
ar
X

iv
:2

11
0.

04
20

0v
2

 [
ee

ss
.S

Y
]

 1
8

O
ct

 2
02

1

On tolerance of discrete

systems with respect to transition perturbations⋆

Rômulo Meira-Góes1,2, Eunsuk Kang1, Stéphane Lafortune2, and
Stavros Tripakis3

1 School of Computer Science,
Carnegie Mellon University, Pittsburgh USA {rmeirago,eunsukk}@andrew.cmu.edu

2 Dept. of Elect. Eng. and Computer
Science, University of Michigan, Ann Arbor USA {romulo,stephane}@umich.edu

3 Khoury College of Computer Science, Northeastern University, Boston USA
stavros@northeastern.edu

Abstract. Control systems should enforce a desired property for both
expected/modeled situations as well as unexpected/unmodeled environ-
mental situations. Existing methods focus on designing controllers to en-
force the desired property only when the environment behaves as expected.
However, these methods lack discussion on how the system behaves when
the environment is perturbed. In this paper, we propose an approach for
analyzing control systems with respect to their tolerance against environ-
mental perturbations. A control system tolerates certain environmental
perturbations when it remains capable of guaranteeing the desired prop-
erty despite the perturbations. Each controller inherently has a level of
tolerance against environmental perturbations. We formally define this
notion of tolerance and describe a general technique to compute it, for
any given regular property. We also present a more efficient method to
compute tolerance with respect to invariance properties. Moreover, we
introduce and solve new controller synthesis problems based on our no-
tion of tolerance. We demonstrate the application of our framework on an
autonomous surveillance example.

Keywords: Tolerance · discrete transition systems · model uncertainty
· labeled transition systems.

1 Introduction

In control systems, a controller is designed to enforce a desired property over
the environment it controls. For example, the cruise control system enforces the
car (environment) to maintain a desired speed (desired property). In this con-
text, classical reactive synthesis methods provide means to synthesize controllers
that correctly assure a desired property expressed in formal logic [41,39,11,44,4].

⋆ This work has been supported by the National Science Foundation under NSF SaTC
awards CNS-1801342 and CNS-1801546. The proofs of our results can be found in [34].

http://arxiv.org/abs/2110.04200v2

2 R. Meira-Góes et al.

However, these methods heavily rely on assumptions about the behavior of the en-
vironment. For instance, the environment in the cruise control system is specified
by the dynamics of the car, the road, the meteorological conditions, etc. Thus, the
correct behavior of the controlled system is only guaranteed under these environ-
mental assumptions/models.

Perturbations from the assumed environmental model jeopardize the correct-
ness of the controller, limiting the application of reactive synthesis methods. There-
fore, in addition to correctness, controllers should be designed to tolerate reason-
able model perturbations. Even when the environment behaves unexpectedly, the
controlled system must be correct.

Perturbations can be introduced by the designer prior to the synthesis pro-
cedure becoming part of the environmental model [7,31,48,52]. Therefore, it is
possible to use the existing approaches to synthesize a controller that is tolerant
against certain perturbations. However, given an existing controller, it’s not clear
how tolerant this controller is and whether it’s actually tolerant enough against
some set of perturbations under consideration.

A different type of analysis is to pose the following question: Which environ-
mental perturbations can an existing controller tolerate? Each controller inherently
has a level of tolerance against environmental perturbations whether or not the
designer is aware of it. Explicitly computing this level of tolerance is useful for the
designer in many ways, e.g., it helps the designer to decide if it is safe to deploy
the controller or whether a new controller is needed.

In this paper, we investigate the tolerance of controllers for discrete transition
systems. We model perturbations as additional transitions to the original model,
creating a framework to analyze their impact in the controlled system. The con-
troller is tolerant against a perturbation if the perturbed controlled system still
satisfies a given desired property. We go on to define a new notion of controller tol-
erance against perturbations as the set of all perturbations for which the controller
is tolerant. Based on this new notion, we define the problem of computing the con-
troller tolerance given a desired regular property. We show that this problem can
be reduced to a sequence of model checking problems for discrete systems.

To more efficiently solve the computation problem above, we investigate the
notion of controller tolerance with respect to invariance properties. In this case,
we show that a single perturbation represents all perturbations for which the con-
troller is tolerant. This result allows us to reduce the computation problem to a
reachability analysis problem. It also allows us to investigate and solve three con-
troller synthesis problems: synthesis of the most tolerant controller, of the least tol-
erant controller, and of a controller that achieves a minimum tolerance threshold.

We have four main contributions in this paper:

– We define a new notion of controller tolerance and a general technique to
automatically compute it;

– We investigate this notion of tolerance with respect to invariance properties
and devise an efficient algorithm to compute it;

– We propose three new controller synthesis problems and provide their solution
based on existing reachability analysis techniques;

On tolerance of discrete systems 3

– We provide a prototype implementation of our algorithms and demonstrate
our approach on an example involving surveillance protocols.

2 Motivating example

As a motivating example, we consider a surveillance scenario of two autonomous
drones, ego and srv. These drones monitor the surroundings of a building as de-
picted in Fig. 1a. Ego desires to obtain information about the building without
being captured by srv, i.e., where “captured" means both that drones are in the
same location. It also assumes that srv surveils the building by following the
strategy depicted in Fig. 1b, i.e., srv surveils the building by always moving in the
clockwise direction.

(a) Surveillance
overview

(b) srv strategy
assumed by ego

Fig. 1: Motivating example of a surveillance scenario

Classical reactive synthesis techniques can synthesize a controller for ego that
guarantees the satisfaction of its property [40,39,1,8,22]. For example, we can syn-
thesize two controllers that guarantee that srv does not capture ego: controller 1
maintains ego most of the time in location 1 but it allows ego to visit location 2
when srv is in location 4, and controller 2 ensures that ego trails two steps behind
srv. These controllers, however, guarantee the property only for the model of the
system described above.

Now, suppose that srv does not conform with the strategy assumed by ego,
e.g., srv decides to go counter-clockwise to monitor the building. Because of this
perturbation, the two synthesized controllers might not guarantee the property.
Hence, to validate these controllers against these perturbations, an extra veri-
fication step must be performed. For example, if srv moves counter-clockwise,
controller 1 guarantees that ego is not captured but controller 2 does not. How-
ever, one needs to verify that indeed these controllers continue or not to satisfy
this property. Another option is to synthesize a new controller based on the model
of the system augmented with the possible “known” perturbations [48].

In comparison, as was mentioned in the introduction, we pose the following
question: For which model perturbations can a controller ensure the given property?
Our notion of tolerance explicitly states that controller 1 ensures ego’s property
even when srv moves counter-clockwise, whereas controller 2 does not. It also al-
lows us to affirm that controller 1 is more tolerant than controller 2. In general, our

4 R. Meira-Góes et al.

notion of tolerance enables analyzing the environmental perturbations a controller
tolerates. Moreover, it also enables comparing different controllers to determine
which of them may be more tolerant as well as synthesizing controllers with a given
level of tolerance.

3 Preliminaries

This section describes the underlying formalism used to model the environment,
feedback controlled systems, and the properties enforced by them.

Labeled transition systems In this work, we use labeled transition systems to
model the behavior of the environment.

Definition 1. A labeled transition system (LTS) T is a tuple 〈Q,Act,R,I〉, where
Q is a finite set of states, Act is a finite set of actions, R⊆Q×Act×Q is the tran-
sition relation of T , and I ⊆Q is a nonempty set of initial states.

