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Abstract—Quality control and assurance plays a 

fundamental role within higher education contexts. One 

means by which quality control can be performed is 

by mapping the course learning outcomes (CLOs) to the 

program learning outcomes (PLO). This paper describes a 

system by which this mapping process can be automated 

and validated. The proposed AI-based system 

automates the mapping process through the use of natural 

language processing. The framework underwent testing 

using two actual datasets from two educational programs, 

and the findings were promising. A testament to the 

potential of the suggested framework was the precision of 

the mapping detected (83.1% and 88.1% for the two 

programs, respectively) compared to the mapping 

performed by the domain experts. A web-based tool was 

created to help teachers and administrators execute 

automatic mappings (https://bidac-uaeu.github.io/mapper.-

html). The data and software used in this research project 

can be found at the following URL: https://github.com/-

nzaki02/CLO-PLO 

 
Index Terms— Academic mapping, natural language 

processing, program learning outcomes, course learning 

outcomes, quality assurance in higher education, Artificial 

Intelligence 

I. INTRODUCTION 

he contemporary educational system is far from ideal. 

Numerous issues arise that need to be continuously 

identified and addressed. However, educational outcomes can 

be enhanced by putting quality assurance into place and 

adhering to accreditation procedures. The process of ensuring 

that academic objectives and standards are followed is known 

as quality assurance (QA). A robust quality assurance system is 

essential in higher education contexts because it makes sure 

students are receiving the highest standard of education. 

Accreditation signifies that a recognized body has certified that 

a given institution offers a program that meets the required 

 
 

standards and criteria. As such, it is imperative that higher 

education institutions (HEIs) are structured in a manner that 

includes quality assurance as a crucial component. In 

contemporary educational contexts, it is standard practice to 

establish a department within an HEI that manages and 

implements quality assurance across all the different areas. This 

can be seen as a prerequisite that must be met when HEIs apply 

for program or institutional accreditation from a national or 

international accrediting body, like the Accreditation Board for 

Engineering and Technology (ABET) [https://www.abet.org/], 

which focuses on accrediting STEM programs, or the Southern 

Association of Colleges and Schools Commission on Colleges 

(SACSCOC), which accredits HEIs. In addition to the academic 

programs offered, a HEI implements quality assurance 

practices within all its departments and the services it offers. 

Given its extensive scope, quality assurance must be established 

on a framework that covers all facets of program delivery, 

research, community services, and all other auxiliary 

departments like human resources, finance, student services, 

and others. In order to achieve quality results for any 

educational program or offered service, quality assurance is 

designed to ensure consistent interactions between units. A 

quality assurance manual is often developed by the HEI. This 

manual typically outlines the procedures that must be followed 

by all units. The implementation of the processes outlined in the 

manual is then overseen by a team of QA officers, who may be 

a part of a larger unit within the university structure or a 

separate QA unit. The approach employed will typically be 

determined by the size of the HEI. The ISO 9000 set of 

standards [https://www.iso.org/iso-9001-quality-management-

.html] outlines organizational quality management criteria that 

can be used, but are not mandated, by HEIs as part of their QA 

strategy. QA procedures ensure that the objectives of a course, 

program, or service unit are clearly specified and that these 

objectives are planned, implemented, and verified before any 

necessary steps are taken to address any weaknesses or advance 

the underlying objectives. To ensure its application at all levels, 
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a hierarchal QA infrastructure is typically adopted by an HEI. 

To guarantee appropriate execution and fair assessment, self-

assessments, internal assessments, and external audits are 

included. A thorough QA procedure is required to verify that 

high-quality programs are being delivered that satisfy the HEI 

goal. This implies implementing QA at various levels, 

including the module level, when defining and evaluating the 

course learning outcome; the program level when determining 

and evaluating the program learning outcomes; and the holistic 

level when delineating suitable program objectives and goals in 

alignment with the HEI goals, mission, and vision. QA is 

fundamental in ensuring that the programs on offer are 

continually updated in line with changing requirements. 

Additionally, adopting QA as a component of such a process 

might result in graduates of a program securing better job 

placements (Immerstein, R., Hasleberg, H., and Eri, G., 2020). 

Although the idea of quality assurance is not new, it can be 

improved with innovative techniques. For instance, the authors 

of (Ujkani, B., Minkovska, D., and Stoyanova, L., 2021) 

employed natural language processing (NLP) to verify that the 

program’s overall syllabus and its associated learning outcomes 

were consistent. In many states and countries, governmental 

authorities frequently have to approve HEIs’ operations before 

they can are permitted to operate. In addition to having a license 

to operate, offering programs may also require accreditation 

from local or external bodies. For instance, in the United Arab 

Emirates (UAE), the Commission for Academic Accreditation 

(CAA), a division of the UAE Ministry of Education (MOE), is 

in charge of the initial licensing of HEI and the accreditation of 

any programs provided. By adhering to its own standards and 

operational guidelines, the CAA ensures that a minimal 

standard of quality is upheld at the HEI and program levels. A 

further example of a group that exclusively accredits programs 

to verify that they meet specific requirements and standards is 

the ABET, an independent certification authority. It is 

frequently necessary to demonstrate that awarded degrees have 

been accredited by either the local authorities or/and by an 

outside entity in order for employers or HEIs to accept them as 

valid. Accreditation aims to establish uniform standards across 

all programs and guarantee that students can exhibit particular 

competency levels after completing such programs. To have 

faith that the program outcomes are founded on global 

standards and best practices based on a peer-reviewed process 

of a specific program’s criteria. Different accrediting standards 

may apply depending on the educational level of a given 

program (bachelor, master, PhD, etc.) and subject matter (arts, 

engineering, science, etc.). Accreditors develop the specific 

applied program criteria as part of a set of guidelines and 

operational manuals. Implementing a worldwide benchmarking 

methodology promotes legitimacy and greater employability 

for the graduate of such programs. 

The program curricula, faculty qualifications, admission 

standards, facilities, research, community participation, 

institutional support, and program-specific outcomes are all 

examined as part of the accreditation process and as required by 

the accrediting standards and criteria. Thus, prospective 

students and faculty interested in joining, as well as companies 

and other HEI looking for graduates of such programs, view 

accredited programs as high-quality programs. It is for this 

reason that HEIs may view accreditation as a key priority 

(Shafi, A., et al., 2019).  

