N
N

N

HAL

open science

Cost-optimal timed trace synthesis for scheduling of
intermittent embedded systems

Antoine Bernabeu, Mikaél Briday, Sébastien Faucou, Jean-Luc Béchennec,
Olivier H. Roux

» To cite this version:

Antoine Bernabeu, Mikagl Briday, Sébastien Faucou, Jean-Luc Béchennec, Olivier H. Roux. Cost-
optimal timed trace synthesis for scheduling of intermittent embedded systems. Discrete Event Dy-

namic Systems, 2023, 33, 10.1007/s10626-022-00372-6 . hal-03952467

HAL Id: hal-03952467
https://hal.science/hal-03952467
Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03952467
https://hal.archives-ouvertes.fr

Springer Nature 2021 B TEX template

Cost-optimal timed trace synthesis for
scheduling of intermittent embedded systems

Antoine Bernabeu!”, Jean-Luc Béchennec?t, Mikael
Briday'T, Sebastien Faucou?" and Olivier H. Roux'f

1Ecole Centrale Nantes, LS2N, UMR 6004, F-44000 Nantes,
France.
2Nantes Université, LS2N, UMR 6004, F-44000 Nantes, France.
3CNRS, LS2N, UMR 6004, F-44000 Nantes, France.

*Corresponding author(s). E-mail(s): antoine.bernabeu@ls2n.fr;
Contributing authors: jean-luc.bechennec@Ils2n.fr;
mikael.briday@ls2n.fr; sebastien.faucou@ls2n.fr;
olivier-h.roux@Is2n.fr;

TThese authors contributed equally to this work.

Abstract

Intermittent computing is an emerging paradigm for systems without
batteries and powered by intermittent energy sources. This paradigm
promises a more energy-efficient design of computing systems. It seems
particularly well suited to the field of connected sensors that form
the first level of the Internet of Things. This application domain re-
quires a reactive computing model. The definition of an intermittent
and reactive model is a problem that has not yet been fully explored
in the literature. In this paper, we focus on the modeling and anal-
ysis of intermittent reactive systems. We first introduce an extension
of Time Petri Nets with cost to model the different dimensions of the
system: concurrency, real time, energy consumption and reward rep-
resenting the gains generated by the system when it has succeeded
in carrying out certain actions. We then aim to synthesize optimal
runs of the model that achieve the highest possible reward under a
given cost (energy) constraint. We propose a symbolic algorithm for
constrained-cost state space computation and prove its termination. We
then present algorithms for the synthesis of the optimal traces from an
exhaustive or partial state space exploration. We finally illustrate the

Springer Nature 2021 BTEX template

2 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

cost-optimal traces synthesis on a case study and show how that can
be used online for joint management of computing time and energy.

Keywords: Petri net, Intermittent computing, Optimization, Scheduling

1 Introduction

Today, several arguments push towards a battery-less design for autonomous
smart sensors: batteries have a limited number of cycles thus requiring main-
tenance actions that may be costly and/or difficult to carry out, and batteries
are a source of pollution during the production, recycling and disposal phases
of systems.

At the same time, there is a clear trend to move computation closer to data
sources, including smart sensors. Near-sensor computing enables low-latency
functions that are not feasible when a round-trip to the cloud is required. Near-
sensor computing helps limit the amount of data that needs to be sent (by
filtering out noise and/or performing transformation steps): since computation
is much more energy efficient than communication, trading communication
against computation usually improves the overall energy efficiency. Moreover,
limiting the broadcast of raw data remains a good practice with respect to
privacy.

Is it possible to eliminate the battery while increasing the complexity of
the calculations performed by the smart sensors? One possible response to this
question is given by the emergence of intermittent computing, a model of com-
putation for systems powered by intermittent sources, and its application for
battery-less autonomous smart sensors [1, 2]. It is enabled by the availability of
ambient energy harvesting devices and ultra-low-power micro-controllers built
around efficient non-volatile memory. In an intermittent system, power loss is
a normal event that does not hinder forward progress of computations. To do
S0, the system integrates mechanisms to save progress when power goes down,
and resume to execution when power is back. Thus, a long computation can
be spread over several cycles.

Our contribution

In this article, we study the problem of modeling and analyzing concurrent
intermittent embedded systems. For the modeling part, we introduce an ex-
tension of Time Petri Nets (TPN for short), with linear cost and reward. The
cost is used to model the energy consumption of the system as a function of
its current activities, which in turn are modeled by the state of the underly-
ing TPN. The reward makes it possible to model the gains generated by the
system when it has succeeded in carrying out certain actions (e.g., finishing a
computation, or sending a message). In terms of analysis, we are interested in
the synthesis of optimal traces, i.e., finding runs in the model that achieve the
highest possible reward under a given cost (energy) constraint. We propose a

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

symbolic algorithm for constrained-cost state space computation and prove its
termination. We then present two exact algorithms and an approximate one
allowing to synthesize the optimal traces from an exhaustive or partial state
space exploration. We also discuss how the traces computed by this analy-
sis provide relevant information for designers, more specifically for scheduling
the different activities, including checkpointing, on a system according to local
constraints (e.g., remaining energy, or available memory).

Outline

The article is organized according to the following plan: in section 2 we present
some background on intermittent systems and formal models with time and
costs; in section 3 we describe more precisely the type of system we are inter-
ested in; in section 4 we introduce the syntax and semantics of the modeling
formalism we use: cost time Petri nets; in section 5 we formalize the problem
we aim to solve and give an exact algorithm based on an exhaustive state space
exploration; in section 6, we describe two heuristics to guide the exploration
of the state space: one of them towards an optimal solution and the other
towards an approximate one; finally, in section 7, we present a case study in-
cluding the modeling and analysis of an intermittent smart sensor, and discuss
how the results produced by the analysis can help in the runtime scheduling
of such a system.

2 Related works

2.1 Models of computation for intermittent computing

From a software perspective, the main challenge is to define and support an
intermittent computing model, i.e., one in which power losses are a normal
event that does not hinder forward progress. To do so, the system integrates
mechanisms to save its state when the power goes out and to restore it when
the power comes back on. Thus, a long computation can be spread over several
power loss and recovery cycles. A state of the system saved in non-volatile
memory (NVM) is called a checkpoint, and by extension the name is also used
to designate the action to build the checkpoint.

In the literature dealing with intermittent computing, early work focused
on dynamic insertion of checkpoints through a dedicated runtime [1, 3]. Then,
an alternative direction has been explored in which the program is decomposed
into subsequence, usually named tasks, executed according to a transactionnal
semantics where the commit part correspond to a checkpoint. The tasks are
constructed either by the programmer [4] or by the compiler [5, 6], possibly with
an adaptative phase during execution to activate or deactivate checkpoints.
Task-based intermittent computing can be with rollbacks [4] if it runs until a
power loss, or without if it stops the system after a checkpoint if it cannot safely
reach the next checkpoint with the available energy [6]. Task-based solution
facilitates static reasoning about the behavior of the system, but may induce

Springer Nature 2021 BTEX template

4 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

inefficient use of energy (with rollback) or raise the issue of estimating the
available energy (without rollback).

Concerning the programming model, much work assumes that the pro-
gram is sequential, can always be delayed, interrupted, or replayed several
times. Some recent work extend the model to integrate mechanisms from con-
current and reactive computing. Sytare[7] is a software layer that handles
asynchronous device and device drivers for intermittent systems. Coati [8] also
allows the integration of interrupt routines. InK [9] is similar to an event-driven
kernel for intermittent systems. Catnap [10] adopts a similar event-driven
model and adds the possibility of reserving a part of the energy buffer to
provide a minimum notion of quality of service.

In this work, we are interested in an intermittent computing model with
concurrent threads and static checkpoints without rollback.

2.2 Modeling intermittent systems

If one is primarily interested in formal models, the work in the state of the art
focuses on the functional aspects of intermittent systems with the objective of
establishing proofs of correctness [11, 12]. Physical resources (e.g., computation
time, or energy) are modeled in a very abstract way.

Outside the framework of formal models, several authors propose solutions
to simulate the execution of an intermittent system, with a particular inter-
est in modeling energy consumption. Some of them are oriented towards the
static prediction of the worst case of energy consumption [13] while others,
such as the framework Fused [14], are oriented towards simulation. Simulation
models include lots of details but have a significant complexity, making them
unsuitable for design space exploration.

To enable the development of higher-level models, power measurement
platforms have been developed [15, 16]. These platforms are mainly based
on current measurement in order to measure the energy consumption of the
system and its different modules. They assume that the supply voltage is con-
stant, which requires the integration of a voltage regulator between the energy
harvesting devices and the micro-controller and external peripherals.

