
Empir Software Eng (2009) 14:262–285
DOI 10.1007/s10664-008-9100-x

Macro-level software evolution: a case study
of a large software compilation

Jesus M. Gonzalez-Barahona · Gregorio Robles ·
Martin Michlmayr · Juan José Amor ·
Daniel M. German

Published online: 29 November 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com
Editors: Ahmed Hassan, Stephan Diehl and Harald Gall

Abstract Software evolution studies have traditionally focused on individual prod-
ucts. In this study we scale up the idea of software evolution by considering software
compilations composed of a large quantity of independently developed products,
engineered to work together. With the success of libre (free, open source) software,
these compilations have become common in the form of ‘software distributions’,
which group hundreds or thousands of software applications and libraries into an
integrated system. We have performed an exploratory case study on one of them,
Debian GNU/Linux, finding some significant results. First, Debian has been doubling
in size every 2 years, totalling about 300 million lines of code as of 2007. Second,
the mean size of packages has remained stable over time. Third, the number of
dependencies between packages has been growing quickly. Finally, while C is still
by far the most commonly used programming language for applications, use of the
C++, Java, and Python languages have all significantly increased. The study helps not

J. M. Gonzalez-Barahona (B) · G. Robles · J. J. Amor
Universidad Rey Juan Carlos, Madrid, Spain
e-mail: jgb@gsyc.es

G. Robles
e-mail: grex@gsyc.es

J. J. Amor
e-mail: jjamor@gsyc.es

M. Michlmayr
Open Source Program Office, HP, Innsbruck, Austria
e-mail: martin@michlmayr.org

D. M. German
University of Victoria, Victoria, Canada
e-mail: dmgerman@uvic.ca

Empir Software Eng (2009) 14:262–285 263

only to understand the evolution of Debian, but also yields insights into the evolution
of mature libre software systems in general.

Keywords Mining software repositories · Large software collections ·
Software evolution · Software integrators

1 Introduction

Software evolution studies usually consider single products developed by a coor-
dinated team. However, software systems are commonly composed of a large set
of applications and libraries, many of them coming from unrelated parties, and
developed by different teams with their own goals. The evolution of those systems
presents some specific aspects and characteristics that are worth studying. However,
finding all the elements needed for such a study, and especially, the source code for
the whole system at certain points of time, is not easy. This is probably the reason of
the little attention paid to them by researchers in the area of software evolution.

Fortunately, the opportunity of performing such studies has become real with the
advent of libre software1 distributions: collections of software packages engineered
to work in coordination, providing the user with a large operating system with
many, maybe thousands, of applications. Each package is actually developed by a
different group, usually called ‘project’, in relative isolation from the others. The job
of creating and maintaining a distribution is mainly about making all packages fit
together, and producing installers, package managers, some common look and feel,
etc. Examples of libre software distributions are Fedora (Red Hat) Linux, FreeBSD,
Ubuntu, and Debian GNU/Linux.

Although each package appears to be developed in isolation, there are relation-
ships and interactions that become apparent when the whole system is considered.
As a result, a dichotomy can be identified, similar to the one found in economics:
software evolution in the small (the evolution of a single application) versus software
evolution in the large (the evolution of compilations of software, composed of many
different individual software applications that are combined together to form a
system).

For this paper, we have selected one of the most popular libre software distrib-
utions, Debian GNU/Linux, and have examined it from a macro point of view. We
have studied the stable releases of Debian over a period of nine years. For each
release the source code of all applications was downloaded, and their evolution
analyzed in terms of number of packages, size of each of them, programming
languages used, and interdependencies among packages.

As a result of this analysis, we have found that Debian is an interesting collection
composed of applications of varying sizes, with a large proportion of small, and few
huge applications. Some of them evolve rapidly, while others change at a lower pace.
Some applications have not changed during all the considered period, while others
have been removed from the distribution. We have also discovered that, despite

1Through this paper we will use the term “libre software” to refer to any code that conforms either
to the definition of “free software” (according to the Free Software Foundation) or “open source
software” (according to the Open Source Initiative).

264 Empir Software Eng (2009) 14:262–285

being developed by different groups, applications are hardly isolated: they are subject
to complex interdependencies that have to be satisfied for the whole system to work.
The number of these dependencies tends to explode as the system grows, rendering
it more difficult to maintain.

In Debian, developers must show confidence in the interest, usability and maturity
of each package they select for the distribution. Given this selection criteria, a large
share of all mature libre software ever available for Linux-based systems is present in
it. Therefore, Debian can be considered as a good proxy of all mature libre software
ever developed for such systems. This permits the interpretation of the results of this
study in a larger framework, as an overview of the evolution of the landscape of libre
software for Linux systems.

The rest of this paper is organized as follows. The next section introduces some
of the main characteristics of libre software distributions, also showing previous
research related to this study. Section 3 introduces and explains the main research
questions addressed. Then, Section 4 details the methodology used for the collection
and analysis of the data, with the intention of clarifying the results shown later,
in Section 5, which is organized in six subsections: total size, size of packages,
maintenance of packages, languages, file sizes, and dependencies. The paper ends
with a section on conclusions and further research.

2 Libre Software Distributions and Related Research

Large distributions based on libre software are created in a manner that is quite
different from traditional software development. In large non-libre software systems
most of the work is performed in-house, with only some pieces licensed from other
companies, and some work outsourced to third parties. Even in the case of intense
outsourcing, the work is usually performed in close coordination under tightly
defined requirements. Libre software, on the contrary, is typically written by small,
independent teams of volunteers, sometimes collaborating with paid staff from one
or more companies. While projects may interact with each other, in particular where
dependencies between the software they produce exist, there is often no central
coordination, neither common goals or guidelines.

Therefore, people building and maintaining software distributions are those who
have to adapt each package to work in coordination with the rest. Usually, the
required modifications are contributed back to the groups performing the actual
development, in a continuous provision of feedback. Because of this, although
usually they do not develop much code themselves, they have to know with some
detail not only the general architecture of the software they are integrating, but also
the development process used by the original team.

One of the most visible tasks performed by distributions is the automatic in-
stallation and management of packages. Manually installing and upgrading a libre
software application is time-consuming and requires certain technical skills that not
all users have, such as compiling or configuring the installation of the software. Doing
that for the hundreds, if not thousands, of applications that are typically installed in
a GNU/Linux system is out of question, even for experienced users, since it would
require a significant effort to manually download and install (or upgrade, when a new
release is available) each package. This is precisely the main role that distributions

Empir Software Eng (2009) 14:262–285 265

play: to select, test, and prepare applications so that they become packages easy to
install, upgrade or remove. Unsurprisingly, a number of companies have found this to
be a business opportunity, offering a distribution plus some related services, such as
support. There are also various community distributions that operate on a non-profit
basis like many other libre software projects.

