
Vol.:(0123456789)

https://doi.org/10.1007/s10639-021-10811-w

1 3

Teacher observations of programming affordances for K‑12 
mathematics and technology

Niklas Humble1 

Received: 13 September 2021 / Accepted: 11 November 2021 / 
© The Author(s) 2021

Abstract
With future shortage of professionals with programming and computing skills, 
many countries have made programming part of kindergarten – grade 12 curriculum 
(K-12). A possible approach is to make programming part of an already existing 
subject. Sweden has chosen this approach and in 2017 programming was integrated 
in the subject content of K-12 mathematics and technology. Integrating program-
ming is at the expense of extra workload on teachers. Teachers affected by these 
changes will face new challenges in their teaching and learning activities. The aim 
of the study is to examine K-12 teachers’ use and perceived affordances of program-
ming as a tool for teaching and learning activities in mathematics and technology. 
Data were collected through focus group discussions with three teacher teams in 
mathematics and technology from three K-12 schools in the mid Sweden region. 
21 teachers participated in the study. Thematic analysis with a mixture of deductive 
and inductive coding were used to analyse the data. Theory of affordances was used 
to structure findings in themes of interests and answer the study’s aim and research 
questions. Results show that the teachers use a variety of programming tools in their 
teaching and learning activities. The use of programming in mathematics and tech-
nology can be understood in five main perceived affordances: 1) Play, 2) Discovery, 
3) Adaptation, 4) Control, and 5) Freedom; which relate to both student motivation 
and subject content. Teachers also perceive obstacles and opportunities in using pro-
gramming, that relates to different programming tools’ ability to support teaching 
and learning activities. The findings of this study can be drawn upon by teachers and 
other stakeholders in the integration of programming in K-12 education, and in the 
design of teaching and learning activities with programming.

Keywords  Programming · Teaching and learning · K-12 education · Affordances · 
Teacher perspective

 *	 Niklas Humble 
	 niklas.humble@miun.se

1	 Department of Computer and System Science, Mid Sweden University, Akademigatan 1 – 
Building Q, 831 40 Östersund, Sweden

Published online: 17 November 2021

Education and Information Technologies (2022) 27:4887–4904

http://orcid.org/0000-0002-5791-4765
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-021-10811-w&domain=pdf


1 3

1  Introduction

During recent years, programming has been integrated in K-12 education (kin-
dergarten to grade 12) in many countries (Nouri et al., 2020). This is in line with 
the expected need of professionals with competence in programming, due to an 
increased automation of jobs on the future labour market (Smit et al., 2020). Two 
possible approaches to introduce programming in K-12 education are to estab-
lish programming as its own subject or to integrate programming in an already 
existing curriculum (Nouri et al., 2020). Sweden is one of the countries that has 
chosen the latter approach and as of 2017 the Swedish government has accepted a 
revised school curriculum where programming has been integrated in the subjects 
of mathematics and technology (Heintz et al., 2017).

The path to integrate programming in an already existing school subject ena-
bles an interesting opportunity to use programming as a tool for teaching and 
learning activities in that subject. The use of programming as a tool for learn-
ing has a long history. A well-known example is that of Seymour Papert and the 
programming language Logo. Paperts (1993) idea, which he developed in the 
theory of Constructionism, is that a path to learning is to introduce the learners 
to microworlds, in which they can use and develop their skills and knowledge in 
a natural way. In the same way that you go to France to learn French, you should 
go to Mathland to learn mathematics (Papert, 1980). The programming language 
Logo was developed to support learners in this discovery and to move the role 
of the teacher to a co-learner, where the teacher and student learn and discover 
together (Papert, 1999).

Since Papert and Logo, there has been an expansion on the market of educa-
tional programming tools and languages. Educators and students are no longer 
limited to make their choice of programming tool only between different textual 
programming tools, such as Logo, Python, Java and C#. But they can also choose 
to use a programming tool where the code is already put together in blocks and 
all they need to do is snap them together, the so-called block programming tool 
(Papadakis & Kalogiannakis, 2019). It is also possible to not use a computer at 
all, so-called unplugged programming (Bell & Vahrenhold, 2018). One of the 
more well-known programming tools in the category of block programming 
tools is Scratch (Zhang & Nouri, 2019). Scratch expands on the idea of Logo but 
makes the programming easier with the graphical interface of blocks and, with 
the web-based solution, adds a big library of programming solutions for the users 
to be inspired by (Resnick et al., 2009).

With such a rich variety of different types of programming tools, one could be 
led to believe that the integration of programming in K-12 education would be an 
easy process. However, the integration is at the expense of putting extra workload 
on a group of teachers that often have no prior knowledge and experience in using 
programming as a tool in their subject (Rich et al., 2019; Szabo et al., 2019). As 
seen in previous research, the integration of new technology in educational con-
text does not only provide educational affordances but also issues that need to be 
addressed (Andreas et al., 2010; Bower & Sturman, 2015). The teachers affected 

4888 Education and Information Technologies (2022) 27:4887–4904



1 3

by this change will have to face and solve a set of new challenges in their teaching 
and learning activities. How and to what do you use programming in K-12 math-
ematics and technology?

This study focuses on the teachers’ perspective in integrating programming in an 
already existing school subject; and how they perceive programming as a tool for 
teaching and learning activities. The aim of the study is to examine K-12 teachers’ 
use and perceived affordances of programming as a tool for teaching and learning 
activities in mathematics and technology. The study has been guided by the follow-
ing research questions:

RQ1) How do K-12 teachers use programming as a tool for teaching and learning 
activities in mathematics and technology?
RQ2) Which are K-12 teachers’ perceived affordances of programming as a tool 
for teaching and learning activities in mathematics and technology?

