This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Do Background Colors Improve Program
Comprehension in the #ifdef Hell?

Janet Feigenspan - Christian Kastner -
Sven Apel - Jorg Liebig - Michael
Schulze - Raimund Dachselt - Maria
Papendieck - Thomas Leich - Gunter
Saake

Received: date / Accepted: date

Abstract Software-product-line engineering aims at the development of vari-
able and reusable software systems. In practice, software product lines are
often implemented with preprocessors. Preprocessor directives are easy to use,
and many mature tools are available for practitioners. However, preproces-
sor directives have been heavily criticized in academia and even referred to
as “#ifdef hell”, because they introduce threats to program comprehension
and correctness. There are many voices that suggest to use other implemen-
tation techniques instead, but these voices ignore the fact that a transition
from preprocessors to other languages and tools is tedious, erroneous, and ex-
pensive in practice. Instead, we and others propose to increase the readability
of preprocessor directives by using background colors to highlight source code
annotated with ifdef directives. In three controlled experiments with over 70
subjects in total, we evaluate whether and how background colors improve
program comprehension in preprocessor-based implementations. Our results
demonstrate that background colors have the potential to improve program

Janet Feigenspan, Raimund Dachselt, Maria Papendieck, Gunter Saake
University of Magdeburg
E-mail: {feigensp, dachselt}@Qovgu.de, maria.papendieck@st.ovgu.de, saake@ovgu.de

Christian Késtner
Philipps University Marburg
E-mail: christian.kaestner@uni-marburg.de

Sven Apel, Jorg Liebig
University of Passau
E-mail: apel@uni-passau.de, joliebig@fim.uni-passau.de

Thomas Leich
Metop Research Institute
E-mail: thomas.leich@metop.de

Michael Schulze
pure-systems
E-mail: michael.schulze@pure-systems.com

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

2 Janet Feigenspan et al.

comprehension, independently of size and programming language of the under-
lying product. Additionally, we found that subjects generally favor background
colors. We integrate these and other findings in a tool called FeatureComman-
der, which facilitates program comprehension in practice and which can serve
as a basis for further research.

Keywords Empirical Software Engineering - Software Visualization -
Program Comprehension - Software Product Lines - Preprocessors - Fea-
tureCommander

1 Introduction

Software-product-line engineering provides an efficient means to develop vari-
able and reusable software (Clements & Northrop, 2001; Pohl et al., 2005). Dif-
ferent program variants — variants for short — of a software product line (SPL)
can be generated from a common code base by including or excluding fea-
tures. A feature is a user-visible characteristic of a software system (Clements
& Northrop, 2001). Variable source code that implements a feature is called
feature code, in contrast to base code, which implements the common base
shared by all variants of the product line.

There are many technologies for the implementation of SPLs, from condi-
tional compilation (Pohl et al., 2005), to components and frameworks (Clements
& Northrop, 2001), to programming-language mechanisms such as subjects (Har-
rison & Ossher, 1993), aspects (Kiczales et al., 1997), mixin layers (Smarag-
dakis & Batory, 1998), and to combinations thereof (Apel et al., 2008). Al-
though, in academia, most researchers focus on programming-language mech-
anisms, in practice, companies implement SPLs mostly with conditional com-
pilation using preprocessor directives. There are many examples of industrial
SPLs developed with preprocessors such as HP’s product line Owen for printer
firmware (Pearse & Oman, 1997) (honored as best practice in the Software En-
gineering Institute’s Software Product Line Hall of Fame). Preprocessors are
used to annotate feature code with #ifdef and #endif (or similar) directives,
which are removed before compilation (including the annotated code, when
certain compiler flags are not set).

Preprocessors are popular in industry, because they are simple to use, are
flexible and expressive, can be used uniformly for different languages, and
are already integrated as part of many languages or environments (e.g., C,
C++, Fortran, and Java Micro Edition) (Favre, 1997; Muthig & Patzke, 2003).
However, in academia, many researchers consider preprocessors “harmful” or
even as “F#ifdef hell” (Lohmann et al., 2006; Spencer & Collyer, 1992), because
the flexibility and expressiveness can lead to complex and obfuscated code
that is inherently difficult to understand and can lead to high maintenance
costs (Favre, 1997; Krone & Snelting, 1994; Pohl et al., 2005).!

1 'We discuss problems arising from preprocessor usage in Section 2.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 3

Hence, preprocessor usage potentially threatens program comprehension.
It is imperative to consider comprehensibility of source code, because under-
standing is a crucial part in maintenance: Maintenance programmers spend
most of their time with understanding code (Standish, 1984; Tiarks, 2011;
von Mayrhauser et al., 1997). Furthermore, most of the costs for developing
a software product are caused by its maintenance (Boehm, 1981). Hence, by
ensuring easy-to-understand source code, we can reduce software development
costs.

To increase program comprehension in practice, one could encourage prac-
titioners to use different implementation approaches that modularize feature
code, but introducing novel languages or concepts in industry is a difficult
process, especially when large amounts of legacy code are involved. Therefore,
we target a different question: Is there a way to improve readability of existing
preprocessors to improve program comprehension?

We propose to use background colors to highlight feature code: In a source-
code editor, feature code is displayed with a background color that distin-
guishes feature code from code of other features and base code.

So far, little is known about the influence of background colors on pro-
gram comprehension used in source-code editors. To evaluate whether and
how highlighting feature code with background colors improves program com-
prehension in preprocessor-based software, we conducted three controlled ex-
periments with a total number of 77 subjects. In the first experiment, we
evaluated whether background colors can improve program comprehension in
a preprocessor-based SPL with about 5,000 lines of code and 4 features. We
found that colors can speed up the comprehension process in terms of locating
feature code up to 43 %. In a second experiment, we evaluated whether and
how subjects use background colors when given a choice between background
colors and ifdef directives. We found that subjects preferred background col-
ors. Based on the encouraging results of both experiments, we evaluated in a
third experiment whether background-color usage scales to a large SPL with
over 99,000 lines of code and 340 features. Here, we also found a speed up
of comprehension time in terms of locating feature code of up to 55 % when
using background colors.

The results of our experiments are promising and provide first insights
into the requirements of source-code editors that explicitly support the devel-
opment of variable software with preprocessors. Based on the results of our
experiments, we developed a tool called FeatureCommander (Section 9), which
provides scalable, customizable usage of background colors. With FeatureCom-
mander, we provide a good basis for other research groups to analyze how the
readability of ifdef directives can be improved. Furthermore, we give prac-
titioners a tool that improves program comprehension in preprocessor-based
software, which can save time and costs of software maintenance.

The results of the first experiment have been briefly mentioned in a work-
shop paper motivating empirical research to the SPL community (Feigenspan
et al., 2009). The focus of this paper was not on the experiment, but on the
necessity of empirical research. Furthermore, the results of the third exper-

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

4 Janet Feigenspan et al.

static int __rep_queue_filedone(dbenv, rep, rfp)
DB_ENV *dbenv;
REP *rep;
__rep_fileinfo_args *rfp; {
#ifndef HAVE_QUEUE
COMPQUIET (rep, NULL);
COMPQUIET (rfp, NULL);
return (__db_no_queue_am(dbenv));
9 #else
10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

0O Utk WN

Fig. 1 Code excerpt of Berkeley DB.

iment have been published before with focus on tooling (Feigenspan et al.,
2011b). Additionally, we have published a tool demo of FeatureComman-
der (Feigenspan et al., 2011a), focusing on its functionality, but not on empir-
ical evaluation (see Section 10.1 for more details). In this article, we put the
focus on details of the experiments and put the results in a broader perspec-
tive: Our team, consisting of tool developers, software-engineering researchers,
and psychologists, collected empirical evidence on the influence of background
colors on program comprehension in the context preprocessor-based SPLs for
over two years.

The remainder of the paper is structured as follows: In Section 2, we give an
overview of problems caused by the use of ifdef directives and present possible
solutions. We give an overview of program comprehension and the logic of
experiments in Section 3. In Section 4, we describe the common framework of
our experiments. In Sections 5 to 7, we give a detailed description of the three
experiments we conducted. We put the results of all three experiments in a
broader perspective in Section 8. In Section 9, we present a summary of the
results and the prototype implementation of FeatureCommander. We present
prior and related work in Section 10 and conclude in Section 11.

