of the

RG-factorization given in Li [29].

It is necessary to set up a general solution to the system of linear equations (36). Let

ϕ
(d)
0 be the unique solution to the system of linear equations −Bϕ

(d)
0 = h(d). Then, the

general solution is given by ϕ(d) = ϕ
(d)
0 + µ1 (−B)−1

e1 · ℑ.

(2) To deal with the Poisson equation, some authors (e.g., see Chapter 2 of Cao [5]

and Hunter [22]) provided a fundamental matrix method to give a special solution under

a constraint condition π(d)g(d) = ηd, by which the Poisson equation is well related to the
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well-known fundamental matrix (e.g., (I − P + eπ) g = f or (−Q+ eπ) g = f). From

the fundamental matrix method, our undetermined constant ℑ can be determined by

ℑ =
ηd −̟(d) (−B)−1

h(d)

π(d) (0, 0) + µ1̟(d) (−B)−1
e1

,

where ̟(d) is a row vector obtained through omitting the first element of the stationary

probability vector π(d), that is,

̟(d) =
(

π(d) (1, 0) , . . . , π(d) (n, 0) , π(d) (n, 1) , . . . , π(d) (n,m)
)

.

It is worth noting that in solving the Poisson equation, our RG-factorization method is

superior to the fundamental matrix method because the RG-factorization given in Li [29]

can easily deal with the inverse of a high-dimensional transition matrix; while computing

the inverse (I − P + eπ)−1 or (−Q+ eπ)−1, however, is very difficult for a matrix P or

Q with large size, and it also needs to first compute the stationary probability vector π.

5 Impact of Service Price

In this section, we define a perturbation realization factor of the policy-based birth-

death process, and analyze how the service price impacts on the perturbation realization

factor. Note that the results given in this section will be utilized for establishing the

optimal policy of the energy-efficient data center in the later section.

For the performance potential vector ϕ(d) under a constraint condition g(d) (0, 0) = 1,

we define a perturbation realization factor as

G(d) (n, j)
def
= g(d) (n, j − 1)− g(d) (n, j) , j = 1, 2, . . . ,m.

It follows from Theorem 2 that

g(d) (n, j − 1) = (−Un+j−1)
−1

[

h
(d)
n+j−1 +

m−j+2
∑

k=2

X
(n+j−1)
k h

(d)
n+j+k−2

]

+

n+j−2
∑

i=1

Y
(n+j−1)
n+j−i (−Ui)

−1

[

h
(d)
i +

m+n−i+1∑

k=2

X
(i)
k h

(d)
k+i−1

]

+

n+j−1
∏

k=1

Gk

and

g(d) (n, j) = (−Un+j)
−1

[

h
(d)
n+j +

m−j+1
∑

k=2

X
(n+j)
k h

(d)
n+j+k−1

]

+

n+j−1
∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1

[

h
(d)
i +

m+n−i+1∑

k=2

X
(i)
k h

(d)
k+i−1

]

+

n+j
∏

k=1

Gk.
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To express the perturbation realization factor G(d) (n, j) by means of the service price R,

we write

A0,0 = 0, B0,0 = (nP1,W +mP2,S)C1 > 0;

For i = 1, 2, . . . , n,

Ai,0 = iµ1 > 0, Bi,0 = (nP1,W +mP2,S)C1 + iC
(1)
2 > 0;

For j = 1, 2, . . . ,m and dn,j = 0, 1, . . . ,m,

A
(d)
n,j = nµ1 + (j ∧ dn,j)µ2 > 0,

B
(d)
n,j = [nP1,W + dn,jP2,W + (m− dn,j)P2,S ]C1 + nC

(1)
2 + jC

(2)
2

+ nµ1C3 + λ1{i=n,j=m}C4 > 0.

Then, for i = 0, 1, . . . , n and j = 0,

f (i, 0) = RAi,0 −Bi,0;

For j = 1, 2, . . . ,m,

f (d) (n, j) = RA
(d)
n,j −B

(d)
n,j .

Thus, we obtain

ηd = π(d)f (d)

=
n∑

i=0

π (i, 0) f (i, 0) +
m∑

j=1

π (n, j) f (d) (n, j)

= RD(d) − F (d),

where

D(d) =

n∑

i=0

π (i, 0)Ai,0 +

m∑

j=1

π (n, j)A
(d)
n,j > 0,

and

F (d) =
n∑

i=0

π (i, 0)Bi,0 +
m∑

j=1

π (n, j)B
(d)
n,j > 0.
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Then,

h(d) =

















h
(d)
1
...

h
(d)
n

h
(d)
n+1
...

h
(d)
n+m

















=

















f (1, 0) − ηd

...

f (n, 0)− ηd

f (d) (n, 1)− ηd

...

f (d) (n,m)− ηd

















=

















R
[
A1,0 −D(d)

]
−

[
B1,0 − F (d)

]

...