Let P ostT (q,a) denote the set of states reachable from state q ∈ Q and action
a∈Act, i.e., P ostT (q,a) :={q′ ∈Q |(q,a,q′)∈R}. A run of T starts in an initial state
in I and is followed by a finite or infinite alternating sequence of actions and states
complying with transitions in R, e.g., x0a0x1a1...xn such that xi+1 ∈P ostT (xi,ai)
for all i<n and x0 ∈I. The set of all runs in T is denoted by Runs(T). A path of
T is the sequence of states in a run of T , e.g., for x0a0x1 ∈Runs(T), then x0x1 is
a path of T . The sets P athsfin(T) and P aths(T) denote the set of finite and all
paths in T , respectively.

Example 1. We model the motivating example in Section 2 using LTS. The states
represent the discrete locations of ego, {1,2,3,4,5} and srv, {2,3,4,5}. The pos-
sible actions of the system consist of ego selecting its desired next location, i.e.,
Act = {m1,...,m5} where mi means that ego moves to location i. The transition
relation is defined by a few update rules and assumptions. The two drones move
synchronously to their next location. Next, both drones can only move to locations
that are connected by an edge in Fig. 1a. Lastly, we assume that srv surveils the
building using the strategy defined in Fig. 1b, e.g., srv moves to location 2 when 5
is its current location. The system is initialized in state (1,5), i.e., ego in location 1
and srv in location 5. Figure 2a partially depicts the LTS T defined by this example.

Remark 1. Our definition of LTS assumes that the set of actions Act are control-
lable actions, e.g., ego selects action m1. However, the nondeterministic transition
relation encapsulates uncontrollable actions. Intuitively, after an action is selected,
the environment decides which state the system will be in.

Given a finite set A, the usual notations |A|, A∗, A+, and Aω denote the cardi-
nality of A, the set of all finite sequences, the set of all non-empty finite sequences,
and the set of all infinite sequences of elements in A, respectively. For convenience,
we write x0...n for any finite sequence of states x0...xn.

On tolerance of discrete systems 5

(a) Partial LTS T of the surveillance example.
States are of the form (ego location, srv

location) and edge labels represent the
actions of ego. Transitions in blue are the
missing transitions in this partial LTS. State
(2,2) is in red since srv captured by ego.

(b) LTS rep-
resentation of
T |f

Fig. 2: LTS motivating example and controlled system

Control strategy Given an LTS T , a control strategy, or simply controller,
for T is a function that maps a finite sequence of states to a set of actions, i.e.,
f :Q+ →2Act. A controlled run in T is a run of T where actions are constrained by
controller f , e.g., x0a0···∈Runsinf (T) such that ai ∈f(x0...i) for any i≥0. The set
of all controlled runs, denoted by Runs(T |f), defines the closed-loop system of f
controlling T . For convenience, this closed-loop system is denoted by T |f . The sets
of finite and all controlled paths are denoted by P athsfin(T |f) and P aths(T |f).
A controller has finite memory if its decisions depend only on a finite number of
states. It is memoryless if its decisions depend on the last state, f :Q→2Act. When
f has finite memory, T |f can be represented by an LTS.

Example 2. Back to our motivating example, we give an example of a simple mem-
oryless controller that is set to maintain ego in location 1. Formally, the controller
is defined as f(1, i) = f(2, i) = {m1} for i ∈ {2, ... ,5}, f(3,4) = f(5,4) = {m2},
f(3,5) = f(4,5) = {m3}, f(3,2) = f(4,2) = f(5,2) = {m4}, f(4,3) = f(5,3) = {m5},
otherwise f(q)=∅. Figure 2b shows the reachable states of the LTS representation
of T |f when I ={(1,5)}.

Property In this work, we consider the class of linear-time (LT) properties over
the set of states Q of a given LTS T [3], i.e., property P is a subset P ⊆ Qω ∪Q∗.
In words, an LT property is a set of infinite and finite sequences of states that
represents an “admissible/desired” set of paths of T . An LTS T satisfies property
P , notation T |= P , whenever P aths(T) ⊆ P . Similarly, a controlled system T |f
satisfies property P if P aths(T |f)⊆P .

4 Tolerance against perturbations

4.1 Perturbations

Model-based control theory methods are grounded on a model of the environment
under control. This model is always an approximation of the true system. For this

6 R. Meira-Góes et al.

reason, we must take into account possible mismatches between the model of the
environment and the true environment when designing a controller. In the case
of LTS, we model these possible mismatches, called perturbations, as additional
transitions. Formally, a perturbation4 is a set of transitions d⊆(Q×Act×Q).

For example, transition (1,2),m1,(1,5) represents a perturbation in srv as-
sumed clockwise strategy depicted in Fig. 1b. Srv decides to go back to posi-
tion 5 instead of going to position 3. A second type of perturbation is transition
(1,2),m1,(2,3) where ego gets pushed to location 2 even though it has selected an
action to stay in location 1.

Given a perturbation set, we can define the perturbed system by augmenting
the transition relation of the LTS with the perturbation set.

Definition 2. Let an LTS T =〈Q,Act,R,I〉 and a perturbation d⊆Q×Act×Q be
given. We define the perturbed system Td as Td :=〈Q,Act,R∪d,I〉.

A controller f that guarantees property P for system T , T |f |=P , might violate
this property for the perturbed system Td. Thus, one needs to check if f continues
to satisfy P for Td, i.e., if Td|f |=P .

Definition 3. Controller f is a tolerant controller with respect to LTS T , pertur-
bation d, and property P if Td|f |= P . Perturbation d is a tolerable perturbation
with respect to T , f , and P if f is a tolerant controller with respect to T , d, and P .

4.2 Comparing perturbations

Given perturbations d1 and d2 such that d1 ⊆d2, d2 perturbs LTS T more than d1

since Runs(Td1
) ⊆ Runs(Td2

). Our definition of tolerable perturbations takes
into account not only the perturbed system, but a controller f and its con-
trolled behavior, e.g., Td1

|f . By including the controller to close the loop, two
incomparable perturbations can generate comparable set of runs, i.e., it might
be that Runs(Td1

|f) ⊆ Runs(Td2
|f) even when d1 6⊆ d2 and d2 6⊆ d1. In this

scenario, d2 perturbs the controlled system more than d1 since d2 has more in-
fluence on the controlled behavior. Moreover, whenever d1 ⊆ d2, it follows that
Runs(Td1

|f) ⊆ Runs(Td2
|f) for any controller f . Based on this discussion, we

define what it means to a perturbation be more or less “powerful” than other.

Definition 4. Let an LTS T , controller f , and perturbations d1 and d2 be given.
We say d1 is at least as powerful as d2 with respect to f , denoted by d2 �f d1, if

(i) Runs(Td2
|f)⊂Runs(Td1

|f), or;
(ii) Runs(Td2

|f)=Runs(Td1
|f)⇒d2 ⊆d1.

Whenever the controller f is clear from the context, we write � instead of �f .

4 For simplicity, we define perturbations without removing the transition relation R

as to not overload our definitions with the removal of R. All of our results hold when
perturbations are defined as d⊆ (Q×Act×Q)\R.

On tolerance of discrete systems 7

Intuitively, a perturbation d1 is at least as powerful as perturbation d2 with re-
spect to controller f , if the controlled perturbed system Td1

|f can generate any run
that Td2

|f can, and if the two controlled systems generate exactly the same set of
runs, then d2 ⊆d1. It follows that the ordering � forms a partial order over the set of
perturbations of T . To provide more intuition on �, we have the following example.