2 Welcome to the #ifdef Hell

To implement variable source code, practitioners often use ifdef directives,
as illustrated in Fig. 1 with an excerpt of Berkeley DBZ?. Identifying code
fragments annotated with ifdef directives can be problematic, especially when
(1) ifdef directives are fine grained,

2 http://www.oracle.com/technetwork/database/berkeleydb

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 5

(2) ifdef directives are scattered,
(3) ifdef directives are nested, and/or
(4) long code fragments are annotated,

which often occurs in preprocessor-based software (Liebig et al., 2010,
2011).

First, ifdef directives can be ‘hidden’ somewhere within a single statement
at a fine grain. For example, a programmer may annotate a variable or a
bracket. Such annotations are difficult to locate, because they can hardly be
distinguished from ‘normal’ source code. Another problem is that fine-grained
annotations can lead to syntactic errors after preprocessing, because a closing
bracket may be annotated, but not the corresponding opening one. Tracking
these errors at source-code level is difficult, because both brackets are visible
in the source code.

Second, ifdef directives are typically scattered across the code base. In
Fig. 2, we illustrate this problem with a source-code excerpt from the Apache
Tomcat web server, showing session management. Implementing an optional
session-expiration mechanism involves the addition of code and ifdef direc-
tives in many locations. The red background color illustrates the scattering of
feature Session expiration over the complete implementation of session man-
agement, which makes implementing and tracing this feature a tedious and
error-prone task. A developer must take into account all affected modules
when keeping track of the Session-ezpiration feature.

Third, ifdef directives can be nested. For example, in Fig. 1, Lines 13 to
15 are defined within another ifdef directive, starting in Line 5. It might not
be difficult to keep track of a nesting level of two (as in this case), which is
typical for most projects. However, in practice, nesting levels of up to 24 may
occur (Liebig et al., 2010).

Fourth, long code fragments can be annotated, as indicated in Fig. 1:
Line 16 states that over 100 additional lines of code occur, after which the
according #endif of the #ifndef in Line 5 occurs. To keep track of this frag-
ment of feature code, a developer typically has to scroll and, thus, keep in
mind which code fragments belong to the according feature and which do not.
A surrounding annotation might not be visible from the source-code excerpt
shown in an editor.

How can we overcome these problems?

Stairway to Heaven?

To escape the “#ifdef hell”, several approaches have been developed that aim
at improving the readability of preprocessors, for example, by hiding selected
feature code such as in the Version Editor (Atkins et al., 2002), CViMe (Singh
et al., 2006), or C-CLR (Singh et al., 2007) or by annotating features with
colors such as in Spotlight (Coppit et al., 2007) (with vertical bars next to
the code editor), NetBeans (one background color for all features), or CIDE
(a previous tool of our’s, see Section 10.1) (Késtner et al., 2008).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Janet Feigenspan et al.

1dd-poogersdoo-Terioiny-fyoadse /suoryeoryqnd /yrur /810 susystoy / /:dyyy

ippoadsy UO [RLIOIN) B WOI ST 2INSY SIYJ, "OP0d 92IN0S UOIjeIIdXe-uoIssos Jo Surreljeds SuljeIsnI 9pod ddInos jeowo], opedy g -Sig

1afBeuepuolssagianiag
uolssasianIes

JaBeuepuo|ssagplepuels JaBeuepplepuels 10ydaalauiuolssas =

uojssagplepuels uojssaguoljed|ddy

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 7
1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET (rep, NULL);
7 return (__db_no_queue_am(dbenv)) ;
8 Htelse
9 db_pgno_t first, last;
10 u_int32_t flags;
11 int empty, ret, t_ret;
12 #ifdef DIAGNOSTIC
13 DB_MSGBUF mb;
14 #endif
15 // over 100 lines of additional code
16 #endif
17 }

Fig. 3 Excerpt of Berkeley DB with background colors to highlight feature code. Lines 5
to 16 are yellow, Lines 12 to 14 orange.

In Fig. 3, we illustrate how background colors can be used to annotate
source code. All source-code lines that are annotated are displayed with a
background color. Code of feature HAVE_QUEUE (Lines 5 to 16) is annotated
with yellow background color. The according else directive (Line 8) has the
same color, because the according annotated code is also relevant for this
feature. Code of feature DIAGNOSTIC (Lines 12 to 14) is annotated with
orange. In this example, we see how we deal with nested code: We display the
background color of the inner feature DIAGNOSTIC, which is orange. In an
early prototype, we blended the colors of all features that are nested. However,
this would introduce more colors than necessary and make distinguishing code
of different features more difficult. Additionally, with a deeper nesting level it
becomes difficult to recognize all involved features, because the blended colors
would result in a shade of gray.

With background colors, we use a highlighting technique that supports
users in finding relevant information (Fisher & Tan, 1989; Tamborello & Byrne,
2007). Highlighting emphasizes objects that users might look for, such as menu
entries or certain code fragments. It can be realized with different mechanisms,
such as blinking or moving an object. In past work, colors have been shown
to be effective for classifying objects into separate categories and can increase
the accuracy in comprehension tasks (Chevalier et al., 2010; Fisher & Tan,
1989; Ware, 2000).

The benefit of colors compared to text-based annotations is twofold: First,
the background colors clearly differ from source code, which helps distinguish
feature code from base code. Second, humans process colors preattentively®
and, thus, considerably faster than text (Goldstein, 2002). This allows a pro-

3 Preattentive perception is the fast recognition of a limited set of visual properties (Gold-
stein, 2002).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

8 Janet Feigenspan et al.

grammer to identify feature code at first sight and distinguish code of different
features. As a consequence, a programmer should be able to get an overview
of a software system considerably faster.

Based on the comparison of the code fragments in Fig. 1 and 3, one could
intuitively argue that one approach is better than the other or that both should
be combined. For example, one could argue that colors are distracting (Fisher
& Tan, 1989) or do not scale for large SPLs, or colors do improve program
comprehension due to preattentive perception (Goldstein, 2002). So, we can
discuss both benefits and drawbacks of colors, and the effect of background
colors is not as obvious as it may appear at first sight. However, since pro-
gram comprehension is an internal cognitive process, we can only assess it
empirically (Koenemann & Robertson, 1991) — plausibility arguments are not
sufficient. Hence, to answer whether background colors improve the readability
of preprocessor directives, we need to conduct controlled experiments. In this
paper, we evaluate in three controlled experiments, whether

- background colors improve program comprehension at all (Ezperiment 1),
- subjects use background colors when given the choice (Ezperiment 2), and
- the use of background colors scales to large product lines (Ezperiment 3).

3 Measuring Program Comprehension

To evaluate how background colors influence program comprehension, we have
to take care of two things: First, we have to measure program comprehension
and, second, we have to control confounding variables for program compre-
hension. In this section, we explain how we can take care of both. Readers
familiar with empirical work may skip this section. It is aimed to support re-
searchers and practitioners of the SPL community who might not be familiar
with empirical research.

3.1 Program Comprehension Measures

Program comprehension is an internal cognitive process, which means that it
cannot be observed directly (Koenemann & Robertson, 1991). To understand
the complexity of program comprehension, we give a short introduction. Typ-
ically, models of program comprehension describe top-down, bottom-up, and
integrated comprehension. Top-down comprehension is used when a program-
mer is familiar with a program’s domain (e.g., operating systems). Beacons
(i.e., familiar code fragments or identifiers) help to form an understanding
of source code (Brooks, 1978). Using top-down comprehension, a developer
forms a general hypothesis of a program’s purpose and refines this hypothe-
sis by analyzing source code in more and more detail. Examples of top-down
models are described by Brooks (1978), Shaft & Vessey (1995), and Soloway &
Ehrlich (1984). If a developer has no domain knowledge, she uses a bottom-up
approach, which means she analyzes the source code statement by statement.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 9

She groups source-code fragments into semantic chunks and — by combining
these chunks — generates hypotheses about a program’s purpose. Examples
of bottom-up models can be found in Pennington (1987) and Shneiderman
& Mayer (1979). Typically, a developer uses top-down comprehension where
possible and switches to bottom-up comprehension where necessary. This be-
havior is described by integrated models, for example, by von Mayrhauser
et al. (1997) and von Mayrhauser & Vans (1995).

