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Abstract
Scientists use specific terms to denote concepts, objects, phenomena, etc. The terms
are then connected with each other in sentences that are used in science-specific
language. Representing these connections through term networks can yield valuable
insights into central terms and properties of the interconnections between them. Fur-
thermore, understanding term networks can enhance assessment and diagnostics in
science education. Computational means such as natural language processing and
network analysis provide tools to analyze term networks in a principled way. This
study utilizes natural language processing and network analysis to analyze linguis-
tic properties of terms in the natural science disciplines (biology, chemistry, and
physics). The language samples comprised German and English Wikipedia articles
that are labelled according to the respective discipline. The different languages were
used as contrasting cases. Natural language processing capabilities allowed us to
extract term networks from the Wikipedia articles. The network analysis approach
enabled us to gain insights into linguistic properties of science terms and interconnec-
tions among them. Our findings indicate that in German and EnglishWikipedia terms
such as theory, time, energy, or system emerge as most central in physics. More-
over, the science-term networks display typical scale-free, complex systems behavior.
These findings can enhance assessment of science learner’s language use. The tools
of natural language processing and network analysis more generally can facilitate
information extraction from language corpora in the education fields.
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1 Motivation

Literacy in science has been argued to be related to language use in a fundamental
sense (Norris & Phillips, 2003; vonWeizsäcker, 2004). “Nothing resembling what we
know as western science would be possible without text” (Norris & Phillips, 2003).
Hence, studying linguistic phenomena in disciplines such as the natural sciences can
point to potential affordances and challenges for becoming literate in them. In a for-
mal sense, language is defined as a symbolic alphabet that forms words that form
sentences constrained by the rules of grammar (Nowak et al., 2002). Language can
be characterized by nested structures (words embedded in sentences), by hierarchi-
cal order among the elements (e.g., phrase structures) and other universal features
(de Beule, 2008). Hence, language is complex by design, and potentially exhibits
complex systems behavior.

From infancy, learners are confronted with linguistic stimuli in their respective
communities and learn inductively to generalize the input to produce language (Wal-
lace, 1996). Language learning was consequently characterized and shown to be a
probabilistic process, where linguistic properties of the constituents of the language
eventually direct the learning of it Jurafsky and Martin (2014).

Language is an important medium for representation of knowledge such as facts
and relationships among concepts and terms. Science knowledge can be characterized
by its hierarchical structure and interconnectedness of concepts (Nousiainen &Kopo-
nen, 2012). Science curricula in the United States (National Research Council, 2012)
and Germany (KMK, 2020) stress the existence of core concepts that are central to
science learning. For example, matter, system, energy, and interaction (force) are out-
lined in the German state physics curriculum to be pertinent to most topics in physics
(KMK, 2020). It is unclear, however, to what extent these knowledge structures also
manifest in science-specific language. Given the complexity and probabilistic nature
of language, it would be desirable to develop principled and quantitative approaches
to studying science language (Agrawal et al., 2016).

This study seeks to employ natural language processing and network analysis tech-
niques to analyze science language in a principled (hence, reproducible) way and
extract linguistic properties and interdependencies of science-related terms. To do
so, we analyze widely used and well administered bodies of science language data,
namely German and English Wikipedia articles that were categorized as science-
related. Articles in the orders of 10 k could be collected to extract the structure and
interdependencies of terms in science. Networks were then formed based on the inter-
connections of terms within sentences in these articles and formed the basis for our
analyses.

2 Physics language

Communication and representation within the science disciplines is largely reliant
on language: “Within the philosophy of science, it has typically been assumed that
the fundamental representational resources are linguistic, mathematics being under-
stood as a kind of language” (Giere, 2004). Language allows humans to “transfer
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unlimited non-genetic information among individuals, and it gives rise to cultural
evolution” (Nowak et al., 2002). Besides equations, graphs, and diagrams, language
is one of the primary representational means to convey science ideas (Brookes &
Etkina, 2009). More generally, Vygotsky’s sociocultural theory of cognitive develop-
ment states that learning and development is a socially-mediated process, in which
language forms a primary means to convey cultural beliefs, values, and knowledge
onto others (Vygotsky, 1978; 1963). Language has been labeled “the most pervasive
system of semiotic resources” (Lemke, 1998). Humans use language to make sense
of their science-related experiences and communicate them with others (Halliday &
Matthiessen, 2007; Brookes & Etkina, 2015). Language is the means for humans to
become acquainted with science contents and humans use language to make sense
of their science-related experiences (Brookes & Etkina, 2015). Learning science-
specific language is then essential to becoming a member of a science community
(Lemke, 1998).

Science language, as language in other domains, can be characterized to be an
open dynamical system: it changes over time and it is open to external influences. For
example, new concepts and terms are introduced with the advent of advanced theo-
ries (Touger, 1991). Advancing theories oftentimes is accompanied by a refinement
in concepts and terms used. For example, the Medieval concept of “impetus” that
a once resting object carries when thrown is refined with the advent of Newtonian
physics. Momentum and kinetic energy replaced this concept entirely (Halloun &
Hestenes, 1985). Hence, new terms are used and old terms are abandoned. Moreover,
science language is infused with everyday language. Confusion in understanding sci-
ence contents is related to interferences in language that arises from using science
concepts in different domains and everyday language. “Heat” is technically a process
variable in science, however, it is oftentimes used as a state function in what is called
a caloric metaphor in everyday language (Brookes & Etkina, 2015).

