
Levels of thinking in computer science: Development
in bachelor students’ conceptualization of algorithm

Jacob C. Perrenet

Published online: 2 June 2009
The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract How do we know if our students are beginning to think like computer
scientists? In a first study we defined four levels of abstraction in computer
science students’ thinking about the concept of algorithm. We constructed a list
of questions about algorithms to measure the answering level as an indication for
the thinking level. This list was presented to various groups of Bachelor
computer science students. The mean answering level increased between
successive year groups as well as within year groups during the year, mainly
from the second to the third level. Student-level estimations provided by teachers
fell in the same range as the level measurements, but level growth was not
detected in their estimations; level estimation appeared very difficult for lecturers.
The reliability of the instrument proved to be satisfactory. To investigate the
validity, a follow-up study was done with a small heterogeneous group of
Bachelor students. They answered the same questions and were successively
interviewed to check whether they understood the terms they used. Their
understanding proved to be satisfactory, sustaining the validity of the instrument.
In the first study little relation was found between thinking levels and regular test
results on algorithm-oriented courses. Supposedly, besides levels on the
dimension of abstraction, levels on concretizing, analyzing and synthesizing are
also relevant. A broader framework for future research is being proposed.

Keywords Computer science education . Abstraction . Level of thinking

1 Introduction

Computer science can be characterized as a science of abstraction (Aho and Ullman
1992). Abstraction has been recognized as a fundamental and essential principle in

Educ Inf Technol (2010) 15:87–107
DOI 10.1007/s10639-009-9098-8

J. C. Perrenet (*)
Eindhoven School of Education, Eindhoven University of Technology, P.O. Box 513,
Eindhoven 5600 MB, The Netherlands
e-mail: j.c.perrenet@tue.nl

computer science problem-solving and software development (Haberman 2004). The
key for a successful career in computing therefore lies in the ability to perform
abstract thinking and to exhibit abstraction skills (Kramer 2007). Would it be
possible to follow students in their development along the dimension of abstraction
capabilities and distinguish abstraction levels in their thinking about core concepts?
Various computer science concepts can be studied in an educational context and
several researchers have made a start. To give a few examples, Hammond and
Rogers (2007) investigated the concept of the computer at the transition from
primary to secondary education, Papastergiou (2005) studied the concept of the
Internet in secondary education, Aharoni (2000) looked at the concept of data
structure in the context of higher education and Hazzan (2002) did research into the
concept of computability, also in higher education. Our focus in this study, like
Haberman’s (2004), is the concept of algorithm in higher education.

We will start this article with a closer look at what we mean by abstraction in
general and abstraction in computer science in particular. Next we will describe our
study of students’ levels of thinking about the concept of algorithm; see also Perrenet
et al. (2005) and Perrenet and Kaasenbrood (2006). The main research question is the
following: Is it possible to distinguish levels of abstraction in students’ thinking
about the concept of algorithm and to do so in a reliable and valid way? We
constructed an instrument for measuring these levels: a questionnaire consisting of
seven semi-open questions together with a method for scoring the answering levels.
After securing its reliability, it was used to measure the mean level of several year
groups of Bachelor students at several moments and test predictions about level
development. As a didactically-relevant side-step, we will describe the outcomes of
estimations of the students’ answers to the questionnaire, provided by their teachers.
The question here is to what extent do they have insight into their students’ thinking
levels? To check the validity of the instrument we did a follow-up study: a small
representative group of students answered the questions of the questionnaire while
thinking aloud, after which we interviewed them about their answers to investigate
whether they really understood the concepts they had used. In the discussion of the
results of both studies, we will look for didactical consequences and reflect on the
sufficiency of the dimension of abstraction for the explanation of the results. This
reflection will lead to the introduction of a broader framework for future research.

2 Abstraction in computer science education

Several definitions and interpretations are used in literature for abstraction and levels
of abstraction. Even within the context of the same discipline it is possible to have
more than one prevailing interpretation. For instance in mathematics education (Tall
and Thomas 2002) abstraction level has three interpretations: (1) the quality of the
relationships between the object of thought and the thinking person; (2) the degree of
complexity of the concept of thought; (3) the reflection of the ‘process-object
duality’, where operations on objects and relations between objects become objects
themselves on a higher level. According to Kramer two aspects of general
definitions of abstraction are relevant in computer science. On the one hand the
act or process of leaving one or more properties of a complex object out of

88 Educ Inf Technol (2010) 15:87–107

consideration so as to attend to other properties. On the other hand the process of
formulating general concepts by abstracting common properties of instances
(Kramer 2007). According to Dale and Walker two kinds of abstraction are utilized
in computer science: (a) procedural abstraction, which involves the separation of the
logical properties of an action from the implementation details, and (b) data
abstraction, which involves the separation of the logical properties of data from the
implementation details (Dale and Walker 1996). Extrapolating from these two kinds,
‘the separation of logical properties of an object or process from the implementation
details’ would make a good candidate for a computer science definition of
abstraction. However, we prefer the definition used in another educational research
project at the Eindhoven University of Technology. In the ACQA (Academic
Competences and Quality Assurance) project the following definition worked quite
satisfactorily: Abstracting is the bringing to a higher aggregation level of a
viewpoint (statement, model, theory) whereby it can be made applicable to more
cases. The higher the aggregation level, the more abstract the viewpoint. The
definition was accepted by the staff from a variety of engineering disciplines,
including computer science. It was used for characterizing the levels of abstraction
of thinking and acting in a series of disciplines (Meijers et al. 2005).

Within the context of education it is important to know that, when a student has
reached a certain level of thinking, the lower levels still exist and are incorporated;
lower levels can be evoked if necessary. Questions or problems do not necessarily
evoke the highest available level of thinking. Therefore it is better to speak about the
level of thinking in relation to a certain problem. Depending on the problem, a
student with a high level of thinking has the possibility but not the obligation to react
on the highest possible level (see e.g. Hazzan 2002).