Finally, some work focus on the prediction of the energy produced by the
harvesting devices, mainly in the case of solar panels. EWMA [17] is certainly
the most widely used algorithm because of its simplicity, but unfortunately its
prediction errors rate is important. Pro-Energy-VLT [18], based on embedded
profiles, is much more accurate but requires memory space to be used online
so it does not fit all use-cases, especially in the domain of smart sensors.

In this work, we propose a high-level modeling approach for intermittent
system with quantitative representation both for execution time and energy
based on TPN. The embedded energy model is based on measurements (see
section 7.1) at the platform level: it is not limited to the activities of the
CPU. It is close to the work of Berthou et al. [16] but we do not assume the
integration of a regulator so the supply voltage is not constant.

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

2.3 Formal models with time and costs

Priced or cost timed models are suitable models for real-time systems, when
we have to take into account that the behavior of the system is constrained
by the consumption of different types of resources and/or the accumulation of
some cost during its execution. These models allow to define the accumulated
cost for a given run of the system. They have been first introduced in [19] for
Priced Timed Automata (PTA) and in [20] for Priced Timed arc Petri net
(PTPN).

The problem of determining the minimum cost for reaching a designated
set of target states is particularly interesting. This problem has been proved
decidable in [19] for PTA with non-negative integer costs. A solution based on
a forward exploration of zones extended with linear cost functions has been
proposed in [21, 22] for PTA and in [20] for PTPN. Algorithms to solve the min-
cost problem have been implemented in modeling and verification toolboxes:
UPPAAL CORA for PTA [23], and Roméo for TPN [24].

In [25], the authors consider cost time Petri nets where each transition has
a firing cost and each marking has a rate cost. They solve the optimal-cost
reachability problem by revisiting the state class graph method [26] to include
costs.

Another interesting problem is the existential lower-bound constrained
problem. Given an initial credit (weight), the existential lower-bound con-
strained problem is to decide whether there exists an infinite run where
the cost is continuously maintained non-negative. In [27], the authors show
that this problem is undecidable for PTA but become decidable when only
bounded-duration runs are considered.

3 System overview

3.1 System architecture

A battery-less autonomous smart sensor is powered by energy harvested from
its environment. It incorporates a super-capacitor used as an energy buffer,
which keeps the system operating for a few moments when insufficient en-
ergy is harvested. To implement an intermittent computing model, these few
moments must be used to progress as much as possible in the on-going compu-
tations and to save the progress, i.e., to save the volatile state of the system to
a non-volatile memory (NVM for short). To enable this last step, the system
must integrate a sufficiently powerful and efficient NVM. One example is fer-
roelectric RAM, or FRAM, which offers better performance, energy efficiency,
and lifetime than Flash memory [28]. FRAM memory have been integrated
for instance by Texas Instrument as a drop-in replacement of NOR-Flash, to
serve as NVM a series of micro-controllers built around the MSP430 16-bit
CPU. Systems of this serie are typically a good fit for autonomous smart sen-
sor running an intermittent computing model and correspond to the type of

Springer Nature 2021 BTEX template

6 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

system we are focusing on in this paper. More precisely, we consider a system
with the following hardware features:

A platform offering non-volatile memory with low power operation.

A limited energy storage capability using a super-capacitor. Typically, with

a full charge of the super-capacitor and not considering energy harvesting,

the system powering time ranges from tens of seconds to minutes depending

on the devices that are powered for a given task.

® An energy harvesting device: photo-voltaic, wind, thermo-electric, The
harvested energy is stored in the super-capacitor and used in parallel to
power the system. The harvest, depending on the circumstances, can be
sufficient to feed the system whatever its consumption, or insufficient, or
even nil. In the two latter cases, once the super-capacitor charge is too low,
the system must go through voluntary stops to allow the recharging at a
sufficient level.

® And a direct supply of the system without any voltage regulator.

This last item is of paramount importance when one gets interested in
modeling the energy consumption of such a system. The energy supplied by
the harvesting device is stored in the super-capacitor. This energy F, is a
function of the voltage according to equation (1), where C' is the capacity of
the super-capacitor and V. is the voltage across the super-capacitor.

E:%xCfoC (1)

The power P consumed by the system is the sum of the static power Pgiqs,
almost constant and the dynamic power Py, which varies in function of the
activity of the system : P = Py + Payn. On the type of system considered
(CMOS technology with low frequency, from few MHz to few dozen MHz),
the static power is very low compared to dynamic power. The static power
consumption can be estimated by measuring the energy consumption while the
intermittent system is in low energy consumption with all the clocks stopped
but the CPU still supplied.

The dynamic power consumed by the CMOS circuit is ruled by equation
(2), where f. is the frequency of the system (in our case the micro-controller),
C, is the sum of capacities of capacitor charged and discharged during
operations, and Vg4 is the supplied voltage.

den = fclk x Cp x Vdgd (2)

According to equation (2), dynamic power consumption depends, like the
energy, on the square of the supply voltage. As we consider a system fed
directly from the super-capacitor (i.e., without the intermediary of a voltage
regulator that would keep the supply voltage constant) the supply voltage
equals the super-capacitor voltage: V.. = V4. The consumption is non-linear
and follows a law in V2. The result is that the voltage varies linearly with
time as the energy buffer depletes. Thus, the available energy is given by the

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

supply voltage and the energy consumption model reduces to a linear model
(the voltage drop as a function of time).

Notice that term C}, used in equation (2) depends on the activities on-going
at system level and is not constant accross time. Thus, the slope of the linear
model is not constant either, it changes slightly each time a transistor switches
in the system. Thus, in this framework, the energy consumption model of a
system can be more or less accurate, depending on the level of detail that is
given to identify the different slopes. One could probably distinguish one by
one each the execution of CPU instruction, or even the different execution
stages of a given instruction. This level of detail is neither useful nor desirable
for the type of problem that interests us. To better understand the level of
detail relevant to our case, we refer the reader to the section 7.1 which presents
the model we have built for a case study. This model was obtained from a set
of measurements performed on a real target.

We have chosen not to include a buck/boost regulator in this study in order
not to be penalized by its efficiency. However, if there is one, we should rely
on the input current of the system to keep a linear evolution, as in [16].

3.2 Model of computation

We consider a concurrent, task-based!, intermittent model of computation.
In this model, a workload is composed of different tasks. These tasks can be
software, hardware, or a mix of both?. The presence of hardware tasks implies
a parallel execution model: a hardware task can execute at the same time
as another task (hardware or software or mixed) that does not use the same
resources.

As usual in intermittent computing models, a task has a transactional
semantics: once started, either it ends before the next power loss, or the
progress is lost. Although this constraint could be relaxed for software tasks
(by including their volatile state in the checkpoint), it is more difficult for
software/hardware and for hardware ones that use hardware devices whose
context is inaccessible (e.g., a computing accelerator) or those using a device
that cannot be interrupted (e.g., a radio transmitter when sending a frame).

Tasks can be linked by precedence relations. For example, a set of data
can be sampled by a sensor, then processed by software functions, and finally
the result is sent to a server by radio transmission. Intermediate buffers can
be inserted between tasks to allow for a pipeline execution model. For ex-
ample, several successive processing results can be stored in memory while
transmission is deferred until the available energy is sufficient to allow it.

The interest of the pipelined execution model is to offer a greater flexibility
to the scheduler, including in the presence of precedence constraints, to choose
the next tasks to execute according to the available resources (memory, energy)

! The term task is used here in the sense given to it in the literature on intermittent computing,
and not in the sense given to it in the literature on system scheduling.

2For example, the capture of analog sensor data at regular intervals can be done without software
involvement by using a timer, the Analog to Digital Converter device (ADC) and the Direct
Memory Access device (DMA).

Springer Nature 2021 BTEX template

8 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

and the functional objectives (forward progress). Moreover, it is a general
model, which includes the non-pipelined case (obtained by considering buffers
of size 0 between the different “stages” of the pipeline).

It is important to note that even in the presence of precedence constraints
linking all the tasks of a system, the pipelined execution model makes it
possible to partially exploit the parallelism offered by the platform?.

In this article, we focus on modeling and analysis of systems that implement
this model of computation. We leave for future work the design of an actual
implementation. However, we can emphasize that the model of computation
uses classical mechanisms, whose implementation has already been studied in
the literature [8-10].

3.3 First formulation of problem

Let an intermittent smart sensor using the architecture described in section 3.1
and implementing the model of computation described in section 3.2. We are
interested in the problem of scheduling the tasks of the system to maximize
its energy efficiency. For this, we have two objectives:

® on the one hand, when choices have to be made between several tasks, energy
should be consumed to execute those that most advance the system toward
its functional goals;

® on the other hand, energy should never be used to execute a task that cannot
be guaranteed to be completed before the next power loss.

The formulation of this problem reveals several elements. First, an energy
consumption must be attached to a task, and more broadly, we must be able to
compute the instantaneous energy consumption of the system at a given instant
as a function of the on-going tasks. As previously explained, a linear time
model can be used. Each task is then associated with a slope that represents
its consumption. The system consumption is obtained by combining the slopes
of the current tasks. We describe in section 7.1 how we obtained such a model
for a real system.