Understanding and meaning making through language is bound by the context
that language appears in. The distributional hypothesis states that one understands a
word by the company (of words) it keeps (Jurafsky & Martin, 2014; Harris, 1954).
And within cognitive semantics, the concept of ancillary knowledge (Redish & Kuo,
2015) states that we understand the meaning of terms by a contextual web of con-
cepts. For example, the concept “current” is understood by it’s definitions as a stream
of charged particles. However, the definition itself is only understood by the con-
cepts “stream”, “charged”, and “particles” (Redish & Kuo, 2015). Certain concepts,
then, are more central compared to other concepts and can be used as prototypes.
Prototype theory posits that a bird such as a “robin” is more representative of the cat-
egory bird, as, say a penguin (Rosch, 1975). Similarly, in the sciences there can be
singled out core concepts that interconnect disciplines and can be hypothesized to be
central in science-term networks where usage of terms is linked together. In German
state curricula, conepts such as matter, system, energy, and interaction play a central
role that underlie contents in physics (KMK, 2020). In the Next Generation Science
Standards, some disciplinary core ideas for physics are force and motion, systems,
energy, and matter (National Research Council, 2012). These concepts also function
as organizing principles for curricula across many countries.
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3 Modeling language

It proved intractable to specify all rules that govern language comprehension and pro-
duction, and hence deterministically model language comprehension and production
(Halevy et al., 2009). Information theory and complex systems theory were found
to provide powerful frameworks to explain some phenomena related to language
use, because of the complexity involved in any language-related phenomena. Human
language is optimized to some degree to convey as much information without con-
fusion, hence, certain words occur more frequently in order to enhance processing
speed (Montemurro & Zanette, 2010). It is suspected that some form of “principle of
least action” explains the complex systems behavior of language, where a vocabulary
for efficient communication needs to be found such that few words are used more
frequently. Most other words occur only rarely (Zanette, 2014).

One robust finding for language as a complex system is the power law behav-
ior of the word occurence, called Zipf’s law (Font-Clos & Corral, 2015; Alstott
et al., 2014). Complex systems such as language typically comprise elementary units,
called tokens, that can be grouped (by means of similarity) into larger entities, called
types Font-Clos and Corral (2015). For language, tokens are the individual instances
(realizations) of words and types the abstract entities, i.e., an element in the vocab-
ulary. The frequency of word occurence can be predicted based on this power law
behavior. Language dynamics also follow principles derived from evolutionary prin-
ciples (Lieberman et al., 2007; Nowak et al., 2002). For example, it has been shown
for English language that the half-life of an irregular verb scales with the frequency
with which it is used (Lieberman et al., 2007). As such, language is characterized by
regularities at small and large scale which is important in modeling language-related
phenomena.

Discipline-specific language can be expected to adhere to similar regularities. As
such, learners in a discipline will be confronted with central terms more often and
get acquainted with words by accumulating and integrating the different meanings
in different contexts (Lemke, 1998). The theory of lexical concepts and cognitive
models advances a usage-based account of meaning making from language, i.e., sit-
uated meaning-construction (Evans, 2006). In this context it is suggested that words
have meaning potentials that are activated as a function of the context they appear
in. Learners are confronted with these different contexts to various degrees (Palmer,
1997). However, it has been argued that learners are confronted with insufficient
information to explicitly learn the meaning and rules of words and concepts, which
has been called the “poverty of stimulus” (Nowak et al., 2002). It is thus quite per-
plexing that speakers who grow up in the same speech community reliably speak
the same language (Nowak et al., 2002). Language learning is in large part inductive
inference (Nowak et al., 2002).

For complex systems such as language, network structures have been found to
provide means to model relevant mechanisms such as information flow (Brockmann,
2021). Networks, in its simplest form, are defined by nodes (also: vertices) and edges,
which connect the nodes. Networks appear in many complex systems, such as web-
sites and social networks. The diameter of the World-Wide Web was measured by
counting the average shortest distance between any two nodes (Albert et al., 1999).
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The WWW appears to be only 18.59 in diameter. This means that any website can
reach any other website in less than 19 steps. The social graph of Facebook was only
4.74 (Ugander et al., 2011). Moreover, real-world networks were found to follow
powerlaws. Similar to Zipf’s law, this means for example that many nodes in a net-
work have few connected edges (i.e., low degree) and a non-negligible fraction of a
few nodes have a large number of connecting edges (Barabási & Albert, 1999). The
few well-connected nodes then dominate and mediate information flow in the net-
works. Behavior that follows powerlaws is also called scaling behavior, because it
did not depend on the magnification with which a system is observed (West, 2017).