Narrowing it down to the concept of algorithm, we propose four levels of
abstraction in students’ thinking. On the one hand that is more than the two levels
distinguished by Haberman et al. (2005). They argue that an algorithm can be
viewed as an operational process entity (embodying a “how” view), as well as an
object entity that embodies an I/O relationship (and a “what” view). On the other
hand it is less than the seven levels needed by computer science experts to
characterize the discipline as a whole (ACQA Project Group 2007); see Appendix.
Our abstraction levels are:

1. Execution level: the algorithm is a specific run on a concrete specific machine;
its time consumption is determined by the machine.

2. Program level: the algorithm is a process, described by a specific executable
programming language; time consumption depends on the input.

3. Object level: the algorithm is not connected with a specific programming
language; it can be viewed as an object (versus process); while constructing an
algorithm the data structure and the invariance properties are used; meta
properties such as termination and ‘patterns’ (algorithmic modules) are relevant;
time consumption is considered in terms of magnitude of order as function of
the input.

4. Problem level: the algorithm can be viewed as a black box; the perspective of
thought is ‘given a problem, which type of algorithm is suitable?’; problems can
be categorized to suitable algorithms; a problem has an intrinsic complexity.

Educ Inf Technol (2010) 15:87–107 8989

3 Measuring levels of thinking about the algorithm concept

In this section we will describe the educational context: a selection of algorithm-
oriented courses of the Bachelor curriculum of computer science at the Eindhoven
University of Technology. Next, the development of the proposed levels of
abstraction is described, as well as the construction of the questionnaire along with
its scoring system. We will conclude with the description of our test subjects and
formulate three hypotheses about the expected results.

3.1 Educational context

Five algorithm-oriented Bachelor courses were selected (Table 1), in which students
were supposed to develop their understanding of the concept of algorithm, its
construction and its analysis.

3.2 Levels of abstraction

Originally we proposed three abstraction levels for the algorithm concept, the
program level, the object level and the problem level. These abstraction levels were
discussed with the lecturers of the five courses involved in the study. An extra,
lower, level was suggested: the execution level. This resulted in the four levels
mentioned above.

The lecturers were the most outspoken about the difference between levels 2 and
3. They also expected these two levels of understanding to be the most common
among the Bachelor student group. This opinion was shared with the majority of
other teachers involved with the subjects of Table 1: faculty instructors for giving
help with solving problems and student assistants for assisting with instruction and
the correction of assignments. They gave their opinions during short interviews.
Some teachers made extra abstraction level distinctions, such as the difference
between knowing an algorithm for a certain task and being able to prove that a

Table 1 Algorithm-oriented courses

Subject Study
phase

Contents

Program
Realization 1

Trimester
1.1

Embedding elementary algorithms into larger programs and
encoding into a specific programming language.

Design of
Algorithms 1

Trimester
1.2

Systematical construction of algorithms using the Guarded Command
Language.a

Design of
Algorithms 2

Trimester
2.1

Programming from a formal specification with stepwise
refinement to the use of simple standard algorithms.

Design of
Algorithms 3

Trimester
2.3

Mathematically analyzing algorithmic run-time. Using advanced
techniques of algorithmic design and a number of standard algorithms.

Complexity Trimester
3.1

Understanding algorithm complexity as well as problem complexity.
Transforming problems within complexity classes.

a See Kaldewaij (1990)

90 Educ Inf Technol (2010) 15:87–107

certain algorithm can complete a certain task in a certain order of time. Or such as
thinking about a sequential machine performing an algorithm or thinking about a
parallel one. One lecturer’s remark was that the ability to use pseudo code and
axiomatic notation required a certain level of precision, rather than a certain level of
abstraction. The discussions with the lecturers inspired us in reflecting on the
contents and the format of the items of the questionnaire.

3.3 Construction of the questionnaire

The original questionnaire consisted of 11 items. The starting item is worded as
follows:

0. Give your definition of ‘algorithm’.
The other ten items—we call them proposition items—have another format. There

is a general introduction: Mark whether you agree or disagree with the following
proposition and give a supporting argument. So, only ‘agree’ or ‘disagree’ is not
sufficient. If necessary the option ‘both are possible’ can be chosen, provided that an
argument is given. Only choose ‘I don’t know’ if you cannot answer the question
because of lack of knowledge.

All ten items are followed by the four alternatives Agree, Disagree, Agree and
disagree are possible, I don’t know, and room for the required supporting
argumentation. It is mainly the supporting argumentation that is used for further
analysis rather than the choice of the answer itself. In this way the method differs
from standard use of multiple-choice questions.

This questionnaire was presented to the three Bachelor year groups in the first trimester
just after concluding their subject test on Program Realization 1, Design of Algorithms 2
or Complexity (Table 1). These subject tests were the regular preliminary examinations,
three hour sessions with theoretical and practical assignments on the subject of the
course. A random sample of 5% of the first trimester questionnaire output was scored
by two raters. The inter-rater agreement at item level appeared to be too low, so
differences and doubts were discussed and scoring rules were refined. This first sample
was not used in further analysis. Another 5% sample still resulted in unsatisfactory
agreement. However, after removal of four out of the ten proposition items, the degree
of agreement between the two raters, measured by Cohen’s Kappa, was .64. Also on the
remaining list—item 0 and six proposition items—a third rater scored satisfactorily
consistently with the other two (.64 and .70). Cohen’s Kappa is a measure that corrects
the influence of chance. A minimum of .60 is considered acceptable.

We will present the final list of six proposition items. Together with the item 0
(Give your definition of ‘algorithm’), this list was used as the questionnaire in
further data collection and analysis.

1. An algorithm is a program, written in a programming language.
2. Two different programs written in the same programming language can be

implementations of the same algorithm.
3. The correctness of an algorithm can generally be proven by testing the

implementation on cleverly selected test cases.
4. A suitable quantity to measure the time needed for a certain algorithm to solve a

certain problem is the time needed in milliseconds.