Examining pupils’ academic performance is a common 

method for determining how effective a teacher performs. 

Curriculum mapping is important in developing the curriculum 

and measuring performance against objectives. It is a 

systematic and logical plan for how content will be arranged 

and presented in a course, program, or curriculum. The goal of 

curriculum mapping is to guarantee that all learning objectives 

and outcomes are attained or exceeded by the conclusion of the 

course. 

Furthermore, evaluation is a crucial component of any 

educational program since it sheds light on how well a specific 

program performs in terms of reaching its objectives. 

Evaluations can be qualitative or quantitative, and each form 

offers distinct insights into how successfully a specific teaching 

technique or instructional method achieves its objectives. 

Program learning outcomes (PLOs), also known as student 

learning objectives, are frequently used to assess a program’s 

efficacy (SLOs). The PLOs are the precise outcomes that can 

be witnessed or measured after a learning session. They are 

intended to assist mentors and students in comprehending what 

will be required of them once they have completed a program. 

They also aid in identifying the abilities, information, and 

attitudes required to execute a successful program. Depending 

on the PLOs that have been established, the learner’s 

experience with, and evaluation of, the program will vary. 

Clear objectives and quantifiable PLOs should be used 

when designing educational programs. The CLOs are 

frequently mapped to the PLOs to assess if the PLOs, which 

serve as the program’s overarching results, have been met. The 

achievement of scores of associated CLOs constitutes a 

significant performance indicator of the PLOs. The CLOs are a 

key piece of quantifiable evidence of student learning that 

results from their attendance on a given course. The CLOs of 

particular courses are mapped to quantify the PLOs, general 

education learning outcomes (GELOs), and institutional 

learning outcomes (ILOs) associated with a given program of 

study. These metrics are frequently applied in institution-wide 

reports and program reviews conducted by accreditation 

agencies. 

The process of mapping between PLOs and CLOs is time-

consuming and very subjective. A two-dimensional matrix that 

expresses the correlation between the PLOs and the CLOs is 

frequently employed. However, this mapping task is difficult, 

even for program educators and leaders with a lot of expertise. 

The complexity is derived from the fact that mistakes are likely 

to occur throughout the mapping process, and program directors 

need to be aware of the proper techniques for mapping in a 

manner that is beneficial for the curriculum. In addition, it is 

difficult to identify inconsistencies in the PLOs-CLOs 

mappings (Alshanqiti, A., Tanweer A., Mohamed B., Abdallah, 

N., and Ahmad T., 2020). Since the achievement of all CLOs is 

taken into account as a significant factor for evaluating PLOs, 

GELOs, and ILOs, it is necessary to maintain the consistency 
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and accuracy of these crucial mappings. 

To the best of our knowledge, no previously published work 

has aimed to automate or enhance the precision of the -CLOs to 

PLOs mapping. There are, however, several initiatives 

regarding curricular mapping in general. By using a curriculum 

mapping technique, teachers can better understand what has 

been taught in a class, how it has been taught, and how the PLOs 

and CLOs are evaluated. 

In a previous effort, Plaza et al. (Plaza, C. M. , Draugalis, J. 

R. , Slack, M. K., Skrepnek, G. H., and Sauer, K. A., 2007) 

aimed to illustrate the application of curriculum mapping in 

program evaluation and assessment. The authors of this study 

adopted a descriptive cross-sectional study approach based on 

a document outlining learning outcomes and numerous 

additional student and curriculum data sets that were already 

available. However, the primary objective of this study was to 

compare the graphical curriculum maps created by students and 

professors. Comparing the maps’ relative rankings of each 

domain’s emphasis revealed that the intended/delivered and 

received curricula agreed with one another. 

A method for gathering, analyzing, and presenting 

information on teaching and the evaluation of graduate 

competencies was introduced by Spencer et al. (Spencer, D., 

Riddle, M., and Knewstubb, B., 2012). The suggested 

discursive technique encourages reflection-based practice in 

curriculum design, and the resulting heat maps offer 

diagrammatic representations of current practices and pointers 

as to where the curriculum should be redesigned. 

The effects of curriculum ideas in higher education were 

discussed by Linden et al. (Linden, J., Annala, J., and Coate, K., 

2017). The writers of this study concentrated on the intellectual 

and historical foundations of approaches to curricular theory. In 

higher education environments, competency-based and 

outcome-focused contexts are employed to avoid separating the 

normative and critical roles of curriculum frameworks. They 

recommended that everyone concentrate on the curriculum’s 

educational value and update it in accordance with higher 

education norms. 

A novel approach to curriculum mapping, known as the web-

based learning opportunities, goals, and outcome platform 

(LOOOP) method, was proposed by Treadwell et al. 

(Treadwell, I., Ahlers, O., and Botha, G., 2019). The authors 

conducted a questionnaire survey with a four-point Likert scale 

to ascertain how the instructors perceived the projected benefits 

of curricular mapping. The authors concluded that instructors’ 

comments on LOOOP’s worth and usability were favorable. 

For the objective of creating a four-dimensional typology for 

curricular maps that outlines features relating to their purpose, 

product, process, and display, Watson et al. (Watson, S., 

Steketee, C., Mansfield, K., Moore, M., Dalziel, B., 

Damodaran, A., Walker, B., Duvivier, RJ., and Hu, W., 2020) 

undertook a thorough assessment of the higher education 

literature. They sought to verify the framework by comparing 

the parameters with six curriculum maps from medical schools 

around Australia. Educators who specialize in the health 

profession are anticipated to use the proposed typology to guide 

crucial choices regarding the available curricular map 

possibilities. 

A rule-based strategy was recently created by Abdullah 

Alshanqiti et al. (Alshanqiti, A., Tanweer A., Mohamed B., 

Abdallah, N., and Ahmad T., 2020) that aims to automate the 

evaluations of academic curriculum mapping. The goal of 

this method is to make it possible to examine the CLOs-PLOs 

mappings, identify inconsistencies, and offer recommendations 

for enhancing the curriculum mapping. The authors 

recommended a  rule-based approach for curricular matrix 

assessments. The authors also used curriculum mapping 

specialists to create a web interface tool that leveraged user-

based experiments to automate evaluations of their academic 

programs. However, the CLO to PLO mapping was also 

manually executed. 