In discipline-based educational research network analysis has been used, among
others, to analyze immersion of students in communication networks. Researchers
found that position within these networks is predictive of students’ performance in
physics (Brunn & Brewe, 2013; Grunspan et al., 2014). Besides social networks, also
the knowledge in a discipline can be represented in the form of networks (Koponen
& Pehkonen, 2010). The natural sciences in particular represent disciplines where
terms are logically connected and build upon each other. For example, to understand
the Newtonian force concept in physics, the concepts of displacement, velocity, and
accelerations have to be introduced first. Physics knowledge/curriculum structures
are also hierarchical. This knowledge is stored in textbooks and curricula, and more
and more in internet databases such as Wikipedia.

With regards to analyses of science language, most studies apply in-depth, qualita-
tive research approaches such as content analysis (Brookes & Etkina, 2015; Carlsen,
2007). These approaches are based on human experts’ interpretations of the lan-
guage data. Even though this assures meaningful analysis of the data, it is difficult
to scale this approach to larger amounts of language data in science that will become
increasingly available in the future (Baig et al., 2020). Computational approaches
could facilitate a more data-centered, bottom-up approach to language analysis in
science education research. Natural language processing emerged as a particularly
powerful tool for systematically analyzing and modelling language data. Natural lan-
guage processing encompasses a wide array of tools such as part-of-speech tagging
or named entity recognition (Jurafsky & Martin, 2014). All these tools can enhance
computational analyses of natural language.

4 Research questions

The present study utilizes natural language processing to facilitate network anal-
ysis of science-specific language. We seek to examine linguistic properties and
interdepencies of science-related terms. The goal is to identify central terms in
science-specific language and examine the properties of relations among the terms
through a network analysis approach. The following research questions guide this
study:

RQ1: What are typical network parameter values for term networks in the natural
science disciplines? In what ways are the networks for biology, chemistry,
and physics similar or different?
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RQ2: Which terms in biology, chemistry, and physics emerge as central based on
their network properties when analyzing a large corpus of science-specific
texts, respectively?

RQ3: In what ways do the contexts of the most central terms differ when used in
the other considered disciplines?

5 Method

5.1 Science-relatedWikipedia articles

For science, Wikipedia 1 has been proven to be a reliable source of knowledge (Giles,
2005; Agrawal et al., 2016; Ponzetto & Strube, 2007), almost as accurate as its
commercial competitors (Giles, 2005). Consequently, Wikipedia has been used as a
resource to automatically assist teachers in curriculum design (Agrawal et al., 2016)
and to enhance natural language processing application such as coreference reso-
lution (Ponzetto & Strube, 2007). Given the validity of science-related Wikipedia
articles, we chose this as the text corpus to analyze science-related terms. We were
furthermore interested in contrasting German and English science language to better
understand how generalizable certain patterns are across these two western lan-
guages. Because we were interested in what science terms are central, the articles
had to be cleaned to retrieve only plain text articles. Hence, mathematical formula,
references, and urls were removed from the articles with the help of natural language
processing tools.

Wikipedia articles are annotated in the form that categories are assigned to the
articles. Only articles that were labeled as science-related (i.e., biology, chemistry,
and physics) were retrieved and respectively analyzed. Table 1 displays information
on the retrieved articles for physics. In this study, we will often focus physics lan-
guage. In the online supplement we include the respective information for biology
and chemistry.

As can be seen, GermanWikipedia had overall more physics-related articles, how-
ever, physics articles in English Wikipedia were longer. Interestingly, for biology
and chemistry, English Wikipedia had more artciles that were also longer. Sentence
lengths in English articles were longer compared to German articles’ sentences for all
science disciplines. Given that German language allows for long compound nouns,
we can also see that German articles had an overall greater vocabulary compared
to English Wikipedia articles for all disciplines (note: for biology, the relative size
adjusted by number of articles would be greater as well). The type-token-ratio for
all science disciplines was greater in German compared to English. This means that
German language uses more specific terms per token.

1The entire Wikipedia is publicly available. German Wikipedia: https://dumps.wikimedia.org/dewiki/
20211001/ (access November 2021), English Wikipedia: https://dumps.wikimedia.org/enwiki/20211101/
(access December 2021).
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Table 1 Characterization of the German and English Wikipedia articles for physics

Language # Sents Avg sent length (SD) Type-token-ratio Unique words # Articles

German 119219 18.5 (8.7) 0.08 174969 9679

English 122546 25.5 (13.5) 0.03 105374 6528

5.2 Prelimiary analysis of science-related language inWikipedia articles

To focus analyses on science-related terms, a subdataset was extracted in which only
nouns were kept for the analyses. In physics ontology, typically entities, objects,
and concepts are represented by nouns and processes are represented by verbs
(Brookes & Etkina, 2015; Lemke, 1998). Hence, to map physics language and
physics knowledge-structure, it is sensible (as a first step) to restrict analyses to
nouns. Natural language processing techniques of part-of-speech tagging (as imple-
mented in the spaCy-library for Python allows to perform this analysis in many
different languages (Honnibal & Montani, 2017).