Second, there must be a quantification of the way a task makes the system
progress towards its functional objectives. Of course this is not an objective
physical quantity. It is rather a value that the system designer must be able
to associate with each task. We denote reward the quantification of these
functional objectives. This idea is not new and value-based scheduling has
already been explored in different application domains [29-31]. To the best of
our knowledge, this is the first time it has been used in conjunction with an
intermittent computing model.

Given a model that captures all the dimensions listed above, the problem we
wish to solve is to obtain the trace of an execution leading to a state where the
reward is maximum among all states that are reachable under a given energy
constraint. The energy constraint represents the maximum energy that can be

3The pipelined execution model remains general, as we can still consider a software task as a
whole, with a single-stage pipeline.

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

stored in the super-capacitor. If more than one state can gain the maximum
reward, we are interested in finding which of them can be reached with the
least amount of energy. We explain in the following sections how to formalize
and solve this problem using an extension of Time Petri nets with cost. Then,
we illustrate with a case study how the solution of this problem can be used
to efficiently schedule an intermittent system.

4 Cost Time Petri Nets

The theory of Petri Nets provides a general framework to specify the be-
havior of concurrent reactive systems. Time Petri Nets (TPN), introduced
in [32] to take into account real-time specifications, extend Petri nets with
time constraints on transition firings. Efficient reachability analysis methods,
usually based on state space abstraction such as the state class graph, allow
to represent firing sequences and reachable markings.

4.1 Preliminaries

We denote N, Z, Q and R respectively the set of integers, natural, rational and
real numbers. We consider 0 to be an element of N and let N* = N\ {0}. For
n € N, we let [0,n] denote the set {i € N |47 <n}. The set of non empty real
intervals that have rational (respectively natural numbers) or infinite endpoints
is denoted Zg., (respectively In). For I € Zg.,, I denotes its left end-point

and I denotes its right end-point if I is bounded and oo otherwise. Moreover,
for any d € R>g, we let /—d be the interval defined by {#—d | § € IN0—d > 0}.

For F and F’, two systems of linear inequalities over a set of variables X, we
denote F' = F’ when they have equal solution sets over X. Moreover we denote
by Fly (with Y C X) the projection of F over Y (we use Fourier-Motzkin
elimination of the variables Z s.t. YUZ = X and Y N Z = ().

4.2 Time Petri Nets

We first recall the well-known definitions of Time Petri Nets and state class
graph of [26, 33].

Definition 1 (Time Petri Net (TPN)) A Time Petri Net is a sextuple N =
(P, T,*.,.*,mg, Is) where

P is a finite non-empty set of places,

T is a finite set of transitions such that TN P = (),

*.: T — N” is the backward incidence mapping,

.2 : T — NF is the forward incidence mapping,

myg : P — N is the initial marking, and

I, : T — Iy is a function assigning a firing interval to each transition.

Springer Nature 2021 BTEX template

10 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

A marking is a mapping from P to N. For a marking m € N*, m(p) denotes
the number of tokens in place p. A Petri net N is said to be k-bounded or
simply bounded if the number of tokens in each place does not exceed a finite
number k for any marking reachable from my.

e A transition ¢ € T is said to be enabled by a given marking m € NT if m
supplies t with at least as many tokens as required by the backward incidence
mapping °*. We define the set En(m) of transitions that are enabled by the
marking m as En(m) ={t €T | m > *(t)}

e A transition ¢’ € T is said to be newly enabled by the firing of a transition
t from a given marking m € NP if it is enabled by m — * + t* but not
by m — *t. The set of transitions that are newly enabled by the firing of ¢
from the marking m is NewlyEn(m,t) = {t' € En(m —*t+1t*) | ¢ ¢
En(m—*t)ort=t}

Definition 2 (State) A state of the net N is a pair (m,I) in NP x 1(5>0, where m
is a marking of N and I is a function called the interval function. I : T — Tg.,
associates a temporal interval with every transition enabled by m. -

Definition 3 (Semantics of a TPN) The semantics of a TPN is a timed transition
system (Q, qo, —) where:

c QoI
® go = (mo,lo) s.t. Vt e En(mo) Io(t) = Is(t)
® — consists of two types of transitions:

— discrete transitions: (m, I) 5N (m/, I') iff

x m > m' =m—"°+t*and I(t) =0,
x Vt' € En(m') N

- I'(t) = I,(t) if t' € NewlyEn(m,t),
- I'(t") = I(¢') otherwise

— time transitions: (m, I) 900, (m, [=d) iff Vt € En(m), (I=8)(t) > 0.

A run of a time Petri Net A is a (finite or infinite) path in its semantics
starting in qq.

We denote (m, I) LLLN (m/,I") for the sequence of elapsing § followed by

the firing of the transition ¢ : (m, I) 2 (m, 1-6) 5 (m/, ') .
The set of runs of a TPN is denoted by Runs
We denote sequence(p) (resp. trace(p)) the projection of the run p over T

(resp. over T'x Q>¢). The sequence o (resp. the trace 7) corresponding to the

to@Jo t1Q5, to Qo .
run p = qg q1 q2 qs is 0 = sequence(p) = totita (resp.

T = trace(p) = t0Qdy.t1 Q1 .t2@QF5).

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 11

Definition 4 (Discrete state graph of a TPN) The discrete state graph (DSG) of a
TPN is the structure DSG = (5, s, <) where S € NP x Ig>0, so = (mo, Is) and

t . tQo
s—s if3I€Qsg | s — &

Any state of the DSG is a state of the semantics of the TPN and any state
of the semantics which is not in the DSG is reachable from some state of the
DSG by a continuous transition.

The DSG represents a dense state space in the sense that a state of the

t
DSG may have infinite number of successors by <. Finitely representing dense
state spaces involves grouping some sets of states.

4.2.1 State Classes

For an arbitrary sequence of transitions ¢ =ty ...t, € T* | let C, be the set
of all states that can be reached by the sequence o from sg : Cp, = {s € S |
so<i>slo~<i"+s}.

All the states of C, share the same marking and can therefore be written
as a pair (m, D) where m is the common marking and D is the union of the
points belonging to the set of firing intervals. D is called the firing domain.

We denote 22, the relation satisfied by two such sets of states when they
have the same marking and the same firing domain.

Definition 5 Let Cy = (m, D) and C, = (m/, D’) be two sets of states, Co =2 Cyr
if m=m' and D=D'.

If C, & C,/, any firing schedule firable from some state in C, is firable
from state in C,+ and conversely. The state classes of [26, 33] are the above
sets C, considered modulo 22 equivalence.

Definition 6 The state class graph (SCG) of [26, 33] is defined by the set of state

classes equipped with a transition relation: C» L Xiff Cot =2 X.

Hence, the SCG computes the smallest set C' of state classes w.r.t. . The
SCG is finite iff the net is bounded. Moreover, the SCG is a complete and
sound state space abstraction of the TPN.

Given a state class C' = (m, D), a point © = (91, d2, ..., 0,) € D is composed
of the values of variables 61, 6s,...,0, that refers to the firing instants in C'
of tramsitions t1,ts...t,, that are enabled by m. The firing domain may be
described by linear inequations of the form 6; < k or 6; — 0; < k" where k € N
and k' € Z.

Springer Nature 2021 BTEX template

12 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

4.3 Cost Time Petri Nets

Definition 7 (Cost Time Petri Net (¢cTPN)) A Cost Time Petri Net is a tuple
NC = (P7 T7 .'7 -.7 mo, IS7UJ, CT’) where

o N =(PT,*,.*,mg,I)is a TPN.

® w:T — N is the discrete reward function.

e cr: NP — Z is the cost rate function. cr is a linear function over markings
with integer coefficients.

Definition 8 (Semantics of a ¢TPN) The semantics of a c¢TPN N, =
(P,T,°.,.°,mg, Is,w, cr) is the semantics of the TPN N = (P, T,°.,.% mg, Is).