2 � Theoretical framework

The theory, and concept, of affordances was coined by James J. Gibson and has been 
frequently used in research on technology in educational context (Bower & Sturman, 
2015). According to Gibson (1977), affordances are what the environment (encom-
passing substances, objects, surfaces, places, medium, and other animals) provides 
for the animal (or the observer); they are not physical or phenomenal, they are based 
on information from both the environment and the observer. For example, a mailbox 
can be used to mail letters whether a person understand that it can be used for that or 
not; however, the affordance of mailing letters can only exist if there is a person to 
utilise it (Bower & Sturman, 2015).

Donald A. Norman is, besides Gibson, a well cited author in the field of educa-
tional technology (Bower & Sturman, 2015). Norman (1999) describes affordances 
as possible relationships that exists naturally between actors and objects. They 
are worldly properties, although they do not need to be known, desirable or visi-
ble (Norman, 1999). Norman also introduces the concept of perceived affordances 
which emphasis what affordances the user perceives, and which actions therefore are 
performed (Bower & Sturman, 2015).

According to Norman (1999) it is important to distinguish affordances from per-
ceived affordances and conventions. The distinction is important in product design, 
especially with screen-based products, where the designer is generally more inter-
ested in what actions are perceived to be possible by the user. What the designer 
can control in screen-based interfaces are primarily perceived affordances, since the 
affordances of the computer system are already built in. When designing the graphi-
cal layout of a screen-based product, or discussing the use of affordances, it is con-
ventions that the design and discussion rely on. (Norman, 1999).

Conventions, or cultural constraints, is part of four different classes of constraints 
that Norman (1990) introduces in The Psychology of Everyday Things. Constraints 
are important because they constitute the limitations to what actions are possible 
to the actor. Cultural constraints limit the possible actions to which are allowable 

4889Education and Information Technologies (2022) 27:4887–4904



1 3

(based in the actor’s cultural background). Physical constraints limit the possi-
ble actions to which are physically possible (based in the properties of the physi-
cal world). Semantic constraints limit the possible actions to which are meaningful 
(based in the actor’s understanding of the situation). Lastly, logical constraints limit 
the possible actions to which are logically possible (based in the actor’s reasoning). 
(Norman, 1990).

3 � Related work

In a report from 2015, based on a survey with 21 Ministries of Education (20 Euro-
pean countries and Israel), it is reported that 16 countries had integrated program-
ming at a local, regional, or national level; and additional 2 countries had plans 
to integrate programming (Balanskat & Engelhardt, 2015). In the same report, 13 
countries integrate programming in a specific ICT/Technology course, while sev-
eral countries integrate programming in an existing subject, mostly in mathemat-
ics (Balanskat & Engelhardt, 2015). In a literature review from 2019, the authors 
conclude that most initiatives of introducing programming in K-12 education are 
targeted towards middle and high school students, and a wide range of programming 
tools are used (Szabo et al., 2019).

In the UK, programming has been integrated in K-12 education through the 
subject of Computing, which is composed of information technology, digital lit-
eracy, and computer science (Royal Society, 2017). In a report by the Royal Soci-
ety (2017), computing education across UK is labelled “patchy and fragile” and at 
risk of damaging future generations education and nation economy. A reason for 
this being shortage of computing teachers, and that most of those teaching Comput-
ing are unfamiliar with the subject and does not receive adequate support (Royal 
Society, 2017). Some of the recommendations given for addressing these issues are 
ensuring that all pupils receive Computing education and that teachers are supported 
in their teaching and professional development (Royal Society, 2017).

Finland and Sweden are two of the countries that have integrated programming 
in existing subjects (Pörn et al., 2021; Heintz et al., 2017). In a study with 91 grade 
1–6 mathematics teachers in Finland, it is concluded that the teachers have a diverse 
view on programming, where some claim teaching material is lacking or insuffi-
cient, and that this may lead to education inequality (Pörn et al., 2021). The study 
further suggests that there is a need for educational efforts by those who work with 
K-12 teachers (for example teacher education and producers of educational material) 
to support teachers in making the connection between programming and mathemati-
cal content clear (Pörn et al., 2021).

A common distinction between different programming tools for educational use 
is whether they have a text-based (for example Python) or block-based (for exam-
ple Scratch) interface (Lindberg et al., 2019). Block programming tools are usually 
considered to be easier for beginners because they use drag and drop with a mouse 
instead of typing (Lindberg et al., 2019). Studies show that students find block pro-
gramming tools engaging (Adams, 2010), and that they minimize misconception 
about programming concepts compared to the use of textual programming tools 

4890 Education and Information Technologies (2022) 27:4887–4904



1 3

(Mladenović et  al., 2020). While block programming tools may be engaging and 
easier to use, research has shown that the gains students make in block program-
ming tools does not automatically transfer to professional textual programming 
tools (Weintrop & Wilensky, 2019). Textual programming tools could attract stu-
dents with higher expectations of programming since the tools are used in profes-
sional settings (Garneli et al., 2015). Previous research has also investigated the use 
of a structured approach in teaching textual programming in K-12 education, the 
PRIMM approach (predict, run, investigate, modify, make), with positive results for 
both the students and the teachers (Sentance et al., 2019).

Another approach used in K-12 education, especially the lower grades, is 
unplugged programming (Otterborn et al., 2020). Their study show that K-12 teach-
ers use unplugged programming to give students a more concrete experience of pro-
gramming, which can later be drawn upon in the use of other programming tools 
(Otterborn et al., 2020). A study by Bell and Vahrenhold (2018) recommends that 
unplugged programming should not be used in isolation, but rather as a stepping-
stone to help and motivate students for programming.