To linguistically characterize the sample articles and the noun dataset in more
detail and analyze potential linguistic differences between German and English
Wikipedia, we examined to what extent powerlaw behavior and Zipf’s law applied
for the articles (Font-Clos & Corral, 2015; Clauset et al., 2009). Powerlaws are of
great interest, because the distributions exhibit heavy tails, meaning that all values are
expected to occur, allowing for scale-free behavior (Alstott et al., 2014; West, 2017).
In the powerlaw ν(t) ∼ t−α , t refers to the word rank, ν(t) to the word count, and
α to the powerlaw exponent, necessarily below zero. If the behavior of the system
follows Zipf’s law, the exponent should be −1 in the abovementioned representation.
A slightly different, though more common, representation considers the number of
words with the same number of counts (ν(t)). Here, the exponent for the Zipf distri-
bution is expected to be around −2. With maximum likelihood methods viable tools
became available to analyze powerlaw behaviors. Researchers developed open source
software packages for evaluating empirical data with regards to powerlaw behavior
(Alstott et al., 2014). In this software package, the empirical data is mapped to a
probability density distribution. A minimum value for the x-axis where the power-
law behavior typically starts is additionally fit to consider a power law for parts of
the distribution.

It is furthermore informative to contrast the powerlaw against other distributions
to infer the data generating process. The data generating process for a normal distri-
bution is adding random variables X together. Hence, many observables in the real
world follow a normal distribution. For a lognormal distribution, positive random
variables are multiplied together. Creating a powerlaw requires more elaborate data
generating processes that are oftentimes not well understood (Alstott et al., 2014).
However, mere draws from a uniform distribution of characters plus a space can
reproduce some of the regularities of language related to the powerlaw behavior (Li,
1992).
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Figure 1 displays the empirical and fitted distributions in a log-log-plot. Except
the lower tails in the right-hand side plots, the distributions resemble linear curves
as expected when powerlaw behavior is present. The exponents are close to 2 for
the German articles (see Table 2). For English articles they have a greater variabil-
ity, however, still close to the exponent of 2 (though not always within the error
bounds, σ ). Table 2 further indicates that, compared with an exponential distribution
(likelihood ratio R, and significance value p), a powerlaw distribution is a statis-
tically significantly better description of the data compared to an exponential law.
This holds true for all science disciplines (see online supplement). This compar-
ison shows that the distributions are heavy-tailed (Alstott et al., 2014). However,
compared with the lognormal distribution (Rlogn, plogn), we cannot confirm a sta-
tistically significant better fit of the powerlaw distribution in all cases. For example,
the negative likelihood ratio for English physics articles indicates a better fit for the
lognormal distribution, which is also a heavy-tailed distribution. The equal fit of log-
normal and powerlaw seems to be common in empirical data analyses (Alstott et al.,
2014). Figure 1 also indicates that the heavy-tail for the noun-only dataset is smaller
compared to the entire dataset.

Another important phenomenon related to language is the positive correlation
between word length and rank (starting with most frequent terms as 1): longer words

Fig. 1 Graphical representation of Zipf’s law. Fitted curves are dashed. Upper left: all articles of
German Wikipedia; upper right: all articles of English Wikipedia; lower left: only nouns in German
Wikipedia; lower right: only nouns in English Wikipedia. Blue lines: probability density function; red
lines: complementary cumulative probability density function
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Table 2 Parameters for power law fits and comparison with other distributions

Language Dataset xmin α σ D R p Rlogn plogn

German All 7 1.90 0.01 0.022 27359 <.001 0 0.67

German Nouns 6 1.97 0.01 0.025 6909 <.001 0 0.6

English All 453 2.20 0.04 0.023 701 <.001 0 0.15

English Nouns 3 1.67 0.01 0.039 11088 <.001 −10 0.0028

tend to be less frequent (Zanette, 2014). We examined this relationship in the present
datasets. For German, Pearson correlations were .23 and .23 for all words and only
nouns, respectively. For English, correlations were .21 and .18 for all words and only
nouns, respectively. Corellations for other disciplines were: .25,.26,.20,.19 (biology)
and .25,.25,.23,.19 (chemistry). Hence, we can confirm that science-related language
also exhibits this general relationship in languages.

6 Parameters of science-term networks

In RQ1 typical parameters of the different science-term networks for the disciplines
will be displayed and compared. First, the different frequencies of nouns and the
overall vocabulary size, i.e., number of nodes in the network, will be displayed.
Alongside the number of nodes we will also display the number of edges between the
nodes. A common property of networks is the density (Grunspan et al., 2014). The
density is calculated as the proportion of realized edges to the number of possible
edges. Another interesting property of the networks is the average shortest paths. We
indicated that for social network graphs this distance is typically rather low, which
refers to the property that with only few steps from any node (here: person) any other
node can be reached. Finally, the transitivity will be calculated. Transitivity is a mea-
sure of cohesion (Grunspan et al., 2014). It measures the number of realized triads in
relation to the number of possible triads in the network.

Another important phenomenon for real-world networks is the scale-free behavior
of node degrees (Brockmann, 2021). As with the linguistic properties analysis above
(Zipf’s law), the frequency of node degrees can be similarly described with a pow-
erlaw. We will use a similar analysis as outlined above. The frequency of nodes for
a certain degree will be plotted as histrograms and probability density distribtuions
with their respective fitted curves. The analysis of the scaling parameter α and the
comparison with exponential and lognormal distribution will reveal properties of the
data distribution.