Unlike earlier research, our goal here is to use Natural 

language processing (NLP) to automate, simplify, and remove 

subjectivity from the CLOs-PLOs mapping process. To the best 

of our knowledge, this study is the first to use this technique. 

NLP is a subfield of artificial intelligence (AI) that studies how 

computers and human (natural) languages interact. It can be 

viewed as the research and development of tools that enable 

computers to process linguistic information in a manner 

comparable to that of humans. NLP has been around for a long 

time, but due to recent developments in machine learning, big 

data, data science, and deep learning, it has recently gained 

popularity as a subject of study. The field spans a wide range of 

useful applications, including sentiment analyzers, chatbots, 

search engines, online translators, automatic summarizers, and 

recommendation systems. The primary objective of this study is 

to identify the semantic connections between the PLOs and the 

CLOs to enable more precise mappings and, ultimately, 

meaningful evaluation of the educational program. A web 

interface tool is also created to aid administrators and teachers 

in quickly and automatically performing AI-based mapping. 

 

II. METHOD 

A. Data 

The Department of Computer Science and Software 

Engineering at the College of Information Technology, United 

Arab Emirates University  (UAEU), offers a Bachelor 

of Computer Science approved by ABET and is the basis for 

the CLOs and PLOs data utilized in this study. To graduate, 

students must complete 42 courses, which equates to 130 

credits. For the purposes of accreditation, 26 college and 

program-required courses, totaling 121 CLOs, were manually 

mapped to the six PLOs of the programs. Each course 

coordinator independently generated the mapping, which was 

subsequently approved by the department council.  

An additional dataset based on its ABET-accredited 

bachelor’s degree program in Information Security delivered 

by the Department of Information Systems and Security at the 

same college was also taken into account. Thirty-four courses 

from the 130 credits hours program were considered (including 

173 CLOs). The CLOs were manually mapped to six PLOs, and 

the department council validated the mapping. The 
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Supplementary Materials files can be accessed online 

(https://github.com/nzaki02/CLO-PLO ) and contain the course 

list, related CLOs, PLOs for the two programs, and manual 

mappings. 

 

 

B. Proposed framework 

This section presents an overview of the proposed framework 

and the methods employed in this study. Error! Reference 

source not found. presents an overview of the framework’s 

architecture, which consists of an input module, text 

preprocessing module, text representation module, CLO-to-

PLO mapping module, and evaluation module. 

 

 
Figure 1: The proposed framework overview 

 

C. Input module 

The first step involves presenting the PLOs and CLOs in a 

table format that can undergo further text preprocessing. The 

number of the CLO collections (i.e., the number of the courses 

in the program) is represented by 𝑛𝑛 and the number of the CLOs 

in each course, 𝑖𝑖, is 𝑗𝑗𝑖𝑖 where 𝑗𝑗𝑖𝑖 = 1, 2, … ,𝑛𝑛. Consequently, each 

table is (𝑗𝑗𝑖𝑖 × 2) with each row containing the ID and 

corresponding CLO. The final table is developed by combining 

the PLOs with the CLOs; i.e., every PLO is inserted as the first 

row of each CLO table. Consequently, if the quantity of PLOs 

is 𝑚𝑚, we have 𝑛𝑛 × 𝑚𝑚 output tables. This is referred to as the 

“PLO-and-CLOs” tables and is denoted by 𝑇𝑇𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 ×𝑚𝑚 where each 𝑇𝑇𝑖𝑖 is of size �(𝑗𝑗𝑖𝑖 + 1) × 2� .  

 

D. Text preprocessing module 

In the next step, each CLO and PLO were converted into a 

list of their constituent words (word tokenization). All text was 

presented in lowercase because there is no distinction between 

lowercase and uppercase terms. Punctuation and stop words—

commonly used English terms like “a,” “an,” “the,” “in,” “of,” 

etc.—were eliminated. 

The last stage in this module involved stemming, which 

entails eliminating suffixes and reducing a word to a base form 

so that all of its variations may be represented by the same form, 

or lemmatization, which is mapping all of a word’s variations 

to its root word, or lemma (Vajjala, S., Majumder, B., Gupta, 

A., and Surana H., 2020). For instance, “work” replaces words 

like “works”, “worked”, and “working”. These procedures 

were crucial in the current study because they enabled the 

construction of dense word vectors, known as bag of words 

(BOW), which is a collection (list) of words that 

disregard context and order. These also supported the accurate 

counting of the number of words sharing the same base or stem.  

Finally, we constructed the multiset of words (i.e., set of 

words that may have multiple occurrences) for each CLO and 

PLO in every table 𝑇𝑇𝑖𝑖. The set of words corresponding to the 𝑘𝑘th (where 𝑘𝑘 = 1 refers to the PLO in the current table) learning 

outcome in table 𝑇𝑇𝑖𝑖 was represented by 𝑡𝑡𝑖𝑖,𝑘𝑘, where 𝑖𝑖 =

1, 2, … ,𝑛𝑛 × 𝑚𝑚 and 𝑘𝑘 = 1, 2, … , 𝑞𝑞𝑖𝑖 denote the set of words. 

 

E. Text representation module 

The local vocabularies were defined as 𝑉𝑉𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 ×𝑚𝑚. The words obtained from the table 𝑇𝑇𝑖𝑖 (see the input module) 

was represented by vocabulary, 𝑉𝑉𝑖𝑖. We mapped each word, 𝑤𝑤, 

in vocabulary, 𝑉𝑉𝑖𝑖, to a unique integer ID between 1 and |𝑉𝑉𝑖𝑖|, 
where |𝑉𝑉𝑖𝑖| denotes the number of words in 𝑉𝑉𝑖𝑖 . This mapping 

resulted in the generation of a list of unique words �𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑝𝑝𝑖𝑖� where 𝑝𝑝𝑖𝑖 = |𝑉𝑉𝑖𝑖|. Following that, each multiset, 𝑡𝑡𝑖𝑖,𝑘𝑘, was converted into a vector of |𝑉𝑉𝑖𝑖| dimensions, called 

https://github.com/nzaki02/CLO-PLO
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count-vector of words, where the 𝑗𝑗th component was the 

frequency of the word, 𝑤𝑤𝑗𝑗, occurring in 𝑡𝑡𝑖𝑖,𝑘𝑘. Consequently, we 

obtained the matrix (2D array) 𝐵𝐵𝑖𝑖 for each 𝑇𝑇𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 ×𝑚𝑚, where the size of each 𝐵𝐵𝑖𝑖 is  �(𝑗𝑗𝑖𝑖 + 1) × 𝑝𝑝𝑖𝑖�. 
 