All three types of programming tools mentioned above (textual, block and 
unplugged) can be combined with tangible objects, so called tangible program-
ming tools, to support learning. Research on an unplugged approach with a tangible 
robotic arm, showed that it could raise K-12 students’ interest and attitude towards 
engineering (Miller et  al., 2018). Inspired by block programming tools, Koushik 
et al. (2019) developed a tangible block-based programming tool (StoryBlocks) to 
support blind and visually impaired students learning basic programming.

According to Hammond (2010) there is a strong case for affordances when talk-
ing about information and communications technology (ICT) for teaching and learn-
ing. However, there must be a greater consensus on the concept if it is to be useful 
and Hammond (2010) suggest a definition of affordances as:

“the perception of a possibility of action (in the broad sense of thought as well 
as physical activity) provided by properties of, in this case, the computer plus 
software. These possibilities are shaped by past experience and context, may 
be conceptually sophisticated and may need to be signposted by peers and 
teachers. […] Affordances provide both opportunities and constraints. Affor-
dances are always relative to something and, in the context of ICT, relative to 
desirable goals or strategies for teaching and learning.” (Hammond, 2010)

A common topic in previous research on affordances in educational context is 
design of technology to support learning, for example technology for computer-sup-
ported collaborated learning (Feyzi Behnagh & Yasrebi, 2020), supporting dyslexic 
readers (Antonenko et al., 2017), and 3-D virtual learning environments (Dalgarno 
& Lee, 2010).

There are also studies that investigate affordances in relation to programming 
education in K-12 settings. Block programming tools are often considered to be 
easier for novice programmers, compared to textual programming tools, because of 
the drag and drop approach to programming (Lindberg et al., 2019). This has been 
highlighted as an important affordance in block programming tools since it reduces 
the challenges of programming syntax (Sengupta et al., 2013). In a literature review, 

4891Education and Information Technologies (2022) 27:4887–4904



1 3

Papavlasopoulou et  al. (2017) examines the affordances of tangible programming 
and reflects on the practice and design of such tools. They conclude that the affor-
dances of tangible programming tools are less ambiguous and therefore the objects 
are perceived as easier to predict and manipulate compared to virtual objects, which 
could potentially make programming more attractive for students at any age (Papav-
lasopoulou et al., 2017).

4 � Method

The study was conducted as focus group discussions to uncover the range of experi-
ences and perceptions by the participating teachers on the studied topic (Hennink, 
2013). To create a non-threating and safe environment for discussion, the focus 
group discussions were conducted with teams of teachers that are custom to meeting 
each other regularly at their school workplace (Hennink, 2013). Further, the par-
ticipating teachers are of similar power-positions within their organisation, since the 
focus groups consists of teachers that teach the same subjects at the same schools 
(Krueger & Casey, 2014).

4.1 � Data collection

The focus group discussions were conducted during the spring and autumn semester 
of 2019 with three teacher teams at three different K-12 schools in the mid Sweden 
region. The teams consisted of teachers that have in common that they teach math-
ematics and/or technology in grade 7–9. The teacher teams were contacted through 
an e-mail invitation to all K-12 schools in two big municipalities in the mid Sweden 
region; and through an invitation post on a course forum for an introductory pro-
gramming course for K-12 teachers in mathematics and technology at the [Mid Swe-
den University]. Three teacher teams, that met the criteria of teaching mathematics 
and/or technology in grade 7–9, answered the invitation and were selected to partici-
pate in the study.

21 teachers participated in the focus group discussions. The age of the teachers 
ranged from 33 to 61, with an average age of 45.8. 12 of the teachers are male and 9 
are female. All of the teachers teach mathematics in grade 7–9, and 8 of them teach 
technology in grade 7–9. All participating teachers are familiar with the concept of 
programming since the introduction of programming in K-12 curriculum, but only 8 
of them consider that they have a competence within programming prior the change 
in the curriculum. All focus group discussions were conducted in a semi-structured 
form and recorded. The average length of the recordings is about 48 min. The fol-
lowing questions were used as a guideline for discussion: How far have you come 
in the integration? How do you integrate programming in mathematics and technol-
ogy? What programming tools do you use? What challenges and opportunities do 
you perceive? However, the participating teachers were encouraged by the modera-
tor (the author) to add their own questions to discussion.

4892 Education and Information Technologies (2022) 27:4887–4904



1 3

Focus group 1 consisted of 9 teachers, where all teach mathematics and 3 teach 
technology. 4 of the teachers consider themselves to have competence in pro-
gramming prior the integration of programming in mathematics and technology. 
(Table 1) The focus group discussion was conducted at the teachers’ workplace 
during one of their teacher team meetings in the spring semester of 2019. The 
focus group discussion was recorded and lasted for about 53 min.

Focus group 2 consisted of 6 teachers, where all teach mathematics, and none 
teach technology. 2 of the teachers consider themselves to have competence in 
programming prior the integration of programming in mathematics and technol-
ogy. (Table 2) The focus group discussion was conducted at the teachers’ work-
place during one of their teacher team meetings in the autumn semester of 2019. 
The focus group discussion was recorded and lasted for about 51 min.

Focus group 3 consisted of 6 teachers, where all teach mathematics and 5 teach 
technology. 2 of the teachers consider themselves to have competence in pro-
gramming prior the integration of programming in mathematics and technology. 
(Table 3) The focus group discussion was conducted at the teachers’ workplace 
during one of their teacher team meetings in the autumn semester of 2019. The 
focus group discussion was recorded and lasted for about 40 min.