Program comprehension is a rather complex process for which we have
to find a reliable measure to assess it. Several methods to measure program
comprehension have been proposed in the literature, for example, think-aloud
protocols (Someren et al., 1994) or tasks that can be solved only if a program-
mer understands a program. Typical kinds of such tasks include static tasks
(e.g., examine the structure of source code), dynamic tasks (e.g., examine the
control flow), and maintenance tasks (e.g., fix a bug), as summarized by Dun-
smore & Roper (2000). Furthermore, we need to choose a concrete measure
for a task, such as response time or correctness of a solution (Dunsmore &
Roper, 2000).

In our experiments, we use static and maintenance tasks and analyze re-
sponse times and correctness of solutions. We use static tasks, because locating
feature code is one major part of comprehending source code annotated with
ifdef directives. For example, in Fig. 2, we can see that source code of feature
Session expiration is scattered over the complete software system. Hence, lo-
cating all occurrences of this feature is one important step in comprehending
this feature (e.g., when we are searching for a bug that we know is related to
feature Session expiration). We decided to use maintenance tasks, because, if
subjects could offer a solution for a bug, then program comprehension must
have taken place. Additionally, a lot of experiments described in the literature
use tasks, as well, so we can relate our results to other experiments (e.g., Boy-
sen (1977); Hanenberg (2010); Prechelt et al. (2002)).

3.2 Rationale of Experiments

When conducting experiments, confounding variables need to be controlled.
Confounding variables influence program comprehension in addition to the in-
tended variables (in our case, the kind of annotation, either background colors
or ifdef directives). Examples are the programming experience of subjects or
the underlying programming language. Both may bias the results and can lead
to a false outcome.

Confounding variables threaten the wvalidity of results if not handled cor-
rectly. Two kinds of validity are typically considered: Internal (the degree to
which we have controlled confounding variables) and external validity (the gen-
eralizability of results). In our experimental settings, we maximize internal va-
lidity, so that we can draw sound conclusions from our results. For example, we
keep the influence of confounding parameters on program comprehension con-
stant (e.g., programming experience, domain knowledge). As a consequence,

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

10 Janet Feigenspan et al.

we can attribute the measured differences regarding program comprehension
to the different kinds of annotation. However, at the same time, this focus on
internal validity limits external validity. For example, in the first experiment,
we measure the influence of annotations for specific tasks in a specific pro-
gram with only four features in a specific domain with students. To be able to
generalize the results to other tasks, domains, programs at different scales in
different programming languages, or professional programmers, further inves-
tigations are necessary. Our experiments and tool FeatureCommander can be
the basis for such follow-up experiments.

Another reason for focusing on internal validity and not conducting more
experiments with high external validity is the feasibility (Hanenberg, 2010;
Tichy, 1998). Preparing and designing experiments requires considerable ef-
fort: We have to identify and control confounding variables, design the experi-
mental material and tasks, for which we needed several months and a master’s
thesis (Feigenspan, 2009), only for the first experiment. We had to find appro-
priate subjects (i.e., who are familiar with SPL and preprocessor directives).
In our case, we were rather lucky, because one co-author offers an advanced
programming-paradigm lecture at his university, from which we could recruit
our subjects.

Hence, replicating experiments with slightly modified settings requires of-
ten too much effort for one research group. Instead, it is reasonable and nec-
essary to publish results even with a narrow scope, because it makes other
research groups aware of interesting topics. It is necessary to motivate other
research groups to conduct experiments on the same topic, because they may
have the resources or suitable subjects or ideas to extend the results obtained
in one experiment.

To enable researchers to replicate experiments and to check how well
threats to validity have been controlled, the experimental design, conduct,
analysis, and interpretation have to be presented in sufficient detail. Some re-
dundancy is necessary, especially when describing three experiments. In the
next sections, we give an overview of all three experiments and present our
them in a proper detail. Material of all three experiments is available online.*

4 Family of Experiments

In this paper, we present three controlled experiments that analyze whether
and how background colors can improve the readability of preprocessor direc-
tives. Each experiment focuses on a different aspect of background-color usage.
By putting the results of all three experiments together, we aim at providing
a deeper understanding of the effect of background colors on program compre-
hension in preprocessor-based SPLs. For a better overview, we describe each
experiment using the goal-question-metric approach in Table 1 (Basili, 1992).

The focus of the first and third experiment lies on program comprehension,
whereas the focus of the second experiment lies on the behavior of subjects,

4 http://fosd.net/experiments

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 11

GQM Experiment 1 Experiment 2 Experiment 3

Analyze Background colors Background colors Background colors

Purpose Evaluation Evaluation Evaluation

With respect to Program comprehen- Use of opportunity to Program comprehen-
sion switch sion

Point of view Developer Developer Developer

Context Medium preprocessor- Medium preprocessor- Large preprocessor-
based SPLs based SPLs based SPLs

Table 1 Description of all three experiments using the goal-question-metric approach. We
emphasized differences of experiments.

i.e., how subjects use the opportunity to switch between background colors
and preprocessor directives. The context of the first and second experiment is
on medium-sized SPLs, whereas the last experiment uses a large SPL. In all
other criteria of the goal-question-metric approach, the experiments are the
same. Due to this small delta between the experiments, we can thoroughly
investigate the effect of background colors on the readability of preprocessor-
based software.

Combining the results of all three experiments lets us draw conclusions
about the scalability of background-color usage. Since in the first experiment
we showed improvements of program comprehension using a medium-sized
SPL, and in the third experiment we also showed an improvement, but using
a large SPL, we showed a scalable use of background colors. Although we have
no results for a small SPL, we argue that we would observe an improvement
in program comprehension, too, because the limits to human perception are
stressed even less.

To avoid threats to validity of our results by introducing learning or mat-
uration effects, we recruited different subjects for the first two experiments.
In the third experiment, one subject participated who also took part in the
second experiment. However, since we had different research hypotheses and
different material, we argue that no learning or maturation effects could have
occurred.

In the next sections, we present each experiment in detail. The detail is the
greatest for the first experiment, because we need to introduce the material,
setting, and tasks. In the subsequent experiments (Sections 6 and 7), we focus
more on the differences of the experiments to the first experiment. Neverthe-
less, the description may seem redundant. However, we aim at providing as
much detail as possible to enable other researchers to replicate any of the three
experiments. To put the results of all three experiments in a broader perspec-
tive, we explain our conclusions based on all three experiments in Section 8.

5 Experiment 1: Can Colors Improve Program Comprehension?

In this section, we present the design of our first experiment. In a nutshell,
we evaluated whether background colors improve program comprehension in

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

12 Janet Feigenspan et al.

preprocessor-based SPLs compared to ifdef directives, by means of a medium-
sized® Java-based SPL with four optional features. We found that, for locat-
ing feature code, background colors significantly speed up the comprehension
process, but also that unsuitable background colors can slow down program
comprehension. In the next sections, we describe our experiment, including de-
sign, conduct, analysis, and interpretation in detail. For all three experiments,
we use the guidelines presented by Kitchenham et al. to present empirical
studies (Kitchenham et al., 2008).

5.1 Experiment Planning
5.1.1 Objective

The objective of this experiment is to evaluate the effect of background col-
ors on program comprehension in preprocessor-based SPLs. We expect that
colors indeed improve program comprehension because of two reasons: First,
background colors clearly differ from source code, which allows a human to
easily locate feature code (which is annotated with a background color) and
tell it apart from base code (which has no background color). Second, humans
process colors preattentively, which means that they do not have to turn their
attention to the perceptions process (Goldstein, 2002). Hence, the perception
process is very fast, so that humans can spot a color at first sight. However,
if the number of colors gets too large, humans have to turn their attention
to identify them. So, at least for an SPL with a small number of features,
we expect that background colors allow subjects to locate feature code faster,
compared to conventional ifdef directives. Hence, we restrict our evaluation to
a medium-sized SPL with only a few features.

We distinguish static tasks, in which subjects should locate feature code,
and maintenance tasks, in which subjects should identify a bug. Since in main-
tenance tasks, subjects should spend most of their time with closely examining
code fragments, we do not expect a strong improvement by colors.