In fact, public availability of the source code of libre software programs, and
the possibility of freely redistributing them, has resulted in a large number of libre
software distributions. Both characteristics also facilitate their study: several of them
have been published, mainly for the well-known Red Hat and Debian systems. Those
studies detail several parameters of the packages contained, their size, and some
statistics on the programming languages present, among other issues (Wheeler 2001;
Gonzalez-Barahona et al. 2001; Amor et al. 2005).

Among the different libre software distributions, Debian GNU/Linux has been
selected for this study because it is one of the most popular, accessible, complete
(in terms of number of packages maintained) and best established. Debian is a
community effort that has provided a software distribution based on the Linux kernel
for well over 12 years. The work of the members of the Debian project is similar
to that carried out in other distributions: software integration. Unlike many other
distributions, Debian is mostly composed of volunteers who are spread all around the
world. As a side-effect, all development infrastructure, including mailing lists, bug
tracking, and the source code itself, is publicly available. In addition to integrating
and maintaining software packages, members of the Debian project oversee the
maintenance of a number of services, such as web sites and wikis.

Software evolution has been a matter of study for more than 30 years (Lehman
and Belady 1985; Lehman and Ramil 2001). So far, the scope of software evolution
analysis has always been single applications, such as the “classical” analysis of the
OS/360 operating system (Lehman and Belady 1985) or, more recently, those on the
Linux kernel (Godfrey and Tu 2000) or other well-known libre software applications,
including Apache and GCC (Succi et al. 2001). Noteworthy is the proposal of
studying the evolution of applications at the subsystem level (Gall et al. 1997), as
this introduces the issue of granularity. Our approach considers a complete software
compilation to be a system, with the constituent applications and libraries serving the
role of subsystems.

The authors are not aware of a study on the evolution of a system integrating many
independent software applications. In fact, software compilations have rarely been
studied in software engineering, probably because of the constraints found when
integrating software from different vendors, such as the restrictions imposed by the
license of each piece. It is noticeable that even if one of the most promising steps of
software engineering has been to create reusable components or modules, in a similar
way as bricks and mortar, little attention has been paid to how the integration of these
components evolve. A promising path in this direction has been the study of inte-
gration of COTS from a software evolution perspective (Lehman and Ramil 1998).

3 Research Questions

Software compilations are composed of heterogeneous pieces of software from many
different sources. Some are developed by large, organized, well funded groups,

266 Empir Software Eng (2009) 14:262–285

such as the Mozilla Foundation, while some others are developed by a handful of
volunteers. Therefore, they provide a diverse and comprehensive view of the libre
software landscape. Furthermore, distributions provide a way to understand how
different applications are interrelated (how each depends upon one or several other
applications, and vice versa).

In this context, a compilation of the size of Debian can be considered a good proxy
of libre software in general, thus offering a macroscopic view of the libre software
landscape. Therefore, this paper can be considered to present a holistic study of libre
software, analyzing how it is in the large, and drawing some conclusions about the
phenomenon itself. Because of that, it is important to characterize the evolution of
the main parameters of the distribution: total size (in lines of code), and total number
of packages. The specific study of the distribution of the size provides some additional
insight into this evolution.

Additionally, the changing demographics over time of programming language use
presents itself as an avenue of exploration in this study. We examine the changes
in popularity of various languages with respect to Debian applications, and discuss
possible reasons for the various shifts and long term trends.

From another point of view, this paper goes a step beyond the single-release
analysis of software distributions by considering their evolution over time. In this
respect, the main goals slightly differ from those commonly found in software evo-
lution studies. This is due to the different type of work involved in the creation and
maintenance of software compilations, which is mainly integration and maintenance,
with only some marginal true development. For example, a distribution might require
an installer or some other software to perform administration tasks that require de-
velopment effort, but theses cases are few in the context of all the effort to produce a
new release. There are also some aspects that are common to classical software
evolution analysis, such as how the size of the software it includes evolves.

Of course, software compilations must be maintained, but the practice of compi-
lation maintenance differs from that of (single) software system maintenance. For
example, Swanson’s well known categories of corrective, adaptive, and perfective
software maintenance (Swanson 1976) have little bearing on software compilations.
Instead, software compilation maintenance focuses on the integration of new ver-
sions of software that have been released. In other words, package maintainers
keep track of each software application, and update the distribution with the newer
versions. They also check that the package keeps working when new releases of
libraries and other programs used by it are updated. It is not uncommon for
package maintainers to become bug-reporters of the applications they maintain. This
raises interesting issues worth investigating, such as when packages are included or
removed from the compilation, and the tracking of packages in several releases of
the compilation, to learn about their evolution patterns.

From these observations, another important research question emerges: how
much code is changing between Debian releases? This can be refined by studying
both the size of the packages that remained unchanged between releases, and that of
packages that were already present in previous releases, but have changed, at least
in part.

The importance of the relationships between packages have already been stressed.
Although they are developed and maintained by independent teams, with little or no
coordination, in the end all of them have to work together. For performing its job,

Empir Software Eng (2009) 14:262–285 267

any application has a large set of requirements on a usually long list of packages that
it uses in one form or another. Therefore, an important research question is also how
those dependencies evolve, both from a macro (for the distribution as a whole) and
a micro (for a specific application) point of view.

In the end, by understanding how all these aspects evolve, we address the general
question of how the Debian software distribution is evolving. Since it is a good proxy
of mature libre software available for Linux, some insight on its characterization is
also obtained.

4 Methodology

Distributions are organized as a set of packages, each one usually corresponding to an
application or a library, although they can also correspond to other products, such as
documentation. As most libre software distributions do, Debian defines two different
types of packages: source and binary. A source package contains the source code
needed to produce a binary, installable, package. Once built, a source package results
into one or more binary packages.

Debian maintains a Sources file for each release, describing the source packages
that it contains. For each package, it contains the name and version, the list of binary
packages built from it, the name and e-mail address of the maintainer, and some
other information not relevant for this study. A package can be maintained by an
individual or a team.

As an example, an excerpt of the entry for the mozilla source package in
Debian 2.2 is included below,2 showing that it corresponds to version M18-3, provides
four binary packages, and is maintained by Frank Belew.

[...]
Package: mozilla
Binary: mozilla, mozilla-dev, libnspr4, libnspr4-dev
Version: M18-3
Priority: optional
Section: web
Maintainer: Frank Belew (Myth) <frb@debian.org>
Architecture: any
Directory: dists/potato/main/source/web
Files:
57ee230[...]c66908a 719 mozilla_M18-3.dsc
5329346[...]bad03c8 28642415 mozilla_M18.orig.tar.gz
3adf83d[...]ca20372 18277 mozilla_M18-3.diff.gz

[...]