Table 1   Participating teachers in focus group 1

Participant F1P1 F1P2 F1P3 F1P4 F1P5 F1P6 F1P7 F1P8 F1P9

Teaching mathematics Yes Yes Yes Yes Yes Yes Yes Yes Yes
Teaching technology Yes Yes Yes
Competence in programming Yes Yes Yes Yes

Table 2   Participating teachers in focus group 2

Participant F2P1 F2P2 F2P3 F2P4 F2P5 F2P6

Teaching mathematics Yes Yes Yes Yes Yes Yes
Teaching technology
Competence in programming Yes Yes

Table 3   Participating teachers in focus group 3

Participant F3P1 F3P2 F3P3 F3P4 F3P5 F3P6

Teaching mathematics Yes Yes Yes Yes Yes Yes
Teaching technology Yes Yes Yes Yes Yes
Competence in programming Yes Yes

4893Education and Information Technologies (2022) 27:4887–4904



1 3

4.2 � Data analysis

Collected data were analysed with thematic analysis to identify themes of interests 
in the material (Braun & Clarke, 2012; Bryman, 2016). A mixture of deductive and 
inductive approach was used in the process of analysis. First, deductive coding was 
used to identify themes of interests in the collected data, highlights were extracted 
and collected in a text document. This was based on the themes’ relevance for the 
study’s theoretical framework (Kiger & Varpio, 2020). The theoretical framework 
of affordances was used to identify and select themes of interests. Since the study’s 
interest is in teacher use and perception, the concepts of perceived affordances and 
constraints (Norman, 1999; 1990) were used as the main concepts for identifying 
and selecting themes of interests in the data.

Second, inductive coding was used to regroup the identified themes of interest in 
the text document in categories based on their similarities in addressing perceived 
affordances and constraints. In this process, quotes in the collected data that repre-
sent the categories were chosen and translated to English. This work was derived 
from the collected data (Kiger & Varpio, 2020) and based in the themes’ similarities. 
The categories were formulated as main perceived affordances that all the included 
themes related to. 5 categories, or main perceived affordances, where formulated in 
this process: 1) Perceived affordance of play, 2) Perceived affordance of discovery, 
3) Perceived affordance of adaptation, 4) Perceived affordance of control, and 5) 
Perceived affordance of freedom. These categories are further used as sub-headings 
in the Results and analysis-section.

5 � Results and analysis

The integration of programming in mathematics and technology is described to be 
in an early stage in all three focus groups. The participants describe that they are 
mostly planning and thinking about how to integrate programming in their subjects. 
In the discussions, many of the teachers discuss and gives examples of how they 
have started to implement programming with their students. Generally, the attitude 
towards programming is positive in all three focus groups. However, many of the 
teachers are critical towards how the integration has been planned by school lead-
ers and other stakeholders. Common critical notions are not having enough time to 
learn and integrate programming, and that the instructions and guidelines for the 
integration are unclear.

5.1 � Perceived affordance of play

In the focus group discussions, teachers gave examples of how they use program-
ming as a tool for teaching and learning activities with their students. It was com-
mon in the discussions that the teachers reference fun and play when talking about 
the use of block programming tools in classroom practice. One such example is 

4894 Education and Information Technologies (2022) 27:4887–4904



1 3

where the block programming tool at Code.org is used to combine mathematical 
content of geometry with programming and Disney Princesses from the movie Frost 
(Quote 1).

F1P4: In mathematics […] in Code.org when we were doing geometry last 
autumn, then there was this episode about the Disney Princesses in Frost, Anna 
and Elsa. And there were a lot of geometry. There were circles, angles, and a lot 
more. So, they [the students] got to run that. Everybody got to be a Disney Prin-
cess. It went really well. Even for the boys in 8th grade.
Quote 1. Teacher describe the experience of using code.org in mathematics.

Unplugged programming was discussed in the focus groups but not used to 
a great extent by the teachers. It was mainly used as an introduction or warm-up 
for other programming tools. However, it is mentioned during discussions that 
unplugged programming is considered a fun and playful way of introducing pro-
gramming to students. If it is used over a short period of time, otherwise there is a 
risk of it being perceived as repetitive and boring (Quote 2).

F2P2: We have tested some [unplugged programming] […] only on easier instruc-
tions. […] I stood in the front and they [the students] would give me instructions 
to go and drink some water. […]
Moderator: Is it something that you would consider using over a longer period of 
time? […]
F2P2: As a warm-up in that case. To do unplugged programming over a longer 
period might be boring.
Quote 2. Teacher describe the experience of using unplugged programming.

5.2 � Perceived affordance of discovery

A popular programming tool among the teachers, especially in the subject of tech-
nology, is Micro:bit. It was mentioned during discussions that the way of combining 
block programming with tangible technology was considered an opportunity, since 
it provided students something to discover, while not being limited by programming 
syntax. According to a teacher, the experience of Micro:bit in classroom practice is 
that the students show a lot of engagement when using it. Which could be explained 
by that the students gets to try their way forward, what makes it sound, write or 
show something (Quote 3).

F2P5: I have to say that I like Micro:bit. It was a lot of engagement in the class.
Moderator: Why do you think that is?
F2P5: I think that it stimulates their joy of discovery in some way. To get some-
thing to make a sound, or to make something write, or to make something show. 
They [the students] tried their way forward.
Quote 3. Teacher describe the experience of using Micro:bit.