F. CLO-to-PLO mapping module 

In this module, the obtained matrices 𝐵𝐵𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 × 𝑚𝑚, 

were used to accurately map each CLO to PLO(s). For this 

purpose, we employed the cosine similarity, which facilitates 

the measurement of the similarity of vectors 𝑏𝑏𝑖𝑖,𝑘𝑘 and 𝑏𝑏𝑖𝑖,1 in 

matrix 𝐵𝐵𝑖𝑖 representing a CLO, 𝑡𝑡𝑖𝑖,𝑘𝑘, 𝑘𝑘 = 2, 3, … , 𝑗𝑗𝑖𝑖 , and a PLO, 𝑡𝑡𝑖𝑖,1 where 𝑖𝑖 = 1, 2, … ,𝑛𝑛 × 𝑚𝑚: 

(cos𝜃𝜃)𝑖𝑖,𝑘𝑘,1 =
𝑏𝑏𝑖𝑖,𝑘𝑘 × 𝑏𝑏𝑖𝑖,1�𝑏𝑏𝑖𝑖,𝑘𝑘�2 × �𝑏𝑏𝑖𝑖,1�
=

∑ �𝑏𝑏𝑖𝑖,𝑘𝑘�𝑙𝑙 𝑝𝑝𝑖𝑖𝑙𝑙=1 × ∑ �𝑏𝑏𝑖𝑖,1�𝑙𝑙 𝑝𝑝𝑖𝑖𝑙𝑙=1�∑ �𝑏𝑏𝑖𝑖,𝑘𝑘�𝑙𝑙2 
𝑝𝑝𝑖𝑖𝑙𝑙=1 × �∑ �𝑏𝑏𝑖𝑖,1�𝑙𝑙2 

𝑝𝑝𝑖𝑖𝑙𝑙=1  

where �𝑏𝑏𝑖𝑖,𝑘𝑘�𝑙𝑙 and �𝑏𝑏𝑖𝑖,1�𝑙𝑙 are the 𝑙𝑙th components of vectors 𝑏𝑏𝑖𝑖,𝑘𝑘 and 𝑏𝑏𝑖𝑖,1, respectively. If the cosine value of the vectors 𝑏𝑏𝑖𝑖,𝑘𝑘 

and 𝑏𝑏𝑖𝑖,1 is close to 1, they are deemed to be similar. The 

possibility of mapping CLO 𝑖𝑖𝑘𝑘, 𝑘𝑘 = 2, 3, … , 𝑗𝑗𝑖𝑖 + 1, in each 

CLOs group 𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 × 𝑚𝑚, into the PLO 𝑗𝑗, 𝑗𝑗 =

1, 2, … ,𝑚𝑚, for which the cosine similarity is computed, is 

delineated by establishing a specific dynamic threshold 𝜙𝜙𝑖𝑖 for 

each group of CLOs and PLO based on the minimum and 

maximum values of the cosine similarities computed: 𝜙𝜙𝑖𝑖 =
ℎ𝑖𝑖 + 𝑠𝑠𝑖𝑖

2
 

where ℎ𝑖𝑖 = max�(cos𝜃𝜃)𝑖𝑖,𝑘𝑘,1 ∶ 𝑘𝑘 = 1, 2, … , 𝑗𝑗𝑖𝑖 + 1� and 𝑠𝑠𝑖𝑖 =

min�(cos𝜃𝜃)𝑖𝑖,𝑘𝑘,1 ∶ 𝑘𝑘 = 1, 2, … , 𝑗𝑗𝑖𝑖 + 1� with 𝑖𝑖 = 1, 2, … ,𝑛𝑛. 

Further, we constructed the 𝑛𝑛 “CLOs-to-PLOs” mapping 

tables. These tables took the form of Boolean matrices (i.e., 

matrices with 0 and 1 entries), 𝑀𝑀𝑖𝑖 = �𝑚𝑚𝑘𝑘𝑝𝑝�𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑛𝑛, of 

sizes (𝑗𝑗𝑖𝑖 × 𝑚𝑚), 𝑗𝑗 = 1, 2, … ,𝑛𝑛. We defined 𝑚𝑚𝑘𝑘𝑙𝑙 = 1, 𝑘𝑘 =

1, 2, … , 𝑗𝑗𝑖𝑖, 𝑙𝑙 = 1, 2, … ,𝑚𝑚, in matrix 𝑀𝑀𝑖𝑖 if the cosine similarity 

of the corresponding vectors �𝑏𝑏𝑖𝑖,𝑘𝑘�𝑙𝑙 and �𝑏𝑏𝑖𝑖,1�𝑙𝑙 was greater than 

or equal to the established threshold 𝜙𝜙,  𝑚𝑚𝑘𝑘𝑙𝑙 = �1      𝑖𝑖𝑖𝑖 (cos𝜃𝜃)𝑖𝑖,𝑘𝑘,1 ≥ 𝜙𝜙
0      𝑖𝑖𝑖𝑖 (cos𝜃𝜃)𝑖𝑖,𝑘𝑘,1 < 𝜙𝜙 

 

In its turn, 𝑚𝑚𝑘𝑘𝑙𝑙 = 1 in matrix 𝑀𝑀𝑖𝑖 entailed that CLO 𝑖𝑖𝑘𝑘 was 

positively mapped to PLO 𝑙𝑙, otherwise, i.e., 𝑚𝑚𝑘𝑘𝑙𝑙 = 0, it was not 

mapped 

 

G. Evaluation module 

The purpose of this module is to analyze the accuracy of the 

CLO-to- PLO mappings produced by the model. This was 

achieved by comparing the model’s CLO-to-PLO mappings to 

those presented by the human expert(s), as described in Section 

2.1. The aggregated Boolean matrices, 𝐻𝐻𝑖𝑖, of sizes (𝑗𝑗𝑖𝑖 ×𝑚𝑚)Were based on the table of expert mappings we constructed, 

where each entry is defined by selecting the maximum of the 

numbers of 0s and 1s in the corresponding entries of the expert 

tables. We then defined the evaluation matrix, 𝑆𝑆𝑖𝑖 = �𝑠𝑠𝑘𝑘𝑝𝑝�𝑖𝑖, for 

each pair of matrices 𝑀𝑀𝑖𝑖 and 𝐻𝐻𝑖𝑖. An entry was recorded as 1 if 

the corresponding entries of 𝑀𝑀𝑖𝑖 and 𝐻𝐻𝑖𝑖 were of the same value, 

and 0 otherwise.  