7 Identification of central terms through network analysis

The more frequent terms in a language are crucial for processes of language acquisi-
tion, language perception, and production. An intuitive way to analyze frequent terms
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in physics-specific languages would be to count occurences of types in the Wikipedia
articles. However, most frequent words in English such as “the” would be uninfor-
mative. Hence, only nouns were considered. The nouns were split by their linguistic
function as being a subject or object, given that this adds information to what extent
a term is used as agent (subject) in a sentence. The Python library spaCy was used to
generate these datasets.

The structure of sentences in English and German is organized in phrases, where
the subject (in a noun phrase) determines the agent in a sentence which is related to
objects via verbs. In our analysis of central terms, we therefore extracted every sub-
ject for the respective Wikipedia articles and linked them to their nouns in a sentence.
To create a network representation, every subject and object was stored as a node
in the network. Extracting subjects and objects was again performed with the spaCy
library in Python. Each link between a subject and object was stored as an edge. A
network representation can then be generated through complex modeling. For exam-
ple, the spring layout utilizes the concept from physics where each edge is a spring
and an equilibrium distribution is to be found through optimization techniques.

Retrieving central nodes, i.e., central terms, can be done in multiple ways. A
simple approach is counting the incoming and outgoing edges. However, PageRank
algorithm has been found to be more performant to detect important nodes. Based
on the observation that a node with fewer links from otherwise more important other
nodes should be ranked higher than a node with many links from irrelevant nodes
(Page et al., 1999). Hence, we will use the Python library networkx’s implementation
of PageRank to identify central terms in science language (RQ2).

In RQ3 we will use the most central terms in the physics articles and analyze how
they are used in the different disciplines. We compared the use of physics terms in the
disciplines biology, chemistry, and politics as contrasting cases. Given that English
and German analyses yield similar results with regard to central terms, we will focus
the English articles in this analysis. For the new disciplines, we also retrieved all arti-
cles from Wikipedia and the respective noun dataset. We then analyzed the links that
each term from the physics terms had with other terms in the respective discipline.
This analysis will eventually yield differences in contexts in which terms are used in
the disciplines.

8 Findings

8.1 Parameters of the science-term networks

In RQ1 we calculated important parameters of the respective science-term networks
(see Table 3). As a baseline comparison, we depict the number of nodes in the
networks. It can be seen that the German networks have more nodes compared to
the English networks. However, the English networks have more edges (i.e., links
between the nodes) compared to the German networks. Hence, the density for the
English networks is more than twice the density for the German physics network. In
all networks, the average shortest path length is little above 3 for English and around
4 for German language. This means that any term can on average be reached from any
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Table 3 Summary of network parameters for the different groups

Group Number nodes Number edges Density Avg. shortest path Transitivity

English, Biology 31593 405123 0.0008 3.21 0.12

English, Chemistry 21942 226068 0.0009 3.27 0.12

English, Physics 24610 368815 0.0012 3.15 0.16

German, Biologie 53868 205572 0.0001 3.98 0.04

German, Chemie 53226 169642 0.0001 4.09 0.03

German, Physik 90868 426893 0.0001 3.83 0.05

other term with only few steps. The transitivity (cohesion) in the English networks is
greater compared to the German networks. This is likely related to the greater density
for the English networks that indicate that everything is closer tied together. Over-
all, the within-group differences in a language seem to be smaller compared to the
within-group differences in a domain.

The node degrees of these real-world term networks for science discriplines show
scale-free behavior, i.e., they follow a powerlaw distribution (see Table 4). The scal-
ing parameter α is around 2 for all networks. TheR and p values indicate that the data
is better approximated by a powerlaw distribution as compared to an exponential dis-
tribution. Hence, the upper tail is populated with nodes that have many connections
(i.e., high degree). The comparison with the lognormal distribution (Rlogn, plogn) is
less conclusive: sometimes the lognormal is a better fit, and sometimes the powerlaw.
However, both distributions (powerlaw and lognormal) have a heavy tail.

The powerlaw behavior can be observed in the distributions as well (see Fig. 2).
The histograms indicate that many nodes have a low degree. Following powerlaw
scaling, few nodes have large degrees. This indicates that few terms are central in the
networks and function as hubs that connect the different regions of the networks.

8.2 Central terms in networks

In RQ2 we evaluate what science terms emerge as central from analyzing filtered
German and English Wikipedia. The resulting network for German physics-related

Table 4 Powerlaw parameters for the science-term networks

Group xmin α σ D R p Rlogn plogn

English/Biology 5 1.70 0.01 0.036 7705 <.001 −58 6.7e−13

English/Chemistry 5 1.78 0.01 0.038 5431 <.001 −38 9.6e−09

English/Physics 5 2.05 0.01 0.019 17291 <.001 −1 0.24

German/Biologie 7 2.10 0.01 0.025 4601 <.001 0 0.62

German/Chemie 6 1.75 0.01 0.040 7660 <.001 −71 8.8e−15

German/Physik 8 2.17 0.01 0.025 3082 <.001 0 0.74

14335



Education and Information Technologies (2023) 28:14325–14346

Fig. 2 Powerlaw behavior of the science-term networks. Histograms on the left represent the frequency
over number of degrees for the nodes in the respective networks. Probability density distributions on the
right represent the probability density (red: cumulated, blue: probability; solid: empirical, dotted: xmin
fixed to 1, dashed: xmin free to vary)