For each Debian release, several binary distributions (collections of binary pack-
ages) are available, corresponding to the different architectures supported (for
example: i386). Each binary distribution is defined by a list of descriptions of binary
packages, found in the corresponding Packages file. The description of a binary
package is similar to that of a source package, but contains some other fields of

2The original Sources file in which this entry can be found is in http://www.debian.org/mirror/list.

http://www.debian.org/mirror/list

268 Empir Software Eng (2009) 14:262–285

interest. For example, in Debian 2.2, the mozilla binary package is described as
follows:

[...]
Package: mozilla
Priority: optional
Section: web
Installed-Size: 25428
Maintainer: Frank Belew (Myth) <frb@debian.org>
Architecture: i386
Version: M18-3
Replaces: mozilla-dmotif, mozilla-smotif
Provides: www-browser
Depends: libc6 (>= 2.1.2), libglib1.2 (>= 1.2.0),

libgtk1.2 (>=1.2.7-1), libjpeg62, libpng2, libstdc++2.10,
libz1, xlib6g (>= 3.3.6-4), libnspr4 (= M18-3), xcontrib

Recommends: mime-support
Suggests: postscript-viewer, pdf-viewer, eeyes |

imagemagick | netpbm | xli | xloadimage | xv, xanim |
ucbmpeg-play, freeamp | amp | splay | maplay | mpg123 | xmms

Conflicts: mozilla-dmotif, mozilla-smotif
Filename: dists/potato/main/binary-i386/web/mozilla_M18-3.deb
Size: 8941048
MD5sum: 739c13960dd8e62b7a677011cd0f86ab
Description: An Open Source WWW browser for X and GTK+
Mozilla is a sophisticated graphical World-Wide-Web browser,
with large

[...]

The Depends field of a package description lists other binary packages needed
for it to run successfully. Therefore, packages that satisfy those dependencies should
be installed before, or at the same time, than the described package. In the above
case, each of the packages in the Depends field (in some cases specific versions of
packages, such as a version of libc6 higher or equal to 2.1.2, or libnspr4 version
M18-3) should be installed before, or at the same time, than mozilla. Each of these
dependencies is either explicit (one and only one package is specified), one-of-
many (a list of packages separated by | is specified, of which only one is required
to be installed, for example eeyes | imagemagick | netpbm |... |xv), or
an abstract dependency (an identifier for a common one-of-many dependency—
e.g., emacsen is commonly used to indicate a choice of either version of emacs or
xemacs to be installed). Pre-Depends is a similar field used by some packages, listing
dependencies that should be installed before the installation of the package can
proceed.

A Debian binary package may also have some optional requirements, listed in the
Recommends and Suggests fields. The Debian Policy Manual defines packages listed
in Recommends as strong but not required dependencies, and as those that would
“be found together with this package in all but unusual installations.” Suggests is used
to declare optional dependencies that would enhance the original package but are
not as common as those listed in the Recommends field. For a detailed formalization
of Debian dependencies, and the method used to resolve them, see Mancinelli et al.
(2006).

Empir Software Eng (2009) 14:262–285 269

The study presented in this paper started by retrieving the files describing each
Debian GNU/Linux stable releases between 2.0 and 4.0, that is: 2.0, 2.1, 2.2, 3.0, 3.1,
and 4.0. For each of them, the corresponding Sources and Packages files of the i386
binary distribution were considered.

Once retrieved, Sources files were parsed, storing the resulting data into a data-
base. Then, each source package was retrieved, the programming languages used
in it identified, and the number of source lines of code (SLOC) for each file it
contained, counted. The counting and language identification was performed with
the SLOCCount tool. This tool analyzes a directory with source code, (in our case
corresponding to a source package), identifies (by a series of heuristics) the files that
contain source code, identifies for each of them (also by means of heuristics) the
programming language, and finally counts the number of source lines of code they
contain. SLOCCount counts “physical SLOC”, defined as follows: “a physical source
line of code (SLOC) is a line ending in a newline or end-of-file marker, and which
contains at least one non-whitespace non-comment character.”.3

SLOCCount also identifies identical files using MD5 hashes, and includes heuris-
tics to detect, and avoid counting, automatically generated code. These mechanisms
are helpful when analyzing the code, but have some deficiencies. MD5 detects
identical files, but not those that have been slightly modified. With respect to
automatic code, heuristics detect well-known or common cases, but may fail in some
scenarios. Nevertheless, SLOCCount is a proven tool and it has been used on studies
of Red Hat (Wheeler 2001) and Debian (Gonzalez-Barahona et al. 2001).

The results of the SLOCCount analysis were converted later into other formats,
including both SQL and XML, which were used for later analysis, and for publishing
most of the data.4

For creating the dependency graphs of each release, the corresponding Packages
file were parsed, searching for Depends, Pre-Depends, Suggests and Recommends
fields.

The relationship between packages and their dependencies can be modeled as
a directed graph, where nodes are either binary packages or abstract dependencies;
and edges correspond to their dependencies (see details in German 2007 and German
et al. 2007). The edges are typed according to their importance: required (Depends
and Pre-Depends) and optional (Recommends or Suggests). Abstract packages are
connected to those that can “satisfy” them. A node can be further annotated with
other attributes of the package, such as its license or installed size. We refer to this
graph as the Inter-Dependency Graph (IDG) of the distribution. By extension, the
IDG of a package p is the subset of the distribution’s IDG that is reachable from p.
Figure 1 shows the IDG of PostgreSQL under Debian 2.0.

For IDGs, the following notation has been used (German et al. 2007): the starting
package is depicted as a circle; binary packages are depicted as rectangles; abstract
dependencies are depicted as diamonds; and the packages that are always installed
in a Debian system are colored in orange (darker). These graphs are similar to those
defined by Mancinelli et al. (2006), being the main difference that they do not contain

3More details about this tool can be found in http://www.dwheeler.com/sloccount/.
4Available in http://libresoft.es/debian-counting/.

http://www.dwheeler.com/sloccount/
http://libresoft.es/debian-counting/

270 Empir Software Eng (2009) 14:262–285

tk8.0 tk8.0*

libreadlineg2

libc6

ncurses3.4

debianutils

ldso

libpgsql

postgresql

tcl8.0

xlib6g

Fig. 1 Inter-Dependency Graph for PostgreSQL in Debian 2.0

nodes for abstract dependencies, which they call disjunctive dependencies. Instead,
such information is stored as logic predicates. In addition, Mancinelli graphs include
information about conflicting binary packages, and the nodes are annotated with the
version of the package that they require.

Lets assume that the IDG of the distribution is G = (V, E), where V is its set of
nodes, and E its set of edges.