R
[
An,0 −D(d)

]
−

[
Bn,0 − F (d)

]

R
[

A
(d)
n,1 −D(d)

]

−
[

B
(d)
n,1 − F (d)

]

...

R
[

A
(d)
n,m −D(d)

]

−
[

B
(d)
n,m − F (d)

]

















.

If a job finishes its service at a server and leaves this system immediately, then the

data center can obtain a fixed revenue R from each job. Obviously, R is the service price

provided by the data center. Now, we study the influence of the service price R on the

perturbation realization factor G(d) (n, j). Note that all the numbers (−Uk)
−1, X

(k)
j , Y

(k)
j

and Gj are positive and are independent of the service price R, while all the numbers h
(d)
j

are the linear functions of R.

We write

W
(d)
n,j =(−Un+j)

−1

{
[

A
(d)
n,j −D(d)

]

+

m−j+1
∑

k=2

X
(n+j)
k

[

A
(d)
n,j+k−1 −D(d)

]
}

+

n∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
[

Ai,0 −D(d)
]

+

n+j−1
∑

i=n+1

Y
(n+j)
n+j−i+1 (−Ui)

−1
[

A
(d)
n,i−n −D(d)

]

+
∑

3≤k+i≤n+1

n+j−1
∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
m+n−i+1∑

k=2

X
(i)
k

[

Ak+i−1,0 −D(d)
]

+
∑

n+2≤k+i≤n+m+1

n+j−1
∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
m+n−i+1∑

k=2

X
(i)
k

[

A
(d)
n,k+i−1−n −D(d)

]

and

V
(d)
n,j =(−Un+j)

−1

{
[

B
(d)
n,j − F (d)

]

+

m−j+1
∑

k=2

X
(n+j)
k

[

B
(d)
n,j+k−1 − F (d)

]
}

+

n∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
[

Bi,0 − F (d)
]

+

n+j−1
∑

i=n+1

Y
(n+j)
n+j−i+1 (−Ui)

−1
[

B
(d)
n,i−n − F (d)

]

+
∑

3≤k+i≤n+1

n+j−1
∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
m+n−i+1∑

k=2

X
(i)
k

[

Bk+i−1,0 − F (d)
]

+
∑

n+2≤k+i≤n+m+1

n+j−1
∑

i=1

Y
(n+j)
n+j−i+1 (−Ui)

−1
m+n−i+1∑

k=2

X
(i)
k

[

B
(d)
n,k+i−1−n − F (d)

]

,
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then, we obtain that for j = 1, 2, . . . ,m,

G(d) (n, j) = g(d) (n, j − 1)− g(d) (n, j)

= R
[

W
(d)
n,j−1 −W

(d)
n,j

]

−
[

V
(d)
n,j−1 − V

(d)
n,j

]

+ (1−Gn+j)

n+j−1
∏

k=1

Gk. (37)

We can see that G(d) (n, j) quantifies the difference among two adjacent performance

potentials g(d) (n, j) and g(d) (n, j − 1). It measures the long-run effect on the average

profit of the data center when the system state is changed from (n, j − 1) to (n, j), which

indicates the occurrence of a service completion event. From later discussion in Section

6, we will see that G(d) (n, j) plays a fundamental role in the performance optimization

of data centers and the sign of G(d) (n, j) + c directly determines the selection of decision

actions, as shown in (49) later, where c is defined as

c = R−
(P2,W − P2,S)C1

µ2
. (38)

To this end, we analyze how the service price impacts on G(d) (n, j) + c as follows.

Substituting (37) into the linear equation G(d) (n, j) + c = 0, we obtain

R
[

W
(d)
n,j−1 −W

(d)
n,j

]

−
[

V
(d)
n,j−1 − V

(d)
n,j

]

+(1−Gn+j)

n+j−1
∏

k=1

Gk + c = 0. (39)

Substituting (38) into the above equation, we obtain that the unique solution of the price

R in (39) is given by

ℜ
(d)
n,j =

[

V
(d)
n,j−1 − V

(d)
n,j

]

− (1−Gn+j)
∏n+j−1

k=1 Gk +
(P2,W−P2,S)C1

µ2

1 +
[

W
(d)
n,j−1 −W

(d)
n,j

] . (40)

It is easy to see that (a) if R ≥ ℜ
(d)
n,j , then G(d) (n, j) + c ≥ 0; and (b) if R ≤ ℜ

(d)
n,j , then

G(d) (n, j) + c ≤ 0.

In the energy-efficient data center, we define two critical values, related to the service

price, as

RH = max
d∈D

{

0,ℜ
(d)
n,1,ℜ

(d)
n,2, . . . ,ℜ

(d)
n,m

}

(41)

and

RL = min
d∈D

{

ℜ
(d)
n,1,ℜ

(d)
n,2, . . . ,ℜ

(d)
n,m

}

. (42)

The following proposition uses the two critical values related to the service price to

provide a key condition whose purpose is to establish a sensitivity-based optimization
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framework of the energy-efficient data center in our later study. Also, this proposition will

be useful in the next section for studying the monotonicity of the energy-efficient policies.