Additionally, both annotations provide the same amount of information,
that is, information about feature code and to which feature it belongs. Hence,
we do not expect a difference in correctness of answers, but only in response
time. Thus, we state the following research hypotheses for medium-sized SPLs:

RH1: In static tasks, colors speed up program comprehension compared to
ifdef directives.

RH2: In maintenance tasks, there are no differences in response time between
colors and ifdef directives.

RH3: There are no differences in the number of correctly solved tasks between
colors and ifdef directives.

Another hypothesis is based on an observed mismatch between actual and
perceived performance (Daly et al., 1995) and empirical evidence that subjects

5 Size is between 900 and 40,000 lines of code (von Mayrhauser & Vans, 1993).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 13

like the idea of combining colors and source code (Rambally, 1986). In a study,
Daly et al. (Daly et al., 1995) found that subjects estimated their performance
worse than it actually was, when they worked with a source-code version they
did not like. We expect that subjects like the color idea and that this influences
their estimation of performance. Hence, our fourth research hypothesis is:

RH4: Subjects estimate better performance with background colors than with
ifdef directives.

Next, we present the material we used to evaluate our research hypotheses.

5.1.2 Experimental Material

For the first experiment, we decided to use source code that is implemented in
Java, because we had the opportunity to work with a large group of subjects
experienced with Java. Furthermore, variability is also required in Java and
sometimes conditional compilation is used for product-line development, es-
pecially in the domain of embedded and mobile devices, using the Java Micro
Edition — a Java version developed for embedded devices (Riggs et al., 2003).

As material, we used the medium-sized SPL MobileMedia for manipulat-
ing multi-media data on mobile devices, which was developed by Figueiredo et
al. (Figueiredo et al., 2008). It is implemented in Java with the Java ME pre-
processor Antenna, which provides ifdef directives like the C preprocessor, but
requires that ifdef directives are stated in comments, so that they do not in-
terfere with the Java syntax in existing editors. MobileMedia is well designed,
code reviewed, and provides a suitable complexity for our study with about
5,000 lines of code in 28 classes and four optional features (SMSFeature, Copy-
Photo, Favourites, CountViews).® On three occurrences, two features (i.e.,
SMSFeature and CopyPhoto) share code, which is included for compilation
if at least one of both features is selected. MobileMedia is neither too small,
so subjects could understand it after the first task, nor too large, so subjects
spend their time sifting through source code that is irrelevant for a task. Ad-
ditionally, this size (i.e., four features) ensures preattentive color perception,
which is necessary to test our hypotheses.

From the original source code annotated with ifdef directives (referred to
as ifdef version), we created a version that uses background colors (referred
to as color version) instead of ifdef directives. The decision not to combine
background colors and ifdef directives may seem puzzling at first. However, to
the best of our knowledge, there is no prior empirical work regarding the effect
of colors on program comprehension in the context of preprocessor-based SPLs
on which we can base our experiment. Thus, to not confound the effect of text
and background colors, we explicitly compare the two extremes of pure textual

6 MobileMedia was developed in eight releases, from which we took the fifth, because
it offered the best balance between size and complexity for our experiment. We omitted
9 exception classes and 2 small features for different screen resolutions, because they are
irrelevant for understanding the source code and fixing the bugs.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

14 Janet Feigenspan et al.

annotations versus pure graphical annotations with background colors.” In our
third experiment, we combine both kinds of annotation.

For code fragments that were shared by the features SMSFeature and Copy-
Photo (see Fig. 3 for an example of shared/nested code), we selected a sepa-
rate color. We selected the following bright and clearly distinguishable colors
as background colors:

— SMSFeature: Fed(Tgh:255-127-127)

— CopyPhoto: bluel(Tgh127=127-255)

— Favourites: yellow (rgb: 255-255-127)

CountViews: orange (rgb: 255-191-127)

— SMSFeature & CopyPhoto: FiolCHNEEDRI0ES5270)

The color selection is not optimized for avoiding visual fatigue or for color
blindness. Instead, we selected the colors such that they are clearly distinguish-
able. At the time we designed this experiment, we did not consider guidelines
for choosing color palettes (e.g., Levkowitz & Herman (1992); Rice (1991);
Wijffelaars et al. (2008)). However, for the third experiment, we took ex-
isting guidelines into account (cf. Section 7.1.2). Nevertheless, since we are
exploring whether background colors can improve program comprehension in
preprocessor-based SPLs at all, and the chosen colors are clearly distinguish-
able, the color selection is suitable to test our hypotheses.

To exclude the influence of tool support (such as navigation support, out-
line views, code folding, etc., with which some subjects may be more familiar
than others), we created an HTML page for each source-code file with the
default Eclipse syntax highlighting and presented it in a browser (Mozilla
Firefox). Furthermore, searching functionality could be provided for both tex-
tual annotations and colors with proper tool support, but we decided to forbid
search to exclude this influence of tool support as well. Again, we ensure a high
degree of internal validity this way. To present the tasks to subjects and collect
their answers, we used a web-based survey system.

To evaluate our last hypothesis, whether subjects prefer the color version
over the ifdef version (RH4), we gave subjects a paper-based questionnaire
at the end of the experiment, in which they should evaluate their motivation
to solve the task and whether their performance would have increased with
the other version of the source code, both on a five-point Likert scale (Likert,
1932). Additionally, we encouraged subjects to leave remarks (e.g., about the
experimental setting), in this and the other experiments, as well.

5.1.8 Subjects

We recruited 52 students from the University of Passau in Germany who
were enrolled in the 2009 graduate course Modern Programming Paradigms
(German: Moderne Programmierparadigmen). We chose this course, because
students were introduced to SPLs and according implementation methods (in-
cluding an assignment on preprocessor-based implementations). This way, we

7 In the source code, there is no #else combination of ifdef directives, so it was always
clear from the background colors that feature code concerned selected features.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 15

did not have to train the subjects specifically for this experiment, but they
learned the necessary information in the lecture. Students were required to
participate in our experiment to finish the course, which could have influenced
their motivation. However, for all tasks, we found a medium to high motiva-
tion (determined by the questionnaire). Subjects could enter a raffle for a gift
card (30 Euros). In this and the other two experiments, as well, all subjects
were aware that they participated in an experiment, that their performance
does not affect their grade for the course, and that they could leave any time.
Since programming experience is a major confounding parameter for pro-
gram comprehension, we measured and controlled it. To this end, we admin-
istered a programming-experience questionnaire six weeks before the experi-
ment, in which a low value (minimum: 5) indicates no experience, a high value
(over 60 — the scale is open-ended) high programming experience (see Feigenspan
(2009) for details on the questionnaire). We used the value of the questionnaire
to create homogeneous groups regarding programming experience (for the re-
maining experiment as well). To ensure genuine answers, we anonymized our
subjects, such that the answers in the questionnaire (or the experiment) can-
not be traced back to the identity of subjects. Additionally, we asked with
which domains subjects were familiar and whether subjects were color blind.
One color blind subject worked with the ifdef version of the source code.
For our analysis, we had to exclude nine subjects who did not complete the
programming-experience questionnaire or did not complete it genuinely (which
was obvious from the answers). Hence, our sample consisted of 43 subjects.

5.1.4 Tasks

For assessing program comprehension, we designed two static tasks (S1, S2)
and four maintenance tasks (M1-M4).

In static tasks, subjects should locate feature code. In the first static task
(S1), subjects should, for each feature, locate all files containing feature code
and mark the results on a sheet of paper (referred to as grid template). It
showed the relationship of code to features in a matrix, such that the columns
contained the file names, and the rows the feature names. For the color ver-
sion, the feature names of the grid template had the same background color
as in the source code, whereas for the ifdef version, the grid template had
no background colors. In the second static task (S2), subjects should locate
shared code (i.e. code that concerned more than one feature, e.g., SMSFeature
& CopyPhoto). Locating feature code is a typical task for a developer, when
she is familiarizing herself with an SPL. Furthermore, a developer is often look-
ing for feature code when solving a bug, because bugs can often be narrowed
down to certain features or feature combinations. Especially, combinations of
features are of interest in the implementation of SPLs, since they can represent
feature interactions that are especially difficult to get right (Kéastner, 2010).