The cost state of a cTPN is (m, I, R,C) € N¥ x I&m x Nx R, where (m, I)
is a TPN state and R and C are respectively the accumulation from the initial
state of the reward and the cost of the discrete and timed transitions of a run
that leads to (m, I).

e the reward of a discrete transition (m, I, R,C) - (m/,I',R',C') is R/ =R =
w(t)

® the cost of a timed transition (m,I,R,C) 4, (m, I',R',C")is C"—C =
d x cr(m);

Definition 9 (Cost of a run (cost)) The cost of a run p = (mg, Ip, Ro,Co) 20@0y,

n—1@8, .
(m1, 11, R1,C1) 2% (ma, I, R, Ca) - 22" (m, I, R, C) i
n—1
cost(p) = Cp = Z 0; X er(my)
1=0

Definition 10 (Reward of a run) The reward of a run p = (mo, I, Ro, Co) RILUN

n—1Qd, _ .
(m1, 11, R1,C1) 2% (ma, Iy, R, C) -+ X2 (i, I, Rin, Cn) s
n—1
reward(p) = Rn = Z w(t;)
i=0

4.4 Example

Let us consider the ¢TPN of Figure 1. The cost rate is cr =2 X ps +3 X p3 +
3Xps+5Xps+5Xpr+5xps—+5Xpg where p; is an abbreviation for m(p;)
and m(p;) is the number of tokens in p;. The firing of the sequence to, t1, t4

and tg respectively at absolute dates 1.4, 2, 5 and 6 gives the following run:

to@1.4 t1@Q0.6 t,Q3 te@1 .
P =40 Q g2 a3 qa With

Pl t1:[2,2)
® go = (mo,Io,Ro,Co) = ({P2 }7 ta 1 [1,5] 70,0)
3,3]

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 13

p4
{ps}, t4:[3,3],2+0:2,7+0.6><(3+3):10.6)
_ (17 .
- ,tﬁ.[1,1],2+3:5,10.6+3><(3+3):28.6)
° _(P9 _ _
o= (15 ,none,5+1_6,28.6+1><(5+3)_36.6)

At the end of the run we have reward(p) = 6 and cost(p) = 36.6

Figure 1 Cost Time Petri Net with ¢r = 2Xp2+3Xp3+3Xp5+5Xpe+5Xp7r+5Xps+5Xpg

5 Constrained-Cost problems and State Space

5.1 Constrained-Cost problems

Given a ¢cTPN N and an upper-bound on the cost variable, the constrained-
cost problems can be stated as following:

1. What is the optimal reward that can be reached without exceeding the
upper cost limit?
2. Give a run that leads to this optimal reward and minimizes the cost

Definition 11 (Set of runs under cost constraint (Runs.<. .)) The set of runs of a
c¢TPN A under the cost constraint ¢ < ¢maz is the set of (finite or infinite) paths in
its semantics starting in gg such that all the states of the run respect the constraint:

to @4 t1 Q6 tn—1Qd,_12 _
p=q0 —>q — L qo--- Sttt gn such that Vk < n, Zf:ol d;xcer(m;) <

Cmax

We denote this set by Runs.<., ..

Springer Nature 2021 BTEX template

14 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

Definition 12 (Optimal reward of a ¢TPN under cost constraint) The optimal
reward under the cost constraint ¢ < cmqz i

OptReward(c < cmaz) = reward(p) such that p € Runs.<. . and Bp' €
Runs.<., .. | reward(p’) > reward(p). B

Definition 13 (Optimal run under cost constraint) An optimal run of the cTPN N
under the cost constraint ¢ < ¢maz is

OptRun(c < ¢maz) = p € Runs.<._ . such that reward(p) = OptReward(c <
¢maz) and Fp’ € Runsg<c, . | reward(p’) = reward(p) and cost(p') < cost(p).

5.2 State space under cost constraint

We now extend the state class of [26, 33] with information on cost and reward.
We call cost state classes these extended state classes.

Given a sequence o of transitions leading to a classic state class C, =
(m, D), the firing domain D is a convex polyhedron constraining the firing
times of the transitions enabled by m. For an enabled transition ¢;, we denote
by 6; the corresponding variable in D. These firing times are relative to the
absolute firing date of the last transition of o (or 0 for the initial class).

Cost state classes L, = (m, R, F') extend the state class as follows :

® the discrete state is now given by the marking m and the reward R obtained
by the sequence of transitions o,

® the firing domain is extended with an additional cost variable c, initially
equal to cg, and evolving as described in the semantics above, and using
the following observation: since firing dates are relative to the last fired
transition, the time spent in a class before firing some transition ¢; is exactly
0;.

Computing the successive cost state classes then naturally extends the
classic computation of [26, 33] as follows:

® the initial cost state class is: Lo = (mo,0,{0; € Is(t;) | t; € En(mo)} A {c =
co})-

® A transition ¢y is firable from class L, = (m, R, F') under cost constraint
¢ < Cmaqr iff:

— ty is enabled by m;
= (FANigp 0 <0 Act0p xer(m) < cmaz) # 0.

Firable(Ly, ¢ < Cmag) denotes the set of transitions ¢; firable from L, under
the cost constraint ¢ < ¢;0z

® The successor Ly, of the cost state class L, by a transition ¢ firable from
L, is given by Algorithm 1.

By iteratively computing the extended state classes we obtain a possibly
infinite graph with edges labeled by fired transitions and nodes by classes.

Given a constraint ¢ < ¢pep Where Cpaq is a finite integer, Algorithm 2
consists in a classic exploration of the symbolic state-space, while checking

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

Algorithm 1 Successor Ly¢, = (m',R', F') of L, = (m,R,F) by firing t:

Lot, = Next(Lg,ty)

m —m—*t;+1%;

R+ R+ wl(ty);

Fre— FAN.p0p < 0; At 0f x er(m);

for all ¢ # f, add variable 0, to F’, constrained by 0, = 0 + 0;;

add variable ¢’ to F’, constrained by ¢/ = ¢+ 6, x cr(m) ;

eliminate (by projection) variables c, 6; for all i, and ¢’ for all ¢; disabled

by firing ¢y, from F;

7. for all newly enabled transition ¢;, add variable 9;, constrained by 9;- €
I (t;).

S o kW

the cost constraint in the firability condition. It uses a passed list, PASSED, to
store the already visited symbolic states.

The cost is not bounded in the PASSED list, then the algorithm uses a
dedicated comparison operator C between symbolic states [25, 34].

Definition 14 Let L = (m,R, F) and L' = (m/, R/, F") two cost state classes. We
say that L is subsumed by L', which we denote by L C L' iff m =m/, R = R’ and
1F C 1F’ where 1F is the convex polyhedron obtained from F by removing all upper
bound constraints on cost variable c.

We suppose that initially the cost is ¢y < ¢maq-

Algorithm 2 Symbolic algorithm for constrained-cost state space

: CONSTRAINEDSTATESPACE < ()
. PASSED « ()
: WAITING « {(mg,0, Fo Ac=cp)}
while WAITING # () do
select L = (m, R, F) from WAITING
if for all L' € PASSED, L Z L' then
add L to PASSED
for all t; € Firable(L,c < ¢pmqz), add Next(L,ts) to WAITING
end if
: end while
: for each L = (m, R, F) € PASSED do
add (m, R, F A ¢ < ¢naz) to CONSTRAINEDSTATESPACE
: end for
: return CONSTRAINEDSTATESPACE

© ® 3> TN

e e =
AW D O

Firability condition ty € Firable(L,c < Cmaqz) checks (FAc+0f x cr(m) <
Cmaz) 7 0 then in all firing domain F’ computed by the algorithm there is at
least one point in F’ such that ¢ < ¢,,4,. However, we do not take into account

15

Springer Nature 2021 BTEX template

16 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

the cost constraint in the computation of the successor Next(L,t) therefore
there may exist some domain F' of reachable class (m, R, F') containing points
in FA(¢ > ¢magz)- It is obvious that no transition is firable under cost constraint
¢ < €Cmag from such a point. Hence PASSED list computed by Algorithm 2 is
correct w.r.t marking and reward but is an over-approximation of the firing
domain. To obtain in CONSTRAINEDSTATESPACE the firing domain verifying
the cost constraint from PASSED, it is therefore necessary to intersect the
domains with ¢ < ¢0z-

Algorithm 2 will not terminate if the number of reachable markings or
rewards is not finite while the cost constraint is respected. We now prove the
termination of the algorithm in case of boundedness.

Lemma 1 (Fo|g = Do) Let N a cost TPN and Ny its underlying TPN (i.e., without
cost and reward). Let o a firable sequence in N from the initial state, leading to
Lo = (m,a, Fs) and Cy = (m, Do) respectively for N and Nyy. The projection of Fi
over the 6 variables is Fg|9 =D,.

Proof By induction on the length n of the sequence o: for n = 0 the property trivially
holds. Suppose the lemma holds for o with Ly = (m,a, F'), C5 = (m, D) and Flg =
D. Consider t a firable transition from Co leading to Cyy = (m’, D’) then Fig A
/\#f Or < 0; # 0 then F A /\#f 0r < 60; # 0 and ty is firable from L,. Moreover,
no constraint over ¢ are added by the computation of Next(Ls,tf) (Algorithm 1).
The equation ¢’ = ¢+ 6; x cr(m) and the elimination of the variable ¢ do not change
the space of solutions over ¢ then F'w/ =D O

Therefore, as for the state class graph of definition 6, a firing domain Fj, g
can be described by linear inequations of the form §; < k or 6; —0; < k' where
ke Nand k' € Z.