4895Education and Information Technologies (2022) 27:4887–4904



1 3

Many teachers expressed a strong resistance towards using textual programming 
tools in teaching and learning activities, because the tools were considered too dif-
ficult. This was mainly because the teachers themselves lacked the knowledge and 
experience in how to use the tools for teaching and learning activities in mathemat-
ics and technology. In the discussions, it is mentioned that other programming tools 
(block programming tools and unplugged programming) limits the discovery of 
programming because you do not have access to the full programming experience. 
Most teachers in the discussions stated that they would like to know more about tex-
tual programming tools to develop their own knowledge in programming (Quote 4).

F2P4: I would like to know it [textual programming].
Moderator: For your own sake or because you would like to use it in your teach-
ing?
F2P4: Both. But also, because I feel that if I’m supposed to use this in a meaning-
ful way in my teaching, I also need to know more myself. […]
F2P3: I agree.
Quote 4. Teachers discuss learning textual programming tools.

5.3 � Perceived affordance of adaptation

During the discussions, it was mentioned that the adaptation in some block program-
ming tools were perceived as an opportunity for teaching and learning activities. It 
was mainly the functionality to adapt the tools to be easier or provide more chal-
lenges to the students that were discussed as opportunities by the teachers. Code.
org was mentioned as an example of how block programming could be adapted to 
provide more challenges for the students that want to advance faster (Quote 5).

F2P6: I would like to add an opportunity [to Code.org].
Moderator: Of course.
F2P6: That it also has the possibility for the students to, if you get this then you 
can advance fast and get more challenges. So, the degree of difficulty can always 
be increased.
Quote 5. Teacher describe the adaptation at Code.org.

Micro:bit was mentioned as yet another example of block programming that can 
be adapted to suit the needs of students that want to advance faster. Although most 
of the teachers, that used Micro:bit, stated that they used the block programming 
interface in Micro:bit, they perceived it as an opportunity that it is possible to shift 
the interface to textual programming with JavaScript. This can be used by the stu-
dents with prior experience in programming, and as a point of comparison and dis-
cussion between student and teacher (Quote 6).

F1P9: […] you click on this, at least in Micro:bit, you can click and then see the 
text.
F1P6: You can shift it. There are like two modes.

4896 Education and Information Technologies (2022) 27:4887–4904



1 3

F1P9: Yes, exactly. And then those that are a bit more skilled can go into that 
mode and see like: okey, it was that kind of statement. And then you can talk 
about that with those students.
Quote 6. Teachers describe the adaptation in Micro:bit.

A recurring obstacle with unplugged programming and textual programming 
tools in the discussions was their inability to be adapted. Unplugged programming is 
perceived to mainly be used for shorter introductions and warm-ups (Quote 2), since 
the lack of a computer limits its use for teaching and learning activities. Textual 
programming tools, on the other hand, are considered by many of the teachers to be 
too difficult for novice programmers. The concern is that the use of textual program-
ming tools will have a negative impact on their students’ motivation (Quote 7); and 
since the teachers do not see a possibility to adapt the tools to suit students with less 
prior experience in programming, they are hesitant towards using them.

F1P6: I keep coming back to this, we have to get everyone on board with this, and 
then block [programming tools] have the opportunity of making that possible. If 
you start with the other [textual programming tools] then you will lose. I’m sure 
that you will lose them [the students] straight away, half the class.
Moderator: If you go with textual [programming tools]?
F1P6: Yes.
F1P2: Absolutely.
F1P3: I also believe that. […] And to write textual [programming] is basically the 
same thing as what you get in a predefined block, but for the students it will feel 
like a huge difference.
Quote 7. Teachers discuss the obstacles and opportunities in using textual and 
block programming tools.

5.4 � Perceived affordance of control

When comparing different programming tools in the discussions, it is mentioned 
that the level of control that the tool provides the teacher can be considered an 
opportunity for the teachers. Code.org is mentioned as an example that gives the 
teacher control over the students’ use and progression, which some of the teachers 
appreciate. The teacher can create a course at Code.org for the students to take, and 
by this plan and monitor the students’ activity (Quote 8). Code.org is compared to 
another tool that uses block programming, Scratch, and Code.org is perceived to be 
more user friendly by some of the teachers.

F2P1: On Code [Code.org] there is this kind of design that allows you to create 
a course for the students. And that feels more user friendly than Scratch. […] It’s 
more strictly planned and you can follow the students’ progression and see how 
they have solved the task.
Quote 8. Teacher compares Code.org and Scratch.

4897Education and Information Technologies (2022) 27:4887–4904



1 3

Textual programming tools are not perceived as programming tools that gives 
the teachers control over the students’ use and progression. The lack of control 
over what the students do and can do in textual programming tools is mentioned 
as an obstacle in the discussions (Quote 7). However, it is also mentioned that the 
lack of control in textual programming tools might be of less importance in the 
future. According to some of the teachers, textual programming tools will be the 
appropriate tools to use in grade 7–9 mathematics and technology in a couple of 
years; since most students will already be familiarised with unplugged program-
ming and block programming tools from lower grades by then. Textual program-
ming, such as Python, will then be the next step of learning progression in grade 
7–9, which have led some of the teachers to the conclusion that they might as 
well start using them now (Quote 9).