Example 3. Consider the LTS T shown in Fig. 3a and the property defined by all
sequence of states that do not reach state 3, e.g., the sequence 143 violates this
property. We define the memoryless controller f as f(q)={b} if q 6=3, and f(3)=∅.
It follows that f satisfies the stated property, i.e., T |f |=P .

Consider the tolerable perturbations d1 = {(1, b, 2)}, d2 = {(1, b, 4)}, d3 =
{(2,b,3)}, and d4 ={(4,b,3)}. Perturbations d1 and d2 are at least as powerful as d3

and d4, i.e., d3 �d1, d4 �d1, d3 �d2, and d4 �d2. On the other hand, d1 and d2 are
incomparable with respect to � as their perturbed controlled systems generate
incomparable runs. Perturbations d3 and d4 are also incomparable even though
Runs(Td3

|f) = Runs(Td4
|f). In this case, condition (ii) in Def. 4 is violated as

d3 6⊆d4 and d4 6⊆d3.

aaab

b

b

(a) LTS T

aaa,bb

b

b

(b) LTS Td1

a
a

ab

b

b

b

(c) LTS Td3

Fig. 3: Tolerable perturbations

In Example 3, perturbations d3 and d4 are incomparable with respect to � even
though Runs(Td3

|f) = Runs(Td4
|f). Fortunately, their union, d3 ∪d4, generates

the same controlled runs and it is at least as powerful as d3 and d4. This result
establishes the existence of a maximal perturbation within the set of perturbations
that generate the same controlled runs.

Proposition 1. Given LTS T , controller f , and perturbations d1,d2 such that
Runs(Td1

|f)=Runs(Td2
|f), it follows that d1,d2 �f d1∪d2 and Runs(Td1∪d2

|f)=
Runs(Td1

|f)=Runs(Td2
|f).

4.3 Tolerance definition

Prior work on robustness of discrete transition systems assumes that perturba-
tion d is given and one checks the tolerance of controller f with respect to d and
property P . Our approach transforms the assumption of given perturbations into
our object of study. Intuitively, we search for all possible tolerable perturbations
d with respect to LTS T , controller f , and property P .

8 R. Meira-Góes et al.

Definition 5. Let LTS T , property P , and controller f such that T |f |= P be
given. The tolerance of f with respect to P and T , denoted as ∆(T,f,P), is a
collection of perturbations (∆(T,f,P)⊆2Q×Act×Q) such that:

1. ∀d∈∆(T,f,P). Td|f |=P [d is tolerable];

2. ∀d⊆Q×Act×Q. Td|f |=P ⇒∃d′ ∈∆(T,f,P). d�d′ [d is represented];

3. ∀d,d′ ∈∆(T,f,P). d 6=d′ ⇒d 6�d′ [unique representations].

Conditions 2 and 3 in Def. 5 enforce that only maximal tolerable perturbations
with respect to � are in ∆. Formally, the set ∆ defines an antichain, with respected
to �, of maximal tolerable perturbations. Intuitively, the set ∆ defines an upper
bound on the possible perturbations from T that controller f tolerates. Before we
dive into the properties of the set ∆, we must show that this set is uniquely defined
given its assumptions.

Lemma 1. Given an LTS T , controller f , and property P , there is a unique
∆(T,f,P) that satisfies the conditions in Def. 5.

Example 4. Consider the same setup as in Example 3. The four perturbations in
Example 3 are tolerable. Therefore, they must be represented in ∆ as stated in con-
dition (2) in the definition of ∆. At this moment, we simply provide ∆ for this ex-
ample and in Section 5 we provide the formal results on efficiently obtaining this ∆.
The set ∆ in this example is given by ∆={Q×Act×Q\{(1,b,3),(2,b,3),(4,b,3)}}.
Intuitively, ∆ is defined by a single perturbation set that contains all possible
transitions except the ones from states 1,2,4 to state 3 with action b. Adding any
of these missing transitions make the perturbation set in ∆ to be intolerable. The
perturbed system defined by this perturbation is depicted in Fig. 4a where we high-
light the new transitions in blue 5. Any other tolerable perturbation is represented
in ∆. For example, perturbations d1,d2 ⊆d=Q×Act×Q\{(1,b,3),(2,b,3),(4,b,3)}
which implies that d1,d2 �f d. And although d3 and d4 are not subsets of d, it also
follows that d3,d4 �d since Runs(Td3

|f)=Runs(Td4
|f)⊂Runs(Td|f).

a

a,b

a,ba,b

a,b

a,b

a,b

a,b a,b

a,b

a

a

(a) LTS Td for
d∈∆

aa,b
a,b

b

b

b

(b) LTS Td1∪d2

Fig. 4: LTS in Examples 4 and 5

5 For simplicity, we do not show the transitions starting in state 3

On tolerance of discrete systems 9

4.4 Computing tolerance for general properties

The tolerance of controller f is defined by the set of maximal tolerable perturba-
tions with respect to property P . The first problem we investigate is to compute
the set ∆ given T , f , and P .

Problem 1. Given LTS T , property P , and controller f , compute ∆(T,f,P).

Naively, solving Problem 1 can be broken into (i) finding the set of tolerable
perturbations and (ii) identifying the maximal ones within this set. Step (i) can
be reduced to verifying if system Td|f satisfies property P for every possible per-
turbation d. Step (ii) orders the tolerable perturbations with respect to relation
�f . Under mild assumptions that P is a regular language and that f has bounded
memory, both steps (i) and (ii) are decidable.

Although this naive algorithm computes the tolerance of f , it will not scale for
large LTS. For this reason, we wish to investigate efficient ways to compute the
set ∆(T,f,P). Our goal is to investigate tolerance with respect to special classes of
properties, e.g., invariance, safety, liveness, etc. In the next section, we show our
results for invariance properties.

5 Tolerance with respect to invariance properties

An invariance property P for an LTS T can be represented by a subset of invari-
ant states Qinv ⊆ Q [3]. Formally, a property P is an invariance property if there
exists an invariant set of states Qinv such that P = Q∗

inv ∪ Qω
inv. For instance,

Qinv ={1,2,4} in Example 3. An LTS satisfies an invariance property if and only
if the LTS only reaches states in Qinv [3]. For convenience, we assume that the
invariant set of states always contains the set of initial states.

5.1 Supremum tolerable perturbation

Usually when dealing with invariance properties, one can show the existence of a
single supremum element that satisfies the desired investigated property. In our
scenario, we want to show that the tolerance of f with respect to an invariance
property is represented by a unique tolerable perturbation, i.e., |∆(T,f,P)| = 1.
Although ∆ in Example 4 has a single element, the following counterexample
illustrates that in general |∆(T,f,P)|≥1.

Example 5. Consider the setup of Example 3 with LTS defined by Fig. 3a and
Qinv = {1,2,4}, but under control of the following controller: f(1214) = {a} and
f(x0...n) = {b} for any x0...n ∈ Q+ other than 1214. Perturbations d1 = {(1,b,2)}
and d2 = {(1,b,4)} remain tolerable with respect to this new controller. And al-
though these perturbations are tolerable, their union is not tolerable since path
1214 becomes feasible in Td1∪d2

as seen in Fig. 4b. The size of ∆(T,f,P) must be
at least two since we cannot combine d1 and d2 as a single tolerable perturbation
that generates the behavior of Td1

|f and Td2
|f .