Educ Inf Technol (2010) 15:87–107 9191

5. The complexity of a problem is independent of the choice of the algorithm to
solve it.

6. For every problem it is possible that, in the future, algorithms are discovered
which are more efficient by an order of magnitude than the algorithms known up
to now.

3.4 Construction of the scoring system

The items were constructed in such a way that it was expected that arguments would
be given at various levels. However we did not succeed in constructing a list of
items with the possibility of argumentation on all four levels for every item. For
items 0 to 4 a level score from 1 to 3 is possible, for items 5 and 6 a score from 1 to
4. In Table 2, as an example, the refined scoring rules are given for three items. The
students’ thinking level is calculated from the argumentations of the list as a whole.
As there is no information about the distances between the levels, we calculated a
student’s thinking abstraction-level as the median of the series of item level scores. If
no level was detectable for more than half of the item series (missing or unclear), the
data were considered to be insufficient to calculate a students’ level.

3.5 Measurement design

Table 3 shows which students took the test at which points of time. All three year
groups were measured at the end of their first trimester. The first year group was
measured for the second time at the end of the second trimester and the second year
group was measured for the second time at the end of their third trimester. Again,
these measurements took place at the end of the regular subject test sessions
(preliminary examinations). In total 398 questionnaires were gathered (out of 461
students who completed the relevant courses).

3.6 Teachers’ estimations of students’ thinking levels

Three teacher categories were involved in the teaching of the algorithm courses:
lecturers (one per course), faculty instructors (instructors for short) for giving help
with solving problems (none to four per course) and student assistants for assistance
with instruction and correction of assignments (none to eight per course). Sometimes
teachers were involved in various courses as well as in various roles. We asked them
to fill in the questionnaire two times, from the perspective of the average successful
student and from the perspective of the average unsuccessful student. From the
argumentations we could calculate the supposed thinking level as we did with the
student data, two times per subject this time.

3.7 Predictions about level development

Our main hypotheses are:

1. The abstraction level of successive year groups will increase.
2. The individual abstraction level will increase during a year’s programme.

92 Educ Inf Technol (2010) 15:87–107

3. The individual grade on a subject test will correlate to the individual abstraction
level.

For the first hypothesis the measurement results of the three groups in the first
trimester will be compared (Table 3, column 2). For the second hypothesis the two
consecutive measurement results of the first year group and the results of the second
year group will be compared (Table 3, row 2 and 3). For the third hypothesis the
individual measurement results will be compared with the algorithm subject scores
from the same moment.

We will also explore the extent to which the students’ teachers have insight into
the development of their students’ thinking levels. Will their estimations fall within
the same range as the actual measurements? Will their estimations follow the same
trends as the actual measurements (between year groups and within year groups)?

Table 2 Examples of detailed answer level scoring

Item Answer characteristics Answer
level

0 A process with only one input, and only on one machine 1

A program in a specific language, which can be run with all possible input 2

A series of steps (abstraction from programming language) 3

Unclear or missing x

1 + An algorithm equals an execution equals a program, on a machine or on a virtual
machine

1

+ Implementation or effectuation in a programming language; program equals algorithm;
executable on a machine or by hand

2

-Implementation into differing languages 3

± Implementation or effectuation etc., is clearly mentioned (see above) 2

± Implementation into differing languages 3

?, +, -, ± Without an argument; unclear or missing x

6 + Computers will become faster 1

+ By optimization of an actual program or by use of a better programming language 2

+ By different architectures for computers / by optimization of a computational method
(not related to a specific programming language); the solving algorithm determines the
complexity, the algorithm is placed above the problem

3

−One specific counter-example is given 3

−The black-box approach emerges / upper bounds and lower bounds as well as problems
are placed above problems; a problem possesses an intrinsic complexity

4

± The arguments for disagreement should emerge clearly; a problem possesses an intrinsic
complexity

4

? (Without further explanation) x

? (The word ‘complexity’ is not understood) x

? (The word ‘complexity’ is understood, but the ‘complexity of a problem’ is not) 3

?, +, −, ± (Without an argument, unclear or missing) x

Key to symbols used above:

+ = Agree, − = Disagree, ± = Agree and disagree, ? = I don’t know; x = No answer level detectable

Educ Inf Technol (2010) 15:87–107 9393

Are their level estimations for high achieving students higher than for low achieving
students?

4 Results of level measurements

Generally, it took the students about 15 min to answer the seven questions. From the
answers the level could be calculated for almost 85% of the students who filled in
the questionnaire; the other students were too often unclear in their argumentation
for the proposition items or gave no argumentation at all.

4.1 Level development

The first hypothesis was that the abstraction level of successive year groups would
increase. Table 4 shows the percentages of thinking level scores for the year groups
1, 2 and 3 at the end of the first trimester.

Indeed, in higher years, the thinking level generally is higher: Spearmann’s Rank
Correlation Coefficient Rho=0.48, significant at 0.01 (two-tailed). Almost every
student has a median answer level of 2 to 3; levels under 1.5 or above 3 are non-
existent.

Our second hypothesis was that the abstraction level of the same group would
increase during the year. Table 5 shows the general thinking level growth of the first
year group and the second year group. The percentages are given of students with a
higher level, the same level or a lower level at the second measuring moment,
compared to the first.

Table 4 Abstraction level of successive year groups

Year group in trimester Student percentage with level score Number of students

Level score 1.5 2 2.5 3

Year group 1 in 1.1 4 50 6 40 67

Year group 2 in 2.1 21 7 72 58

Year group 3 in 3.1 8 2 90 72

Table 3 Measurement design

Year group Trimester 1 Trimester 2 Trimester 3

1 Algorithm course 1 Q.11 Algorithm course 2 Q.7

2 Algorithm course 3 Q.11 Algorithm course 4 Q.7

3 Algorithm course 5 Q.11

The algorithm courses 1 to 5 refer to the courses in Table 1 chronologically

Q.11 and Q.7 refer to the long, first version of the questionnaire and the shorter, second one, Q.7 being
part of Q.11

94 Educ Inf Technol (2010) 15:87–107

Clearly most students reach a higher level or stay at the same level: according to
the Wilcoxon Signed Ranks Test significant in both cases at .05 (two-tailed, with Z=
−2.47 and Z=−2.27 successively).