We defined the model accuracies with respect to each PLO, 

each CLO, each course CLOs, and the total accuracy using the 

evaluation matrices 𝑆𝑆𝑖𝑖 as follows: 

“PLO” accuracy was defined for each PLO, 𝑝𝑝, in the program 

as the ratio of the sum of the sums of the values of the column 𝑝𝑝 in all matrices 𝑆𝑆𝑖𝑖 by the total number of CLOs in the program; 

i.e.,  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃𝑂𝑂𝑝𝑝� =
∑ ∑ �𝑠𝑠𝑘𝑘𝑝𝑝�𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘=1𝑛𝑛𝑖𝑖=1∑ 𝑗𝑗𝑖𝑖𝑛𝑛𝑖𝑖=1   

“CLO” accuracy was defined for each CLO, 𝑘𝑘, in the course, 𝑖𝑖, as the ratio of the sum of values of the row representing the 

CLO by the total number of PLOs in the program, i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝑃𝑃𝑂𝑂𝑘𝑘) =
∑ �𝑠𝑠𝑘𝑘𝑝𝑝�𝑖𝑖𝑚𝑚𝑝𝑝=1𝑚𝑚  

“CLOs-to-PLOs” (course) accuracy was defined for all 

CLOs in the course, 𝑖𝑖, as the division of the sum of all entries 

of matrix 𝑆𝑆𝑖𝑖 by the total number of the entries in the matrix; i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝑠𝑠𝑒𝑒𝑖𝑖) =
∑ ∑ �𝑠𝑠𝑘𝑘𝑝𝑝�𝑖𝑖𝑚𝑚𝑝𝑝=1𝑗𝑗𝑖𝑖𝑘𝑘=1𝑗𝑗𝑖𝑖 × 𝑚𝑚  

The model (program) accuracy was defined for all CLOs and 

PLOs in the program as the ratio of the sum of the sums of the 

entries of all matrices, 𝑆𝑆𝑖𝑖, by the total number of all entries in 

the matrices 𝑆𝑆𝑖𝑖; i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝐴𝐴𝑐𝑐𝑝𝑝𝐴𝐴𝐴𝐴𝑚𝑚) =
∑ ∑ ∑ �𝑠𝑠𝑘𝑘𝑝𝑝�𝑖𝑖𝑚𝑚𝑝𝑝=1𝑗𝑗𝑖𝑖𝑘𝑘=1𝑛𝑛𝑖𝑖=1 𝑛𝑛 × 𝑗𝑗𝑖𝑖 × 𝑚𝑚  

To illustrate the process, assume we have the following lists 

of four PLOs and four CLOs along with the corresponding 

expert(s) mapping presented in Error! Reference source not 

found.. A value of “1” denotes positive mapping; otherwise, a 

value of “0” is recorded.  

 

 
TABLE 1 

HYPOTHETICAL PLOS AND CLOS MANUAL MAPPINGS 
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CLO1 Explain AI 0 0 0 0 

CLO2 Apply AI methods 0 1 0 0 

CLO3 
Analyze a simple AI 

system 1 0 0 0 

CLO4 Evaluate AI system 0 1 0 0 
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The stop words are removed, lowercased, and then tokenized 

during the preprocessing stage. Tokenization in this context 

refers to the division of a phrase or sentence (PLO, CLO) into 

tokens. The retrieved tokens were extracted and mapped to each 

CLO based on the data displayed in Error! Reference source 

not found., as shown in Error! Reference source not found..
 

 

TABLE 2 

TOKENS EXTRACTED FROM THE HYPOTHETICAL PLOS AND CLOS 

 
      PLO1 PLO2 PLO3 PLO4 
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CLO1 Explain AI 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

CLO2 Apply AI methods 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

CLO3 Analyze a simple AI 

system 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 

CLO4 Evaluate AI system 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

The cosine similarity is then used to calculate how similar 

the vectors are, after which the appropriate threshold values are 

applied. In this instance, the threshold values were computed 

as 0.0833, 0.1854, 0., and 0. PLO1 and CLO3 were both 

considered to represent favorable maps when the similarity 

score was at least 0.0833 for PLO1 (PLO2 and CLO2). No 

mapping was performed for PLO3 and PLO4. 

  displays the overall mappings that were produced. 

 
TABLE 3 

COMPARISON BETWEEN THE MANUAL AND CALCULATED MAPPINGS 

 
  PLO1 PLO2 PLO3 PLO4  

→ 

→ 

→ 

→ 

  PLO1 PLO2 PLO3 PLO4  Accuracy 

CLO1 0 0 0 0 CLO1 0 0 0 0 100 

CLO2 0 0.3333 0 0 CLO2 0 1 0 0 100 

CLO3 0.3333 0 0 0 CLO3 1 0 0 0 100 

CLO4 0 0.4082 0 0 CLO4 0 1 0 0 100 

 

A comparison of the obtained mapping to the original 

mapping revealed an accuracy of 100%. 

 

III. EXPERIMENTAL WORK AND RESULTS 

 

The 121 CLOs and all 6 PLOs were stored in a single file 

representing the input file. The input was next transformed into 

distinct DataFrame tables using pandas, a Python data analysis 

tool (pandas.DataFrame — pandas 1.4.3 documentation). Each 

table contained all 121 CLOs and a single PLO. Word 

tokenization was performed after the PLO-CLOs tables were 

built using the “CountVectorizer,” a quick and effective method 

of counting features in a dataset. The Scikit-learn Python 

library’s (scikit-learn Machine Learning in Python) 

CountVectorizer was imported. This counts how frequently 

each feature appears in the supplied data. The vectorization 

process was performed by breaking the input into distinct words 

and subsequently counting the word frequency. Additionally, 

preprocessing operations, like lowercasing, removing stop 

words, and lemmatization, were carried out. 