• Direct dependencies of package p is the set of nodes (binary packages and
abstract dependencies) in V that are directly connected to p.

• Direct subordinates of package p correspond to those nodes in V (binary
packages and abstract dependencies) from which there is an edge to p. The
Direct subordinates of p have p as one of its Direct dependencies.

Abstract dependencies represent a choice of one of many packages; only one of
them needs to be installed to satisfy the dependency. This implies that there might
be multiple ways in which the dependencies of a package can be satisfied (Tucker
et al. 2007). We define the Instance of the IDG of a package as a subset of its IDG
where each abstract dependency points only to one package (the one that solved that
abstract dependency). A specific instance of an IDG of a package p represents how
p can be installed in a specific Debian system, with specific packages solving each
abstract dependency.

The Debian Popularity Contest5 surveys the usage of Debian packages, by
tracking those actually installed by users participating in it. We use the Popularity
Contest data to estimate the most likely way an abstract dependency is satisfied,
computing the popular instance of the IDG (pIDG) of a package. This instance is
computed selecting, for each abstract dependency that can be satisfied by several
packages, the one with the highest popularity. Therefore, this instance includes no
optional packages. Unfortunately the Debian Popularity Contest does not archive
data for each Debian release, and we assume that the popularity of a package is the
same across releases. When there is no popularity data for the options of an abstract
dependency we choose the first listed, which is the algorithm used by Debian’s

5http://popcon.debian.org/.

http://popcon.debian.org/

Empir Software Eng (2009) 14:262–285 271

package system to decide how to resolve it if none of the options is already installed.
We define two more sets:

• All dependencies of package p is the set of binary packages in its pIDG.
• All potential subordinates of package p is all binary packages in a Debian

distribution that include p in its I DG.

The set of all dependencies of p corresponds to the most common set of applica-
tions that need to be installed before p can function (each abstract dependency—
one-of-many, or disjunctive—is resolved to exactly one binary package). All
potential subordinates, on the other hand, include any binary package that might
require p. For example, in Debian 2.2 mozilla lists xlib6g as one of its direct
dependencies; and xlib6g lists xfree86common as one of its direct dependencies.
xlib6g and xfree86common are members of all dependencies of mozilla. At the same
time, mozilla and xlib6g are members of the set of all potential subordinates of
xfree86common. Figure 6 shows the pIDG of mozilla under Debian 2.2.

5 Results and Observations

In the following subsections, the main results obtained from the study presented in
this paper are shown and discussed.

5.1 Total Size

The total size of the six studied releases of Debian is shown in Table 1. It presents, for
each release, the date of publication, the total number of SLOC (sum of the SLOC
of all packages in the distribution), the number of packages it contains, and the mean
package size in SLOC. In nine years the number of packages in Debian and the total
number of lines of code have grown by an order of magnitude, while the average size
of a package has remained relatively stable.

Figure 2 shows the size of each distribution with respect to time. Although the
number of points is insufficient to obtain a statistically significant model, we can infer
from the current data that the Debian distribution has doubled in size in terms of
source lines of code and of number of packages around every 2 years. This growth
has been fastest at the beginning of the period: from July 1998 to August 2000 we
observe an increase of 135%. In later releases this pace has slowed, and for example
between July 2002 and June 2005 the source code base has not experimented a 100%
increase during this 3 year period.

Table 1 Size, in number of source packages and total lines of code, and mean package size of the
Debian releases studied

Release Date Source pkgs Size (MSLOC) Mean pkg size (SLOC)

2.0 Jul 1998 1,096 25 23,050
2.1 Mar 1999 1,551 37 23,910
2.2 Aug 2000 2,611 59 22,650
3.0 Jul 2002 4,579 105 22,860
3.1 Jun 2005 8,560 216 25,212
4.0 Apr 2007 10,106 288 28,544

272 Empir Software Eng (2009) 14:262–285

0
50

100
150
200
250
300
350

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
0

2000

4000

6000

8000

10000

12000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

a b

Fig. 2 Size in MSLOC (left) and number of packages (right) of the Debian releases studied. In both
cases, releases are spaced in time along the X axis according to their publication date

In general terms, using time in the horizontal axis, a smooth growth of the software
compilation can be observed, which is compatible with that described by Turski
(1996). However, if we considered only releases, which is the methodology preferred
by Lehman, the growth would be super-linear. The main reason for this is that the
time interval between subsequent releases has been growing for most recent ones.
However, given that the Debian project has not been actively seeking to increase the
release interval, Turski’s model seems more appropriate in this case.

5.2 Size of Packages

Histograms in Fig. 3 display package sizes for Debian 2.0 and Debian 3.0 (measured
in SLOC). It can be observed that the largest packages are getting larger and larger,
while at the same time more and more small packages enter the distribution. It is
surprising how many packages are very small (less than one thousand lines of code),
small (between one and ten thousand lines) and medium-sized (between ten and fifty
thousand lines of code).

A small number of large packages (over 100 KSLOC) exist, with their size
increasing over time, as the sixth law of software evolution predicts (Lehman et al.
1997). Perhaps the most significant fact is that the average size of packages is
relatively stable, around 30 KSLOC for Debian 4.0 and 23 KSLOC for other releases,
see Table 1. Currently, we lack an authoritative explanation for this phenomenon,
but we have several hypotheses. One of them is that libre software production tends
to grow mainly by creating new, more specialized, smaller packages (that can be

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

5
10
15
25
40
60
85

120
170
240
340
480
675

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

5
10
20
35
55
85

130
200
305
465
705

1070
1625
2465
3735

a b

Fig. 3 Histograms of the distribution of the size (in SLOC) of packages in Debian releases 2.0 (left)
and 3.0 (right)

Empir Software Eng (2009) 14:262–285 273

Table 2 Number of packages (and SLOC of those packages) common and unchanged, for each
release of Debian, with respect to release 2.0, and number of files in unchanged packages

Release Packages SLOC Files unchanged

Common Unchanged Common Unchanged

2.0 1,096 1,096 25,267,766 25,267,766 110,587
2.1 1,066 666 26,515,690 11,518,285 115,126
2.2 973 367 19,388,048 3,538,329 86,810
3.0 754 221 15,888,347 1,863,799 70,326
3.1 813 158 15,594,976 1,271,377 15,296
4.0 721 132 12,297,611 1,235,327 6,338

developed by a handful of developers), rather than large, complex ones (that require
a large software development team). With time, some of the most successful small
packages may attract more interest and developers, and start to grow. Perhaps the
total mixture in Debian is so rich that while many packages grow in size, smaller ones
are included causing the average to stay approximately constant.