4.2 Relation between individual level and grade

Our third hypothesis was that the individual grades on the various subject tests
would correlate with the abstraction level. Table 6 shows the correlations between
grade and level for the five subject tests. Only for one subject does a small but
significant (at 0.05) Spearmann’s Rank Correlation appear: for Complexity. For the
other subjects, correlations are non-significant and close to 0 (Design of Algorithms
1, 2, 3 and Program Realization 1).

4.3 Teachers’ estimations of students’ thinking levels

In total 19 teachers were involved in the algorithm courses and 13 of them filled in
the questionnaire (3 student-assistants, 6 instructors and 4 lecturers). For the
lecturers, guessing students’ answers appeared to be a difficult task. In four out of
five cases, the guessed answers for the unsuccessful students were missing or the
level was not detectable. They explained that they really did not know how
unsuccessful students would answer. Moreover they proclaimed that they gave their
own answers for the successful students’ case. The instructors and the student-
assistants did not have these problems.

Table 7 summarizes the guessed-answer levels. When we look at these data from
the perspective of the three hypotheses about the students’ results, few relations
emerge. The guessed-answer abstraction level of the successive year groups does not
increase (compare 1.1 with 2.1 and 3.1 in the second and third column). Also, the

Table 5 Abstraction level growth during the year

Year group
(trimesters)

% with increased
level

% with the same
level

% with decreased
level

Number of
students

1 (1.1 to 1.2) 48 44 8 36

2 (2.1 to 2.3) 34 56 10 48

Table 6 Correlation between thinking level and test grade

Subject test Rank correlation Number of students

Program Realization 1 .14 58

Design of Algorithms 1 .05 63

Design of Algorithms 2 −.05 44

Design of Algorithms 3 .09 72

Complexity .27* 72

* = significant at 0.05 (two-tailed)

Educ Inf Technol (2010) 15:87–107 9595

guessed-answer abstraction level of year groups does not increase during the year
(compare 1.1 with 1.2 and compare 2.1 with 2.3 in the second and third column).
However, on the other hand, the level for the successful-student answer guesses is
clearly higher than for the unsuccessful-student ones (compare the second and third
column). Also, the guessed levels fall in the same range of 2 to 3 as the actual
thinking levels as measured (compare with Table 4).

5 Follow-up study with interviewing a small group

The main goal of this follow-up study was to get qualitative support for the validity
of the results from the large group. We wanted to investigate to what extent the
students really understood the computer science terms they had used in their written
answers. In the first study we did an analysis on a small amount of data from many
students from three Bachelor year groups; in this follow-up we did qualitative (deep)
analysis on a large amount of data from only a few students from the three year
groups. Nine bachelor students (paid volunteers) were found willing to participate;
three were at the end of their first year, two at the end of their second year and four
at the end of their third year. High achieving students as well as moderate ones were
included. These students were asked to complete the questionnaire, while thinking
aloud, and subsequently were interviewed about their answers. The reason for
adding the thinking aloud task on top of the writing task was to give extra
information to the interviewer, for use later on. According to Van Someren et al.
(1994) thinking aloud does not disturb the thinking process for short, not too
complex tasks, so there was no risk that this extra task would influence the thinking
level.

5.1 Tasks and procedure

In Table 8 the various activities are given with an approximate timetable. The mean
time planned for a session was 50 min.

The first study had given insight into what kind of answers generally could be
expected, so specific interview questions could be prepared and adapted to the
students’ responses to investigate the students understanding of the specific terms

Table 7 Teachers’ guessed-answer levels

Trimester Average guessed-answer level

For unsuccessful student For successful student

1.1 2 3

1.2 2 2.75

2.1 2 3

2.3 2 2.75

3.1 2 3

96 Educ Inf Technol (2010) 15:87–107

used. As an example we will give some typical answers with prepared follow-up
questions for item 3.

The wording of item 3 is as follows: The correctness of an algorithm can
generally be proved by testing the implementation on cleverly selected test cases. A
common answer with explanation was: ‘Agree, exhaustive testing gives you a good
idea about correctness.’ In this case the following questions were prepared:

– Exhaustive testing, how is that to be done?
– Which tests do you do?
– How do you draw a conclusion from different test results?
– What do you mean with ‘a correct program’?
– How do you know that, with the implementation, no properties that could

influence the test results were added?
– How do you know that you tested all possibilities?

Other common answers with explanations are: ‘Disagree; exhaustive testing is
often difficult; you should prove it.’ And: ‘Disagree: you should prove it by using
the pre/post condition technique.’ Prepared questions were:

– Why is exhaustive testing often difficult?
– What should be proved according to you?
– Whywould proving it lead to a better result; what do you accomplish by proving it?
– Do you have a guarantee that a correct algorithm’s implementation will function

correctly?

5.2 Analysis of interviews

The sessions were taped and typed out. The abstraction level of the answers was
scored, with use of the written answers (as in the first study). The interview results
were analyzed to determine for every student which computer science terms were
used and whether the used terms were understood. For the level of understanding the
following categories were used:

– The student understands the term well or reasonably well.
– The student does not understand the term.