For all maintenance tasks, we carefully introduced different bugs into the
source code, which were all located in annotated code fragments. In a pre-test
with 7 students, we selected bugs that were neither too easy nor too difficult to

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

16 Janet Feigenspan et al.

find. Four bugs matched our criteria, which we ordered by increasing difficulty
according to the results of our pre-test. For each bug, subjects received a bug
description similar to the ones users would enter in a bug-tracking system.
The description also named the feature in which the bug occurs. This assured
that we evaluate the influence of background colors, because subjects focus on
feature code and, thus, background colors, instead of spending their time in
non-annotated code fragments. For each task, subjects should locate the bug
(name class and method), explain why it occurs, and suggest a solution. Using
this information, we judged whether the cause of a bug was located correctly.

As an example, we present the bug description of the first maintenance
task:

M1: If pictures in an album should be sorted by views, they are displayed
unsorted anyway. Feature, in which the bug occurs: CountViews.

The bug was located in the class PhotoListController and caused by an
empty method body of bubbleSort.

In addition to the six tasks, we designed a warming-up task to let subjects
familiarize with the experimental setting (subjects should count the number
of features of MobileMedia). The result of this task was not analyzed.

5.1.5 Design

To evaluate our research hypotheses, we used a between-subjects design, which
means we split our sample in two groups and compared the performance be-
tween both groups, the ifdef group (21 subjects) and the color group (22 sub-
jects). The ifdef group worked with the ifdef version, the color group worked
with the color version of the source code. To assure that both groups are com-
parable, we matched both groups according to the value of the programming
experience questionnaire, age, and gender. One subject was color blind and
assigned to the ifdef group.

5.1.6 Conduct

The experiment took place in June 2009 in Passau during a regular lecture
session in a room with about 50 computer working stations. All computers
had Linux as operating system and 19” TFT screens. We started with an
introduction, in which we recapitulated relevant terms regarding preprocessors
and background colors as annotation. After all questions were answered, each
subject was seated at a computer and started to work on the tasks on her
own. Each task had the same structure: First, the task was introduced and
it was explained what we expected from the subject. Second, when subjects
were clear on the instructions, they displayed the next page with the concrete
task. Only the latter part was measured as response time.

The experiment (and the remaining two, as well) lasted about two hours,
including the introduction. Subjects worked by themselves during that time,
including the decision to move on the next task. If subjects completed all tasks,

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 17

they could leave quietly without disturbing the others. After the two hours
were over, subjects were not allowed to finish the tasks. Three experimenters
regularly checked that subjects worked as planned without using additional
tools such as the search function of the browser. A few weeks after the exper-
iment, subjects were told the correct answers of the tasks in a lecture, as well
as some information about the purpose and results of the experiment.

5.1.7 Deviations

Despite all careful planning, deviations occurred, which is common for every
experiment. Hence, it is important to describe deviations, so that the reader
can take them into account when interpreting our results. Additionally, other
researchers who plan to replicate the experiment are prepared and can avoid
these deviations.

For one subject of the color group we had no grid template, so she worked
with a grid template of the ifdef group instead (in which the features had no
background colors). Furthermore, some subjects arrived late and were seated
in another room to not disturb the others. In order not to jeopardize their
anonymity, we decided not to track them. Our sample is large enough to
compensate for these deviations.

In addition, for estimating performance with the other version at the end
of the experiment, we forgot to include the last task, because we had one task
less in the pre-test. As soon as we noticed that, we asked subjects to evaluate
the seventh task on the sheet of paper. Unfortunately, some of the subjects
had already left the room at that time, so we only have the opinion for that
task of 13 subjects of the ifdef group, and 16 subjects of the color group. We
discuss the influence of all deviations on our results in Section 5.4.

5.2 Analysis

In this section, we present the analysis of our data. It is necessary to strictly
separate data analysis from interpretation (which follows in Section 5.3), so
that a reader can draw her own conclusions of our data and other researchers
replicating our experiments can compare their data with ours.

5.2.1 Descriptive Statistics

The descriptive statistics of response times and correct solutions can be found
in Fig. 4% and 5. The differences in response time are the largest for the first
task (ifdef: 12 minutes, color: 7 minutes) and last task (ifdef: 15 minutes, color:
23 minutes). Furthermore, the last task took the most time to complete.

8 Fig. 4 uses a boz plot to describe data (Anderson & Finn, 1996). It plots the median
as thick line and the quartiles as thin line, so that 50 % of all measurements are inside the
box. Values that strongly deviate from the median are outliers and drawn as separate dots.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

18 Janet Feigenspan et al.
S1-ifdef - o F--L F---4 o o ° 12.3£5.9
Sl1-color F”’l:ljffﬁ 7.1+3.5
S2-ifdef — k- -4 6.2+2.3
S2-color 4 *- -4 4.741.9
M1-ifdef 4 +--{1]----+4 ° 7.215.4
Ml-color -{ +--I}----- 1 6.9+3.4
M2-ifdef — F**[E}‘**% o o 5.9+4.7
M2-color -{ +-{_]---+ 5.7+3.2
M3-ifdef | +-[T]---4e 6.6£2.9
M3-color —| I N e 1 o 7.8%5.3
M4-ifdef s B N e 1 14.7+8.8
M4-—color bomomoooees I B SEEEEEEEEEE 1 23.4%9.6
\ \ \ \ T I
0 10 20 30 40 50
min

Fig. 4 Experimentl: Response times for static (S1-S2) and maintenance tasks (M1-M4).
Colored/gray boxes refer to the color group. Numbers on the right denote mean + standard
deviation.

Regarding correct solutions, we can see in Fig. 5 that most errors occurred
for static tasks. Moreover, the difficulty of the maintenance tasks seems to
increase for the last tasks.

For the estimation of performance with the other version (cf. Section 5.1.6),
subjects who worked with the ifdef version thought that they would have
performed equivalently or better with the color version (medians for each task
vary from 3 to 5), and subjects who worked with the color version thought
they would have performed worse with the ifdef version (medians are 2 for
each task).

5.2.2 Hypotheses testing

To evaluate our research hypotheses, we applied a number of statistical tests.
They indicate whether an observed difference is significant or more likely to
be caused randomly (Anderson & Finn, 1996). Based on a probability value
or significance level (p value), hypotheses are rejected (> 0.05, i.e., observed
difference occurred randomly) or accepted (< 0.05, i.e., observed difference is
statistically significant).

To test RH1 and RH2 (response times for static/maintenance tasks),
we conducted a Mann-Whitney-U test (Anderson & Finn, 1996), because

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 19

0% 20% 40% 60% 80% 100%

14

ifdef
color
ifdef
color
ifdef
color
ifdef
color
ifdef
color
ifdef
color

S1

10
9
8

S2

M1

M4 | M3 | M2

@ Correct O Incorrect

Fig. 5 Experimentl: Frequencies of correct solutions.

the response times are not normally distributed (as revealed a Shapiro-Wilk
test (Shapiro & Wilk, 1965)). Since the correctness of a solution can have an
influence on response time (e.g., a subject may deliberately enter a wrong so-
lution just to be faster (Yellott, 1971)), we omitted response times for wrong
answers. Our sample is large enough to compensate the missing cases. The ob-
served differences for both static tasks regarding response time are significant,
such that subjects who worked with the color version were faster (S1 & S2:
p < 0.001). Hence, we can accept our first research hypothesis. To have a better
impression of the size of the effect, we also computed the effect sizes for both
tasks. Since we used a non-parametric test, we computed Cliff’s delta (Cliff,
1993). For S1, Cliff’s Delta is -0.61, indicating a large effect. For S2, the value
is -0.39, which indicates a medium effect.

For three of the four maintenance tasks, we found no significant differences
in response time. For the last maintenance task (M4), subjects with the color
version were significantly slower than subjects with the ifdef version (M4:
p < 0.04). Thus, we reject our second research hypothesis. Cliff’s Delta for the
last maintenance task is 0.49, indicating a large effect.

For the number of correctly solved tasks (RH3), we conducted a x? test (An-
derson & Finn, 1996), which checks whether the observed frequencies signif-
icantly differ from expected frequencies under the assumption that the null
hypothesis is valid (i.e., that no differences between number of correct answers
exist). We found no significant differences in the correctness for any task.
Hence, we can accept our third research hypothesis.