5.3 Maintenance of Packages

Packages in Debian are identified by a name, a version (which should match the
version of the package as defined by its original developers) and a Debian package
revision number with the following format: 〈package name〉-〈version number〉-
〈revision number〉. For example, in Debian 4.0 the package for Mozilla’s Firefox
is identified as mozilla-firefox-2.0.0.3-1, which corresponds to version
2.0.0.3, first revision of the Debian package (the revisions of the package are changes
to the package specification, as described in Section 4). Except for dynamic libraries,
Debian package names are rarely changed.6 This allows us to track packages from
one release of Debian to another.

One of the main tasks of Debian maintainers is to track new versions of software
packages, re-package them, and update the package descriptions accordingly. When-
ever a new version of a package is released (either a major release, or a minor one) it
is updated, and its identifier changed. This allows the assumption that if the version
of a package in Debian has not changed, then the original package has not changed
enough to warrant a new package version.7 It is also possible that the package is no
longer maintained, but still useful to warrant its inclusion in a distribution.

For any given pair of Debian releases we can classify packages into three sets:
common (those that appear in both distributions), removed (those that are in the
older distribution, but not in the newer one), and new (those that appear in the
newer distribution but not in the older one). Common packages include unchanged
packages, those with the same version number in both distributions.

Tables 2 and 3 contain some statistics of common and unchanged packages in the
different distributions. To facilitate the comparison in relative and absolute terms,

6The Debian policy requires the shared object name of a library to be part of the package name. This
permits different versions of the library to coexist in the same computer.
7It is possible for a package to be in active development and yet not having released a new version in
time to be included in a new Debian distribution. But this is unlikely, given that Debian distributions
are released several years apart, while libre software projects tend to ‘release-early, release-often’.

274 Empir Software Eng (2009) 14:262–285

Table 3 Number of packages (and SLOC of those packages) common and unchanged, for each
release of Debian, with respect to release 4.0, and number of files in unchanged packages

Release Packages SLOC Files unchanged

Common Unchanged Common Unchanged

2.0 721 132 12,297,611 1,235,327 6,338
2.1 995 188 16,999,000 1,759,679 8,772
2.2 1,710 388 28,597,414 3,855,356 18,781
3.0 3,236 1,020 63,947,430 10,173,837 42,474
3.1 7,300 3,843 171,406,036 59,235,197 258,537
4.0 10,106 10,106 288,461,743 288,461,743 1,198,735

the Debian release that is compared is also included. For instance, Debian 2.0 has in
common with itself all its (1,096) source packages.

Out of the 1,096 packages included in Debian 2.0, 721 can be found in 4.0 (common
packages). This means that only around 30% of the packages in Debian 2.0 were
removed by the time Debian 4.0 was released, nine years later. For comparison, the
number of packages of the 3.1 release that are still present in 4.0 is 7,300, out of a
total of 10,106, which gives a similar percentage of removed packages.

With respect to unchanged packages, release 4.0 includes 132 with the same
version number than they had in Debian 2.0. In other words, no less than 15% of
the source packages included in Debian 2.0 are still the same in Debian 4.0, 9 years
later.

Table 3 compares 4.0 with the previous releases. Even though a large percentage
of Debian 2.0 remains unchanged in 4.0, such code is very small with respect to the
current size of 4.0.

It is also important to notice that the number of files in unchanged packages, as
presented in Tables 2 and 3, does no reflect the total number of files unchanged,
which is higher: there are many files that do not change between Debian releases
even when the version number of their package changes. Something similar can be
said for the unchanged number of SLOC in those tables: it refers only to the size of
packages that did not change. But outside those packages, many other files also did
not change.

5.4 Programming Languages

Table 4 shows the evolution of the most significant languages, those that account for
at least 1% of code in Debian 4.0 (C, C++, Shell, Java, Perl, LISP, Python, PHP).
Below that 1% mark we find, in order of their relative shares, also for Debian 4.0:
Fortran, Tcl, Ada, Ruby, ML, Objective C, YACC, C#, Haskell, Expect, Awk and
Modula3. The aggregation of all the Assembler code found would make it the 8th
language in Debian 4.0, but has been omitted from the table.

The most used language in all Debian releases is C, with a large difference over
the second, C++. However, the evolution of their shares for the first and last releases
analyzed, falling from 77% to 51% in the case of C, raising from 6% to 19% for C++,
show different stories. While the relative importance of C is diminishing gradually,
that of C++, and other languages, is growing from release to release. It can also be
noticed that despite of these trends, the absolute size of the code written in C has
been growing for all releases from about 19 MSLOC in Debian 2.0 to more than

Empir Software Eng (2009) 14:262–285 275

Table 4 Top programming languages in Debian 4.0, in MSLOC, for each Debian release studied,
sorted by their importance in Debian 4.0

2.0 % 2.1 % 2.2 % 3.0 % 3.1 % 4.0 %

C 19.37 76.7% 27.77 74.9% 40.87 69.1% 66.6 63.1% 120.5 55.8% 145.2 51.3%
C++ 1.55 6.2% 2.80 7.6% 5.97 10.1% 13.1 12.4% 36.4 15.8% 52.9 18.7%
Shell 0.64 2.6% 1.15 3.1% 2.71 4.6% 8.6 8.2% 20.4 9.4% 29.3 10.3%
Java 0.02 0.1% 0.05 0.2% 0.18 0.3% 0.5 0.5% 3.8 1.7% 9.0 3.1%
Perl 0.42 1.7% 0.77 2.1% 1.39 2.4% 3.2 3.0% 6.4 2.9% 8.0 2.8%
LISP 1.42 5.6% 1.89 5.1% 3.19 5.4% 4.1 3.9% 6.8 3.1% 7.7 2.7%
Python 0.12 0.5% 0.21 0.6% 0.34 0.6% 1.5 1.4% 4.1 1.9% 7.2 2.5%
PHP 0.01 0.0% 0.01 0.0% 0.03 0.0% 0.6 0.6% 2.1 0.9% 3.3 1.1%

147 MSLOC in Debian 4.0. It just happens that it is not growing as quickly as other
languages.

The case of Shell, in a solid third place, has mainly to do with its presence in
almost any package, of any kind. With the entry of increasingly smaller packages in
the latest Debian releases, all with some Shell code, the total share of Shell is growing
accordingly.

The most rapid entry in this top-8 of the languages in Debian is certainly Java,
which grows from a marginal 0.5% in Debian 3.0 to 1.7% in 3.1 and 3.1% in
Debian 4.0. Although it is still far from the top-three languages, it is currently in
a strong fourth position. The main reason for this is the availability of large appli-
cations, such as Eclipse or Azureus. It is important to notice that the releases under
study do not include neither the Sun Java Runtime Environment nor the Sun Java
Development Kit, due to licensing issues. Although there are other Java runtimes
and development kits, it is quite possible that this causes an underrepresentation
of Java, since for most other languages, Debian includes at least one of the usual
development (compiling or scripting) environments.