After performing the text representation phase, we 

determined how similar the vectors were by importing “cosine 

similarity” modules from the Scikit-learn Python library. A 

6121 matrix, consisting of 6 PLOs by 121 CLOs, was created 

as a result of this process. Each member of the matrix 

represented the cosine similarity score between a CLO and the 

related PLO. Dynamic thresholds were calculated for each PLO 

to produce the final mapping (for example, 0.1961, 0.221, 

0.3162, 0.1667, 0.2236, and 0.2697, respectively). Each cosine 

similarity greater than or equal to the appropriate threshold 

value was denoted by “1” (positive mapping). Cosine similarity 

below the threshold was denoted as “0” (no mapping). Error! 

Reference source not found. presents an overview of the 

mappings based on the data from three courses—CSBP421 

Smart Computer Graphics, CSBP320 Data Mining, and 

CSBP499 Special Topics in Computer Science.  

The data presented in Error! Reference source not found. 

reveals that all the mappings between the CSBP421 and the 

corresponding PLOs were detected correctly, apart from the 

C3-P2, and C4-P2 mappings. The overall accuracy of the course 

mapping, in this case, was 91.67%. Similarly, the accuracy of 

the mapping of CSBP320 to the corresponding PLO was 90%, 

and 88.89% for CSBP499. 

Additionally, we evaluated the proposed framework’s 

performance in 

 

 with several well-known, commonly used NLP models, 

including Bidirectional Encoder Representations from 

Transformers (BERT) (Devlin, J., Chang, M., Lee, K., and 
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Toutanova, K., 2018), SpaCy (Industrial-Strength Natural 

Language Processing, n.d.), Levenshtein distance (Levenshtein, 

V.I., 1966), and Jaro-Winkler distance (Winkler, W. E., 1990).  

 

 
* “CS” represents the “Cosine Similarity” score, the “OM” represents the original mapping (1 positive mapping) and the “CM” represents the calculated mapping. The idle case is 

when the “CMs” are similar to the “OMs” 

 

Fig. 2.  Demonstration of detected mappings based on three courses namely CSBP421 Smart Computer Graphics, CSBP320 Data Mining, and CSBP499 Special 

Topics in Computer Science. 

 

 

The outcomes revealed that the proposed framework 

outperformed these models. The overall accuracy obtained 

was 83.06% compared to the results obtained using BERT, 

SpaCy, Levenshtein distance, and Jaro-Winkler distance, which 

were 45.9%, 52.8, 33.8, and 55.4%, respectively. 

 
TABLE 4 

PERFORMANCE COMPARISONS OF THE PROPOSED FRAMEWORK IN DETECTING CORRECT MAPPINGS WITH OTHER STATE-OF-THE-ART NLP MODELS 

# 

Course 

Proposed 

Framework 

SpaCy 

(Industrial-Strength 

Natural Language 

Processing, n.d.) 

BERT 

(Devlin, J., Chang, M., 

Lee, K., and Toutanova, 

K., 2018) 

Levenshtein 

(Levenshtein, 

V.I., 1966) 

Jaro–Winkler 

(Winkler, W. 

E., 1990) 

1 CSBP301 0.875 0.5417 0.5833 0.125 0.7917 

2 CSBP320 0.9 0.3667 0.5333 0.3667 0.3667 

3 CSBP400 0.8667 0.3 0.5 0.1667 0.6667 

4 CSBP411 0.75 0.25 0.4167 0.375 0.2917 

5 CSBP412 0.875 0.7917 0.375 0.4167 0.5417 

6 CSBP421 0.9167 0.4583 0.625 0.2917 0.6667 

7 CSBP431 0.8333 0.4167 0.7917 0.3333 0.4167 

8 CSBP461 0.7 0.6333 0.6333 0.4333 0.4667 

9 CSBP476 0.7917 0.375 0.4583 0.1667 0.7083 

10 CSBP483 0.7083 0.5 0.5 0.4583 0.4583 

11 CSBP487 0.9583 0.4167 0.625 0.375 0.3333 

12 CSBP491 0.8667 0.4333 0.3 0.3333 0.5333 

13 CSBP499 0.8889 0.5556 0.3333 0.5 0.4444 

14 CSBP119 0.875 0.5 0.4583 0.3333 0.5833 

15 CSBP121 0.8 0.4667 0.4667 0.3667 0.5667 

16 CSBP219 0.8 0.4667 0.7333 0.2333 0.8 

17 CSBP221 0.8333 0.4667 0.6333 0.2667 0.7 

18 CSBP315 0.9167 0.2778 0.3333 0.3611 0.4722 

19 CSBP316 0.7333 0.4667 0.2333 0.3333 0.5333 

20 CSBP319 0.8333 0.4667 0.6667 0.3 0.8333 

21 SWEB300 0.8889 0.3333 0.3056 0.25 0.8611 

22 SWEB450 0.75 0.5 0.75 0.3333 0.4167 

23 SWEB451 0.9 0.5667 0.7667 0.3 0.7 

24 CSBP340 0.8333 0.3889 0.4444 0.3056 0.5278 

25 ITBP370 0.7778 0.3056 0.75 0.5 0.3611 

26 CSBP492 0.8333 0.3333 0.5 0.5 0.4167 

 Overall 

accuracy 0.8306 0.4593 0.5276 0.3376 0.5543 
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 compares the proposed framework’s overall accuracy to the 

aforementioned NLP models by mapping each PLO against the 

121 CLOs. All PLOs performed better under the suggested 

framework. 