Proposition 2 (1) If R ≥ RH , then for any d ∈ D and for each j = 1, 2, . . . ,m, we have

G(d) (n, j) + c ≥ 0. (43)

(2) If 0 ≤ R ≤ RL, then for any d ∈ D and for each j = 1, 2, . . . ,m, we have

G(d) (n, j) + c ≤ 0. (44)

Proof: (1) For any d ∈ D and for each j = 1, 2, . . . ,m, since R ≥ RH and RH =

maxd∈D

{

0,ℜ
(d)
n,1,ℜ

(d)
n,2, . . . ,ℜ

(d)
n,m

}

, we have

R ≥ ℜ
(d)
n,j ,

which clearly makes that G(d) (n, j) + c ≥ 0.

(2) For any d ∈ D and for each j = 1, 2, . . . ,m, if 0 ≤ R ≤ RL, we have

R ≤ ℜ
(d)
n,j ,

this gives that G(d) (n, j) + c ≤ 0. This completes the proof.

6 Monotonicity and Optimality

In this section, we use the Poisson equation to derive a useful performance difference

equation, and discuss the monotonicity and optimality of the long-run average profit of

the energy-efficient data center with respect to the policies. Based on this, we give the

optimal energy-efficient policy under some restrained service prices.

For any given policy d ∈ D, the policy-based continuous-time birth-death process

{X(d)(t) : t ≥ 0} with infinitesimal generator B(d) given in (3) is irreducible, aperiodic

and positive recurrent, hence the long-run average profit of the data center is given by

ηd = π(d)f (d),

and the Poisson equation is written as

B(d)g(d) = ηde− f (d).
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With a similar role played by state (i, j), it is seen from (3) that the policy d directly affects

not only the elements of the infinitesimal generator B(d) but also the reward function

f (d). That is, if the policy d changes, then the infinitesimal generator B(d) and the

reward function f (d) will have their corresponding changes. To express such a change

mathematically, we take two different policies d and d′, both of which correspond to their

infinitesimal generators B(d) and B(d′), and to their reward functions f (d) and f (d′).

The following lemma provides a useful equation for the difference ηd
′

− ηd of the long-

run average performances ηd and ηd
′

for any two policies d,d′ ∈ D. The performance

difference equation plays a key role in the sensitivity-based optimization theory. Note

that the performance difference equation was given in Cao [5], while here we restate it

with some simple discussion, for convenience of readers.

Lemma 1 For any two policies d,d′ ∈ D, we have

ηd
′

− ηd = π(d′)
[(

B(d′) −B(d)
)

g(d)+
(

f (d′) − f (d)
)]

. (45)

Proof: Note that π(d′)B(d′) = 0, B(d)g(d) = ηde− f (d), π(d′)e = 1, we compute

π(d′)
[(

B(d′) −B(d)
)

g(d)+
(

f (d′) − f (d)
)]

= −π(d′) ·B(d)g(d) + π(d′)f (d′) − π(d′)f (d)

= −π(d′)
[

ηde− f (d)
]

+ ηd
′

− π(d′)f (d)

= ηd
′

− ηd.

This completes the proof.

Now, we describe the first role played by the performance difference, in which we set

up a partial order relation in the policy set D so that the optimal policy in D can be found

numerically. Based on the performance difference ηd
′

− ηd for any two policies d,d′ ∈ D,

we can set up a partial order in the policy set D as follows. We write d′ ≻ d if ηd
′

> ηd;

d′ ≈ d if ηd
′

= ηd; d′ ≺ d if ηd
′

< ηd. Also, we write d′ � d if ηd
′

≥ ηd; d′ � d if ηd
′

≤ ηd.

By using this partial order, our research target is to find an optimal policy d∗ ∈ D such

that d∗ � d for any policy d ∈ D, or

d∗ = argmax
d∈D

{

ηd
}

.

Note that the policy set D and the state space Ω are both finite, thus an enumeration

method is feasible for finding the optimal energy-efficient policy d∗ in the policy set D.
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Since d = (0, 0, . . . , 0; dn,1, dn,2, . . . , dn,m) and dn,j ∈ {0, 1, . . . ,m}, it is seen that the policy

set D contains (m+ 1)m elements so that the enumeration method will require a huge

computation workload. However, our following work can greatly reduce the optimization

complexity by means of the sensitivity-based optimization theory.

Now, we discuss the monotonicity of the long-run average profit ηd with respect to a

decision element dn,j of any policy d ∈ D, for dn,j = 0, 1, . . . ,m. This result is derived

by the following two theorems, in which we show that for any policy d ∈ D and for each

j = 1, 2, . . . ,m, the long-run average profit ηd is unimodal with respect to each decision

element dn,j ∈ {0, 1, . . . ,m}.