Table 8 Interview scheme with time planned

Activity Time

Introduction 1 min

Training in thinking aloud 4 min

Part I: Completion of questionnaire (thinking aloud) 20 min

Explanation of follow-up procedure 2 min

Part II: Interview about answers on items 0 to 6 7×3 min

Closing 2 min

Total time 50 min

Educ Inf Technol (2010) 15:87–107 9797

Table 9 Terms used and degree of understanding of the terms

Terms Students: F1 F2 F3 S1 S2 T1 T2 T3 T4

algorithm + + + + + + + + +

implementation + + + + + + + + +

program. language + + + + + + + + +

different programs + + + + + + + + +

correctness + ± + + + + + ± +

proving + ± + + + + + ± +

proving technique + + + + ± ± + + +

probl. complexity ± ± ± − ± + ± − +

algor. complexity ± + ± ± + + + + +

order of magnitude + ± ± ± + + + + +

GCL ± ± ± +

pre/post condition + + +

NP + − ±

specification ± +

abstract + +

quantum computer − −
syntax − +

design +

steps +

definition +

concept +

formal language +

precise +

compiler ±

natural language +

semantics +

φ-schemea −
state +

assembly instruct. +

upper bound ±

greedy ±

dynamic programming ±

lower bound +

P +

Key to symbols used:

−The student does not understand the term;

± Some doubt remains as to whether the student understands the term or not;

+ The student understands the term well or reasonably well;

Empty cell: The student does not use the term;

Fi = first year student; Si = second year student; Ti = third year student
aφ-scheme = an algorithm design method in GCL by use of invariants

98 Educ Inf Technol (2010) 15:87–107

– It is not totally clear whether the student understands the term or not.
– The student does not use the term.

Scoring and analyzing were done per item and in changing, random order to
counteract possible context effects (the influence of an evaluation of part of a
student’s work on the evaluation of another part).

5.3 Students’ understanding of terms used

In Table 9 the terms, as used by the students, are listed with a score for whether the
student does understand the term or not.

The most important result is that, generally, the students appear to understand the
terms they use. In only about 5% of the cases is it clear that their understanding is
insufficient; in about 75% of the cases their understanding of the term is evaluated as
(reasonably) good. In 20% it does not become clear within the given time. Most lack
of clarity about the students’ understanding is found with the term ‘complexity’.

Individual variation While some terms are used by all the students—mainly because
the terms are part of the item propositions—there are many terms that are used by
only some of the students or even by only one. This result points to the variation of
individual cognitive structures and processes. Considerable variation also became
visible, even between students from the same year group, when they were
interviewed about the same topic. For instance, asked for examples of problems
that cannot be solved more efficiently, we observed1:

F1- ‘The computation of the product of two numbers, when it is only allowed to
use adding and subtracting, that cannot be done more efficiently than we know
now.’

F2- ‘Very simple problems do exist, such as just printing something on the screen
that cannot be done more efficiently.’

S1- ‘When you have to go along an unsorted list, then you have to look at all the
elements and you cannot do that more efficiently.’

S2- ‘When asked for a program that gives as a result the answer 3. I would write:
result becomes 3. Faster is not possible.’

T1- ‘The travelling salesman problem it is proved to be an NP-problem.’
T2- ‘Looking up something in a telephone book.—A computer cannot do better

than binary search.’

As a last example of variation we conclude with parts of the interview results of
the two students S1 and T4 who bring up the potential power of quantum computers,
although without knowing much about it (see Table 9). While S1 more or less puts
this aspect aside, T4 includes it in his ‘philosophy’. They are interviewed about their
reactions to item 6 with proposition For every problem it is possible that, in the
future, algorithms are discovered which are more efficient by an order of magnitude
than the algorithms known up to now.

1 Fi = first year student; Si = second year student; Ti = third year student.

Educ Inf Technol (2010) 15:87–107 9999

S1: ‘I disagree, because it cannot always be done more efficiently than
known now.’

Interviewer: ‘Why do you think so?’
S1: ‘For some problems you can show that it cannot be done more

efficiently. When you have to go along an unsorted list, than you have
to look at all the elements and you cannot do that more efficiently.
Therefore it is not possible to find something more efficient for it.
Yes, there are such things like quantum computers, but I do not know
exactly how those things work and I doubt if that really is relevant.’

T4: ‘I agree, because you cannot make assumptions about the future and
especially not about computing devices and computing methods think
of quantum algebra.’

Interviewer: ‘What is quantum algebra?’
T4: ‘Apparently they have invented a nice algebra for quantum computers

and it appears that you can look through a sorted list in less than log
(N) time. In short, you can even look up something in an unsorted list
the number of necessary comparisons between the elements of the list
and the element you are looking for would be even smaller than the
number of elements in the list. Thus you don’t have to treat them all.
Very odd. I have not got the slightest idea of how it works, but it
appears to be possible. Maybe they will come up with something new
again instead of quantum algebra, maybe there is something else God
knows how fast you are able to solve things then. Never say “never”!’

6 Conclusion and discussion

Our main results are the following:

– We succeeded in the construction of an instrument for the measurement of
students’ thinking level (mean answering abstraction level) for the concept of
algorithm; the instrument consists of a series of items and a scoring system.

– The levels detected fell within the range from program level to object level
(level 2 to 3).

– The reliability of the instrument proved to be satisfactory: the scores given by
several raters correlated well enough.

– The validity of the instrument proved to be satisfactory: generally the students
going through the measurement procedure did use the relevant computer science
terms with understanding.

– Within a students’ year group the level generally increased during the year.
– For successive year groups the level was generally higher.
– Level estimations done by teachers fell within the same range as the level

measurements, but level growth was not detected in their estimations; level
estimation was very difficult for lecturers.

– Little relation was found between subject test results and thinking levels.

We will discuss the conclusions in more detail.

100 Educ Inf Technol (2010) 15:87–107

6.1 The usefulness of the instrument

Looking back upon the measurement, we think the measurement output of 85% is
acceptable.

Kramer articulates the need for a set of abstraction tests aimed at checking student
progress, checking teaching techniques and potentially as an aid for student
admission selection (Kramer 2007). In our opinion our instrument is not yet ready
to fulfil this need; however the approach has proved to be fruitful. As a first step,
extension with items about other core concepts and aimed at detection of more levels
is necessary. Of course, interviewing students as in our study should validate new
items. Otherwise one would risk measuring only memorized standard definitions and
standard procedures instead of real understanding. One would risk measuring only
instrumental understanding and not relational understanding as it is called in
mathematics education (Skemp 1976).