10 R. Meira-Góes et al.

Invariant controllers The counterexample in Example 5 sheds light on the
problem of the controller f selecting “bad” control decisions for paths outside
of P athsfin(T |f). This problem can be easily fixed for invariance properties by
introducing the notion of invariant control actions and invariant controllers.

Definition 6. Let an LTS T and an invariance property P with invariant set of
states Qinv be given. The set of invariant control actions is defined as Ainv(q) :=
{a∈Act |P ostT (q,a)⊆Qinv} if q ∈Qinv and Ainv(q) :=∅ if q /∈Qinv. Moreover, we
say that f is an invariant controller with respect to T and P if f(x0...n)⊆Ainv(xn)
for any sequence x0...n ∈Q+.

Informally, invariant control actions characterize the “good” actions with re-
spect to LTS T and invariance property P . Therefore, all invariant controllers
satisfy invariance property P as stated in Lemma 2.

Lemma 2. Any invariant controller with respect to T and P satisfies T |f |=P .

Although it seems that invariant controllers are restrictive, their actions only
assume LTS T and invariance property P . Thus, one expects that all actions the
controller takes satisfy the invariant control actions constraint.

Tolerance of invariant controllers Under the assumption of invariant con-
trollers, the tolerance of a given controller f is completely defined by a unique
tolerable perturbation, i.e., |∆(T,f,T)| = 1 for any invariant controller f . We for-
malize this statement in the following theorem.

Theorem 1. Let LTS T , invariance property P with invariant set of states Qinv,
and invariant controller f be given. It follows that |∆(T,f,P)| = 1 and its unique
element is defined as

⌈f⌉ :=(Q×Act×Q)\{(q,a,q′)∈Qinv ×Act×Q\Qinv |a∈F (q)}

where F (q) :={a∈Act |∃x0...n ∈P athsfin(TΩ|f). a∈f(x0...n)∧q =xn} and where
Ω :=Qinv ×Act×Qinv.

The first part of Theorem 1 states that the tolerance of f has a single perturba-
tion, i.e., there exists a supremal element within the set of tolerable perturbations
with respect to �f . The second part of this theorem characterizes this unique
perturbation, i.e., ⌈f⌉. This element is defined by removing transitions that are
not tolerable from the set of all possible transitions. For this reason, the removed
transitions are from states in Qinv to states outside of Qinv.

Discussing the set difference in more detail, the function F (q) restricts atten-
tion to paths in TΩ|f . Recall that relation �f prioritizes the behavior generated
by a perturbed controlled system, i.e., Td|f . The tolerable perturbation Ω is se-
lected since it can make every states in the the invariant set reachable, i.e., more
behavior can be generated. Next, we investigate which actions the controller uses
in the invariant states reached in TΩ|f . Intuitively, if the controller uses action
a in a reachable invariant state q, then transitions {q} × {a} × Q \ Qinv are not
tolerable and removed from ⌈f⌉.

On tolerance of discrete systems 11

Example 6. We return to Example 4 to discuss Theorem 1. The LTS T is depicted
in Fig. 3a, the invariance property P is defined by the set Qinv ={1,2,4}, and invari-
ant controller f is defined as f(q)={b} if q ∈Qinv and f(3)=∅. It follows that F (q)
is equal to f(q) for any q ∈Q. Intuitively, the function F defines which actions the
controller uses in each invariant state, e.g., action b is used in state 1. Since the con-
troller uses action b in state 1, the system is not tolerant if it is perturbed by tran-
sition (1,b,3). Similarly, action b is also used in states 2 and 4 which results in ⌈f⌉=
Q×Act×Q\{(1,b,3),(2,b,3),(4,b,3)}.Figure 4a depicts the perturbed system T⌈f⌉.

5.2 Computing tolerance for invariance properties

Problem 1 investigates the computation of the set ∆ for a general property P . We
strengthen Problem 1 to invariance properties as to use the results of Theorem 1.

Problem 2. Given LTS T , invariance property P , and invariant controller f , com-
pute ∆(T,f,P).

As in the solution of Problem 1, Problem 2 is decidable when f has bounded
memory as the controlled system T |f is representable by an LTS. By an abuse of
notation, the LTS representation of T |f is also denoted by T |f .

For invariance property P and invariant controller f , ∆(T,f,P) is uniquely
defined by ⌈f⌉. To compute the set ⌈f⌉, we need to characterize the function F (q),
which involves a reachability analysis of the perturbed system TΩ|f , i.e., ∃x0...n ∈
P aths(TΩ|f). Therefore, we can use standard reachability algorithms to compute
⌈f⌉, e.g., see algorithms 48 and 49 in [3]. These algorithms are linear in the number
of states and transitions of the LTS in analysis. Considering that the number of
transitions in TΩ|f is much larger than the number of states, the computation time
of the ∆ set is quadratic in the number of states and memory-size of controller f .

Proposition 2. In the worst case, the effort involved in solving Problem 2 is
O(|Q|2M2|Act|) where M is the finite memory-size used by controller f .

5.3 The least and most tolerant invariant controllers

There is an inherent trade-off between tolerance and the restriction controller f
imposes on LTS T . Controllers that are more permissive [5,11], i.e., that allow more
behaviors on T , are necessarily less tolerant and vice-versa. The two extremes of
this trade-off are the least and the most tolerant invariant controllers. Formally,
we search for controllers f1 and f2 that satisfy ⌈f1⌉ ⊆ ⌈f⌉ ⊆ ⌈f2⌉ for any other
invariant controller f .

Definition 7. We define controllers f inv and f∅ with respect to LTS T and in-
variance property P as: f inv(q) :=Ainv(q) and f∅(q) :=∅ for any q ∈Q.

The controller f inv selects the invariant control actions of each state as its
decision whereas f∅ disables every action. It follows that f inv is the least tolerant
controller whereas f∅ is the most tolerant among all invariant controllers.

12 R. Meira-Góes et al.

Theorem 2. Let LTS T and invariance property P be given. For any invariant
controller f with respect to T and P , it follows that ⌈f inv⌉⊆⌈f⌉⊆⌈f∅⌉.

Intuitively, controller f∅ blocks the system from executing any action regard-
less of the perturbation. For this reason, f∅ provides the largest tolerance set at the
trade-off of blocking any run to be generated. On the other hand, controller f inv

allows the maximum possible set of runs of T that do not violate property P . Conse-
quently, f inv is more susceptible to perturbations and provides the smallest toler-
ance set at the trade-off of allowing more behavior to be generated. We leave for fu-
ture work to better investigate this trade-off for controllers other than f∅ and f inv.

5.4 Computing tolerable controllers

Theorem 2 shows the existence of the most and the least tolerant invariant con-
trollers. In this section, we study a synthesis problem that exploit the spectrum
of controllers with tolerance levels in between these controllers. This synthesis
problem explores the idea of obtaining a controller with a minimum desired level
of tolerance. However, specifying only a minimum level of tolerance is insufficient
as there might exist multiple controllers that satisfy this requirement. Additional
to a minimum level of tolerance, we search for a controller with tolerance as close
as possible to the desired level as we do not want the controller to be unnecessarily
restrictive.

Problem 3. Given LTS T , invariance property P , and perturbation set d, synthe-
size controller f∗ such that (i) d⊆⌈f∗⌉; and (ii) ∀f that satisfies (i), ⌈f∗⌉⊆⌈f⌉.