Theorem 3 For any policy d ∈ D and for each j = 1, 2, . . . ,m, the long-run average

profit ηd is linearly decreasing with respect to each decision element dn,j, where dn,j ∈

{j, j + 1, . . . ,m}.

Proof: For each j = 1, 2, . . . ,m, we consider two interrelated policies d,d′ ∈ D as

follows.

d =
(

0, 0, . . . , 0; dn,1, dn,2, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(
0, 0, . . . , 0; dn,1, dn,2, . . . , dn,j−1, j,dn,j+1, . . . , dn,m

)
,

where dn,j > j. It is seen that the two policies d,d′ have one difference only between their

corresponding decision elements dn,j and j. In this case, it is seen from Theorem 1 that

B(d) = B(d′) and π(d) = π(d′). Also, it is easy to check from (13) to (17) that

f (d) − f (d′) =
(

0, 0, . . . , 0; 0, 0, . . . , 0,− (dn,j − j) (P2,W − P2,S)C1,0, . . . , 0
)T

.

Thus, it follows from Lemma 1 that

ηd − ηd
′

= π(d)
[(

B(d) −B(d′)
)

g(d′)+
(

f (d) − f (d′)
)]

= −π(d) (n, j) (dn,j − j) (P2,W − P2,S)C1

or

ηd = ηd
′

− π(d) (n, j) (dn,j − j) (P2,W − P2,S)C1. (46)

Since π(d) = π(d′) by Theorem 1, it is easy to see that π(d) (n, j) = π(d′) (n, j) can be

determined by d′n,j = j. This indicates that π(d) (n, j) is irrelevant to the decision element

dn,j. Again, note that η
d′

is irrelevant to the decision element dn,j, and P2,W −P2,S and C1
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are two positive constants. Thus, it is easy to see from (46) that the long-run average profit

ηd is linearly decreasing with respect to each decision element dn,j ∈ {j, j + 1, . . . ,m}.

This completes the proof.

In what follows we discuss the left half part of the unimodal structure of the long-run

average profit ηd with respect to each decision element dn,j ∈ {0, 1, . . . , j}. Compared to

the analysis of its right half part in Theorem 3, our discussion for the left half part is a

little bit complicated.

Let the optimal energy-efficient policy d∗ = argmax
d∈D

{
ηd

}
be

d∗ =
(
0, 0, . . . , 0; d∗n,1, d

∗
n,2, . . . , d

∗
n,m

)
.

Then, it is seen from Theorem 3 that

d∗n,1 ∈ {0, 1} ;

...

d∗n,j ∈ {0, 1, . . . , j} ;

...

d∗n,m ∈ {0, 1, . . . ,m} .

Thus, Theorem 3 makes the area of finding the optimal energy-efficient policy d∗ from a

large set {0, 1, . . . ,m}m to a shrunken area {0, 1} × {0, 1, 2} × · · · × {0, 1, . . . ,m}.

To find the optimal energy-efficient policy d∗, we consider two energy-efficient policies

with an interrelated structure as follows.

d =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, d
′
n,j,dn,j+1, . . . , dn,m

)

,

where d′n,j > dn,j , and dn,j, d
′
n,j ∈ {1, 2, . . . , j}. It is easy to check from (3) that

B(d′) −B(d)=




















0

0
. . .

. . . 0
(

d′n,j − dn,j

)

µ2 −
(

d′n,j − dn,j

)

µ2

0 0

. . .
. . .

0 0




















. (47)
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On the other hand, from the reward functions given in (13) to (15), it is seen that for

j = 1, 2, . . . ,m, and dn,j = 0, 1, . . . ,m,

f (d) (n, j) = [Rµ2 − (P2,W − P2,S)C1] dn,j

+Rnµ1 − (nP1,W −mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ11{j>0}C3 − λ1{i=n,j=m}C4

and

f (d′) (n, j) = [Rµ2 − (P2,W − P2,S)C1] d
′
n,j

+Rnµ1 − (nP1,W −mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ11{j>0}C3 − λ1{i=n,j=m}C4.

Hence, we have

f (d′) − f (d) =
(
0, 0, . . . , 0, µ2c

(
d′n,j − dn,j

)
, 0, . . . , 0

)T
. (48)

We write

ηd|dn,j=k = π(d)|dn,j=k · f
(d)|dn,j=k.

The following theorem discusses the left half part of the unimodal structure of the long-run

average profit ηd with respect to each decision element dn,j ∈ {0, 1, . . . ,m}.

Theorem 4 If R ≥ RH , then for any policy d ∈ D and for each j = 1, 2, . . . ,m, the

long-run average profit ηd is strictly monotone increasing with respect to each decision

element dn,j, where dn,j ∈ {0, 1, . . . , j}.