Wikipedia articles can be seen in Fig. 3.2 Only the most connected nodes are repre-
sented to make the network readable. The highlighted edges represent the strongest
links between any two terms. The 20 most central terms are: Energie, Teilchen, Zeit,
Physik, Theorie, Begriff, Arbeiten, Form, Eigenschaften, Teil, Elektronen, Arbeit,
Entwicklung, Masse, System, Bereich, Körper, Materie, Größe, Beispiel3.

The terms refer to sociology/philosophy of science (Theorie [theory], Begriff
[term], Untersuchungen [investigation], Wissenschaftler [scientist]4) and to
discipline-specific concepts (Energie [energy], Teilchen [particle], Zeit [time], Elek-
tronen [electron], Kraft [force]). We will focus on the discipline-specific terms.
Energy emerged as the most central term. It is linked to many other terms. For exam-
ple, energy is linked to Teilchen (particle), Form (form), System (system), Masse
(mass). This is well in line with our expectations. Forms (of energy) are a common
approach to teaching energy. Furthermore, discussing particles (Teilchen) often-
times involves energy. In elementary particle physics, energy is an important concept

2The network graphs for biology and chemistry can be found in the onlines supplement. Please find
English translations of the German term networks in parentheses within the network figures. Translations
are automated through the googletrans-Python library.
3English: energy, particle, time, physics, theory, concept, works, form, attributes, part, electrons, work,
development, mass, system, domain, body, matter, size, example.
4Note that there appears a gender bias in German language, because only the male form of scientist is
represented.
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Fig. 3 Network representation of central physics terms in German Wikipedia

(alongside with momentum) to analyze experiments and detect potential new parti-
cles. Energy is also linked to system and system is then linked to state. These links
express the importance of system identification when dealing with energy. Further-
more, linking it to state suggests that energy is a state function that is independent of
trajectories (Brookes & Etkina, 2015).

Particle then is linked to matter. This link expresses the fact that matter is made up
of particles. As an example of a particle, electron is linked to particle. It is notewor-
thy that electron emerged as a specific particle. The electron is a well-studied object
in physics. For once, eletromagnetism in large parts is concerned with the behavior
of electrons as a negatively-charged elementary particle (fermion). Furthermore, the
study of the electron in the early days of quantum mechanics (e.g., the Dirac equa-
tion) and the observation that electrons as particles exhibit wave-like properties were
crucial to advance physics. Electron is then linked to atoms, because atoms comprise
electrons. Understanding the behavior of electrons in atoms enables the prediction of
properties of molecule formation and chemical reactions.

Temperature is linked to velocity. This attributes to the fact that temperature is
defined by the average velocity of microscopic particles in a system. Space and
time are also linked. This might be attributed to the strong conncetion of these two
concepts in the realm of relativity theory.

For English Wikipedia, the 20 most central physics terms were: theory, time,
energy, system, example, number, field, particles, effect, work, model, process,
physics, result, state, equation, method, experiment, form, part. As is evident from
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this list, many terms in EnglishWikipedia can be mapped to GermanWikipedia. Also
in EnglishWikipedia energy emerges as the most central physics concept (see Fig. 4).
Energy is linked to system. Space and time are also linked in English Wikipedia as
in the German Wikipedia.

However, many other connections also emerge in the English Wikipedia. For
example, equation is highly interlinked with other terms. Laws are commonly linked
to equations as for example Ohm’s law, or Newton’s second law that can be encap-
sulated in an equation. Terms is also linked to equations, which refers to the
mathematical constituents of an equation. Furthermore, field and density are linked
to equation. Field equations are common in gravitational theory, electromagnetism,
and quantum field theory, among others. Density could be linked to equation via the
continuity equation.

Finally, time is well interlinked in the English Wikipedia network. Besides space,
time is also connected to process. This attributes to the fact that processes are inher-
ently time-bound. Time is also linked to equation. This might be attributed to the fact
that dynamical equations in physics model processes in time, i.e., time is a parameter
in these equations. The link between time and concepts could indicate that time itself
is oftentimes introduced as a concept. In general relativity theory, time is exposed
as fundamentally bound to space. Recent quantum theories such as relational quan-
tum mechanics and predecessors treat time as a fundamental ingredient in physics
theories.

Fig. 4 Network representation of central physics concepts in English Wikipedia
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8.3 Contrasting term use by discipline

In RQ3 we now use the 20 most central terms (extracted by PageRank) in physics
English Wikipedia and determine in what contexts they appear in other disci-
plines than physics. The disciplines biology, chemistry, and politics were considered,
because biology, and chemistry are closely related to physics and politics is rather
different in terms of concepts and used language. Table 5 shows the counts of each
physics term in the other domains. It is noteworthy that all physics terms could be
found in all other disciplines. The counts varied. For example, “number” was the most
frequently encountered physics term in politics articles, whereas in biology and in
chemistry “process” was the most frequent physics-derived term. The less used terms
were particles, physics, and physics for politics, biology, and chemistry respectively.