Theorem 1 In case the cost rates are integers, Algorithm 2 terminates if the
underlying TPN is bounded and the reward is bounded.

Proof If the underlying TPN is bounded then the number of reachable state classes
C = (m, D) of this underlying TPN is finite. Moreover the number of reward is also
finite (bounded positive integer). Suppose that there is in the cost TPN reachable
graph, an infinite number of cost state classes, then there is an infinite number of cost
state classes sharing the same marking, the same reward and, from lemma 1, the same
firing domain Fjy of transitions. These cost state classes differ only on the constraints
over the variable c. It has been proved in [25, 35] that the relaxed domain 1F of a
state class of a cost TPN, can be partitioned into a union of simpler polyhedra with
exactly one constraint on the cost variable ¢ > ¢yin With ¢pmin = €(01, ..., 0,) where
£ is a linear function with integer coefficients. In case the cost rates are integers, these
simple polyhedra have integer vertices of the form ((01,...,0n,€(01,...,0n)) and
since £ has integer coefficients, then ¢, is an integer greater than zero. Moreover
the firability condition guarantees that for all F' computed by Algorithm 2, F N (¢ <

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 17

Cmaz) F# @ then ¢,y is integer between 0 and cmaes contradicting the assumption.
O

5.3 Optimal reward and optimal runs from Algorithm 2

Recall that we aim to maximize the reward by respecting the maximal cost
constraint but among the solutions, we will take the minimum cost leading to
this maximal reward.

The optimal cost of the sequence o leading to L, = (m,a, F') is inf (F.)
(i.e., the minimal value of ¢ in F'). Since for all state classes in PASSED, we
have inf (Fj.) =inf((F'Nc < cpas).), then CONSTRAINEDSTATESPACE and
PASSED lists share the same minimal cost. Hence we can be satisfied with
PASSED list to compute the solution of the problems defined in Section 5.1.
Then we have:

OptReward(c < ¢maz) = Rmaz = maz(R | (m, R, F) € PASSED)

There may be several state classes that have the optimal reward and min-
imizing the cost. This set is: OptL = {L, = (m, R, F,;) such that R = Rpax
and inf(Fy|.) = min(inf (Fl.) | (m, Rmaz, ') € PASSED)}

Finally, there may be several optimal runs:

OptRun(c < Cmaz) = {p such that L, € OptL, sequence(p) = o and
cost(p)=inf (Fy)}

5.4 Example

Let us go back to the ¢cTPN of Figure 1, page 13. The state class graph under
the cost constrained ¢ < 30 is given in Figure 2 (we omit in the figure the
detail of classes). The initial state class is Ly, .

The firing of the sequences o5 = t1to or o5 = tat; leads two different classes
Ly, = (ms3, Rs, F3) and L, = (ms, Rs, F}) sharing the same marking, reward
and firing domain, with different cost but with the same minimum value of
this cost. We give here the detail of classes Loy, Ly, Loy, Loy and Lgy:

01 € [2,2]
926[1,5]
pl 03 € [3,3]
Loy = (492 0,04 1<0,—6:<3)
3 2% 63— 6y <2
1<03-6, <1
c=0
p2 01 €[0,1]
Lol—(p3 %.,0,{ c€[5,10])
p4 c>10—5%0;
926[0,3]
pl)
_ 36[171]
Lo ({zﬁ}Q <)
c=10
p3 0 p3
- 4 € [3,3] - 04 € [3,3]
Las—({gg}’Q’{ce[10,15]) L‘Té_({gg}’Q’{czlo)

Springer Nature 2021 BTEX template

18 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

We have Fy, C F3|. and 1F5 = 15 and then Ly, C Lo, and Ly, T Loy.
These state classes will be merged by Algorithm 2 but depending on the order
of exploration, the state class selected can be either Ly; or L.

The state class Lo, in dashed on Figure 2, is not in the state graph because
the ¢4, bound of 30 is exceeded.

We obtain OptReward(c < ¢maz) = Rmaz =

The classes L,, and L,, have this reward. Since R4 = Rg = 5 and
inf(Fy.) < inf(Fg|.), the optimal state class is L,, where inf(Fy.) = 28.

Finally, from this state class graph and the goal state class, we can compute
two similar solutions for OptRun(c < 30):

to@2 t1@0 t,@Q3 te@1

® pP1=4qo q1 q2 UE] q4
t1 @2 ; t2@0 t4@Q3 te@1

® p2=4qo a1 q2] 44

Note that in pq, to is fired at date 2 (then immediately before t1) because
the cost in po is 2, which is lower than the cost in ps (which is 3). In ps, to is
also fired at date 2 (then immediately after ¢1) allowing to reduce the duration
of the run and then the cost.

By imagining that for the system modeled, we can control the firing of to,
the strategy to have an optimal run consists in firing t; at date 2.

{p1,p2,ps
Ro=0
inf(Fo|.) =

{P4 :Ua} @

mf(Fz‘C) =5 1nf(F6|C) =15

{pa,p5,p3}
5=
inf(F3),) = 10

ty

[Ly
‘{P97P3} ‘\{:5/ te
<

{p7,p3}
Rye=5
inf(Fy.) =28

{p1,p10}
Rs =5
inf(Fs|.) = 30

,,,,,,,,,

Figure 2 State Graph of cTPN of Fig. 1

6 On-the-fly algorithm to find a good candidate

We have presented an algorithm that computes the set of optimal runs of a
c¢TPN based on an exhaustive exploration of its state space. This algorithm
may suffer from state space explosion problems. Thus, we will now focus on
a simpler problem: finding an optimal state class, i.e., the final state class
from an optimal run (OptRun) as defined in 5.3. To do so, we present first

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 19

a greedy algorithm that computes a “good” solution with low computational
complexity, and an exact algorithm.

Finding a cost-optimal run in the cost-constrained state space is akin to
finding a shortest path in a directed graph. In fact, the algorithm that we
propose takes an approach similar to that of A*, a well-known algorithm [36] to
solve the shortest-path problem in a directed graph without having to explore
the whole graph. To do this, A* uses a function to estimate the cost of the
shortest path between the root of the graph and the destination that passes
through a given node n. This function is usually noted f, with f(n) = g(n) +
h(n) where g is the function that gives the (known) cost between the source
and n, and h is a heuristic that estimates the (unknown) cost between n and
the destination. A* explores the graph by ordering the node by increasing
value of f and stops as soon as it reaches the destination. If A is pessimistic,
i.e., it yields an upper-bound on the actual cost, then A* is optimal (i.e., it is
guaranteed to find the shortest path).

However, our problem is not exactly a shortest-path problem. First, in
our case, the destination is not identified in advance. We stop the exploration
as soon as we encounter a state class that has no successor in the space of
constrained-cost state space. Second, we have not one but two variables in our
optimization problem: the cost we want to minimize, and the reward we want
to maximize. As in A*, we propose to guide the exploration of the constrained-
cost state space by using a function f which we use to order the state classes
according to their relevance to our problem. However, in our case, this function
does not give an estimate of the cost of a run (because we have two variables),
and is not separated into two parts g and h. The two techniques we propose
in the following paragraphs are both based on traversing the constraint-cost
state space as described in the 3 algorithm. They differ by:

e f. the function used to direct the exploration,
® and NEEDTOEXPLORE, the procedure to choose which successors of a given
state class need to be considered.

Heuristic search procedure based on maximal reward per
cost ratio

In the first version of the analysis, the exploration order is driven by the cost
per reward ratio. Let R,, the reward accumulated between the source and state
class n, and ¢, the minimum cost to reach n. Value f(n) is computed as follows:

L f R, #0
— Rn n
f(n) {+oo otherwise 3)
The constrained-cost state space will be examined by exploring the succes-
sors of the state class that has the best “dynamic” among the class present
in the WAITING list. All successors should be examined but those that have

already been met (see algorithm 4)

Springer Nature 2021 BTEX template

20 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

Algorithm 3 Heuristic-based algorithm for finding an optimal state class in
the constrained-cost state space.

1: PASSED < ()

2: WAITING <« {(m0,0, Fo Ac=cp)}

3. while WAITING # () do

4 select L = (m, A, F) whose value of f is the smallest from WAITING
5 if Firable(L,c < ¢paz) = () then

6: return L

7 end if

8 remove L from WAITING

9: add L to PASSED

10: for t; € Firable(L,c < ¢pqy) do

11: L' = Next(L,ty)

12: if NEEDTOEXPLORE(L’, PASSED) then
13: add L' to WAITING

14: end if

15: end for

16: end while

Algorithm 4 Function NEEDTOEXPLORE for the greedy algorithm.
procedure NEEDTOEXPLORE(L, PASSED)
return L ¢ PASSED
end procedure

Since the algorithm greedily follows the highest reward/cost ratio, it is not
guaranteed to return a state class that is part of an optimal run. However,
following the highest reward/cost ratio is a common-sense strategy to move
quickly through the constrained-cost state space in order to obtain a good
approximate solution, in a reasonable amount of time and computation.