 
TABLE 5 

PERFORMANCE ACCURACY ACHIEVED BASED ON EACH PLO USING THE PROPOSED FRAMEWORK IN COMPARISON WITH THE PREVIOUSLY MENTIONED NLP 

MODELS 

  PLO1 PLO2 PLO3 PLO4 PLO5 PLO6 

Proposed Framework 0.7769 0.7107 0.9587 0.876 0.9835 0.6777 

SpaCy (Industrial-Strength Natural Language Processing, n.d.) 0.3106 0.3864 0.4545 0.5000 0.5985 0.4773 

BERT (Devlin, J., Chang, M., Lee, K., and Toutanova, K., 2018) 0.4697 0.4318 0.5985 0.4545 0.6667 0.5379 

Levenshtein (Levenshtein, V.I., 1966) 0.3636 0.5303 0.0758 0.5606 0.1288 0.3561 

Jaro–Winkler (Winkler, W. E., 1990) 0.3939 0.4924 0.7576 0.5758 0.6667 0.4697 

Moreover, given that the positive mapping (as denoted by a 

“1” value) only makes up 16.8% of the 6x121 matrix, it is 

crucial to use metrics like precision (PR), recall (RE), and F 

score (F) (Classification: Precision and Recall, n.d.) to 

ensure an in-depth examination of the detections of the positive 

and negative mappings: 

PR = 
𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝+𝑓𝑓𝑝𝑝, RE = 

𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝+𝑓𝑓𝑛𝑛, and PR =2 ∙ (𝑃𝑃𝑃𝑃∙𝑃𝑃𝑅𝑅)

(𝑃𝑃𝑃𝑃+𝑃𝑃𝑅𝑅)
  

 

 compares the performance of the suggested framework with 

the aforementioned NLP models. In this instance, the suggested 

framework was able to accurately map three PLOs (PLO3, 

PLO4 and PLO5), outperforming the available approaches. 

SpaCy achieved the best performance for PLO6, BERT 

performed best for PLO6, and Jaro-Winkler performed best for 

PLO2. 

 
TABLE 6 

PERFORMANCE COMPARISONS OF THE PROPOSED FRAMEWORK WITH STATE-OF-THE-ART NLP MODELS IN TERMS OF PRECISION, RECALL, AND F SCORE 

 
 

PLO1 PLO2 PLO3 PLO4 PLO5 PLO6 

Proposed Framework PR 0.1765 0.7368 0.5 0.1429 0.875 0.6667 

RE 0.1875 0.3182 0.4 0.4 0.875 0.2273 

F 0.1818 0.4444 0.4444 0.2105 0.875 0.339 

 

SpaCy (Industrial-Strength Natural Language Processing, n.d.) PR 0.1386 0.2967 0.0779 0.0704 0.1228 0.4018 

RE 0.7778 0.6136 0.8571 1 0.7 0.9574 

F 0.2353 0.4 0.1429 0.1316 0.209 0.566 

 

BERT (Devlin, J., Chang, M., Lee, K., and Toutanova, K., 2018) PR 0.1579 0.2933 0.0893 0.0533 0.1731 0.4054 

RE 0.6667 0.5 0.7143 0.8 0.9 0.6383 

F 0.2553 0.3697 0.1587 0.1 0.2903 0.4959 

 

Levenshtein (Levenshtein, V.I., 1966) PR 0.1333 0.2955 0.0168 0.0351 0.0093 0.3273 

RE 0.6667 0.2955 0.2857 0.4 0.1 0.766 

F 0.2222 0.2955 0.0317 0.0645 0.0171 0.4586 

 

Jaro–Winkler (Winkler, W. E., 1990) PR 0.1395 0.3544 0.1429 0.082 0.16 0.3506 

RE 0.6667 0.6364 0.7143 1 0.8 0.5745 

F 0.2308 0.4553 0.2381 0.1515 0.2667 0.4355 

 We evaluated the framework using data from the Bachelor 

of Information Security curriculum to ensure the proposed 

approach was reliable and universal. We obtained an overall 

accuracy of 88.1%. The mapping detection accuracy values for 

PLO1 to PLO6 were 81.5%, 78.6%, 94.8%, 91.33%, 97.11%, 

and 84.97%. Error! Reference source not found. presents the 

mapping accuracy based on the 34 courses from the Bachelor 

of Information Security degree. The mapping of courses like 

CSBP119, CSBP219, and CSBP221 was 100% accurate. In this 

instance, every course was mapped with an accuracy of at least 

75%. This demonstrates unequivocally that the performance of 

the suggested framework is reliable and consistent. 
 

TABLE 7 

MAPPING ACCURACY BASED ON THE 34 COURSES FROM THE BACHELOR DEGREE IN INFORMATION SECURITY PROGRAM 
Course Accuracy   

  

  

  

  

  

  

  

  

  

Course Accuracy 
 

Course Accuracy 
 

Course Accuracy 

ITBP103 0.75 ITBP301 0.8889 ISEC311 0.9167 ISEC421 0.7917 

CSBP119 1 CSBP315 0.9444 ISEC322 0.8667 ISEC412 0.8611 

CSBP121 0.9333 CSBP319 0.9 ISEC323 0.8667 ISEC416 0.8889 

CENG202 0.9 CSBP340 0.9 ISEC413 0.8333 ISEC424 0.8 

CENG205 0.9722 ITBP370 0.75 ISEC414 0.8667 ISEC417 0.8667 

CENG210 0.9167 ITBP418 0.9 ISEC423 0.8333 ISEC428 0.8333 

CSBP219 1 ITBP495 0.8611 ISEC422 0.9 CSBP320 0.9333 

CSBP221 1 ISEC312 0.9 ISEC321 0.8667   

ITBP280 0.8667 ISEC324 0.8333 ISEC411 0.75   
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The following link will take you to a web-based application 

that was created to help teachers and administrators execute 

automatic mappings: https://bidac-uaeu.github.io/mapper.htm. 

This tool is depicted in  Figure 1. The tool also features a 

function that enables users to connect through API, allowing it 

to be used by members of the general public. Users can 

construct programs, courses, and the associated CLOs, PLOs, 

and CLOs. Additionally, the user can use and export the 

mappings. 

 

 
Figure 1: The web-based mapping tool in action 
 

 

IV. DISCUSSION 

The development of accurate evaluation results for the CLOs, 

which are utilized as a direct measure for assessing the PLOs, 

depends on effective CLOs-PLOs mapping. Therefore, it is 

important to choose action verbs carefully so that they are a 

good match for the PLOs’ more general prospects. Subjectivity 

in determining how to map certain CLOs to PLOs cannot be 

avoided because educators typically manually map between 

CLOs and PLOs. However, consistency can be expected when 

mapping is performed automatically using NLP and AI, 

assuming that the right action verbs are selected when defining 

the CLOs. As various techniques can be employed for 

diversification and a more precise measurement, a PLO is 

typically measured using more than only the outcomes of an 

assessment of CLOs. Results from surveys and other indirect 

assessment tools might be used as examples. Additionally, 

other direct evaluation procedures, including pre- and post-

course examinations or projects, are frequently utilized to 

supplement the results of the CLO assessment. 