To analyze differences in contexts, the three most connected nouns for each
physics term were determined (see politics/biology/chemistry 1/2/3 in Table 5). The
term “system” in politics is linked to representation, government, and method. This
relates to a political system and its function of representation. In biology, “system”
is connected to cells, species, and systems. The cell is described as a structurally
separable, autonomous, and self-sustaining system. Hence its close relation to sys-
tem. Finally, in chemistry “system” is connected to equilibrium, state, and example.
Equilibrium chemistry is concerned with systems where involved chemical entities
do not change with time. This is typically an important assumption in order to model
processes and phenomena mathematically. Even though the underlying concepts of
system in all inspected disciplines share commonalities (e.g., a whole comprised
of parts), the connected words are entirely different. Similarly, the term theory in
politics refers to government, in biology to evolution, and in chemistry to orbitals
(atoms). This indicates that language learners in different disciplines get acquainted
with different contexts for the same term.

9 Discussion

This study sought to analyze science-specific language in a principled way with the
help of natural language processing and network analysis methods. To retrieve a rep-
resentative body of science-related language, Wikipedia articles were analyzed that
were categorized with the labels biology, chemistry, and physics. The respective Ger-
man and English versions of Wikipedia were analyzed as contrasting cases. German
Wikipedia had more articles overall in physics, however, in English Wikipedia the
articles were longer. In terms of linguistic properties, both languages followed Zipf-
law behavior. This means that few terms appear very often. This is a well documented
phenomenon for languages (Moreno-Sánchez et al., 2016).

In RQ1 we analyzed the general properties of the different science-term networks.
English science-term networks appear to have fewer nodes compared to the Ger-
man networks, however English networks have more connections between the nodes,
hence, they are denser compared to the German networks. This raises the cohesion
of the English science-term networks. The average shortest path between nodes in
English and German science-term networks is approximately 3 and 4, respectively.
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This number is well in line with other networks such as social networks, e.g., Face-
book has an average shortest path of around 5 (Brockmann, 2021). The distribution
of node degrees was shown to follow a powerlaw distribution. This indicates that
the science-term networks follow scale-free behavior and have heavy tails (Barabási
& Albert, 1999). This means that few terms form central hubs in these networks
and dominate the information flow. Arguably, these terms have to be specifically
accounted for in educational efforts and curricula.

In the context of RQ2 we sought to identify these central terms. To do so, the
subjects in each sentence were linked to their respective objects, similar to network
analyses where people are linked to other people or websites are linked in search
engines. The PageRank algorithm was used to extract the most important terms in
German and English Wikipedia. The most central terms in German and English are
almost identical for physics, and also for biology and chemistry, respectively. The
terms were also linked to other terms in similar ways in both languages. For physics
in particular, the analyzed terms referred to philosophy of science/sociology and
physics-specific concepts. The physics-specific terms particulary match expectations
as expressed in physics state curricula. It is interesting to note that no domains in
physics appear as central terms, e.g., thermodynamics, mechanics, optics, etc. We
hypothesize that probably the core concepts (interaction, system, energy, force) are
more important also across domains.

In RQ3 we applied the most common terms which were found in physics to other
domains in order to examine differences in contexts with reference to the disciplines.
We found that all terms were also found in the other domains (politics, biology, chem-
istry). The contexts of the terms (i.e., the words with which they appear in a sentence),
however, varied considerably across the disciplines and matched expected terms in
the respective disciplines. For example, the term “theory” in biology was related to
evolution, whereas in chemistry it was related to orbitals and atoms. This finding
hints to the challenges of meaning-making in different disciplines: The same terms
are used in different contexts with similar, yet non-identical meaning. This creates
the cognitive challenge for learners to always consider the context when encounter-
ing a specific term. In fact, effects of framing and context for reasoning have been
investigated in science education research (Palmer, 1997).

10 Limitations

Our study has several limitations that limit generalizability of our findings. We sub-
mit that oftentimes concepts are captured in a term, however, there are important
concepts that are represented as more than one word. For example, in German, “Freier
Fall” (free fall) refers to free fall of a moving body. Free fall is a specific physics
concept, where assumptions such as no friction are made. These cases are not nec-
essarily captured in our approach. Identification of bigrams or including the entire
noun chunk of the subject can enhance this analysis. We also could not verify if there
are representational biases in the Wikipedia articles. The marked differences between
English and German Wikipedia articles might be attributable to the fact that German
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language more uniquely captures concepts in compound nouns which account for
greater number of nodes and, potentially, less dense networks.

Our analyses focused on linguistic properties of terms in science language. How-
ever, cognition, expertise, and learning in science is in large part visual. Allegedly,
Kekulé discovered the structure of benzene by visual means. Forming a visual rep-
resentation of a science problem is an indicator of science expertise (Singh, 2008).
Hence, the integration of visual and language-related modes of representation would
be crucial to fully understand development of expertise in science. This interconnec-
tion of visual experience and language development in forming physics intuitions and
conceptions is an important future direction for science education research.