For the estimation of performance with the other version (RH4), we con-
ducted a Mann-Whitney-U test (because the data are ordinally scaled) and
found significant differences for all tasks in favor of the color version (p < .013

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

20 Janet Feigenspan et al.

for M4, p < 0.001 for all other tasks). Hence, we can accept our last research
hypothesis.

5.3 Interpretation

RH1 Response time for static tasks: Regarding static tasks, we can accept that
colors speed up program comprehension in preprocessor-based SPLs, compared
to ifdef directives, because the observed differences in response time for both
static tasks are significant. In S1, the speed up is 43 %, in S2 it is 25 %. The
effect sizes indicate a large (S1) and medium (S2) effect, showing that not
only the size of our sample lead to a significant difference. We can explain this
difference with the preattentive color perception, compared to attentive text
perception (Goldstein, 2002). Subjects of the color group have to look only for
a color, not read text to solve these tasks. However, the benefit in S2 is smaller
than in S1. We suspect two reasons responsible for the difference between S1
and S2: First, when subjects searched for shared code in S2, they had already
familiarized themselves with the source code in the warming-up task and in
S1. Second, in S1, subjects that worked with the color version could simply
check whether a background color was present in a class at all and then mark
it in the grid template accordingly. However, in S2, they additionally had to
discriminate different background colors, not only recognize the presence of a
background color. Both reasons could lead to the decrease in the performance
benefit for S2. In summary, when a developer needs to get an overview of an
SPL, background colors can speed up the familiarization.

RH2 Response time for maintenance tasks: For the first three maintenance
tasks, there is no significant difference in response times. However, for the last
maintenance task, subjects of the color group were significantly slower (35 %)
than subjects of the ifdef group. Cliff’s Delta shows a large effect, indicating
the importance of this difference. Hence, we cannot accept our second research
hypothesis.

To understand what could have caused the slow-down, we take a closer
look at how the last maintenance task differs from the other three main-
tenance tasks. Therefore, we examine the location of the bug of M4: class
SmsSenderController. Since the entire class belongs to the feature SMSFea-
ture, it is entirely annotated with a red background in the color version. This is
in contrast to the other bugs, where only small parts of a class were annotated,
none of them with red. When looking through the comments subjects were en-
couraged to leave, we found that some subjects criticized the annotation with
red in this task.

We conclude that colors can also negatively affect program comprehension
if not chosen carefully (i.e., if they are too bright and saturated). Consequently,
we have to carefully consider which colors to use, because an unsuitable color
(e.g., saturated red) can make the source code difficult to read or cause visual
fatigue, which can negatively affect program comprehension.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 21

RHS3 Correctness of solutions: Although subjects of the color group performed
slightly better in most tasks and solved more tasks correctly (cf. Fig. 4), this
difference is not significant. Since both kinds of annotation provide information
about feature code and the feature to which it belongs, subjects are enabled
to correctly solve our tasks, independently of the kind of annotation. The kind
of annotation only influences the response time.

RH Estimation of performance: Almost all subjects who worked with the
ifdef version estimated that they would have performed better with the color
version, whereas subjects who worked with the color version thought they
would have performed worse with the ifdef version. This counts even in the
last task, in which subjects of the color group were significantly slower than
subjects of the ifdef group. Hence, we found a strong effect regarding subjects’
estimation that is in contrast to subjects’ actual performance. When looking
through the comments of subjects, we found that some subjects of the color
group were happy to get to work with it, whereas some subjects of the ifdef
group wished they had worked with the color version. This could explain the
difference in estimating the performance, because some subjects liked the color
version better, which they reflected to their performance.

5.4 Threats to Validity
5.4.1 Internal validity

Some threats to internal validity are caused by the deviations that occurred (cf.
Section 5.1.6). However, to assure anonymity of our subjects, we did not retrace
the deviations to the subjects. Our sample is large enough to compensate the
deviations. They may have intensified or weakened the differences we observed,
but they were too small compared to our large sample to significantly bias our
results.

A further threat to internal validity is caused by our programming-experience
questionnaire. Since no commonly accepted questionnaire to measure program-
ming experience exists, we designed our own. Hence, we cannot be sure how
well we have measured programming experience. However, we constructed the
questionnaire with the help of programming experts and a literature review
(cf. Feigenspan (2009) for more details), so we can assume that we measured
programming experience well enough for our purpose.

Another threat might be the different reading times of the subjects. To
diminish this threat, we split the task description in two parts, such that we
first explained the general settings of the task and what we expect from them,
and when subjects were clear on these instructions, they could display the
actual task. Only the time of the actual task is measured as response time.
Additionally, the description of the actual tasks were kept as short as possible,
such that subjects knew what to do, but had not to read too much text. Hence,
we argue that the reading time of subjects did not significantly influence the
outcome.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

22 Janet Feigenspan et al.

5.4.2 External validity

In this experiment, we maximized internal validity to feasibly and soundly
measure the effect of different annotations on program comprehension in pre-
processor-based SPLs. Thus, we deliberately accepted reduced external valid-
ity as tradeoff for increased internal validity (cf. Section 3.2). In the experi-
ments to follow, we generalize our experimental settings based on sound results
to increase external validity.

One important issue is the selection of colors. We selected the colors, be-
cause they are clearly distinguishable for subjects. If we chose other colors
(e.g., less saturated), we could have received different results (e.g., no signifi-
cant differences for the last maintenance task). However, we wanted to make
sure that colors are easily perceived and distinguished by subjects. In our third
experiment (Section 7), we use different color settings to generalize our results
regarding the use of colors and find optimal colors for highlighting feature
code.

Another important aspect of our experiment, which influences external
validity, is whether colors scale for a large number of features. Since we had
an SPL with only four features, we cannot generalize our results to larger
SPLs. To address this threat, we conducted the third experiment, which we
explain in Section 7. Next, we evaluate whether subjects prefer colors over
ifdef directives when given the choice.

6 Experiment 2: Do Subjects Use Colors?

The results of our first experiment indicate that subjects like the color idea,
but that carelessly chosen colors are disturbing (as some subjects noted) and
can slow them down. This indicates that different kinds of annotations might
be suitable for different tasks, and we should offer developers the opportu-
nity to switch between them as needed for the task at hand. Hence, instead
of evaluating whether background colors affect program comprehension, we
evaluated whether developers would use the option to switch between back-
ground colors and ifdef directives. Our results indicate that subjects prefer
background colors, even if they slow them down. We had the chance to per-
form this experiment twice, first in 2010, then we replicated it with different
subjects with similar background in 2011. Hence, we have two instances of
our second experiment. Since both instances differ only in few details, we de-
scribe them together, and present information about the replication in angle
brackets, (like this).

6.1 Experiment Planning

The setting of both instances of our second experiment is very similar to our
first experiment. Hence, we concentrate on the differences.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 23

6.1.1 Objective and Material

The goals of the follow-up experiment are different than of the first experiment:
Rather than examining the effect of background colors on program comprehen-
sion in preprocessor-based SPLs, we evaluate whether and how subjects use
the chance to switch between ifdef directives and colors as annotations. Based
on the insights from the first experiment, we state the following hypothesis:

RHS5: For locating feature code, subjects use colors, while for closely exam-
ining feature code, subjects use ifdef directives.

We used the same source code and background colors as for our first experi-
ment. To present the source code, we implemented a tool similar to the browser
setting. In addition, we provided two buttons to enable subjects to switch eas-
ily between color version and ifdef version. Our tool logged each button click
with a time stamp, such that we can analyze the behavior of subjects.

6.1.2 Subjects and Tasks

We asked students who were enrolled in the 2009 (2010) course about product-
line implementation at the University of Magdeburg, Germany to participate,
which was one of multiple alternative prerequisites to pass the course. The
course was very similar to that of our first experiment (cf. Section 5.1.3), so the
background of students was comparable. Additionally, two graduate students
who attended that course in the fall term 2008 volunteered to participate as
well. Altogether, our sample consisted of 10 (10) subjects. One week before the
experiment, we administered the same programming experience questionnaire
as in the first experiment. None of the subjects was color blind, and 1 (0) was
female.