Proof: For each j = 1, 2, . . . ,m, we consider two energy-efficient policies with an

interrelated structure as follows.

d =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, d
′
n,j,dn,j+1, . . . , dn,m

)

,

where d′n,j > dn,j, and dn,j, d
′
n,j ∈ {0, 1, . . . , j}. Applying Lemma 1, it follows from

(47) and (48) that

ηd
′

− ηd = π(d′)
[(

B(d′) −B(d)
)

g(d)+
(

f (d′) − f (d)
)]

= µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

g(d) (n, j − 1)− g(d) (n, j) + c
]

= µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

, (49)
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where G(d) (n, j) = g(d) (n, j − 1)−g(d) (n, j). If R ≥ RH , then it is seen from Proposition

2 that G(d) (n, j) + c ≥ 0. Thus, we obtain that for the two policies d,d′ ∈ D with

d′n,j > dn,j and dn,j, d
′
n,j ∈ {0, 1, . . . , j},

ηd
′

> ηd.

This shows that

ηd|dn,j=1 < ηd|dn,j=2 < · · · < ηd|dn,j=m−1 < ηd|dn,j=m.

This completes the proof.

When R ≥ RH , we use Figure 2 to provide an intuitive summary for the main results

given in Theorems 3 and 4. In the right half part of Figure 2,

ηd = ηd
′

− π(d) (n, j) (dn,j − j) (P2,W − P2,S)C1

shows that ηd is a linear function of the decision element dn,j. By contrast, in the right

half part of Figure 2, we need to first introduce a restrictive condition: R ≥ RH , under

which

ηd
′

− ηd = µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

.

Let d′n,j = j. Then,

ηd = ηd
′

− µ2π
(d′) (n, j) (j − dn,j)

[

G(d) (n, j) + c
]

.

Since G(d) (n, j) depends on the decision element dn,j, it is clear that ηd is a nonlinear

function of the decision element dn,j.

Theorem 5 If 0 ≤ R ≤ RL, then for any d ∈ D and for each j = 1, 2, . . . ,m, the long-

run average profit ηd is strictly monotone decreasing with respect to each decision element

dn,j, where dn,j ∈ {0, 1, . . . , j}.

Proof: This proof is similar to the proof of Theorem 4. For each j = 1, 2, . . . ,m, we

consider two energy-efficient policies with an interrelated structure as follows.

d =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, d
′
n,j,dn,j+1, . . . , dn,m

)

,
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It is needed in the left half part 

Figure 2: The unimodal structure of the long-run average profit.

where d′n,j > dn,j , and dn,j, d
′
n,j ∈ {0, 1, . . . , j}. It is clear that

ηd
′

− ηd = µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

.

If 0 ≤ R ≤ RL, then it is seen from Proposition 2 that for any d ∈ D and for each

j = 1, 2, . . . ,m, G(d) (n, j) + c ≤ 0. Thus, we obtain that for the two policies d,d′ ∈ D

with d′n,j > dn,j and dn,j, d
′
n,j ∈ {0, 1, . . . , j},

ηd
′

< ηd.

This shows that

ηd|dn,j=1 > ηd|dn,j=2 > · · · > ηd|dn,j=m−1 > ηd|dn,j=m.

This completes the proof.

When 0 ≤ R ≤ RL, we use Figure 3 to provide an intuitive summary for the main

results given in Theorems 3 and 5.

The following theorem establishes the optimal energy-efficient policy d∗ in the data

center, and also computes the maximal long-run average profit.

Theorem 6 The optimal energy-efficient policy d∗ and the maximal long-run average

profit ηd
∗

can be determined in the following two different cases:
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R ≤ RL  

Figure 3: The decreasing structure of the long-run average profit.

(a) If R ≥ RH , then

d∗ = (0, 0, . . . , 0; 1, 2, . . . ,m)

and

ηd
∗

=
n∑

i=0

λi

i!µi
1

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

j

Π
i=1

(nµ1 + iµ2)

[

Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2

]

+
m∑

j=1

λn

n!µn
1

λj

j

Π
i=1

(nµ1 + iµ2)

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

j

Π
i=1

(nµ1 + iµ2)

{

R (nµ1 + jµ2)−
[

nC
(1)
2 + jC

(2)
2

]

− [nP1,W + jP2,W + (m− j)P2,S ]C1 − nµ11{j>0}C3 − λ1{i=n,j=m}C4

}

.

(b) If 0 ≤ R ≤ RL, then

d∗ = (0, 0, . . . , 0; 0, 0, . . . , 0)
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and

ηd
∗

=
n∑

i=0

λi

i!µi
1

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

(nµ1)
j

[

Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2

]

+

m∑

j=1

λn

n!µn
1

λj

(nµ1)
j

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

(nµ1)
j

{

Rnµ1 − [nP1,W +mP2,S ]C1

−
[

nC
(1)
2 + jC

(2)
2

]

− nµ11{j>0}C3 − λ1{i=n,j=m}C4

}

.