Based on the outputs for the Computer Science program 

provided in 

 

, we note that the results generated by the framework 

proposed in this paper, while generally yielding better accuracy 

than previous methods, have less than 75% accuracy for t 

CSBP316, CSBP483, and CSBP461 courses. The results for 

every other course were at least 75%. 

As can be observed in Figure 2, we examined the CLOs of 

these courses and how they were mapped to the related 

PLOs. Wrongly identified mappings are highlighted in red cells 

in Figure 4, which also presents the original manual mappings. 

The cell is marked in red, for instance, if the manual mapping 

is “1” and the framework mapping is “0” or if the manual 

mapping is “0” and the framework mapping is “1”. For the 

CSBP316 course, for instance, the mapping between CLO2 and 

PLO5 was detected as “1” due to the use of the keyword 

“suitable,” but the mapping between the same CLO and PLO6 

was overlooked because there is no word-vector matching. 

Similarly, the framework’s decision to map CLO3 to PLO4 was 

based on the word “principles.” In general, CLO2 and CLO4 

that are transferred to PLO6 use indirect verbs, such as 

“select and build,” which results in a lower level of matching 

given what the underlying intention of PLO6. 

On the contrary, the output of the mapping performed by the 

framework may occasionally be more accurate than the 

manual mapping. For instance, the CLO3 in the course 

CSBP316 should be mapped to the PLO1. This was missed 

during the human mapping process; however, it was detected 

by the proposed framework. As a result, the proposed 

https://bidac-uaeu.github.io/mapper.html
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framework can be effectively used by accreditation/program 

assessors to ensure that the findings of the quality assurance are 

correct and meaningful. It can also be used to validate the 

manual mapping. 

The two verbs “design” and “use,” which are employed in 

CLO 1, are mapped to PLO6 via CSBP483. These verbs 

contribute to the low matching accuracy since they do not 

exactly correspond to the acts that PLO6 intends. If the best 

threshold value is found, certain situations, such as the 

mappings of the CLO2 to PLO6 and CLO4 to PLO6, for 

example, could be discovered. In these two examples, the 

proposed framework did detect similarity scores; however, they 

were missed because they fell just shy of the cutoff point. 

By comparing the action verbs used in each mapped CLO in 

CSBP461 to PLO6, it is possible to understand why the 

accuracy score was so low. For instance, the action verb 

“develop” employed by CLO2 does not quite match the action 

verbs utilized by PLO2 and PLO6. CLO3 and CLO4 mappings 

can be compared in the same way. The accuracy of automated 

procedures can be undermined if the wrong definitions (rules) 

are utilized or the wrong action verbs are used to correspond to 

those PLOs.  

 

 
Figure 2: The 3 courses with poorly detected mappings. The wrongly detected mappings are highlighted in red cells 

 

 

 

When looking at the performance results for the PLOs 

measurement accuracy, the results for PLO2 and PLO6 for the 

Computer Science program were lower than 75%, as indicated 

in 

 

. These PLOs are as follows: 

• PLO2: Design, implement, and evaluate a computing-

based solution to meet a given set of computing 

requirements in the context of the program’s discipline. 

• PLO6: Apply computer science theory and software 

development fundamentals to produce computing-based 

solutions. 

In contrast to the CS PLO6 previously described, the PLO6 

for the Information Security program reads, “Apply security 

principles and practices to maintain operations in the presence 

of risks and threats.” PLO6 of the Information Security 

program’s coverage is more specific. 

To better understand why these results are so low, we can see 

that PLO2 and PLO6 are made up of a variety of requirements 

described by more than one action verb or a wide range of 
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necessary skills, which suggests that CLOs from a good number 

of courses must be mapped to cover the wide range of 

requirements characterized by these PLOs, which is, in fact, the 

case (PLO2 - 86 out of the possible 121 mappings were detected 

correctly, similarly for PLO6 – 82 were detected accurately). 

However, the lower level of accuracy may be caused by the 

usage of “implied” CLOs-based action verbs that are either 

wholly incorrect or not an exact match to those used in the 

PLOs. For instance, multiple CLOs map to PLO2, which 

employs design, implement, and evaluate, and these CLOs use 

action verbs like “compare”, “develop”, and “apply”. A similar 

analysis can be presented for PLO6. For instance, PLO6-

mapped CLOs utilize verbs like “use,” “write,” and 

“translate,” even though they don’t quite fulfill the demands of 

this PLO as stated by its action verbs and context. 

While the overall accuracy for the information security 

program is 88.05%, compared to 83.06% for the computer 

science program, none of the measured PLOs for that program 

were below 75% (the minimum was 81.5% - PLO1); thus, the 

latter program has a marginally better F score. The Information 

Security program has a total F score of 0.37 compared to the 

Computer Science program’s 0.41. 

 

V. CONCLUSION 

This paper introduced an AI-based framework (NLP) for 

automatic and precise mapping of CLOs to PLOs. 

As educational program evaluations are based on these 

mapping processes, it is important they are accurate and 

reliable. To the best of our knowledge, this is the first time NLP 

has been used to solve an issue of this magnitude. Although 

NLP has demonstrated excellent results in several disciplines, 

it has yet to be fully embraced within the educational sector. 

The proposed framework was evaluated against two actual 

datasets, yielding positive results. The outcomes of the current 

study could inform future research in this area.  The suggested 

framework performed noticeably better than several well-

known NLP methods, like BERT (Devlin, J., Chang, M., Lee, 

K., and Toutanova, K., 2018) and SpaCy (Industrial-Strength 

Natural Language Processing, n.d.). 

Nevertheless, despite its strong performance, the framework 

has two significant limitations. The first is the threshold 

optimization, and the second is the absence of semantic 

connections between verbs like “implement,” “build,” 

“develop,” “apply,” etc. We discovered that certain incorrect 

mappings were caused by word similarity rather than the overall 

semantic meaning. As a result, we intend to emphasize the 

bloom taxonomy in the future by finding the connections 

between the verbs using a rule-based technique and giving them 

more weight. Additionally, methods like generic algorithms can 

be used to enhance the dynamic threshold values applied in the 

study.  
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