We used the same tasks as for our first experiment, including the warming-
up task (WO0). However, we changed the order of the tasks to M1, M3, S1,
M4, M2, S2. We alternated static and maintenance tasks, such that we could
observe whether subjects actually switch between both representations in line
with our hypothesis.

6.1.3 Conduct

We booked a room with 16 seats. All computers had Windows XP as operating
system and 177 TFT screens. The experiment took place in January 2010
(January 2011) in Magdeburg instead of a regular lecture session. We gave the
same introduction as for the first experiment, with the addition that we showed
how subjects could switch between ifdef directives and background colors. We
did not provide any information on which annotation style is most suitable
for which task, so that we could observe the behavior of subjects unbiased.
Since we had a smaller sample, two experimenters (one experimenter) sufficed
to conduct the experiment.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

24 Janet Feigenspan et al.

Having learned from our first experiment, we made sure that the same
deviations did not occur. There are no other deviations to report.

6.2 Analysis

We show only the information necessary to evaluate our hypothesis. Fig. 6
shows how subjects switched between the annotation styles in each task (light
gray: ifdefs; dark gray: colors). Each row denotes the performance of a subject.
For example, if we look at the first row, we can see that for WO (warming-up
task), the subject switched between annotation styles (light and dark gray
alternate). For all remaining tasks, the subject used background colors only.

The lengths of the bars indicate the time subjects spend with a task. For
example, the first subject needed considerable more time to solve M1 than to
solve M2.

An interesting result can be seen in M4, the task, in which the target code
was annotated with a red background color and subjects of the color group
performed significantly worse in our first experiment. Although subjects of our
first experiment complained about the background color, most subjects of our
follow-up experiment used mainly the color version; only 3 of 10 (4 of 10)
subjects spent more time with the ifdef version.

In this figure, we included the warming-up task WO (counting the number
of features), because it allows an interesting observation: We can see that all
subjects switched between the annotation styles in this task. As the experiment
went on, subjects tend to stick with the color version. Hence, we have to reject
our research hypothesis.

6.3 Interpretation and Threats to Validity

The results contradict our hypothesis. Based on the result of the first exper-
iment and on the comments of some subjects that the background color in
M4 was disturbing, we assumed that subjects would switch to ifdef directives
when working on maintenance tasks, especially M4, in which the entire class
was annotated with red background color. However, most subjects used the
color version.

We believe that most subjects did not even notice the disturbing back-
ground color. When we observed our subjects during the experiment, we found
that some of them, currently working with the color version, moved close to
the screen and stared at source code with red background color. Hence, we
could observe that subjects behaved like the background color was disturb-
ing, but did not notice this consciously; they did not think of switching to
ifdefs. We could have made our subjects aware of the unpleasant background
color. However, this would have biased our results, because our objective was
to evaluate whether and how subjects used the opportunity to switch between
ifdef directives and colors.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

25

Do Background Colors Improve Program Comprehension in the #ifdef Hell?

'T10¢

90URJSUI PUODAS :W03}0q ()TOg 2duejsul 3s1y :dQJ, ‘SuoIjejouUUE PIIO[OD PUE [BNIXS) UOMID] PAYDIIMS §329[qNs mor aulewL], :g yuewradxy 9 -S1q

SOINUIUL G prssey

I0[0D :EE JOPJI : [T :PUSSOT

[H nIm
|] [l]
'l [l
L1 Il I
I . ||
il I IR
i |] (]
[| T -
| |
1l []
FrHHHHHH FrHHHHHH R
GS TIN
I I I .
|
u I]
i I I | —
[}]]
| | I I
| | I Hill N I
] u L] | L BN 1 mm
n | Hin L] i I L BN
[] |] | I I
L e B R L e I M aanns naans nonns s wan s o s nan s I o n s o B o o B e I L ARnas ity hanas nans nanny
¢S ¢IN VN IS €N TIN

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

26 Janet Feigenspan et al.

This leads us to the conclusion that subjects did not necessarily recog-
nize the disturbing effect of the background color. As a consequence, they
were slowed down, such that they were as fast as the subjects of our first
experiment who also had the color version (Mann-Whitney-U test revealed
no significant differences between subjects of this experiment and the color
group of the first experiment). This result illustrates the importance of choos-
ing suitable background colors, because developers may not always be aware
that their screen arrangement is unsuitable. Furthermore, since we did not
tell our subjects when to use ifdef directive and when to use background col-
ors (we only showed them how they could switch), our result indicates that
developers need to be trained in using a tool that uses background colors to
highlight source code. We come back to the discussion of how to design proper
tool support in Section 9.

The same threats to validity as for the first experiment occur here (except
for the ones caused by the deviations of the first experiment).

7 Experiment 3: Do Colors Scale?

A question that immediately arose, even before the first experiment, is whether
background-color usage scales to large software systems. Obvious objections
are that in real-world SPLs with several hundred of features, there would be
considerably more colors than a developer can distinguish and that the nesting
depth of ifdef directives would be too high to be visualized by blending colors.
Hence, in a third experiment, we concentrate on the scalability issue. In a
nutshell, we could confirm the results of our first experiment for a large SPL
with over 99,000 lines of code and 346 features implemented in C, in that we
could show an improvement of program comprehension for locating feature
code when using background colors. In this section, we present the details of
this experiment.

7.1 Experiment Planning
7.1.1 Objective

In this experiment, we evaluate whether background colors improve compre-
hensibility in large SPLs. To evaluate this issue, we have to understand human
limitations on perception. First, preattentive perception is limited to only few
items (e.g., few different colors (Goldstein, 2002)). When there are too many
distinctive items, the perception process is slowed down considerably, because
more cognitive resources are required (e.g., to count the number of items). Sec-
ond, human working memory capacity is limited to about 7+ 2 items (Miller,
1956). When there are more items to be kept in mind, they have to be memo-
rized otherwise (e.g., by writing them down). Third, human ability to distin-
guish colors without direct comparison (i.e., when they are not shown directly
next to each other) is limited to only few colors (Rice, 1991).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 27
&) FeatureCommander - Colored o | B |
Load
Explorer Source Code Viewer Feature Model
et i Q CONFIG_XENO_OPT ... A
CONFIG_XENO_OPT ...
> |arch | schedrt.c [CONFIG_XENO_OPT.... ¥
S 18 * ¥ou should have received a copy of the GND ~ 4 scheduling
19| * along with Xenomai; if mot, write to the F_ I METAEE E
a nuc|+; 20| * Foundation, Inc., 59 Temple Place - Suite ‘;‘ = -
21| % 02111-1307, USA. — CONFIG_XENO_OP... L4
bufd.c 22| « COMFIG_XENO_OP...
23| * \ingroup sched CONFIG_XENO_OPT_...
heap.c 2| 24| +s T
Bl 25 4 debugging
map.c 26| #include <nucleus/pod.h> COMFIG_XENO_OP...
o . - CONFIG_XENO_OP...
module.c 28 | static void xnached rt_init(struct xnsched *s
29 COMFIG_XENO_OP...
pipec 30 sched_initpg(ssched->rt.runnable, COMFIG_XENO_OP...
31| #ifdef CONFIG_KENO_OPT_PRIOCPL
P+d-c —| 32 ached_initpq(ssched->rt.relaxed, ! G
33 | #endit COMFIG_XENO_OP...
registry.e 341 COMFIG_XENO_OP...
35
sched-idle.c 36| static void xnsched_rt_requeue(struct xnthrea CO
i" : 37 COMFIG_XENO_OPT_...
ed-rt.c B - 4 Timing
C EH Put back at same place: i.e. &
ld‘ed SROIdCC 10 * priority group (i.e. LTFO, uset R AENO O
a1 sy 4 Scalability
sched-tp.c
42 __xnached_rt_requeue (thread); CONFIG_XENO_OP...
Eched.c 3y A oL 2
S| 44« i | b Q

Fig. 7 Experiment 3: Screenshot of tool infrastructure of the color version.

These limitations make a one-to-one mapping of colors to features not fea-
sible in large SPLs with several hundred of features. Therefore, we suggest an
as-needed mapping, such that only a limited subset of colors is used at any
time, which facilitates human perception. Our as-needed mapping is based
on previous investigations of occurrences ifdef directives in source code. First,
for most parts of the source code, only two to three features appear on one
screen (Késtner, 2010). Second, most bugs can be narrowed down to certain
features or feature combinations (Késtner, 2010). Hence, a developer can fo-
cus on few features most of the time, such that she avoids limitations to her
perception.