Proof: (a) For the optimal energy-efficient policy d∗ = (0, 0, . . . , 0; 1, 2, . . . ,m), it is

clear that d∗n,j = j and d∗n,j ∧ j = j. Thus, it follows from (5), (6) and (7) that

ξi,0 =
λi

i!µi
1

, i = 0, 1, . . . , n,

and

ξ
(d∗)
n,j =

λn

n!µn
1

λj

j

Π
i=1

(nµ1 + iµ2)

, j = 1, 2, . . . ,m,

b(d
∗) =

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

j

Π
i=1

(nµ1 + iµ2)

.

It follows from (8) and (9) that for i = 0, 1, . . . , n,

π(d∗) (i, 0) =

λi

i!µi
1

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

j

Π
i=1

(nµ1 + iµ2)

,

and for j = 1, 2, . . . ,m,

π(d∗) (n, j) =

λn

n!µn
1

λj

j

Π
i=1

(nµ1 + iµ2)

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

m∑

j=1

λj

j

Π
i=1

(nµ1 + iµ2)

.

At the same time, from (11) to (16) we obtain that for i = 0, 1, . . . , n,

f (i, 0) = Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2 ,
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and j = 1, 2, . . . ,m,

f (d∗) (n, j) = R (nµ1 + jµ2)− [nP1,W + jP2,W + (m− j)P2,S ]C1

−
[

nC
(1)
2 + jC

(2)
2

]

− nµ11{j>0}C3 − λ1{i=n,j=m}C4.

Thus, we obtain

ηd
∗

=

n∑

i=0

π(d∗) (i, 0) f (i, 0) +

m∑

j=1

π(d∗) (n, j) f (d∗) (n, j) .

A simple computation directly derives our desired result.

(b) For the optimal policy d∗ = (0, 0, . . . , 0; 0, 0, . . . , 0), it is clear that d∗n,j = 0 so that

d∗n,j∧j = 0. A similar analysis to that in (a) can lead to our desired result. This completes

the proof.

Remark 5 The results of Theorem 6 are intuitive due to the fact that when the service

price is suitably high, the number of working servers is equal to the number of waiting jobs

in Group 2; while when the service price is lower, each server opened at the work state

will pay a high energy consumption cost but receive a low revenue, thus the profit cannot

increase and all the servers in Group 2 would like to be at the sleep state.

When the price RL < R < RH , we can further derive the following theorem about the

monotonicity of ηd with respect to the decision element dn,j .

Theorem 7 If RL < R < RH , then the long-run average profit ηd is monotone (either

increasing or decreasing) with respect to the decision element dn,j , where j = 1, 2, . . . ,m

and dn,j ∈ {0, 1, . . . , j}.

Proof: Similar to the first part of the proof for Theorem 4, we consider any two

energy-efficient policies with an interrelated structure as follows.

d =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, d
′
n,j,dn,j+1, . . . , dn,m

)

,

where dn,j, d
′
n,j ∈ {0, 1, . . . , j}. Applying Lemma 1, we obtain

ηd
′

− ηd = µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

. (50)
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On the other hand, we can similarly obtain the following difference equation

ηd − ηd
′

= µ2π
(d) (n, j)

(
dn,j − d′n,j

) [

G(d′) (n, j) + c
]

. (51)

By summing (50) and (51), we have

µ2π
(d′) (n, j)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

+µ2π
(d) (n, j)

(
dn,j − d′n,j

) [

G(d′) (n, j) + c
]

= 0.

We can directly derive

π(d′) (n, j)
[

G(d) (n, j) + c
]

= π(d) (n, j)
[

G(d′) (n, j) + c
]

.

Therefore, we have the sign conservation equation

G(d) (n, j) + c

G(d′) (n, j) + c
=

π(d) (n, j)

π(d′) (n, j)
> 0. (52)

The above equation means that the sign of G(d) (n, j) + c and G(d′) (n, j) + c are always

identical when a particular decision element dn,j is changed to any d′n,j. With the sign

conservation equation (52) and the performance difference equation (51), we can directly

derive that the long-run average profit ηd is monotone with respect to dn,j . This completes

the proof.

Based on Theorems 4, 5, and 7, we can directly derive that the optimal decision element

d∗n,j has the bang-bang control form, no matter what the value of R will be.

Corollary 1 The optimal decision element d∗n,j is either 0 or j, i.e., the bang-bang control

is optimal.

With Corollary 1, we should either keep all servers sleep or turn on the servers such

that the number of working servers equals the number of waiting jobs in Group 2. We can

see that the search space of dn,j can be reduced from {0, 1, . . . , j} to a 2-element set {0, j},

which is a significant reduction of optimization complexity. The form of the bang-bang

control is also very simple and it is easy to adopt in practice, while the optimality of the

bang-bang control guarantees the performance confidence of such simple forms of control.