To better understand the evolution of some of the top languages, (Fig. 4) shows
the lines of code for four of them, for each studied Debian release. In it, the decline in
relative terms of C, but its growth in absolute terms, is clearly visible. A noteworthy
similar case is LISP, which is the third most used language in Debian 2.0 and becomes
fourth in Debian 3.1 and fifth in Debian 4.0. In contrast to these, both Shell and C++
grow significantly, amounting for a large share of all the code in Debian 4.0.

Figure 5 provides a view of the relative evolution of some programming languages,
normalizing to their respective situation in Debian 2.0. The relative SLOC (vertical
axis) is computed by dividing the number of SLOC in a given distribution by the

Fig. 4 Number of SLOC
in each Debian release for
four of the top languages

Debian2.0 Debian2.1 Debian2.2 Debian3.0 Debian3.1 Debian4.0
0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08
C
C++
Lisp
Shell

276 Empir Software Eng (2009) 14:262–285

 0

 10

 20

 30

 40

 50

 60

Debian 4.0Debian 3.1Debian 3.0Debian 2.2Debian 2.1Debian 2.0

R
el

at
iv

e
S

LO
C

 (
S

LO
C

 in
 D

eb
ia

n
2.

0
=

 1
)

C
C++
LISP
Shell

FORTRAN
Perl
Ada

Python

Fig. 5 Relative growth of some programming languages

number of SLOC in Debian 2.0. For example, Python has 60 times more SLOC in
4.0 than in 2.0, but C only seven times more. This plot is useful to identify some of
the languages that have become more popular in the last nine years: Python, Shell,
and C++ (Java is not in the figure). When this information is combined with Table 4,
it is found that the growth of these languages is mainly at the expense of C and Perl.

Yet in absolute terms C has grown three times during this period, although
the total number of SLOC has grown 10 times. At the same time, some scripting
languages (Shell, Python and Perl) have undergone an extraordinary growth, all of
them multiplying their presence by factors superior to seven.

In terms of SLOC, some programming languages that could be considered as
uncommon account for a significant share of the distribution. This is because, even
though they are present in a small number of packages, these packages are large. For
example, Ada accounts for a total of 576 KSLOC in Debian 3.0. But 430 KSLOC
come from three packages (Gnat, an Ada compiler; libgtkada, a language binding
for the GTK+ library; and Asis, a system to manage sources of Ada programs). LISP
follows a similar pattern: it accounts for approximately 4 MSLOC in Debian 3.0, but
1.2 of these come from two single packages: GNU Emacs and XEmacs.

5.5 File Sizes

The mean file size for most of the languages, including those with a largest share,
show a remarkable stability from release to release (see Table 5).

This is especially noteworthy taking into account the large differences in SLOC
for those languages in each release. For example, for C the mean length lies between
260 and 295 SLOC per file, whereas in C++ this value is between 140 and 196. An

Empir Software Eng (2009) 14:262–285 277

Table 5 Mean file size for some programming languages

Lang. 2.0 2.1 2.2 3.0 3.1 4.0

C 262.88 268.42 268.64 283.33 276.36 295.29
C++ 142.50 158.62 169.22 184.22 186.65 195.82
LISP 394.82 393.99 394.19 383.60 349.56 346.33
Shell 98.65 116.06 163.66 288.75 338.25 389.99
YACC 789.43 743.79 762.24 619.30 599.23 615.55
Mean 228.49 229.92 229.46 243.35 231.6 240.72

exception to this behavior can be observed for the Shell language, which has tripled
its size from Debian 2.0 to Debian 4.0. This may be because the Shell language
is peculiar: almost all packages include something in Shell for their installation,
configuration or as glue code. It is likely that what happens is that these scripts get
more complex over time, and thus grow over the years. This adds up to the fact that
Shell programs are seldom divided into several files: if there is more functionality,
usually they just get longer.

It is also remarkable how procedural languages usually have larger average file
lengths than object-oriented languages. For example, the files in C or YACC are
usually larger, in average, than those in C++. This suggests that class-inheritance or
other characteristics of object-oriented languages are somehow reflected in shorter
file sizes.

Table 6 Number of dependencies and subordinates of binary applications in different Debian
releases

Release 2.0 2.1 2.2 3.0 3.1 4.0

Binary packages 1524 2269 3889 8273 15196 18042
All dependencies

Median 3 4 5 6 17 21
Mean 4.32 5.26 8.33 12.33 30.09 35.83
Std. Dev. 3.37 4.70 10.01 15.92 35.01 42.31
Max 19 46 124 170 479 561

Direct dependencies
Median 2 2 2 2 2 3
Mean 1.98 2.30 2.71 3.32 4.12 4.72
Std. Dev. 1.63 2.31 3.14 4.26 5.35 6.77
Max 15 20 47 70 106 86

All subordinates
Median 0 0 0 0 0 0
Mean 5.23 6.15 10.58 17.25 51.50 75.67
Std. Dev. 52.01 66.21 98.65 152.56 465.31 732.51
Max 1357 2010 3443 7432 13702 16247

Direct subordinates
Median 0 0 0 0 0 0
Mean 2.08 2.38 2.61 3.35 3.75 4.71
Std. Dev. 26.61 32.52 40.61 58.17 70.57 82.60
Max 971 1422 2329 4606 7605 8882

278 Empir Software Eng (2009) 14:262–285

alter_00031

whiptail

perlapi–5.8.8

perl–base

perlapi–5.8.7

alter_00171

debconf–i18n

alter_00239

ttf–bitstream–vera alter_00008

debconf

libgcc1

gcc–4.1–base

libc6

libacl1

libattr1

libatk1.0–0

libglib2.0–0

coreutils

libselinux1

libdb4.4

liblocale–gettext–perllibtext–charwidth–perllibtext–iconv–perl

libtext–wrapi18n–perldebianutils

mktemp

defoma

file

perl

libexpat1

libmagic1

zlib1g

fontconfig

fontconfig–config

libfontconfig1

libfreetype6

ucf

libstdc++6

libgdbm3

tzdata

libgtk2.0–common

libgtk2.0–0

libcairo2libjpeg62

libpng12–0

libx11–6

libxcursor1

libxext6libxfixes3

libxi6 libxinerama1 libxrandr2

libxrender1

libpango1.0–0libtiff4

iceape–mailnews

iceape–browser

libxt6

libmyspell3c2

libxft2

iceape

mozilla

libice6

x11–common

libsepol1

libsm6

libx11–data libxau6libxdmcp6

lsb–base

ncurses–bin

sedlibncurses5

libnewt0.52

libslang2

libpopt0

libpango1.0–common

perl–modules

Fig. 6 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 4.0. mozilla is
the leftmost circle

5.6 Dependencies

Libre software, just like any other type of software, is designed to be modular.
Software reuse is particularly easy in libre software, as there are no economic
constraints: most libre projects can use the results of other libre projects without
having to pay for that privilege. The only requirement is for the license of the
module to be used to be consistent with the license that wants to use it. For example,
GPL-licensed software is able to use a BSD-licensed library without any extra
arrangements. See Rosen (2004) for a discussion of the main libre source licenses
and their compatibility.