In future development a solution should be sought for the ‘jargon’ problem. This
concerns the wording of the propositions. Two of our items contained the term
‘complexity’ (see item 5 and 6). In our analysis it was not always clear whether a
student used the term in the computer-science sense or in the ordinary sense. In these
cases we decided the student argumentation was not scorable. In hindsight, it would
have been better to use an alternative wording without jargon, if possible. A
candidate term would be ‘laboriousness’. By using such a term the analysis of more
student responses might have been possible.

6.2 Students’ thinking levels and level growth

Only levels 2 and 3 were detected: the program level and the object level. This is in
accordance with the results of Haberman et al. (2005). An interesting question for
further research is the following one: Are levels 2 and 3 really the most common
levels or is level 1 (the execution level) prominent for pre-university students and is
level 4 (the problem level) prominent for experts or already for students at Master
level? On the one hand, part of the explanation for not detecting level 4 is in the
characteristics of the items and the method of measurement. For only two of the
seven items was an answer at the fourth level possible, which is of influence for
the possible range of the mean answering level (actually the median) that was
calculated. For the emergence of this highest level as the mean, more items should have
been constructed with the possibility of answering at that level. Another possibility
would have been to use another operationalization, for instance defining the thinking
level of a student as the highest answering level that is reached at least for two items. On
the other hand, the lowest level did not show, although this answering level was possible
for every item. The students involved had followed one semester or more of computer
science education. It would be interesting to look further for the existence of the lower
execution level at the actual start of the computer science program or at the end of pre-
university education. In that case, however, the questionnaire would need some
adaptation: the freshman computer science vocabulary is limited.

Within a student year group, the level increased on average during the year,
although a large number of students also remained at the same thinking level.
Measuring the same groups after a longer period could reveal clearer results. One

Educ Inf Technol (2010) 15:87–107 101101

could argue that filling in the same questionnaire twice could create a learning effect,
explaining the level growth result as an artefact. This would certainly be true when
feedback was given; however this was not the case. On top of that, they filled in the
questionnaire directly after conclusion of their subject test. Because filling in
the questionnaire was supposedly of marginal value for the students compared to the
value of the subject test itself, we are sure of the reality of the results. At all events,
more frequent measurement of the same group of students would require the
construction of parallel items.

Successive year groups showed a higher level. A year group was defined as the
group taking a test belonging to the curriculum year. However, slow students in their
second year sometimes have to take a first year test again. And fast students in their
second year sometimes already take a third year test. More detailed data gathering and
data analysis, taking these circumstances into account, could reveal clearer results.

6.3 Teachers’ level-estimations

The results of the teachers filling in the questionnaires, from the successful and from
the unsuccessful student perspective, were meagre. Neither level growth for
successive year groups, nor level growth within year groups, was visible. Rater
variability could be a disturbing factor. As some teachers took part in several
relevant courses, this could have been diminished by involving only these teachers
and involving them more than once. In any case, level differences could be measured
and within the same range as the actual students’ levels. Guessing the students’
answers appeared to be difficult. The lack of relation between thinking level and
subject test success in the student data partly explains this phenomenon. The task
proved to be harder for the lecturer group than for the instructors and student
assistant group. A typical difference between these two groups in the teaching
process is the distance from the student group and the student work. A lecturer
generally has less interaction with the individual students and their work. This points
to the importance of interaction in the teaching process in order to understand the
students’ thinking processes; teaching should not be a one-way communication. As
Van Hiele pointed out for mathematics education, the danger always exists that a
teacher speaking to a class uses terms that have another meaning for the listeners,
because of their differing levels of understanding. Without interaction the teacher
will be unaware of the misunderstanding (Van Hiele 1986). More research is needed
into this phenomenon within computer science education.

At this point we would also like to take a stand against the use of multiple-choice
examinations without investigations of the meaning of their responses. Our validity
study showed us, although we were not looking for this explicitly, how much
variation exists in students’ thinking processes. Students of the same year group
showed very different ways of thinking about the same concepts. They used different
concepts and different kinds of argumentation leading to the same answers or they
even used comparable argumentation to come to different answers. The multiple-
choice test format does not uncover all these thought processes, unless the items are
tested on students in interview sessions. An alternative is that the examiner asks for
an argumentation for the choice of alternative each item, as happened in our
measurement procedure.

102 Educ Inf Technol (2010) 15:87–107

6.4 Relation between levels and grades

Generally we found little relation between course grade and level of abstraction of
thinking at the time (see Table 6). We will look for an explanation. Perhaps it is
precision more than abstraction that is required for algorithmic thinking as one of
the lecturers remarked? We will take a broader perspective.

Computer science is more than abstraction alone Besides abstraction, solving
computer science problems generally requires analysis (like analyzing a problem
situation), synthesis (like designing or synthesizing a solution) and concretization
(like realizing or concretizing a solution into a specific programming language). This
also applies to the problems students have to handle in algorithmic-oriented courses.
Analysis, synthesis and concretization are as important as abstraction. In the ACQA
project (mentioned in the introduction) these four types of activity—analyzing,
synthesizing, abstracting and concretizing—were used as characteristics of the
academic way of thinking and acting, in computer science as well in other scientific
disciplines, with the following definitions (Meijers et al. 2005):

& Analyzing is the unravelling of phenomena, systems or problems into sub-
phenomena, sub-systems or sub-problems with a certain intention. The greater
the number of elements involved, or the less clear it is what the elements of the
resulting analysis are, the more complex the analysis.

& Synthesizing is the combining of elements into a coherent structure which serves
a certain purpose. The result can be an artefact, but also a theory, interpretation or
model. The greater the number of elements involved, or the more closely-knit the
resulting structure, the more complex the synthesis.

& Abstracting is the bringing to a higher aggregation level of a viewpoint
(statement, model, theory) through which it can be made applicable to
more cases. The higher the aggregation level, the more abstract the
viewpoint.