According to the cTPN of Figure 1, using this first version of the analysis,
the part of the constrained-cost state space which is explored is given Figure 3.
In this example, the analysis finds the optimal solution, but it is not always the
case. For instance, as f(Lsigna,) = +00, its successors will never be explored,
even if the optimal solution was among them.

Heuristic search procedure based on a discretization of
the cost

In the problem defined in section 3.3, the reward is strongly related to the cost.
For any cost there is a maximum reward associated such that R; < k X ¢,
with k an integer. As it is true for all pairs of points (R, c), it is also true for
(Rimazs Cmaz) and by knowing R4, we can deduce k. In such a model, on a
graph reward /cost, the reward evolves according to a staircase function (each
time a transition with a non-zero reward is fired), and will never exceed k X c,

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

{p1,p2,p3
Ro =0
inf(Foj.) =0
f

= o0

inf(F1.) = 10

inf(Fz|.) =5
z f=oo

r=3

{ps,p5,p3}
5 =
inf(F3|.) = 10

inf(Fi),.) = 28
=2

Figure 3 State Graph of cTPN of Fig. 1 using greedy algorithm

reward (R) | R
K,
J T
T e Do
e ! .
Cmaz cost (c)

Figure 4 Example of a case where the reward is a discretization of the cost

where c is the cost accumulated until now. This is illustrated in Figure 4. In
this example, J is a successor of I and K is a successor of J. The slope of the
line passing through I and J, as well as the slope of the line passing through
J and K is less than or equal to the slope %

The second analysis is designed for sys?e(ﬁis where the reward is a dis-
cretization of the cost. For these systems, we define R4, as an upper-bound
of the reward for all runs. This value is such that in every state, the overall
reward per cost ratio is less than or equal to 702"““”.

This new piece of information can now be used to guide the exploration of

the constrained-cost state space. To do so, we compute f(n) as follows:

ST X (Cmaw —Cn) (4)

f() R, + Bmazx 1((if Cn, 7é Cmazx and RTL 7é 0
n)= n
400 otherwise

With this function, the search procedure is now driven by the actual reward
of the state class and the best hypothetical reward that can be obtained by a

21

Springer Nature 2021 BTEX template

22 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

run passing through it. Thus, when exploring the constrained-cost state space,
we can safely ignore the successors of state class Lj whenever the following
criterion holds:

3L, € PASSED, L,, = (my, Ry, Fp),
1o 1 ()

Ry Rj+ Bmer x (cap — ;)

Whenever the criterion holds, it means that the best possible reward that
could be obtained by exploring successors of L; will be smaller than the reward
of a class already explored Indeed, from criterion (5), one can trivially prove
that : R, > R; + Rmaz (Cmaz fcj)

On a reward/cogt graph, this can be highlighted by drawing a straight
horizontal line from the intersection between the vertical line ¢,,,; and the
projection of j by the parallel line of slope “maez gtarting from j. On Figure 5,

any node that has a reward/cost point on the trlangle formed by AABC (for
example node 7) is already a better solution than any successor of node j.

The criterion (5) is added in algorithm 3 in the NEEDTOEXPLORE func-
tion as described in algorithm 5. Unlike the heuristic defined for the greedy
algorithm, we ensure that the optimal state is achieved as it explores all states
except those removed by the criterion. In the worst-case scenario, the procedure
explores all classes of the constrained-cost state graph.

Algorithm 5 Function NEEDTOEXPLORE for the exact algorithm.
1: procedure NEEDTOEXPLORE(L, PASSED)
2 if L € PASSED then
3 return False
4: end if

5: for M in PASSED do

6

7

8

9

if 2~ < f(L) then
return False
end if
: end for
10: return True
11: end procedure

Using the example from 1, the exploration will be as the state graph in
Figure 6. In this case, the heuristic will not cut any branch as in any state,
the criterion is never satisfied. The heuristic would cut states after L, in the
case where the heuristic value of f of Ly, would be less than (from the state

1 1
Ly, where 77— = £)

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

reward (R) -
Cmazx
 C
B Ly -7
77777 © 4
Phd |
T
Jo |
o’ l
Cmaz cost ()

inf(Fo).) =0
f=3%

{pa,p2,p3}
Ry =
inf(Fy) = 10

r=3

{pa,ps,p3}
5 =
inf(F3),) = 10
1

Lo
{pa, ps} Y
- 9

Lo
{p4,p10} 8

inf(Fy.) =28
f=354

inf(Fs).) = 30
1

5

Figure 6 State Graph of cTPN of Fig. 1 using heuristic from equation (4)

7 Case Study - Reactive Intermittent System

For our case study, we have chosen a bird song recognition application. This
type of application is fairly representative of intermittent edge computing be-
cause the IoT node is deployed in an area that requires autonomous power
and maintenance can become very expensive, such as changing the battery. It
can also be tolerated that the system does not work permanently because the
purpose here is to measure bird population densities to monitor migrations
without establishing an accurate count. Finally, a large amount of computa-
tion is required to recognize a song, and the computation should be performed
on the edge to reduce the size of the information transmitted over the wireless
network. Ideally, this system consists of an energy harvesting mechanism, cou-
pled with a small energy buffer such as a super-capacitor to harvest and store
energy. The part performing the calculation is composed of a micro-controller

23

Springer Nature 2021 BTEX template

24 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

and different peripherals for data acquisition, processing and sending via a
wireless network.

The prototype is built around a Texas Instruments evaluation board, the
Launchpad MSP-EXP430FR5994. A board of our design is plugged on top and
includes 1MB additional FRAM, accessible via the SPI bus, a microphone with
its amplifier and a LoRa radio transceiver. The processing pipeline includes
signal sampling, song recognition using an FFT and finally, sending the result
of the recognition by radio if successful.

7.1 Energy consumption model

As explained in the section 3.1, in the absence of a voltage regulator, the
evolution of the super-capacitor voltage is linear. A measurement campaign
was carried out on the prototype board and the evolution of the voltage is given
in 3 different cases on the figure 7. To model the prototype, we first identified a
set of modes. For each mode identified, we then designed a benchmark, which
allowed us to measure the voltage across the super-capacitor when the system is
in that mode. Each run started from an initial state where the super-capacitor
is fully charged and stopped when the voltage dropped below 1.9V, the low
operating limit of the micro-controller. To control these experiments and to
carry out the measurements in a non-intrusive way, we have created an ad-hoc
circuit board. In all, we have characterized 38 modes, but other modes can
easily be added, including modes linked to external devices. For each mode,
we have made 5 voltage measurements over time. The results presented are
averaged to obtain a voltage slope for the given mode.

We can notice that the 3 measurements give a linear evolution of the voltage
as a function of time, as expected. The slope varies from -8.9 mV /s when the
processor, the ADC and the DMA module are active, to -2.9 mV /s when only
the processor is active.

7.2 Modeling an intermittent system
Mode.

We use a notion of operating mode of an intermittent system similar to what
is introduced in the previous work [2]. A mode is a state of the system char-
acterized by the list of active sub-systems, as well as by their voltage slope.
The same sub-system can have different voltage slopes. For example, a periph-
eral can have more than one voltage slope according to different input. Thus,
for each mode, we associate a voltage slope of the system which is obtained
by adding the voltage slopes of the active sub-systems, and which informs us
about the dynamic power of the system in this mode. We can then model the
execution of an intermittent system as a state machine, where each transition
marks the activation or deactivation of one or more sub-systems. The sub-
systems considered are the micro-controller components, as well as the internal
and external peripherals.

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 25

super-capacitor voltage in function of time

o
ot
T
|

| | | @ | | | | | ®\7

0 50 100 150 200 250 300 350 400 450 500
Time (s)

super-capacitor voltage (V)

Figure 7 Empirical measure of voltage slope for sub-systems of an intermittent platform.
The capacity of the super-capacitor is 0.22F. From right to left: (A) only the CPU is active,
(B) the CPU and ADC are active, (C) the CPU, ADC and DMA are active. The system
stops working when the voltage drops below 1.9V.

We use the cost variable from the cTPN to model the energy consumption
of the system. Each mode in the system has a place associated with it. A
token is placed in this slot when the mode becomes active, and removed when
it becomes inactive. These token movements are controlled by the part of the
model that describes program execution and device behavior. When a token
is positioned in a mode place, the dynamics of the cost variable is changed:
it increases with a slope corresponding to the voltage slope of the mode. It
is of course possible for several modes to be active simultaneously, the global
dynamics being then obtained by addition.

Consider the example from figure 8 which models an application composed
of two tasks. When the transition ChooseTask; is fired, the system starts
to execute task 1 and the mode Mode; becomes active. Similarly, when the
ChooseT asks transition is fired, the system starts executing task 2 and the
mode Modes; becomes active. The rate of change of the cost variable cr is then
defined by : ¢r =) slopeMode,, x Modey,, where slopeMode; = 5 and
slopeModey = 2 in the example.