As was explained in Section 4, these relationships can be found, in the form
of dependencies, in the Debian distribution. Table 6 summarizes the sizes of the
dependents, one level dependents, dependencies, and one-level dependencies for
the packages in the different releases of Debian. The number of binary packages
in Debian has grown an order of magnitude from version 2.0 to 4.0. At the same time
the mean number of all dependencies has grown at a similar rate: binary packages
are becoming more interrelated.

Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

280 Empir Software Eng (2009) 14:262–285

Table 8 Evolution of the number of all potential subordinates for selected binary packages

Release 2.0 2.1 2.2 3.0 3.1 4.0

libc6 971 1422 2329 4606 7605 8882
perl 78 139 6 662 1419 1662
pythona 19 46 65 160 452 777
apython was known as python-base from 2.0 to 2.2

With respect to the number of subordinates of a package, the story is different.
In this case, the median is zero, meaning that most packages do not have any
subordinates. Yet their average number keeps growing at a rate similar to the growth
of the number of packages in the distribution. This implies that the subordinates of
some packages are growing very fast (a small portion of packages are being used
by a very large number of packages). For example, in Debian 2.0, perl has a total
of 118 subordinates, but in Debian 4.0 it has 11,459. It is also not surprising that
the packages with the largest number of subordinates are libraries (such as libc6,
the GNU C library, which has the largest number of subordinates in every release
of Debian), interpreters (such as perl) or utilities (such as binutils and sed). The
number of potential subordinates can serve as a good indicator of the success of a
library: the more binary packages that depend on it, the more successful it is. Table 7
and 8 show the evolution of the size of the dependencies and subordinates of selected
applications.

In Subsection 5.2 it was highlighted how many of the newer applications are very
small. It is now possible to argue that applications can be smaller because there are
more packages, including libraries, available, upon which they can depend and reuse.
In other words, applications can be smaller, but at the same time they can be more
powerful.

6 Conclusions and Further Research

In this paper we have shown the results of a study on the evolution of the stable
releases of Debian from 1998 to 2007. We have analyzed and presented the evolution
of the size of their source code (measured in lines of source code), the number and
size of their packages, the changed and unchanged packages, the use of programming
languages, and the dependencies between packages.

Of the many findings from this study, one observation in particular stands out:
stable releases double in size (measured by number of packages or by lines of code)
approximately every two years. This, when combined with the huge size of the system
(about 300 MSLOC and 10,000 packages in 2007) may pose significant problems for
the management of its future evolution, something that has probably influenced the
delays experienced for the last stable releases.

During the period under study, the mean size of packages has remained almost
constant, which means that the system has more and more packages, growing linearly
with the size of the system in SLOC. Debian 4.0 has 10 times more packages than
Debian 2.0. In order to cope with this growth, Debian must increase its number
of package maintainers, the number of packages under the responsibility of each

Empir Software Eng (2009) 14:262–285 281

maintainer, or both. Such a growth, however, is not easy to cope with, and causes
problems of its own, especially in the area of coordination.

With respect to the absolute figures, it can be noted that Debian 4.0 is probably
one of the largest coordinated software collections in history, and almost certainly
the largest one in the domain of general-purpose software for desktops and servers.
This means that the human team maintaining it, which has also the peculiarity of
being completely formed by volunteers, is exploring the limits of how to assemble and
coordinate such a huge quantity of software. Therefore, the techniques and processes
they employ to maintain a certain level of quality, a reasonable speed of updating,
and a release process that delivers usable stable versions, are worth studying, and can
for sure be of use in other domains which have to deal with large, complex collections
of software.

As far as programming languages are concerned, C is the most commonly used,
although it is gradually losing its dominance. Scripting languages (Perl, Python,
Shell), C++ and Java are those with a higher growth in the newer releases, whereas
most other compiled languages have even inferior growth rates than C. These
variations also imply that the Debian team has to include developers with skills
in new (for Debian) programming languages in order to maintain the evolving
shares. Although Debian maintainers do not develop the packages themselves, they
must have a detailed understanding of the their internal workings. Consequently,
proficiency in the native programming language is a de facto necessity for them.
By looking at the trends in languages used within the distribution, the project could
estimate how many developers fluent in a given language will be needed. In addition,
the evolution of the different languages can also be considered as an estimate of how
libre software is evolving in terms of languages used, although some of them, such as
Java, are certainly misrepresented.

One of the most surprising results has been the high number of packages that are
present in the latest release exactly as they were in Debian 2.0, 9 years before. In
general, the presence of unchanged packages between any two releases has been
studied in detail, finding that there is a large share of them (with respect to the
common packages, that is, those present with the same name in both releases). This
indicates that a large share of the code in Debian did not require to be maintained
for long periods of time, or maintenance was not performed on it, but the package
still was found to have sufficient quality to be included in the distribution.

Using dependency information, we have shown that packages are highly interre-
lated, and as Debian evolves, the total number of dependencies grows quickly. We
have also seen how packages with the interpreters for some scripting languages, Perl
and Python, are among those being used by more packages, and that the C run time
library, libc6, is being required by almost every package.

From a combination of the dependency information and the study of the size
of the packages, we have learned that the growing number of small packages is
possible because they can use many other components in the distribution. That is,
the modularity of Debian, understood as a large collection of components, is allowing
developers to build powerful, yet small applications, that gain advantage of using tens
of other packages.

In summary, the study of large libre software distributions such as Debian has
proven to be revealing, not only of how they are evolving over time, but also of
how individual applications interact among themselves. The latter finding shows how

282 Empir Software Eng (2009) 14:262–285

these distributions, where applications and libraries are really ready to be used by any
other application, foster the composition and code reuse at a new level. This kind of
result emerges only after studying the system as a whole, although it mainly impacts
how individual applications are built.

As further work, several research lines have been opened by this study. For
example, the evolution of code artifacts shown in it could be put in the context of the
activity of the volunteers doing all the packaging work. While some work has been
done in this area (Michlmayr and Hill 2003), more research needs to be performed
before a link can be established between the evolution of the skills and size of the
developer population, the complexity and size of the distribution, the processes and
activities performed by the project, and the quality of the resulting product. Only by
understanding the relationships between all these parameters, reasonable measures
can be proposed to improve the quality of the software distribution, or to shorten the
release cycle without harming reliability and stability of the releases.