& Concretizing is the application of a general viewpoint to a case or situation at
hand. The more aspects of a situation that are involved, the more concrete the
viewpoint.2

We suppose that the students’ levels in all these four dimensions are relevant for
their grades and that, together, they would be related to these grades much more than
abstraction alone. So, while Kramers (2007) calls for the annual measurement of
students’ abstraction abilities, we think a broader endeavour would be even more
interesting and more relevant: measurement of students’ level of thinking in the four
dimensions of analyzing, synthesizing, abstracting and concretizing. In the next
section we will give an impression of the results of the ACQA project which could
be used.

2 Note that analyzing is not treated as the opposite of synthesizing, and also that concretizing is considered
to be an activity independent of abstracting.

Educ Inf Technol (2010) 15:87–107 103103

Levels in four dimensions In the ACQA project, scales were constructed to measure
the level of student activities asked for in the various curricula. With these scales,
lecturers were interviewed about their ambitions concerning their courses. In our
opinion these scales, or parts of them, could be used to describe students’ levels of
thinking and to develop an expanded questionnaire inspired by these. We will
conclude with the description of the construction principle for levels along the four
dimensions resulting in ‘ladders’ and add the four ladders for computer science to
the appendix. While the construction principle is generic over all disciplines, the
resulting ladder is discipline-specific: it ranges from the lowest level of academic
acting and thinking to the highest level in a specific discipline. The four ladders are
constructed in relation to central concepts in the discipline. Each ladder is
constructed with recurrent steps, where the result of a previous step becomes the
object of the activity in the subsequent step. For the activity of abstraction, the ladder
looks as in Fig. 1, where A is the example, on the basis of which the scale is
constructed, and B, C, and D are reformulations of the example on a higher level of
abstraction.

In the Appendix we can see that ACQA’s abstraction ladder, although with a
greater number of levels than ours, is closely related to our scale of four levels.
Actually, one of the results of the ACQA project can account for the only small but
significant relation between course grades and thinking levels: at the third year
course about complexity (Table 6). It appeared that, compared to the other
programming courses, the course about complexity treated the greatest number of
abstraction levels within the same course (ACQA Project Group 2007). So, the
dimension of abstraction was more important for this course than for the other
programming courses.

In conclusion, theories of students’ abstraction levels of thinking and the
construction of instruments to measure these levels can give insight into students’
development in the study of computer science. However, in our opinion, abstraction
is not the only dimension that is relevant. In computer science, as in all scientific
disciplines, concretizing, synthesizing, and analyzing are just as important and
should therefore be included.

Acknowledgements This work is based on earlier work:
Perrenet, J.C., J.F. Groote & E. Kaasenbrood (2005). Exploring Students’ Understanding of the

Concept of Algorithm: Levels of Abstraction; In: Proceedings of the 10th annual SIGCSE-conference on
Innovation and technology in computer science education, 64–68; Caparica, Portugal. © ACM 1-59593-
024-8/05/0006. http://acm.org/10.1145/1070000/1067467.

Perrenet, J.C. & E. Kaasenbrood (2006). Levels of Abstraction in Students’ Understanding of the
Concept of Algorithm: the Qualitative Perspective; In: Proceedings of the 11th annual SIGCSE-conference
on Innovation and technology in computer science education, 270–275; Bologna, Italy. © ACM 1-59593-
055-8/06/0006. http://acm.org/10.1145/1150000/1140196.

We thank our colleagues Bert Zwaneveld and Nico van Diepen for their helpful comments at an earlier
version of this article.

abstracting abstracting abstracting
B B C C A D

Fig. 1 Construction principle for the ladder of abstraction

104 Educ Inf Technol (2010) 15:87–107

http://acm.org/10.1145/1070000/1067467
http://acm.org/10.1145/1150000/1140196

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Appendix: Four dimension with ladders3 from the ACQA project

Dimension abstract

Abstracting is the bringing to a higher aggregation level of a viewpoint (statement,
model, theory) whereby it can be made applicable to more cases. The higher the
aggregation level, the more abstract the viewpoint.

1.1 Sorting program running on a given machine at a given time

1.2 Running time of the program

2.1 Sorting program running on a given machine under idealized circumstances

2.2 Pure execution time in clock seconds

3.1 Sorting program, interpreted as a series of elementary calculation steps in a programming language,
running on an idealized machine

3.2 Elementary calculations spent in terms of the programming language

4.1 Sorting program when regarded as a sequence of elementary calculations in a mathematical language,
running on a Turing machine

4.2 Elementary calculation steps spent

5.1 Sorting program, regarded as a sequence of elementary calculations in a mathematical language
(running on a Turing machine) with all possible inputs

5.2 Order of magnitude of the number of required calculation steps as a function of the order of magnitude
of the size of the input (i.e., the order of complexity of the sorting algorithm)

6.1 All possible algorithms that solve sorting problems 6.2 Complexity order of the sorting problem

Dimension concrete

Concretizing is the application of a general viewpoint to a case or situation at hand.
The more aspects of a situation that are involved, the more concrete the viewpoint.

1.1 An optical effect (‘depth of field’) to be realized in a computer game

1.2 Description of the effect in terms of image processing (‘blurring’)

2.1 An image processing effect

2.2 Description of the effect in terms of mathematical operation(s) on pixels

3.1 Mathematical processing on pixels

3.2 Algorithm for the efficient realization of this process (e.g., separable convolution)

4.1 Algorithm for executing the mathematical process

4.2 Implementation of the algorithm in a graphical pipeline model, taking scheduling aspects into account
(memory access bandwidth)

5.1 Algorithm for the execution of a mathematical operation in a pipeline model

3 The generic construction principle is explained in section 6.4.

Educ Inf Technol (2010) 15:87–107 105105

5.2 Coding the pipeline model for a specific pixel shader

Dimension analytic

Analyzing is the unravelling of phenomena, systems or problems into sub-
phenomena, sub-systems or sub-problems with a certain intention. The greater the
number of elements involved, or the less clear it is what the elements of the resulting
analysis are, the more complex the analysis.