F3P2: They are running that [unplugged programming] in the lower grades and 
I think that is really good, when I hear my own children talk about school and 
so forth, and they are also introduced to block programming in 4th grade. So, 
I’m thinking when they come to us, they will hopefully already know this. The 
question then is, how much time should we put on establishing a way to work, 
if in 3 years we might be working with Python. Because they have already 
been through the other steps.
F3P6: And that’s how it is, because I have read quite a lot of research about 
education and what they have tried and thought, and they have kept coming to 
that conclusion again and again. That is, block programming in middle school 
and younger and unplugged programming as an introduction. And then you use 
textual programming when you reach 7th, 8th, 9th grade and up. So that you 
will have a progression all the way.
Quote 9. Teachers discussing programming tools in relation to grade.

5.5 � Perceived affordance of freedom

In the discussions, it is mentioned that an opportunity with using textual pro-
gramming as a tool for teaching and learning activities, especially in mathemat-
ics, is that the tools allow freedom in the coding. According to the teachers, 
freedom in the programming activity is important for reaching a deeper under-
standing and for conducting mathematical calculations. Compared to block pro-
gramming tools, it is mentioned in the discussions that textual programming tools 
allows deeper understanding and easier use of mathematical calculations because 
the tools are freer (Quote 10).

Moderator: So, you believe that it [textual programming tools] is a natural next 
step [after block programming tools]?
F1P7: Yes.
Others: Yes / Absolutely.

4898 Education and Information Technologies (2022) 27:4887–4904



1 3

F1P4: Yes, because you do reach deeper with programming if you are coding 
more freely. Because, if it is block programming, then you are limited by the 
blocks you have. […]
F1P8: Yes, and some code can even be easier when writing with textual [pro-
gramming]. […] When we calculate […] then it can be difficult with Scratch for 
example. […] Then it is much easier to just write [with textual programming] 
what you want.
Quote 10. Teachers discussing the opportunities with textual programming tools 
compared to block programming tools.

When discussing obstacles in using programming as a tool for teaching and learn-
ing activities in mathematics and technology, the limitations in block programming 
tools are mentioned. The concern is that block programming tools could prevent stu-
dents from reaching a deeper understanding of programming (Quote 11). Because 
the code is hidden behind blocks and the students are limited to constructions that 
the tools support, this limits their ability to fully understand what could be done 
with programming. Further, the use of blocks was also mentioned in discussions 
to make block programming more difficult to use as a tool for teaching and learn-
ing activities in mathematics. When doing mathematical calculations, it was con-
sidered easier and faster to program these with textual programming tools than with 
block programming tools such as Scratch (Quote 10). Since block programming 
tools often requires the user to navigate through menus and finding and selecting the 
appropriate blocks to use.

Moderator: It sounds like you all are quite fond of the idea of block program-
ming. Is there something negative with it? […]
F1P2: I think that you lose a deeper understanding of what it’s about.
Quote 11. Teacher about losing deeper understanding with the use of block pro-
gramming tools.

6 � Discussion

An interesting finding in this study is that not all identified perceived affordances of 
using programming as a tool for teaching and learning activities in K-12 mathemat-
ics and technology are directly related to subject content. The perceived affordances 
of adaptation, control and freedom are often described in relation to subject con-
tent in the discussions. While the perceived affordances of play and discovery more 
often are described in relation to fun, motivation, and joy of discovery. This can be 
related to the concept of microworlds by Papert (1993). By engaging in program-
ming with their students and finding it joyful and fun, they are learning and discov-
ering together with them (Papert, 1999). Related to previous research on affordances 
in educational context, where a common topic is design to support different kinds of 
learning (Antonenko et al., 2017; Dalgarno & Lee, 2010; Feyzi Behnagh & Yasrebi, 
2020), the perceived affordances identified through this study also highlights sup-
porting learning. Whether it is supporting subject content (perceived affordances of 

4899Education and Information Technologies (2022) 27:4887–4904



1 3

adaptation, control, and freedom) or supporting fun and motivation (perceived affor-
dances of play and discovery). Which are both important aspects of learning.

Most teachers in the study where familiarised with several types of program-
ming tools, most commonly textual programming tools and block programming 
tools. Their perception of these can be related to previous research. Block program-
ming tools where generally considered to be easier and more engaging, as is also 
described by Mladenović et al. (2020), Lindberg et al. (2019), Sengupta et al. (2013), 
and Adams (2010). However, block programming tools where also described by the 
teachers to be limited and harder to use when engaging in more advanced subject 
content, especially in mathematics. In this regard, many of the teachers considered 
textual programming tools to be the better alternative to support subject content, and 
also support deeper knowledge in programming. This notion is not surprising since 
textual programming tools have an established use in professional development and 
could therefore attract students (and teachers) with higher expectations of program-
ming (Garneli et al., 2015).

Some of the teachers in the study where also experienced with the use of tan-
gible programming, especially in technology, and unplugged programming. Previ-
ous research on tangible programming in K-12 education has shown that it can be 
used to both raise students’ interest and attitudes (Miller et al., 2018) and support 
special learning needs (Koushik et al., 2019). Similarly, the teachers that used tan-
gible programming described that it engaged the students and stimulated their joy 
of discovery by trying their way forward with programming. Regarding unplugged 
programming, previous research describe that it can be used to give students a more 
concrete experience with programming, which can later be drawn upon in other pro-
gramming tools (Otterborn et al., 2020). Similarly, the teachers that used unplugged 
programming used it as a fun warm-up to other programming tools, and not over 
longer periods of time since they believed that it would get boring. Many teach-
ers also considered unplugged programming to be limited, which can be related to 
previous research that recommends that unplugged programming should be used in 
relation to other tools and not in isolation (Bell & Vahrenhold, 2018).