Finally, we can only hypothesize that this scale-free behavior and the central terms
will emerge similarly in non-western languages. We restricted our analyses to two
western languages with well-developed and curatedWikipedia databases for the natu-
ral sciences. However, these languages cover only a fraction of the existing languages
and speakers. It would be certainly worthwhile to replicate these analyses in other
languages. All described libraries and computational tools will allow for these kinds
of analyses in other non-western languages.

11 Conclusions

Applications of network analyses have been found useful in many domains such
as education where large unstructured datasets could be systematically analyzed to
identify active learning and knowledge acquisition (Grunspan et al., 2014; Brunn &
Brewe, 2013). With the help of natural language processing, in particular, these net-
work analyses can be extended to systematically analyze large corpora of language
data. Our approach in particular showed how term-based networks can be extracted
from large text corpora. Thus, we provide a template for knowledge-oriented net-
works that are expected to enhance social network analysis (Brass, 2022). Moreover,
social network analysis in conjunction with language networks capture essential
aspects of Vygotsky’s sociocultural theory of cognitive development insofar as they
enable to account for the complex interdependencies of socially-mediated knowl-
edge and language acquisition. The language networks particularly capture aspects of
the interrelated knowledge in science. This can enhance curriculum design (Agrawal
et al., 2016) and diagnostics of beliefs, values, and knowledge (Wulff et al., 2022).

Our analyses also indicate that complex and dynamic systems analyses can play
an important role in the methods portfolio of education researchers (Brass, 2022;
Hilpert & Marchand, 2018). Educational research related to learning and language
can focus on micro, meso, or macro processes, e.g., individual learning, group learn-
ing in classes, or learning as a cultural phenomenon on the societal level. In any
layer, learning appears to be complex and even interrelated to the other layers. E.g.,
learning on the individual level is impacted by societal discourses, but also individual
cognitions such as beliefs and values. It is intricately difficult to extract relationships,
laws, and even theories under these circumstances (Halevy et al., 2009). However,
complex and dynamic systems analyses provide a means to extract underlying rela-
tionships and laws. This has been documented extensively for complex systems in
the natural world. Crickets, birds, cells, or even human crowds were shown to behave
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like complex systems (Strogatz, 2003). Even though their behavior appears to be
chaotic, complexity science revealed that simple laws govern these natural systems
that give rise to complex behaviors (West, 2017; Strogatz, 2003; Brockmann, 2021;
Wolfram, 2002). Our analyses showed that simple laws such as the powerlaw underlie
the science-term networks extracted from Wikipedia. These laws allow educational
researchers to delineate normative distributions and patterns of language use. In some
way or another, experts’ language can be hypothesized to approximate these norma-
tive language distributions of terms, given the exposure of experts to science-related
language over extended periods of time (Ericsson, 1998). Complex systems analy-
ses can facilitate detection of outliers, i.e., novices who potentially lack important
terms in the distributions. Such linguistic modules could be implemented in intelli-
gent tutoring systems (Graesser et al., 2004), that are language-bound in large part
and need any form of evidence to diagnose competences of the tutees.

Abbreviations STEM, science, technology, engineering, and mathematics.
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Moreno-Sánchez, I., Font-Clos, F., & Corral, Á. (2016). Large-scale analysis of zipf’s law in english texts.
PloS one, 11(1), e0147073. ISSN 1932-6203.

National Research Council. (2012). A framework for K-12 science education: practices, crosscutting con-
cepts, and core ideas. Washington: The National Academies Press. https://doi.org/10.17226/13165.

Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy.
Science Education, 87(2), 224–240. ISSN 00368326.

Nousiainen, M., & Koponen, I. T. (2012). Concept maps representing knowledge of physics: connecting
structure and content in the context of electricity and magnetism. Nordic Studies in Science Education,
6(2), 155–172. ISSN 1504-4556.

Nowak, M. A., Komarova, N. L., & Niyogi, P. (2002). Computational and evolutionary aspects of
language. Nature, 417(6889), 611–617.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bring-
ing order to the web. http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-6
6&format=pdf.

Palmer, D. (1997). The effect of context on students’ reasoning about forces. International Journal of
Science Education, 19(6), 681–696.

Ponzetto, S. P., & Strube, M. (2007). Knowledge derived from wikipedia for computing semantic
relatedness. Journal of Artificial Intelligence Research, 30, 181–212.

Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: disciplinary culture and dynamic
epistemology. Science & Education, 24(5-6), 561–590. ISSN 0926-7220.

Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7, 532–547.
Singh, C. (2008). Assessing student expertise in introductory physics with isomorphic problems. i. per-

formance on nonintuitive problem pair from introductory physics. Physical Review Special Topics -
Physics Education Research, 4(1), 191. ISSN 1554-9178.

Strogatz, S. H. (2003). SYNC: the emerging science of spontaneous order: how order emerges from chaos
in the universe, nature, and daily life. New York: Thesia.

Touger, J. S. (1991). When words fail us. The Physics Teacher, 29(90).
Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the facebook social graph.

arXiv.
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