Another promising line is related to the further study of the evolution of depen-
dencies. The trustability of an application depends not only on its own characteristics,
but also on those of all the components (packages, in our case) that it is using.
Therefore, there should be a balance between the convenience of using more and
more external packages, for functionality, modularity and code reuse reasons, and
the convenience of not using too much. Or at least, consider carefully how they
impact on the trustability of the whole application. This balance could be studied
over time, relating the different packages in the dependency set to bug reports and
their relevance.

In general, all studies that relate the kind of analysis shown in this paper to other
sources of information, such as the issue tracking databases of the projects, the
mailing lists used for maintenance of the packages, the usage information available
from the Debian Popularity Contest, etc., will allow for more interesting results. In
the end, if Debian and other distributions are to be conceived as a rich ecosystem,
more research is needed before we can model the relationship between their more
important parameters.

Acknowledgements We thank the anonymous reviewers for their helpful comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Amor JJ, Gonzalez-Barahona JM, Robles G, Herraiz I (2005) Measuring libre software using Debian
3.1 (Sarge) as a case study: preliminary results. Upgrade Magazine, Aug

Gall H, Jazayeri M, Klösch R, Trausmuth G (1997) Software evolution observations based on
product release history. In: Proc intl conference on software maintenance, Bari, October 1997,
pp 160–170

German DM (2007) Using software distributions to understand the relationship among free and open
source software projects. In: 4th international workshop on mining software repositories (MSR
2006), Shanghai, May 2007

German DM, Gonzalez-Barahona JM, Robles G (2007) A model to understand the building
and running inter-dependencies of software. In: Proc. 14th working conference on reverse
engineering, Vancouver, 29–31 October 2007, pp 130–139

Empir Software Eng (2009) 14:262–285 283

Godfrey MW, Tu Q (2000) Evolution in Open Source software: a case study. In: Proceedings of the
international conference on software maintenance, San Jose, 11–14 October 2000, pp 131–142

Gonzalez-Barahona JM, Ortuno Perez MA, de las Heras P, Centeno J, Matellan V (2001) Counting
potatoes: the size of Debian 2.2. Upgrade Mag II(6):60–66, Dec

Lehman MM, Belady LA (eds) (1985) Program evolution: processes of software change. Academic,
San Diego

Lehman MM, Ramil JF (1998) Implications of laws of software evolution on continuing successful
use of cots software. Technical report, Imperial College, June. http://www.doc.ic.ac.uk/research/
technicalreports/1998/DTR98-8.pdf

Lehman MM, Ramil JF (2001) Rules and tools for software evolution planning and management.
Ann Softw Eng 11(1):15–44

Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws of software
evolution—the nineties view. In: METRICS ’97: proceedings of the 4th international symposium
on software metrics, Albuquerque, November 1997, p 20

Mancinelli F, Boender J, di Cosmo R, Vouillon J, Durak B, Leroy X, Treinen R (2006) Managing
the complexity of large free and open source package-based software distributions. In: ASE ’06:
Proceedings of the 21st IEEE/ACM international conference on automated software engineer-
ing. IEEE Computer Society, Washington, DC, pp 199–208

Michlmayr M, Hill BM (2003) Quality and the reliance on individuals in free software projects.
In: Proceedings of the 3rd workshop on open source software engineering, Portland, May 2003,
pp 105–109

Rosen L (2004) Open source licensing: software freedom and intellectual property law. Prentice Hall,
Englewood Cliffs

Succi G, Paulson JW, Eberlein A (2001) Preliminary results from an empirical study on the growth
of open source and commercial software products. In: EDSER-3 Workshop, Toronto, May 2001

Swanson EB (1976) The dimensions of maintenance. In: Proceedings of the 2nd international con-
ference on software engineering, San Francisco, 13–15 October 1976, pp 492–497

Tucker C, Shuffelton D, Jhala R, Lerner S (2007) OPIUM: optimal package install/uninstall manager.
In: ICSE ’07: Proceedings of the 29th international conference on software engineering. IEEE
Computer Society, Washington, DC, pp 178–188

Turski WM (1996) Reference model for smooth growth of software systems. IEEE Trans Softw Eng
22(8):599–600

Wheeler DA (2001) More than a gigabuck: estimating GNU/Linux’s size. June. http://www.dwheeler.
com/sloc/redhat71-v1/redhat71sloc.html

Jesus M. Gonzalez-Barahona teaches and researches in Universidad Rey Juan Carlos, Mostoles
(Spain). His research interests include libre software development, with a focus on quantitative and
empirical studies, and distributed tools for collaboration in libre software projects. He works in the
GSyC/LibreSoft research team, http://libresoft.es.

http://www.doc.ic.ac.uk/research/technicalreports/1998/DTR98-8.pdf
http://www.doc.ic.ac.uk/research/technicalreports/1998/DTR98-8.pdf
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://libresoft.es

284 Empir Software Eng (2009) 14:262–285

Gregorio Robles is Associate Professor at the Universidad Rey Juan Carlos, where he earned his
PhD in 2006. His research interests lie in the empirical study of libre software, ranging from technical
issues to those related to the human resources of the projects.

Martin Michlmayr has been involved in various free and open source software projects for well over
10 years. He acted as the leader of the Debian project for two years and currently serves on the board
of the Open Source Initiative (OSI). Martin works for HP as an Open Source Community Expert
and acts as the community manager of FOSSBazaar. Martin holds Master degrees in Philosophy,
Psychology and Software Engineering, and earned a PhD from the University of Cambridge.

Empir Software Eng (2009) 14:262–285 285

Juan José Amor has a M.Sc. in Computer Science from the Universidad Politécnica de Madrid
and he is currently pursuing a Ph.D. at the Universidad Rey Juan Carlos, where he is also a
project manager. His research interests are related to libre software engineering, mainly effort and
schedule estimates in libre software projects. Since 1995 he has collaborated in several libre software
organizations; he is also co-founder of LuCAS, the best known libre software documentation
portal in Spanish, and Hispalinux, the biggest spanish Linux user group. He also collaborates with
Barrapunto.com and Linux+.

Daniel M. German is associate professor of computer science at the University of Victoria, Canada.
His main areas of interest are software evolution, open source software engineering and intellectual
property.

http://www.Barrapunto.com

	Macro-level software evolution: a case study of a large software compilation
	Abstract
	Introduction
	Libre Software Distributions and Related Research
	Research Questions
	Methodology
	Results and Observations
	Total Size
	Size of Packages
	Maintenance of Packages
	Programming Languages
	File Sizes
	Dependencies

	Conclusions and Further Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