Condition (i) requires that the tolerance of f∗ is at least d. Condition (ii) states
that the tolerance of ⌈f∗⌉ is as close as possible to d, where closeness is defined by
set inclusion. Intuitively, any controller f that tolerates d is more tolerable than
f∗, ⌈f∗⌉⊆⌈f⌉.

The solution to Problem 3 comes from Theorem 2. The controller f inv is the
least tolerant controller with respect to T . The solution to Problem 3 is defined
by the least tolerant controller with respect to Td.

Proposition 3. Consider the setup in Problem 3. Controller fd defined as fd(q) :=
{a∈Act |P ostTd

(q,a)⊆Qinv} is a solution to Problem 3.

Note that the definition of fd is almost the same as the definition of f inv. Their
only difference is that fd is defined over Td whereas f inv is defined over T .

6 Case study

In this section, we apply and discuss our notion of tolerance to the surveillance
example described in Section 2. We show how our definition provides useful in-
formation about the tolerance of controllers. First, we show that our definition
captures types of environmental perturbations that occur in practice. Next, we
compare the tolerance of two different controllers and the physical meaning of

On tolerance of discrete systems 13

their tolerance. Our analysis shows that our formal tolerance notion complies
with the informal intuition about the tolerance of these controllers. We also show
that these controllers can be computed via Problem 3.

We implement a tool to compute the tolerance of invariant properties as well as
controllers f∅,f inv, and fd on top of the MDESops tool6. Our evaluation was done
on a Ubuntu 20.04 LTS OS machine with 3.2GHz CPU and 32GB memory. Our
implementation is available on GitHub 7 and the artifact in [33] reproduces our
results in this paper. We analyze the performance of our tool by scaling the moti-
vating example as well as comparing to the naive algorithm to obtain tolerance.

(a) LTS rep-
resentation of
T |f1

(b) LTS representation of T |f2

Fig. 5: Ego under control of f1 and f2

6.1 Models and property

Example 1 describes how the surveillance example is modeled as an LTS. The
invariance property is defined by Qinv = Q \ {(2,2),(3,3),(4,4),(5,5)}, i.e., srv
captures ego. Next, we define two controllers that satisfy this invariance property.
First, we consider controller f1 to be the one described in Example 2 where it
maintains ego in location 1. On the other hand, controller f2 ensures that ego vis-
its all locations without being captured by srv. Formally, f2 is defined as follows:
f2(q) = f1(q) if q ∈ Q\{(1,4),(2,5)}, f2(1,4) = {m1,m2}, and f2(2,5) = {m1,m3}.
Figure 5 shows the LTS representations of T |f1 and T |f2.

6.2 Computing the tolerance level

We use our tool to compute the tolerance level for both controllers f1 and f2. Note
that LTS T has 20 states, 5 actions, 60 transitions, and the invariance set Qinv

has 16 states. The tolerance level ⌈f1⌉ has 1936 transitions for which 1876 are new
transitions with respect to the transition relation R. On the other hand, ⌈f2⌉ has
1928 transitions where 1868 are new transitions. In both cases, it takes about 8ms

6 https://gitlab.eecs.umich.edu/M-DES-tools/desops
7 https://github.com/romulo-goes/tolerancetool

https://gitlab.eecs.umich.edu/M-DES-tools/desops
https://github.com/romulo-goes/tolerancetool

14 R. Meira-Góes et al.

to compute the tolerance level. Since every control action of f2 is a subset of the
corresponding one selected by f1, it follows that ⌈f2⌉ ⊂ ⌈f1⌉. In comparison, the
most tolerant controller f∅ characterized by ⌈f∅⌉ = Q × Act × Q has 2000 tran-
sitions, i.e., the transition relation is complete. The least tolerant controller f inv

has a tolerance level ⌈f inv⌉ with 1716 transitions.

6.3 Comparing controllers

Controllers f1 and f2 select the same control decisions in all states except in states
(1,4) and (2,5). In these two states, controller f2 allows ego to venture closer to the
building. Therefore, controller f1 should be more tolerant than controller f2. This
intuition is confirmed by our notion of tolerance where ⌈f2⌉⊂⌈f1⌉, i.e., controller
f1 tolerates more perturbations than f2.

(a) Partial T⌈f1⌉|f1 (b) Partial T⌈f2⌉|f2

Fig. 6: Tolerance of controllers f1 and f2 with respect to srv perturbations

Figure 6 helps us explain the difference between these two controllers with re-
spect to srv strategy perturbation. In the case of f1, this controller selects action
m1 in state (1,4). As shown in Fig. 6a, f1 tolerates any perturbation from srv. For
example, it tolerates srv being faster than expected, e.g., transition (1,4),m1,(1,2)
is tolerated. On the other hand, f2 cannot tolerate this type of perturbations as
shown in Fig. 6b. Controller f2 can select action m2 in state (1,4), but it does not
tolerate transition (1,4),m2,(2,2).

Controllers f1 and f2 can be synthesized by solving Problem 3, i.e., by defining
a minimum level of tolerance these controllers need to achieve. In the case of con-
troller f1, this minimum level of tolerance is informally defined by not constraining
srv’s movements. In other words, it is required that srv should match any deci-
sion ego takes when it goes to states 2, ... ,5, e.g., ego must tolerate transitions
(

(1,4),m2,(2,2)
)

,
(

(1,2),m2,(2,2)
)

,
(

(1,4),m4,(4,4)
)

, etc. Since controller f1 is too
restrictive, we relax its minimum level of tolerance to obtain controller f2. Details
about these sets can be found in our implementation.

As we mention in Section 5, there is a trade-off between tolerance and the
behavior allowed by the controller. In this example, controller f2 ventures to lo-
cations 2,...,5 whereas controller f1 maintains ego in location 1. The benefits of f1

being more tolerant than f2 comes at the cost of being less permissive.

On tolerance of discrete systems 15

6.4 Performance analysis

To test the performance of our tool, we scale the surveillance example by adding
more locations as well as more surveillance drones. More details about the modi-
fied surveillance models is provided in our GitHub repository. Table 1 summarizes
the evaluation of our tool. The tolerances ⌈f inv⌉ in these examples are almost a
complete transition relation, i.e., ⌈f inv⌉ ≈ Q×Act×Q. Since our tool is built as
proof-of-concept, it ran out of memory and it could not compute the tolerance for
the system with 10 locations and 3 srv drones. The complete transition relation
for this system has 262 144 000 transitions. As part of future work, we plan to
improve our tool by symbolic encoding of the LTS, e.g., using OBDD [10].