The cost variable therefore increases, at each unit of time, by the value of
the voltage slope of the various active modes. In this example, the modes are
used to model the energy consumption induced by the execution of a task as
a function of its execution time.

The reward w for each task is obtained at the end of the execution, thus
associated to the transition TerminateT ask,,.

Energy/execution duality.

Firstly, one might want to use the cost to model the energy of our intermittent
system and minimize its consumption. However, for an intermittent system,
minimizing energy consumption is not necessarily the answer. On the one hand,
if energy is not used, it is lost and we would rather use the available energy

Springer Nature 2021 BTEX template

26 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

cr =5 x Modey + 2 x Modesy

Mode,

Figure 8 Modelling of 2 simple tasks associated with a mode, using a timed cost Petri net.
The cost increases when a token is in places Mode; and/or Modesz, with a different slope
for each.

as much as possible. On the other hand, minimizing the energy used can lead
to overly aggressive pruning in the model, with energy-intensive tasks never
being called, even though they are essential for the proper functioning of the
whole system.

7.3 Trace synthesis

We have used the modeling elements presented previously to model a complete
case study.

We have built a model of the system in Roméo, a toolbox for modeling and
verifying TPNs. Roméo already supports the notion of cost, but not that of
reward. So we used Romeo to compute the state space of the underlying cost
TPN. Then, we computed the set of states within this state space allowing to
reach the best reward using ad hoc scripts. Finally, we again used Romeo to
compute the minimum cost path to reach these maximum reward states. This
is a first naive and sub-optimal implementation of our approach, in order to
establish its feasibility. The integration of our algorithms within Roméo will
be the subject of future work.

In the initial state, the super-capacitor is full. Each task is associated with
a mode as described in section 7.2. For readability, modes places and actions
related to them are not shown. The Petri net model of the application can be
found in annex A. The execution is as follows:

1. Periodic data acquisition: sound samples using the microphone.
2. Data processing: use of a hardware accelerator for FFT* (Fast Fourier
Transform) operations and according to the energy available :

® store the result in an internal non-volatile buffer (transition BufferFFT),
then sleep or
® continue to analysis stage(transition GoToClassif)..

4The MSP430FR5994 micro-controller includes a hardware accelerator dedicated to signal
processing operations.

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 27

3. Data analysis : Sound analysis algorithm based on FF'T results.
4. Finalization according to available energy :

e store the result in an external non-volatile buffer, then sleep (transition
FramExt) or
e transmit the result over a wireless link (transition Send).

External non-volatile memory has a larger capacity than internal non-
volatile memory but it costs more energy to use. 2 memory buffers to store
FFT results are allocated in the internal volatile memory. 10 memory buffers
to store recognition results are allocated in the external volatile memory (for
readability, only 5 tokens are displayed). Each processed data occupies a sin-
gle token in the buffer. The transmission of data cannot be interrupted. The
goal of the application is to send processed data, so we apply a high reward to
sending data and a lower reward to storing processed or unprocessed data.

In the Petri net model, we force the application to stop only in predefined
states to mimic the checkpoint mechanism. For example, doing a checkpoint
after the acquisition of audio data from a microphone requires storing all the
data recorded in NVM (otherwise, data will be deleted), thus it would be more
interesting to perform the checkpoint when the data is processed as it will be
more memory-friendly (i.e., after the FFT or the sound analysis algorithm).
The state where the application is able to checkpoint safely are places with
name starting with checkpoint on the Petri net.

Some transition are controllable with interval between 0 and co. These are
the transitions that send data from buffer to the next stage of the application
(i.e., FFTtoClassif and SendDataFromFramExt transitions). Other intervals
are fixed and they reflect the worst-case execution time of the task (WCET).

The model described is roll-back free as any task interrupted is reset when
the power come back. As the energy harvested is not determined or used in the
model, we compute traces to optimal states using several upper-bounds of the
cost to mimic different energy level available from a state. On the target, this
would correspond to the energy harvested while the system is running or by a
task that ran faster than its WCET (different inputs lead to different execution
times). In both cases, the energy available when the system has reached the
optimal state according to the synthesized trace can be different.

The synthesized traces are given in the form of a graph where the nodes
are the system states and the transitions are the traces leading to the differ-
ent states. An example is provided in appendix B. For readability, traces are
not displayed, but for example, trace t; corresponds to the transitions : Pe-
riodAudio Acquisition FFT GoToClassif Classification GenerateFrame Send
PeriodAudio Acquisition SendLoRa.

Another level of analysis from these results is to prevent unfinished tasks
from starting in order to save energy. For example with trace ¢y, the second
acquisition of data (i.e., transitions PeriodAudio Acquisition after transition
Send) will never reach the next checkpoint and data corresponding to this

Springer Nature 2021 BTEX template

28 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

execution is lost, meaning energy is wasted. The microphone can be switched
off after the first acquisition to avoid unnecessary power consumption.

The graph is computed with 2 energy levels (variable E | i.e., 15 and 10).
These energy levels can be more finely discretized, but this will generate more
traces and these traces will be longer.

The goal of these traces is to provide information on the system to help
designers. For example, on the model of the application from appendix A,
traces obtained can help to define an optimal size for the buffers used.

Using those traces online can also provide static scheduling according to
both energy available and actual state of the system.

8 Conclusion

This paper presented an optimal trace synthesis using Cost Time Petri Nets
(¢TPN) to manage the energy buffer of intermittent systems. The consumption
of the system is modeled, depending on the operating mode, by a linear cost
versus time. The progress of the application is characterized by rewards asso-
ciated with functional goals such as producing a result or sending it by radio.
The whole is combined in a ¢cTPN specifying the tasks and functional depen-
dencies. Two heuristics allowing to avoid exploring the whole state space are
proposed and allow to synthesize traces that can then be exploited on an exe-
cution platform and a case study of a prototype bird song recognition system
presents an example of traces synthesis.

Future work will focus on the implementation of the synthesized optimal
traces. They will be used to implement an ad-hoc scheduler in an existing
RTOS which will be modified accordingly. This execution support will be
deployed on the prototype with the application.

Declarations

The authors declare that they have no conflict of interest.

Acknowledgement : This work has received a French government support
granted to the Labex CominLabs excellence laboratory and managed by the
National Research Agency in the ”Investing for the Future” program under
reference ANR-10-LABX-07-01

References

[1] Ransford, B., Sorber, J. & Fu, K. Mementos: System support for
long-running computation on rfid-scale devices, ASPLOS XVI, 159-170
(Association for Computing Machinery, 2011).

[2] Balsamo, D. et al. Hibernus: Sustaining computation during intermittent
supply for energy-harvesting systems. IEEE Embed. Syst. Letters 7 (1)
(2015). https://doi.org/10.1109/LES.2014.2371494 .

https://doi.org/10.1109/LES.2014.2371494

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

3]

[5]

[6]

8]

[9]

[10]

[13]

[14]

Springer Nature 2021 BTEX template

Balsamo, D. et al. Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. 35 (12) (2016). https://doi.org/10.1109/
TCAD.2016.2547919 .

Maeng, K., Colin, A. & Lucia, B. Alpaca: Intermittent execution without
checkpoints. Proc. ACM Program. Lang. 1 (2017). https://doi.org/10.
1145/3133920 .

Colin, A. & Lucia, B. Termination checking and task decomposition for
task-based intermittent programs (2018).

Yarahmadi, B. & Rohou, E. Compiler Optimizations for Safe Insertion
of Checkpoints in Intermittently Powered Systems (2020). URL https:
//hal.inria.fr/hal-02914953.

Berthou, G., Delizy, T., Marquet, K., Risset, T. & Salagnac, G. Sytare:
A lightweight kernel for nvram-based transiently-powered systems. IEEE
Trans. Comput. 68 (9) (2019) .

Ruppel, E. & Lucia, B. Transactional concurrency control for intermit-
tent, energy-harvesting computing systems (2019).

Yildirim, K. S. et al. InK: Reactive kernel for tiny batteryless sensors
(2018).

Maeng, K. & Lucia, B. Adaptive low-overhead scheduling for periodic and
reactive intermittent execution, PLDI 2020, 1005-1021 (Association for
Computing Machinery, 2020).

Berthou, G., Dagand, P., Demange, D., Oudin, R. & Risset, T. Intermit-
tent computing with peripherals, formally verified (2020).

Surbatovich, M., Lucia, B. & Jia, L. Towards a formal foundation of
intermittent computing. Proc. ACM Program. Lang. 4 (OOPSLA) (2020).
URL https://doi.org/10.1145/3428231. https://doi.org/10.1145/3428231

Wigemann, P., Dietrich, C., Distler, T., Ulbrich, P. & Schroder-
Preikschat, W. Whole-System Worst-Case Energy-Consumption Analysis
for Energy-Constrained Real-Time Systems, Vol. 106 (2018).