A possible solution to the challenge that some programming tools are potentially 
better at supporting student motivation while others are potentially better at sup-
porting subject content, is to use different types of programming tools in a progres-
sion strategy. This was suggested by some of the teachers in the study, start with 
the easier and more engaging tools (that is, block programming and unplugged pro-
gramming) and as the students’ knowledge develops introduce the more professional 
textual programming tools. A potential problem with this strategy is that previous 
research has suggested that the gains students make in block programming tools 
does not automatically transfer to the use of textual programming tools (Weintrop 
& Wilensky, 2019). However, this is not to say that it cannot be done if the teachers 
support their students in the shift of programming tools and make the connection 
between the tools, and the subject content, clear. A method for introducing textual 
programming, such as the PRIMM approach (Sentance et al., 2019), can support the 
teachers in this work. Some of the teachers spoke highly of programming tools that 
support both block and textual programming, which can be used to further facilitate 
the transition from block programming to textual programming.

4900 Education and Information Technologies (2022) 27:4887–4904



1 3

Although the teachers in this study were generally positive towards program-
ming, there were some critical notions that can be related to previous work. 
Teachers stated that they did not receive adequate support by school leaders and 
other stakeholders in integrating programming. Limited time and unclear instruc-
tions and guidelines were mentioned as obstacles in the integration. In the study 
by Pörn et  al. (2021), Finnish K-12 mathematics teachers express similar con-
cerns and Pörn et al. (2021) suggest that there is a need for further educational 
efforts to support the teachers. It was also mentioned by some of the teachers 
in the focus groups that, although they were positive towards programming as 
a skill for their students, they would have preferred if it was implemented as its 
own subject. K-12 schools in the UK took a different approach to programming 
than what was done in, for example, Sweden and Finland, by integrating pro-
gramming through the subject of Computing. However, the report by the Royal 
Society (2017) highlights similar challenges in UK schools and suggest similar 
efforts in supporting the teachers. This indicates that the crucial point for integra-
tion programming in K-12 education is the support that the teachers receive, and 
not whether it is integrated through its own subject or part of an already existing 
subject.

7 � Conclusion

This study has examined K-12 teachers’ use and perceived affordances of pro-
gramming as a tool for teaching and learning activities in mathematics and tech-
nology. The study has shown that the teachers use programming in a variety of 
ways. Programming is used for calculations, tangible tinkering, and monitoring 
learning progression. But programming is also used for activities that go beyond 
being a tool for teaching and learning activities in mathematics and technology, 
such as facilitating fun, student engagement and motivation. Further, this study 
has shown that the teachers’ use of programming in K-12 mathematics and tech-
nology can be understood in terms of perceived affordances, which highlight what 
they perceive to be meaningful and possible actions for supporting teaching and 
learning. These can be summarised in five main perceived affordances: 1) Play, 
2) Discovery, 3) Adaptation, 4) Control, and 5) Freedom. Although, there is not 
a single programming tool that is perceived to supports all five. The conclusion 
of the study is that the K-12 teachers’ use and perceived affordances of program-
ming as a tool for teaching and learning activities enables them to support both 
student motivation and subject content in mathematics and technology. In that 
sense, the integration of programming in K-12 mathematics and technology is 
productive. Although, as pointed out in this study and previous research, there are 
important challenges with the integration that needs to be addressed. The results 
of this study can be used by teachers and other stakeholders in designing teaching 
and learning activities with programming in K-12 mathematics and technology; 
and in guiding the introduction of programming in K-12 education.

4901Education and Information Technologies (2022) 27:4887–4904



1 3

8 � Limitations and future research

An interesting next step of research would be to investigate K-12 teachers’ use and 
perceived affordances of programming as a tool for teaching and learning activities 
on a larger scale. Since this study was quite limited, both geographically and in the 
number of conducted focus group discussions, it would be interesting to investigate 
additional emerging themes.

Many of the participating teachers in the study have limited experience in pro-
gramming prior the change in the curriculum. An interesting next step of research 
would be to conduct a follow-up study. What has happened since the last visit? Are 
the use and perceived affordances of programming as a tool for teaching and learn-
ing activities in K-12 mathematics and technology still the same? Or have new pro-
gramming tools and themes emerged?

Authors’ contributions  Not applicable.

Funding  Open access funding provided by Mid Sweden University.

Data availability  Not publicly shared to protect study participants. Contact author.

Code availability  Not applicable.

Declarations 

Conflicts of interest  The author declare that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Adams, J. C. (2010, March). Scratching middle schoolers’ creative itch. In Proceedings of the 41st ACM 
technical symposium on Computer science education (pp. 356–360).

Andreas, K., Tsiatsos, T., Terzidou, T., & Pomportsis, A. (2010). Fostering collaborative learning in Sec-
ond Life: Metaphors and affordances. Computers & Education, 55(2), 603–615.

Antonenko, P. D., Dawson, K., & Sahay, S. (2017). A framework for aligning needs, abilities and affor-
dances to inform design and practice of educational technologies. British Journal of Educational 
Technology, 48(4), 916–927.

Balanskat, A. and Engelhardt, K. (2015), Computing Our Future: Computer Programming and coding, 
Priorities, School Curricula and Initiatives across Europe: European Schoolnet (EUN Partnership 
AIBSL), Brussels.

4902 Education and Information Technologies (2022) 27:4887–4904

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Bell, T., & Vahrenhold, J. (2018). CS unplugged—how is it used, and does it work?. In Adventures 
between lower bounds and higher altitudes (pp. 497–521). Springer, Cham.

Bower, M., & Sturman, D. (2015). What are the educational affordances of wearable technologies? Com-
puters & Education, 88, 343–353.