System |Q| |Act| |R| |⌈f inv⌉| time

1ego, 1srv, 5 locations 20 5 60 1716 0.01 sec

1ego, 1srv, 10 locations 80 10 272 59030 0.46 sec

1ego, 2srv, 10 locations 640 10 2176 3618978 30.88 sec

1ego, 3srv, 10 locations 5120 10 17408 out of memory − sec

Table 1: Tolerance of f inv: scalability of the case study

We also compare the algorithm to solve Problem 2 with the time to verify
every possible pertubed system Td|f as described in the naive algorithm to solve
Problem 1. Since the naive algorithm verifies Td|f |= P for every perturbation
d ⊆ Q × Act × Q, it is infeasible to use the surveillance example since there are
21940 systems to verify. For this reason, we make this comparison using a modified
version of the LTS shown in Fig. 3a. We use FuseIC3, an off-the-shelf tool that
efficiently verifies a family of LTS by reusing information from earlier verification
runs [18]. Table 2 summarizes the results of our comparison. Although FuseIC3
efficiently verifies a large family of LTS, it was not developed to solve Problem 2.
On the other hand, our algorithm directly computes the tolerance of the LTS using
the results of Theorem 1.

|Q| |Act| |R| # perturbations Our method FuseIC3

4 2 22 210 0.001 sec 1.5 sec

4 2 17 215 0.001 sec 48.1 sec

Table 2: Comparison with FuseIC3

7 Related work

Several works investigated notions of robustness, tolerance, and resilience for dis-
crete transition systems by quantifying perturbation via cost functions, metrics,
etc. [6,7,12,23,31,36,43,45]. Our notion of tolerance is qualitative as it captures the

16 R. Meira-Góes et al.

set of perturbations for which the controller guarantees the property and avoids
the need of external cost functions over the discrete transition system. With re-
spect to qualitative robustness notions, the work in [48] investigated synthesizing
controllers robust against perturbation sets specified by the designer. Our notion
of tolerance defines these perturbation sets for each controller. In [46], authors
presented the notion of robust linear temporal logic (rLTL) which extends the
binary view of LTL to a 5-valued semantics to capture different levels of property
satisfaction. This work is tangent to ours as it focuses on specifying robustness.

Of particular relevance to this paper are the works in [25,51], which inspired our
notion of tolerance. The notion of robustness presented in [25,51] is only semanti-
cally defined. In [51], the environmental perturbation is captured by a set of input
traces the software system accepts. Perturbations in [25] are connected to different
attack threats models for software systems. In our work, we define the syntax of
perturbations as additional transitions in the environment model. Moreover, the
semantics in our perturbation definition differs from those in [25,51].

There also exist a vast literature on robust control in discrete event systems
[2,16,27,28,29,32,35,42,47,49,50]. Robustness in [2,28,29,32,35,42,49] are specific
to communication delays, loss of information, or deception attacks. Our notion of
tolerance represents model uncertainty, which can attributed to unreliable commu-
nication channels in the controlled system. Robustness against model uncertainty
is tackled in the works of [16,27,47,50]. Although our notion of tolerance resembles
the ones in [16,27,47,50], the semantics of our work differs from theirs as we use a
different modeling formalism.

The description of the general algorithm to compute ∆(T,f,P) for any property
P connects our work to the work on verifying software product lines (SPL) de-
scribed as feature transitions systems (FTS) [15,14]. However, verifying FTS has
exponential worst-case time complexity even for invariance properties whereas
our method has quadratic worst-case time complexity. Modal transition systems
(MTS) [26,24] can also be used to describe a family of LTS, where transitions can
be mandatory (must transitions) or optional (may transitions). In [17], a controller
realizability problem is studied for an environment modeled by MTS, where a con-
troller satisfies a property in all, some, or none of the LTS family. Our notion of con-
troller explicitly computes which systems in the LTS family satisfy the property.

The last body of work related to this paper is the work on fault-tolerance. Fault-
tolerance has been studied in the context of distributed systems [20,30,38]. The
work in [9,13,19,21] focuses on synthesis of fault-tolerant programs by retrofitting
initial fault-intolerant programs. These works focus on specific types of fault mod-
els, whereas our tolerance notion upper-bounds the perturbations (faults) the
controller tolerates. In the context of control of discrete transition systems, [37]
proposes a fault-tolerance framework for a control system. However, this work
requires the fault model to be explicitly specified.

On tolerance of discrete systems 17

8 Conclusion

In this paper, we introduced a new notion of tolerance against environmental per-
turbations. This notion defines an upper bound on the possible environmental
perturbations that a controller tolerates with respect to a desired property. We
provided a general technique to compute this tolerance level for general properties
modeled as regular languages over finite strings as well as a more efficient technique
specifically for invariance properties. We also investigate the problem of synthesiz-
ing an invariant controller that achieves a given minimum threshold of tolerance.

Limitations and future work: Our notion of tolerance is syntactically defined
by additional transitions and semantically defined by the controlled behavior gen-
erated by these additional transitions. However, the additional transitions and
new controlled behavior need to be analyzed by a designer as to explain them
within the context of the model. We leave to future work to bridge this gap be-
tween the syntax of our notion of tolerance with the context of the model to provide
tolerance explanations to the designer. Another limitation is that our notion of
tolerance can only be efficiently computed for invariance properties. As part of
future work, we will devise more efficient techniques for properties different than
invariance. At the end of Section 6, we discussed the trade-off between tolerance
and permissiveness of two different controllers. Due to space limitations, we did
not provide an in-depth discussion, and this is left as part of future work.

References

1. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. In:
Proceedings 16th Annual IEEE Symposium on Logic in Computer Science. pp.
291–300 (2001)

2. Alves, M.V.S., da Cunha, A.E.C., Carvalho, L.K., Moreira, M.V., Basilio, J.C.:
Robust supervisory control of discrete event systems against intermittent loss of
observations. International Journal of Control pp. 1–13 (2019)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

4. Belta, C., Yordanov, B., Aydın Göl, E.: Formal Methods for Discrete-Time
Dynamical Systems. Springer Publishing Company, 1st edn. (2017)

5. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: From parity games to
safety games. RAIRO - Theoretical Informatics and Applications 36(3), 261–275
(2002)

6. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann,
B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Inf. 51(3–4),
193–220 (Jun 2014)

7. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust
systems. In: 2009 Formal Methods in Computer-Aided Design. pp. 85–92 (2009)

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

9. Bonakdarpour, B., Kulkarni, S.S.: Sycraft: A tool for synthesizing distributed
fault-tolerant programs. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 -
Concurrency Theory. pp. 167–171. Springer Berlin Heidelberg (2008)

18 R. Meira-Góes et al.

10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv. 24(3), 293–318 (Sep 1992)

11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer-
Verlag, 2 edn. (2008)

12. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs
robust. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering. p. 102–112. ESEC/FSE
’11, Association for Computing Machinery (2011)

13. Cheng, C.H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-tolerant embedded
systems using games: From theory to practice. In: Jhala, R., Schmidt, D. (eds.)
Verification, Model Checking, and Abstract Interpretation. pp. 118–133. Springer
Berlin Heidelberg (2011)

14. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Transactions on Software
Engineering 39(8) (2013)

15. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering.
vol. 1, pp. 335–344 (2010)

16. Cury, J., Krogh, B.: Robustness of supervisors for discrete-event systems. IEEE
Transactions on Automatic Control 44(2), 376–379 (1999)

17. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: The modal transition
system control problem. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal
Methods. pp. 155–170. Springer Berlin Heidelberg (2012)

18. Dureja, R., Rozier, K.Y.: FuseIC3: An algorithm for checking large design spaces.
In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp. 164–171 (2017)

19. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: A framework for automatic synthe-
sis of fault-tolerance. Int. J. Softw. Tools Technol. Transf. 10(5), 455–471 (Oct 2008)

20. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv. 31(1), 1–26 (Mar 1999)

21. Girault, A., Rutten, E.: Automating the Addition of Fault Tolerance with Discrete
Controller Synthesis. Formal Methods in System Design 35, 190–225 (2009)

22. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. Springer-Verlag, Berlin, Heidelberg (2002)

23. Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz Robustness of Finite-state
Transducers. In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science (FSTTCS
2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 431–
443. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014)

24. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation
for three-valued program analysis. In: Sands, D. (ed.) Programming Languages and
Systems. pp. 155–169. Springer Berlin Heidelberg (2001)

25. Kang, E.: Robustness analysis for secure software design. In: Proceedings of the
3rd ACM SIGSOFT International Workshop on Software Security from Design to
Deployment. p. 19–25. SEAD 2020, Association for Computing Machinery (2020)

26. Larsen, K., Thomsen, B.: A modal process logic. In: 1988 Proceedings. Third
Annual Symposium on Logic in Computer Science. pp. 203–210 (1988)

27. Lin, F.: Robust and adaptive supervisory control of discrete event systems. IEEE
Transactions on Automatic Control 38(12), 1848–1852 (Dec 1993)

On tolerance of discrete systems 19

28. Lin, F.: Control of networked discrete event systems: Dealing with communication
delays and losses. SIAM Journal on Control and Optimization 52(2), 1276–1298
(2014)

29. Lin, L., Zhu, Y., Su, R.: Towards bounded synthesis of resilient supervisors. In:
2019 IEEE 58th Conference on Decision and Control (CDC). pp. 7659–7664 (2019)

30. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

31. Majumdar, R., Render, E., Tabuada, P.: Robust discrete synthesis against un-
specified disturbances. In: Proceedings of the 14th International Conference on
Hybrid Systems: Computation and Control. p. 211–220. HSCC ’11, Association for
Computing Machinery (2011)

32. Meira-Góes, R., Marchand, H., Lafortune, S.: Towards resilient supervisors against
sensor deception attacks. In: 2019 IEEE 58th Annual Conference on Decision and
Control (CDC) (Dec 2019)

33. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: Artifact for Paper: On
tolerance of discrete systems with respect to transition perturbations (Oct 2021).
https://doi.org/10.5281/zenodo.5563167

34. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On tolerance of discrete
systems with respect to transition perturbations. arXiv:2110.04200 [eess.SY] (2021)

35. Meira-Goes, R., Lafortune, S., Marchand, H.: Synthesis of supervisors robust
against sensor deception attacks. IEEE Transactions on Automatic Control 66(10),
4990–4997 (2021)

36. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient
controllers. Acta Inf. 57(1), 195–221 (Apr 2020)

37. Paoli, A., Lafortune, S.: Safe diagnosability for fault-tolerant supervision of
discrete-event systems. Automatica 41(8), 1335–1347 (Aug 2005)

38. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (Apr 1980)

39. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. p. 179–190. POPL ’89, Association for Computing Machinery (1989)

40. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977). pp. 46–57 (1977)

41. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (Jan 1987)

42. Rohloff, K.: Bounded sensor failure tolerant supervisory control. 11th IFAC
Workshop on Discrete Event Systems 45(29), 272 – 277 (2012)

43. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of string trans-
ducers. In: Van Hung, D., Ogawa, M. (eds.) Automated Technology for Verification
and Analysis. pp. 427–441. Springer Publishing Company (2013)

44. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer Publishing Company, 1st edn. (2009)

45. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: Proceedings of the Tenth ACM International
Conference on Embedded Software. p. 217–226. EMSOFT ’12, Association for
Computing Machinery (2012)

46. Tabuada, P., Neider, D.: Robust Linear Temporal Logic. In: Talbot, J.M., Regnier,
L. (eds.) 25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 62, pp. 10:1–10:21.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016)

https://doi.org/10.5281/zenodo.5563167

20 R. Meira-Góes et al.

47. Takai, S.: Maximizing robustness of supervisors for partially observed discrete event
systems. Automatica 40(3), 531 – 535 (2004)

48. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete con-
trollers under modeling uncertainty. In: Proceedings of the 15th ACM International
Conference on Hybrid Systems: Computation and Control. p. 85–94. HSCC ’12,
Association for Computing Machinery (2012)

49. Wang, F., Shu, S., Lin, F.: Robust networked control of discrete event systems. IEEE
Transactions on Automation Science and Engineering 13(4), 1528–1540 (2016)

50. Young, S., Garg, V.K.: Model uncertainty in discrete event systems. SIAM Journal
on Control and Optimization 33(1), 208–226 (1995)

51. Zhang, C., Garlan, D., Kang, E.: A behavioral notion of robustness for software
systems. In: Proceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
p. 1–12. ESEC/FSE 2020, Association for Computing Machinery (2020)

52. Zhou, K., Doyle, J.C.: Essentials of robust control, vol. 104. Prentice Hall (1998)

Appendix

Proposition 1. Given LTS T , controller f , and perturbations d1,d2 such that
Runs(Td1

|f)=Runs(Td2
|f), it follows that d1,d2 �f d1∪d2 and Runs(Td1∪d2

|f)=
Runs(Td1

|f)=Runs(Td2
|f).

Proof. Direct proof. Without loss of generality, we assume that d1∩R=d2∩R=∅.
Based on the transitions being used/active in the controlled system, we partition
the perturbation in two sets: active transitions, and not active transitions. We
show that set of active transitions in d1 and d2 are equal since Runs(Td1

|f) =
Runs(Td2

|f). Lastly, we present that the union of d1 and d2 satisfies d1,d2 �f d1 ∪d2

and Runs(Td1∪d2
|f)=Runs(Td1

|f)=Runs(Td2
|f).

Let dact
i :={(q,a,q′)∈di |∃x0a0...xn ∈Runs(Tdi

|f). (q,a,q′)=(xn−1,an−1,xn)}
for i ∈ {1,2} denote the set of active transitions. By construction, it follows that
Runs(Tdact

i

|f)=Runs(Tdi
|f) for i∈{1,2}.

We show by subset inclusion that dact
1 = dact

2 . First, we demonstrate that
dact

1 ⊆dact
2 . By the definition of dact

1 and the condition Runs(Td1
|f)=Runs(Td2

|f),
we have

(q,a,q′)∈dact
1 ⇒∃x0a0...xn ∈Runs(Td1

|f). (q,a,q′)=(xn−1,an−1,xn) (1)

⇒∃x0a0...xn ∈Runs(Td2
|f). (q,a,q′)=(xn−1,an−1,xn) (2)

⇒(q,a,q′)∈d2 ∪R (3)

⇒(q,a,q′)∈d2 as d1∩R=∅ (4)

The implications in lines 2 and 4 provide that (q,a,q′) ∈dact
2 . Using similar argu-

ments, it follows that dact
2 ⊆dact

1 . We conclude that dact
1 =dact

2 .
Finally, we have that d1 ∪d2 = dact

1 ∪(d1 \dact
1)∪(d2 \dact

1) which implies that
Runs(Td1∪d2

|f)=Runs(Td1
|f)=Runs(Td2

|f) and d1,d2 �f d1∪d2.

Lemma 1. Given an LTS T , controller f , and property P , there is a unique
∆(T,f,P) that satisfies the conditions in Def. 5.