Sliper, S. T., Wang, W., Nikoleris, N., Weddell, A. S. & Merrett,
G. V. Fused: Closed-loop performance and energy simulation of embedded
systems, 263-272 (2020).

29

https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3133920
https://hal.inria.fr/hal-02914953
https://hal.inria.fr/hal-02914953
https://doi.org/10.1145/3428231
https://doi.org/10.1145/3428231

Springer Nature 2021 BTEX template

30 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

[15] Dezfouli, B., Amirtharaj, I. & Li, C. EMPIOT: an energy measurement
platform for wireless iot devices. CoRR abs/1804.04794 (2018). URL
http://arxiv.org/abs/1804.04794. arXiv:1804.04794 .

[16] Berthou, G., Marquet, K., Risset, T. & Salagnac, G. Accurate power con-
sumption evaluation for peripherals in ultra low-power embedded systems
(2020).

[17] Kansal, A., Hsu, J., Zahedi, S. & Srivastava, M. B. Power management
in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst.
6 (4) (2007) .

[18] Cammarano, A., Petrioli, C. & Spenza, D. Online energy harvesting
prediction in environmentally powered wireless sensor networks. IEEE
Sensors Journal 16 (17) (2016) .

[19] Alur, R., Torre, S. L. & Pappas, G. J. Optimal paths in
weighted timed automata. Theoretical Computer Science 318 (3),
297 — 322 (2004). URL http://www.sciencedirect.com/science/article/
pii/S0304397503005838. https://doi.org/http://dx.doi.org/10.1016/j.tcs.
2003.10.038 .

[20] Abdulla, P. A. & Mayr, R. Priced timed petri nets. Logical Meth-
ods in Computer Science 9 (4) (2013). URL http://dx.doi.org/10.2168/
LMCS-9(4:10)2013. https://doi.org/10.2168/LMCS-9(4:10)2013 .

[21] Behrmann, G. et al. Minimum-Cost Reachability for Priced Timed Au-
tomata, 147-161 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001).
URL http://dx.doi.org/10.1007/3-540-45351-2_15.

[22] Larsen, K. et al. As cheap as possible: Efficient cost-optimal reachability
for priced timed automata. Lecture Notes in Computer Science 2102,
493-505 (2001) .

[23] Behrmann, G., Larsen, K. G. & Rasmussen, J. I. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev. 32 (4),
34-40 (2005). URL https://doi.org/10.1145/1059816.1059823. https://
doi.org/10.1145/1059816.1059823 .

[24] Lime, D., Roux, O. H., Seidner, C. & Traonouez, L.-M. Kowalewski, S.
& Philippou, A. (eds) Romeo: A parametric model-checker for Petri nets
with stopwatches. (eds Kowalewski, S. & Philippou, A.) 15th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2009), Vol. 5505 of Lecture Notes in Computer Science,
54-57 (Springer, York, United Kingdom, 2009).

http://arxiv.org/abs/1804.04794
https://arxiv.org/abs/1804.04794
http://www.sciencedirect.com/science/article/pii/S0304397503005838
http://www.sciencedirect.com/science/article/pii/S0304397503005838
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2003.10.038
http://dx.doi.org/10.2168/LMCS-9(4:10)2013
http://dx.doi.org/10.2168/LMCS-9(4:10)2013
https://doi.org/10.2168/LMCS-9(4:10)2013
http://dx.doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1145/1059816.1059823

Springer Nature 2021 BTEX template

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems 31

[25] Boucheneb, H., Lime, D., Parquier, B., Roux, O. H. & Seidner, C. Nest-
mann, U. & Wolter, K. (eds) Optimal reachability in cost time Petri nets.
(eds Nestmann, U. & Wolter, K.) 15th International Conference on For-
mal Modeling and Analysis of Timed Systems (FORMATS 2017), Vol.
10419 of Lecture Notes in Computer Science, 58-73 (Springer, Berlin,
Germany, 2017).

[26] Berthomieu, B. & Diaz, M. Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Software Eng. 17 (3), 259-273
(1991) .

[27] Bouyer, P., Larsen, K. G. & Markey, N. Lower-bound-constrained
runs in weighted timed automata. Performance Fvaluation 73, 91-109
(2014). Special Issue on the 9th International Conference on Quantitative
Evaluation of Systems .

[28] Boukhobza, J., Rubini, S., Chen, R. & Shao, Z. Emerging NVM: A survey
on architectural integration and research challenges. ACM Trans. Design
Autom. Electr. Syst. 23 (2), 14:1-14:32 (2018). https://doi.org/10.1145/
3131848 .

[29] Haritsa, J. R., Carey, M. J. & Livny, M. Value-based scheduling in real-
time database systems. VLDB J. 2 (2), 117-152 (1993). URL http:
//www.vldb.org/journal/VLDBJ2/P117.pdf .

[30] Jain, N., Menache, I., Naor, J. & Yaniv, J. A truthful mechanism for
value-based scheduling in cloud computing. Theory Comput. Syst. 54 (3),
388-406 (2014). URL https://doi.org/10.1007/s00224-013-9449-0. https:
//doi.org/10.1007/s00224-013-9449-0 .

[31] Prasad, D. & Burns, A. A value-based scheduling approach for real-time
autonomous vehicle control. Robotica 18 (3), 273-279 (2000). https:
//doi.org/10.1017/S0263574799002349 .

[32] Merlin, P. M. A study of the recoverability of computing systems. Ph.D.
thesis, Department of Information and Computer Science, University of
California, Irvine, CA (1974).

[33] Berthomieu, B. & Menasche, M. An enumerative approach for analyzing
time petri nets, 41-46 (1983).

[34] Rasmussen, J. I., Larsen, K. G. & Subramani, K. On using priced timed
automata to achieve optimal scheduling. Formal Methods in System
Design 29 (1), 97-114 (2006) .

35] Lime, D., Roux, O. H. & Seidner, C. Cost problems for parametric time
[, D, ; ; p p
petri nets. Fundamenta Informaticae 183 (1-2), 97-123 (2021) .

https://doi.org/10.1145/3131848
https://doi.org/10.1145/3131848
http://www.vldb.org/journal/VLDBJ2/P117.pdf
http://www.vldb.org/journal/VLDBJ2/P117.pdf
https://doi.org/10.1007/s00224-013-9449-0
https://doi.org/10.1007/s00224-013-9449-0
https://doi.org/10.1007/s00224-013-9449-0
https://doi.org/10.1017/S0263574799002349
https://doi.org/10.1017/S0263574799002349

Springer Nature 2021 BTEX template

32 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

[36] Hart, P. E., Nilsson, N. J. & Raphael, B. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics 4 (2), 100-107 (1968). https://doi.
org/10.1109/TSSC.1968.300136, conference Name: IEEE Transactions on
Systems Science and Cybernetics .

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

Springer Nature 2021 BTEX template

33

Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

A Petri net model of case-study

© 1 (o0l J185D)1D0 LA

0=o

[o0 0]

ITHUWD L JWOLJDIDPUIS ;
0=

LA A 1urodyooyo '

W NV A4S fng @ [1gz‘152]
0=

o1 ‘01]
0=m
Yo u0doyoYd .
001 T fippay
269 ‘269]
01 = oppny poraag | 10001 0001]
0=
DY OTPUIGIIDALIIY . U011V [155D) DALY OLpNY 230aLPY

Springer Nature 2021 ETEX template

34 Cost-optimal timed trace synthesis for scheduling of intermittent embedded systems

B Synthesized traces for case-study

E=15 E=10
trace : t; trace : to
E=15
trace : t3 / \
E =10 E=15
@ trace : t4 —> Cl2 trace : ts é

X A

E =15

trace : t1g
E =10 E =15
trace : tg trace : t14

E =15
trace : t1o

E=15
trace : t15

E =10
trace : tg
E=15
trace : t7 l

/Zf/ll /
/ E=15

trace : t19 E=10

trace : tg

	Introduction
	Related works
	Models of computation for intermittent computing
	Modeling intermittent systems
	Formal models with time and costs

	System overview
	System architecture
	Model of computation
	First formulation of problem

	Cost Time Petri Nets
	Preliminaries
	Time Petri Nets
	State Classes

	Cost Time Petri Nets
	Example

	Constrained-Cost problems and State Space
	Constrained-Cost problems
	State space under cost constraint
	Optimal reward and optimal runs from Algorithm 2
	Example

	On-the-fly algorithm to find a good candidate
	Case Study - Reactive Intermittent System
	Energy consumption model
	Modeling an intermittent system
	Mode.
	Energy/execution duality.

	Trace synthesis

	Conclusion
	Petri net model of case-study
	Synthesized traces for case-study