Braun, V., & Clarke, V. (2012). Thematic analysis. In APA Handbook of Research Methods in Psychol-
ogy: Vol. 2. Research Designs, H. Cooper (Editor-in-Chief) Copyright © 2012 by the American 
Psychological Association. All rights reserved.

Bryman, A. (2016). Social research methods. Oxford University Press.
Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3-D virtual environments? Brit-

ish Journal of Educational Technology, 41(1), 10–32.
Feyzi Behnagh, R., & Yasrebi, S. (2020). An examination of constructivist educational technologies: Key 

affordances and conditions. British Journal of Educational Technology, 51(6), 1907–1919.
Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015, March). Computing education in K-12 

schools: A review of the literature. In 2015 IEEE Global Engineering Education Conference (EDU-
CON) (pp. 543–551). IEEE.

Gibson, J. J. (1977). The theory of affordances. Hilldale, USA, 1(2), 67–82.
Hammond, M. (2010). What is an affordance and can it help us understand the use of ICT in education? 

Education and Information Technologies, 15(3), 205–217.
Heintz, F., Mannila, L., Nordén, L. Å., Parnes, P., & Regnell, B. (2017, November). Introducing program-

ming and digital competence in Swedish K-9 education. In International Conference on Informatics 
in Schools: Situation, Evolution, and Perspectives (pp. 117–128). Springer, Cham.

Hennink, M. M. (2013). Focus group discussions. Oxford University Press.
Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical 

teacher, 42(8), 846–854.
Koushik, V., Guinness, D., & Kane, S. K. (2019, May). Storyblocks: A tangible programming game to 

create accessible audio stories. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems (pp. 1–12).

Krueger, R. A., Casey, M. A. (2014). Focus groups: A practical guide for applied research. Sage 
publications.

Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019). Gamifying programming education in K-12: A 
review of programming curricula in seven countries and programming games. British Journal of 
Educational Technology, 50(4), 1979–1995.

Miller, B., Kirn, A., Anderson, M., Major, J. C., Feil-Seifer, D., & Jurkiewicz, M. (2018, October). 
Unplugged robotics to increase K-12 students’ engineering interest and attitudes. In 2018 IEEE 
Frontiers in Education Conference (FIE) (pp. 1–5). IEEE.

Mladenović, M., Mladenović, S., & Žanko, Ž. (2020). Impact of used programming language for K-12 
students’ understanding of the loop concept. International Journal of Technology Enhanced Learn-
ing, 12(1), 79–98.

Norman, D. A. (1999). Affordance, conventions, and design. interactions, 6(3), 38–43.
Norman, D. A. (1990). The Psychology of Everyday Things. Basic Books, New York, 1988. In paperback 

as The Design of Everyday Things. Doubleday, New York, 1990.
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital 

competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 
1–17.

Otterborn, A., Schönborn, K. J., & Hultén, M. (2020). Investigating preschool educators’ implementation 
of computer programming in their teaching practice. Early Childhood Education Journal, 48(3), 
253–262.

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a course for teaching introductory programming 
with Scratch to pre-service kindergarten teachers. International Journal of Technology Enhanced 
Learning, 11(3), 231–246.

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017, April). Reviewing the affordances of tangi-
ble programming languages: Implications for design and practice. In 2017 IEEE Global Engineer-
ing Education Conference (EDUCON) (pp. 1811–1816). IEEE.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. Basic Books.
Papert, S. (1999). What is Logo? Who needs it. Logo philosophy and implementation, 4–16.

4903Education and Information Technologies (2022) 27:4887–4904



1 3

Pörn, R., Hemmi, K., & Kallio-Kujala, P. (2021). Inspiring or confusing–a study of Finnish 1–6 teachers’ 
relation to teaching programming. LUMAT: International Journal on Math, Science and Technology 
Education, 9(1), 366–396.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. 
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

Rich, P. J., Browning, S. F., Perkins, M., Shoop, T., Yoshikawa, E., & Belikov, O. M. (2019). Coding in 
K-8: International trends in teaching elementary/primary computing. TechTrends, 63(3), 311–329.

Royal Society. (2017). After the reboot: Computing education in UK schools. Policy Report.
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational think-

ing with K-12 science education using agent-based computation: A theoretical framework. Educa-
tion and Information Technologies, 18(2), 351–380.

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with PRIMM: A sociocul-
tural perspective. Computer Science Education, 29(2–3), 136–176.

Smit, S., Tacke, T., Lund, S., Manyika, J., & Thiel, L. (2020). The future of work in Europe. McKinsey 
Global Institute.

Szabo, C., Sheard, J., Luxton-Reilly, A., Becker, B. A., & Ott, L. (2019, November). Fifteen years of 
introductory programming in schools: a global overview of K-12 initiatives. In Proceedings of the 
19th Koli Calling International Conference on Computing Education Research (pp. 1–9).

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based envi-
ronments to professional programming languages in high school computer science classrooms. 
Computers & Education, 142, 103646.

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in 
K-9. Computers & Education, 141, 103607.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

4904 Education and Information Technologies (2022) 27:4887–4904


	Teacher observations of programming affordances for K-12 mathematics and technology
	Abstract
	1 Introduction
	2 Theoretical framework
	3 Related work
	4 Method
	4.1 Data collection
	4.2 Data analysis

	5 Results and analysis
	5.1 Perceived affordance of play
	5.2 Perceived affordance of discovery
	5.3 Perceived affordance of adaptation
	5.4 Perceived affordance of control
	5.5 Perceived affordance of freedom

	6 Discussion
	7 Conclusion
	8 Limitations and future research
	References