7 Threshold Energy-Efficient Policy

We have proved the optimality of the bang-bang control, no matter what the value

of R will be. In practice, threshold-type policy is another category of policies which
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also have a very simple form and are widely adopted in many practical systems. In this

section, we focus our study on the threshold-type policy, although its optimality is not

yet proved rigorously in our problem. We use the Poisson equation to study a class

of threshold energy-efficient policies, and obtain the necessary condition of the optimal

threshold energy-efficient policy.

Now, we introduce an interesting subset of the policy set D as follows. To this end,

for θ = 1, 2, . . . ,m + 1, we write dθ as an energy-efficient policy d with dn,j = 0 if

1 ≤ j ≤ θ − 1 and dn,j = j if θ ≤ j ≤ m, i.e.,

dθ
def
=



0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ−1 zeros

θ, θ + 1, . . . ,m



 .

Let

D∆ def
= {dθ : θ = 1, 2, . . . ,m+ 1} .

Then,

D∆ =









0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ−1 zeros

θ, θ + 1, . . . ,m



 : θ = 1, 2, . . . ,m+ 1






.

It is easy to see that D∆ ⊂ D.

For a policy dθ, it is clear that if 1 ≤ j ≤ θ − 1, then dn,j = 0 and dn,j ∧ j = 0; and if

θ ≤ j ≤ m, then dn,j = j and dn,j ∧ j = j. Thus, it follows from (5), (6) and (7) that

ξi,0 =
λi

i!µi
1

, i = 0, 1, . . . , n,

and

ξ
(dθ)
n,j =

λn

n!µn
1

λj

(nµ1)
j
, j = 1, 2, . . . , θ − 1,

ξ
(dθ)
n,j =

λn

n!µn
1

λθ−1

(nµ1)
θ−1

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

, j = θ, θ + 1, . . . ,m,

b(dθ) =
n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

θ−1∑

j=1

λj

(nµ1)
j
+

λn

n!µn
1

λθ−1

(nµ1)
θ−1

m∑

j=θ

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

.

It follows from (8) and (9) that for i = 0, 1, . . . , n,

π(dθ) (i, 0) =

λi

i!µi
1

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

θ−1∑

j=1

λj

(nµ1)
j
+

λn

n!µn
1

λθ−1

(nµ1)
θ−1

m∑

j=θ

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

;
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for j = 1, 2, . . . , θ − 1,

π(dθ) (n, j) =

λn

n!µn
1

λj

(nµ1)
j

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

θ−1∑

j=1

λj

(nµ1)
j
+

λn

n!µn
1

λθ−1

(nµ1)
θ−1

m∑

j=θ

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

;

and for j = θ, θ + 1, . . . ,m,

π(dθ) (n, j) =

λn

n!µn
1

λθ−1

(nµ1)
θ−1

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

n∑

i=0

λi

i!µi
1

+
λn

n!µn
1

θ−1∑

j=1

λj

(nµ1)
j
+

λn

n!µn
1

λθ−1

(nµ1)
θ−1

m∑

j=θ

λj−θ+1

j

Π
i=θ

(nµ1 + iµ2)

.

It follows from (11) to (16) that for i = 0, 1, . . . , n,

f (i, 0) = Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2 ;

for j = 1, 2, . . . , θ − 1,

f (dθ) (n, j) = Rnµ1 − (nP1,W +mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3;

and for j = θ, θ + 1, . . . ,m,

f (dθ) (n, j) = R (nµ1 + jµ2)− [nP1,W + jP2,W + (m− j)P2,S ]C1

−
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3 − λ1{i=n,j=m}C4.

Note that

ηdθ =

n∑

i=0

π(dθ) (i, 0) f (i, 0) +

m∑

j=1

π(dθ) (n, j) f (dθ) (n, j) .

We obtain the explicit expression of the long-run average profit under policy dθ as follows.

ηdθ =
n∑

i=0

π(dθ) (i, 0) f (i, 0)
[

Riµ1 − (nP1,W +mP2,S)C1 − iC
(1)
2

]

+
θ−1∑

j=1

π(dθ) (n, j)
{

Rnµ1 − (nP1,W +mP2,S)C1 −
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3

}

+

m∑

j=θ

π(dθ) (n, j)
{

R (nµ1 + jµ2)− [nP1,W + jP2,W + (m− j)P2,S ]C1

−
[

nC
(1)
2 + jC

(2)
2

]

− nµ1C3 − λ1{i=n,j=m}C4

}

.
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Let

θ∗ = argmax
θ∈{1,2,...,m+1}

{

ηdθ

}

.