1.1 Code + documentation of a Java application

1.2 Extraction of a UML model from the code

2.1 The extracted model (given in UML diagrams)

2.2 Application of metrics onto the model, such as assessing fan-ins and fan-outs of classes in the class
diagram

3.1 Characteristic dimensions of the model according to various metrics

3.2 A qualification of the stability of the application regarding extension, adaptation or usage in a different
(technical) context

Dimension synthetic

Synthesizing is the combining of elements into a coherent structure which serves a
certain purpose. The result can be an artifact, but also a theory, an interpretation, or a
model. The greater the number of elements involved, or the more closely-knit the
resulting structure, the more complex the synthesis.

1.1 A plan for a new software product (instigated by a group of prospective customers)

1.2 Making an inventory of user’s requirements

2.1 User Requirements Document

2.2 Developing a functional model of the intended product

3.1 A functional model for the product (Software Requirements Document)

3.2 Developing a design for the application, taking non-functional requirements into account

4.1 The design for an application (Software Design Document)

4.2 Implementing the application

5.1 The implemented application

5.2 Deploying the application as an operational product in the environment as intended by the customers

References

Aharoni, D. (2000). Cogito, Ergo, Sum! Cognitive processes of students dealing with data structures. In
Proceedings of the thirty-first SIGCSE technical symposium on Computer science education. Austin,
March, pp. 26–30.

Aho, A. V., & Ullman, J. D. (1992). Foundations of computer science. Oxford: Computer Science.
Dale, N., & Walker, H. M. (1996). Abstract data types—specifications, implementations, and applications.

Lexington: D.C. Heath and Company.

106 Educ Inf Technol (2010) 15:87–107

Haberman, B. (2004). High-school students’ attitudes regarding procedural abstraction. Education and
Information Technologies, 9(2), 131–145. doi:10.1023/B:EAIT.0000027926.99053.6f.

Haberman, B., Averbuch, H., & Ginat, D. (2005). Is it really an algorithm?—The need for explicit
discourse. In Proceedings of the tenth SIGCSE Conference on Innovation and technology in
Computer science education. Monte de Caparica, June, pp. 74–78.

Hammond, M., & Rogers, P. (2007). An investigation of children’s conceptualisation of computers and
how they work. Education and Information Technologies, 12, 3–15. doi:10.1007/s10639-006-9022-4.

Hazzan, O. (2002). Reducing abstraction level when learning computability concepts. Proceedings of the
seventh SIGCSE Conference on Innovation and technology in Computer science education, Aarhus,
June, pp. 156–160.

Kaldewaij, A. (1990). Programming: The derivation of algorithms. London: Prentice Hall International.
Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.

doi:10.1145/1232743.1232745.
Meijers, A., van Overveld, C., & Perrenet, J. (2005). Criteria for academic bachelor’s and master’s

curricula. Eindhoven University of Technology (revised second edition). Available online at: http://
w3.tm.tue.nl/en/capaciteitsgroepen/av/platform_academic_education/

Papastergiou, M. (2005). Students’ mental models of the internet and their didactical exploitation in
informatics education. Education and Information Technologies, 10, 341–360. doi:10.1007/s10639-
005-3431-7.

Perrenet, J.C., & Kaasenbrood, E. (2006). Levels of abstraction in students’ understanding of the concept
of algorithm: The qualitative perspective. In Proceedings of the eleventh SIGCSE Conference on
Innovation and technology in Computer science education. Bologna, June, pp. 270–274.

Perrenet, J.C., Groote, J.F., & Kaasenbrood, E.J.S. (2005). Exploring students’ understanding of the
concept of algorithm: Levels of abstraction. In Proceedings of the tenth SIGCSE Conference on
Innovation and technology in Computer science education. Monte de Caparica, June, pp. 64–68.

ACQA Project Group (2007). Onderzoek Academisch Profiel, Opleidingen BSc en MSc Informatica [In
Dutch: academic profile investigation for the bachelor and master program of computer science].
Internal report, Eindhoven University of Technology.

Skemp, R. S. (1976). Instrumental understanding and relational understanding. Mathematics Teaching, 77,
20–26.

Tall, E., & Thomas, T. (eds). (2002). Intelligence, learning and understanding in mathematics; a tribute to
Richard Skemp. Flaxton: Post Pressed.

van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. New York: Academic.
van Someren, W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method. A practical guide

to modelling cognitive processes. London: Academic.

Educ Inf Technol (2010) 15:87–107 107107

http://dx.doi.org/10.1023/B:EAIT.0000027926.99053.6f
http://dx.doi.org/10.1007/s10639-006-9022-4
http://dx.doi.org/10.1145/1232743.1232745
http://w3.tm.tue.nl/en/capaciteitsgroepen/av/platform_academic_education/
http://w3.tm.tue.nl/en/capaciteitsgroepen/av/platform_academic_education/
http://dx.doi.org/10.1007/s10639-005-3431-7
http://dx.doi.org/10.1007/s10639-005-3431-7

	Levels of thinking in computer science: Development in bachelor students’ conceptualization of algorithm
	Abstract
	Introduction
	Abstraction in computer science education
	Measuring levels of thinking about the algorithm concept
	Educational context
	Levels of abstraction
	Construction of the questionnaire
	Construction of the scoring system
	Measurement design
	Teachers’ estimations of students’ thinking levels
	Predictions about level development

	Results of level measurements
	Level development
	Relation between individual level and grade
	Teachers’ estimations of students’ thinking levels

	Follow-up study with interviewing a small group
	Tasks and procedure
	Analysis of interviews
	Students’ understanding of terms used

	Conclusion and discussion
	The usefulness of the instrument
	Students’ thinking levels and level growth
	Teachers’ level-estimations
	Relation between levels and grades

	Appendix: Four dimension with ladders
	Dimension abstract
	Dimension concrete
	Dimension analytic
	Dimension synthetic

	Section130

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