On tolerance of discrete systems 21

Proof. By contradiction. Assume that there exist ∆1,∆2 ⊆ 2Q×Act×Q such that
they satisfy conditions 1, 2, and 3 in Def. 5 and ∆1 6= ∆2. Without loss of gen-
erality, we assume that ∃d1 ∈ ∆1 \∆2. Since d1 ∈ ∆1, we have that Td1

|f |= P as
∆1 satisfies 1. As ∆2 satisfies 2 and d1 /∈ ∆2, we have that ∃d2 ∈ ∆2 such that
Td2

|f |=P and Runs(Td1
|f)⊂Runs(Td2

|f) or d1 ⊆d2 (d1 �d2). Since d1 ∈∆1\∆2,
it follows that Runs(Td1

|f) ⊂ Runs(Td2
|f) or d1 ⊂ d2. Back to ∆1, condition 3

implies that d2 /∈∆1 since d1 ∈∆1 and Runs(Td1
|f)⊆Runs(Td2

|f). Furthermore,
it does not exist d ∈ ∆1 such that Runs(Td2

|f) ⊂ Runs(Td|f) or d2 ⊆ d, because
d1 ∈∆1 and Runs(Td1

|f)⊆Runs(Td2
|f)⊆Runs(Td|f), and ∆1 satisfies condition

3. Consequently, the perturbation d2 is a witness of the ∆1 violating condition 2,
which contradicts our assumption that ∆1 satisfies conditions 1, 2, and 3.

Lemma 2. Any invariant controller with respect to T and P satisfies T |f |=P .

Proof. It directly follows from the definition of invariant controllers (Def. 6).

Theorem 1. Let LTS T , invariance property P with invariant set of states Qinv,
and invariant controller f be given. It follows that |∆(T,f,P)| = 1 and its unique
element is defined as

⌈f⌉ :=(Q×Act×Q)\{(q,a,q′)∈Qinv ×Act×Q\Qinv |a∈F (q)}

where F (q) :={a∈Act |∃x0...n ∈P athsfin(TΩ|f). a∈f(x0...n)∧q =xn} and where
Ω :=Qinv ×Act×Qinv.

Proof. We first show by contradiction that |∆(T,f,P)|=1. For simplicity, we write
∆ instead of ∆(T,f,P). Since ∅ is always a tolerable perturbation, it follows that
|∆| ≥ 1. Assume that |∆| > 1 and let d1,d2 ∈ ∆. In the definition of ∆, condition
(3) states that d1 6�d2 and d2 6�d1. We define dinv

i :={(q,a,q′)∈di |q,q′ ∈Qinv ∧a∈
Ainv(q)} for i∈{1,2}. By construction, the controlled system Tdinv

i

|f generates the

same runs as Tdi
|f for i∈{1,2} otherwise di is not tolerable. As d1,d2 ∈∆, it must be

that dinv
1 and dinv

2 are incomparable, otherwise d1 �d2 or d2 �d1. Because dinv
1 and

dinv
2 only define transitions within Qinv and f is invariant, we have that dinv

1 ∪dinv
2

is a tolerable perturbation, i.e., Tdinv

1
∪dinv

2

|f |= P . The perturbation dinv
1 ∪ dinv

2

must be represented in ∆ as stated by condition (2) in Def. 5. Since dinv
1 and dinv

2

are incomparable, the representation of dinv
1 ∪dinv

2 must be different than d1 and
d2. Thus, there exist d3 ∈∆ different than d1 and d2 such that dinv

1 ∪dinv
2 �d3. Since

the condition Runs(Tdinv

1

|f)=Runs(Td1
|f)⊂Runs(Tdinv

1
∪dinv

2

|f), it follows that

d1 � d3, which violates condition (3) in the definition of ∆. That is, we have two
perturbation sets in ∆ that are comparable via �f . We reached a contradiction.

Next, we show by contradiction that ⌈f⌉∈∆. Assume that perturbation d 6=⌈f⌉
satisfies Td|f |=P and d∈∆. By construction of ⌈f⌉, the runs generated by T⌈f⌉|f
are the same as the ones generated by TΩ|f . Therefore, the perturbation ⌈f⌉ is
tolerable. We have shown previously that |∆|=1, which ensures that ⌈f⌉�d since
d∈∆. Therefore, it must be that Runs(T⌈f⌉|f)⊂Runs(Td|f) or Runs(T⌈f⌉|f)=
Runs(Td|f) and ⌈f⌉⊂d. If Runs(T⌈f⌉|f)⊂Runs(Td|f), then d is not a tolerable
perturbation since Runs(T⌈f⌉|f) = Runs(TΩ|f). If Runs(T⌈f⌉|f) = Runs(Td|f)

22 R. Meira-Góes et al.

and ⌈f⌉⊂d, then there exists a transition in d that is not in ⌈f⌉ and this transition
is not active in any run. However, by the definition of ⌈f⌉, any transition in d that
is not in ⌈f⌉ implies that Runs(T⌈f⌉|f)⊂Runs(Td|f) and d not being a tolerable
perturbation. It follows that d is not a tolerable perturbation, which contradicts
our assumption that d∈∆.

Theorem 2. Let LTS T and invariance property P be given. For any invariant
controller f with respect to T and P , it follows that ⌈f inv⌉⊆⌈f⌉⊆⌈f∅⌉.

Proof. It follows from F inv(q) ⊆ F (q) ⊆ F ∅ for any invariant controller f where
F inv, F ∅, and F are defined as in Theorem 1 for controllers f∅, f inv, and f ,
respectively.

Proposition 2. In the worst case, the effort involved in solving Problem 2 is
O(|Q|2M2|Act|) where M is the finite memory-size used by controller f .

Proof. It follows from the worst case effort to perform a reachability analysis over
an LTS [3].

Proposition 3. Consider the setup in Problem 3. Controller fd defined as fd(q) :=
{a∈Act |P ostTd

(q,a)⊆Qinv} is a solution to Problem 3.

Proof. We begin showing that d ⊆ ⌈fd⌉ by a direct proof. Recall that ⌈fd⌉ =
Q × Act × Q \ {(q, a, q′) ∈ Qinv × Act × Q \ Qinv | a ∈ F d(q)} where F d(q) =
{a ∈ Act | ∃x0...n ∈ P athsfin(TΩ|fd). a ∈ fd(x0...n) ∧ q = xn}. For any t ∈
d\Qinv ×Act×Q\Qinv, we have that t ∈ ⌈fd⌉ by definition of ⌈fd⌉. If (q,a,q′) ∈
d ∩ Qinv × Act × Q \ Qinv, then a /∈ fd(q) by the definition of fd. It follows that
(q,a,q′)∈⌈fd⌉ since action a is never used in state q. Thus, we have that d⊆⌈fd⌉.

For the second part, for any invariant controller f that satisfies condition (i),
we must show that ⌈fd⌉ ⊆ ⌈f⌉. We show it by contradiction. Assume that there
exists an invariant controller f that satisfies (i) and ⌈f⌉ ⊂ ⌈fd⌉. Without loss
of generality, we assume that ⌈f⌉ = ⌈fd⌉ \ {(q∗,a∗,q′)} for some q∗,q′ ∈ Q and
a∗ ∈ Act and f is memoryless. These assumptions together with the definition of
⌈f⌉ guarantee that q∗ ∈ Qinv, q′ ∈ Q \ Qinv, f(q) = fd(q) for any q ∈ Q \ {q∗},
and fd(q∗)=f(q)\{a∗}. Moreover, it follows that P ostTd

(q∗,a∗) 6⊆Qinv otherwise
a∗ ∈ fd(q∗). As f is invariant, the successor states of q∗ under action a∗ are a
subset of Qinv, i.e., P ostT (q∗,a∗) ⊆ Qinv. The last two statements ensure that
(q∗,a∗,q′)∈d. We can conclude that d 6⊆⌈f⌉ which contradicts assumption (i).

	On tolerance of discrete systems with respect to transition perturbations