Then, we call dθ∗ the optimal threshold energy-efficient policy in the policy set D∆. Since

D∆ ⊂ D, the partially ordered set D shows that D∆ is also a partially ordered set. Based

on this, it is easy to see from the two partially ordered sets D and D∆ that

ηdθ∗ ≤ ηd
∗

.

If ηdθ∗ = ηd
∗

, then we call dθ∗ the optimal threshold energy-efficient policy in the original

policy set D; If ηdθ∗ < ηd
∗

, then we call dθ∗ the suboptimal threshold energy-efficient

policy in the original policy set D.

We take a minimal positive integer θ∗ ∈ {1, 2, . . . ,m+ 1} such that

dθ∗ =



0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−1 zeros

θ∗, θ∗ + 1, . . . ,m



 .

For the optimal threshold energy-efficient policy dθ∗ , the following theorem determines

the positive or negative property of the function G(dθ) (n, θ) + c for θ = θ∗ − 1, θ∗, θ∗ + 1,

although the explicit expression of the perturbation realization factor G(dθ) (n, θ) is not

given yet. This may be useful for us to understand the role played by Proposition 2 in

analyzing the monotonicity and optimality of the energy-efficient policies. Furthermore,

we also derive the necessary condition of the optimal threshold energy-efficient policy.

Theorem 8 For the threshold energy-efficient policies of the data center, the optimal

threshold policy d∗
θ satisfies the following condition

G(dθ∗−1) (n, θ∗ − 1) + c ≤ 0, G(dθ∗) (n, θ∗) + c ≥ 0, G(dθ∗+1) (n, θ∗ + 1) + c ≥ 0.

Proof: We consider three threshold energy-efficient policies with an interrelated struc-

ture as follows.

dθ∗ =



0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−1 zeros

θ∗, θ∗ + 1, . . . ,m



 ,

dθ∗+1 =



0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−1 zeros

0, θ∗ + 1, . . . ,m



 ,

dθ∗−1 =



0, 0, . . . , 0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−2 zeros

θ∗ − 1, θ∗, . . . ,m



 .
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It follows from Lemma 1 that for two energy-efficient policies with an interrelated structure

d =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, dn,j,dn,j+1, . . . , dn,m

)

,

d′ =
(

0, 0, . . . , 0; dn,1, . . . , dn,j−1, d
′
n,j,dn,j+1, . . . , dn,m

)

,

it is clear that

ηd
′

− ηd = µ2π
(d′)

(
d′n,j − dn,j

) [

G(d) (n, j) + c
]

.

Thus, we obtain

ηdθ∗+1 − ηdθ∗ = −θ∗µ2π
(dθ∗+1)

[

G(dθ∗) (n, θ∗) + c
]

,

which, together with ηdθ∗+1 − ηdθ∗ ≤ 0, leads to

G(dθ∗) (n, θ∗) + c ≥ 0.

Similarly, we have

ηdθ∗ − ηdθ∗+1 = θ∗µ2π
(dθ∗)

[

G(dθ∗+1) (n, θ∗ + 1) + c
]

,

which indicates

G(dθ∗+1) (n, θ∗ + 1) + c ≥ 0.

Also, we have

ηdθ∗ − ηdθ∗−1 = − (θ∗ − 1)µ2π
(dθ∗)

[

G(dθ∗−1) (n, θ∗ − 1) + c
]

,

which indicates

G(dθ∗−1) (n, θ∗ − 1) + c ≤ 0.

This completes the proof.

8 Conclusion

In this paper, we propose a novel dynamic decision method by applying the sensitivity-

based optimization theory to study the optimal energy-efficient policy of a data center with

two groups of heterogeneous servers. We propose a job transfer rule among the group-

servers such that the sleep energy-efficient mechanism of Group 2 becomes more effective.

To find the optimal energy-efficient policy of the data center, we set up a policy-based
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Poisson equation and provide explicit expression for its unique solution by means of the

RG-factorization. Based on this, we derive the monotonicity and optimality of the long-run

average profit with respect to the energy-efficient policies under some restrained service

prices. We prove the optimality of the bang-bang control, which significantly reduces the

action search space. We also study the threshold energy-efficient policy and derive the

necessary condition of the optimal threshold policy. Different from previous works in the

literature on applying the traditional MDP theory to the dynamic control of data centers,

the sensitivity-based optimization method used in this paper is easier and more convenient

in the study of energy-efficient data centers. This sensitivity-based optimization method

may open a new avenue to study the optimal energy-efficient policy for more complicated

data centers.

Along such a research line of applying the sensitivity-based optimization and the RG-

factorization to the energy-efficient data centers, the extension to multiple groups of het-

erogeneous servers deserves further investigations. The control policy will become more

complicated when multiple groups of servers are considered. Another interesting research

topic is to consider different cost structures, waiting capacities, service disciplines, or job

migration rules. Especially, when the job migration is not allowed in data centers, the com-

plexity of the dynamic control problem will dramatically increase and it deserves further

more investigations.
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