Thus, we propose a customizable as-needed mapping, which we show in
Fig. 7 (we present an extension of this tool in Fig. 11). We provide a default
setting, in which two shades of gray are assigned to features. Code of features
located nearby in the source-code file has a different shade of gray, such that a
developer can distinguish them, but not recognize the features. Additionally,
a developer can assign colors to features she is currently working with. Since
she is working only with a few features at a time, her perception limits are not
exceeded. Hence, our research hypotheses is:

RH6: Background colors improve program comprehension in large SPLs.

Large means, that the source code consists of at least 40,000 lines of code (von
Mayrhauser & Vans, 1995) and considerably more than 7 + 2 features, such
that humans cannot distinguish colors without direct comparison, if we used
a one-to-one mapping of colors to features.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

28 Janet Feigenspan et al.

Regarding the opinion of our subjects, we assume that they like background-
color usage in large software projects, because they were positively perceived
in our first and second experiment. Hence, our last research hypothesis is:

RHT: Subjects prefer background colors over ifdef directives in large SPLs.

7.1.2 Experimental Material

To evaluate our hypotheses, we replace our medium-sized SPL MobileMedia
(5,000 lines of code, 4 features) by Xenomai®, a large real-time extension for
Linux implemented in C. It consists of 99,010 lines of code including 24,709
lines of feature code and 346 different features. Xenomai can be configured for
different platforms and provides numerous features, such as real-time commu-
nication and scheduling. There are a number of projects using Xenomai for
real-time behavior, for example RT-FireWire'®, USB for Real-Time'!', and
SCALE-RT Real-time Simulation Software'?.

To ensure the comparability of Xenomai with other real-world systems,
we compared it with Apache, FreeBSD, Linux, Solaris, SQLite, and Sylpheed.
To this end, we used cppstats'®, which computes several metrics to analyze
the complexity of ifdef directives. In Table 2, we give an overview of the met-
rics (Liebig et al., 2010). We can see that the systems have different sizes
(LOC) and different number of features (NOFC), some in the same range
(e.g., SQLite), some larger (e.g., Linux) than Xenomai. Regarding the usage
of ifdef directives, Xenomai has the second highest percentage of annotated
code (LOF): A fourth of the code is annotated. It has a comparable average
nesting depth (AND). The scattering degree (SD) indicates how often a fea-
ture occurs in different ifdef expressions, whereas the tangling degree (TD)
indicates the number of different features in an ifdef expression. In both met-
rics, Xenomai shows similar values as Apache, Linux, SQLite, and Sylpheed.
The same counts for the maximum nesting depth (ND).

We did not base this experiment on Java as the other experiments, because
it was rather difficult to find a large-scale SPL implemented in Java. The
largest we are aware of is ArgoUML, which consists of more than 100,000 lines
of code, but has only 8 features (Couto et al., 2011). We could have developed
our own SPL in Java, but this would have been very time consuming and
could have easily lead to a biased program (in that we design the SPL such
that it confirms our hypotheses). Since there are numerous SPLs implemented
in C (Liebig et al., 2010), we decided to use an existing large-scale SPL, even
though it was in a different language.

To present the source code to our subjects, we implemented our own tool
infrastructure including a source-code viewer using standard syntax highlight-

9
10
11

http://www.xenomai.org
http://rtfirewire.dynamized.com
http://developer.berlios.de/projects/usbédrt
12 http://www.linux-real-time.com

13 http://fosd.de/cppstats

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 29
System LOC NOFC LOF (%) AND SO TD ND
Apache 212159 1113 44426 (20.9) 1.17 5.57 1.74 5
FreeBSD 5902461 16135 841360 (14.3) 1.13 1048 2.51 24
Linux 5985066 9093 642304 (10.7) 1.09 4.66 1.68 6
Solaris 8238178 10290 1630809 (19.8) 112 16.17 2.72 8
SQLite 94463 273 48845 (51.7) 1.29 7.59 1.67 5
Sylpheed 99 786 150 13607 (13.6) 1.06 6.31 1.38 6
Xenomai 99010 346 24709 (25.0) 1.21 6.07 1.44 5

LOC: Lines of code; NOFC; Number of features; LOF: Lines of feature code; AND:
Average nesting depth; ND: maximum nesting depth; SD: Occurrences of features
in different ifdef expressions; TD: tangling degree of expressions in ifdef directive.

Table 2 Overview of complexity of different systems.

ing and background colors. In Fig. 7, we show a screenshot to give a better
impression. We provided a file-browsing component, a list of all features as
tree structure derived from Xenomai’s build system, and a menu to load pre-
defined color assignments. The file-browsing component had horizontal bars
for each folder and file, which indicates whether and how much feature code a
folder or file contains.

In this SPL, else and elif directives occurred.'* We decided to assign the
same color to each else and elif directive as to the according ifdef directive for
two reasons. First, the code is still relevant for the same feature, because the
selection of a feature has an effect on all accordingly annotated code fragments.
This way, we can visualize that the same feature influences the annotated code
fragments. Second, we did not want to introduce more colors than necessary
because of the limits of human perception. Annotating each else and elif direc-
tive in a different color would exceed the limit of human perception faster. In
Section 9, we present additional concepts to visualize nested ifdef directives as
well as else and elif directives, which we did not evaluate in this experiment.

To ensure an optimal color selection for each task and to prevent subjects
from having to search their own preferred color assignment, we defined a set
of colors for each task. We ensured an optimal color selection by having con-
sistent color assignments across tasks (i.e., a feature that occurred in more
tasks has the same or similar color in all tasks) and by having colors that
subjects can distinguish within a task without direct comparison (Rice, 1991).
We chose more transparent colors than in the first two experiments and addi-
tionally allowed subjects to adjust the intensity of background colors with a
slider. In this experiment, we displayed the ifdef directives in the color version
(instead of removing them as in the first experiment), because in the previous
experiments, we showed a benefit of pure background colors. Furthermore, to
scale background-color usage to large systems, we do not have a one-to-one
mapping of colors to features, so we need the textual information to tell to
which feature a colored code fragment belongs. Additionally, we do not blend
colors of nested ifdef directives, because we did not want to introduce more

14 Code of an else directive is selected when code of an according ifdef directive is not
selected.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

30 Janet Feigenspan et al.

colors than necessary. Instead, we always display the color of the innermost
feature and use vertical bars next to the source-code editor to visualize the
nesting of ifdef directives.

In addition to the color version, we designed another version, in which we
removed everything associated to colors (ifdef version). Since the source code
was large, we provided search functionalities for both versions.

In a second window, we presented the tasks to subjects and provided text
fields for their answers. Furthermore, to support subjects in keeping track of
time and preventing them from getting stuck on a task, a pop up appeared
every 15 minutes to notify subjects about the time that had passed.

As in the previous experiments, we gave subjects paper-based question-
naires to collect their opinion (i.e., estimation of difficulty, motivation, and
performance with the other version, cf. Section 5.1.2).

7.1.3 Subjects

Our sample consisted of 9 master’s and 5 PhD students from the University
of Magdeburg, Germany. The master’s students were participants of the 2010
course Embedded Networks, in which they completed several assignments re-
garding operating systems and networks, such as the implementation of clock
synchronization of different computers. They were offered to omit one imple-
mentation assignment as reward for participating in the experiment. The PhD
students were experienced in the operating and embedded-systems domain
and invited via e-mail. They participated without reward.

We measured programming experience with the questionnaire described in
Section 5.1.3. All subjects were male; none was color blind. As in the first
experiment, we created two comparable groups regarding programming expe-
rience according to the value of the questionnaire. Additionally, we matched
both groups according to the familiarity with Xenomai, because some subjects
had some experience with the source code of Xenomai.

7.1.4 Tasks

To measure program comprehension, we designed a number of tasks. We fo-
cused on static tasks, because we found in our first experiment a benefit of
background colors for static tasks, but not for maintenance tasks. However,
we included a few maintenance tasks to control whether our findings still hold.

Altogether, we had 10 tasks: 2 warming-up tasks (W1, W2; not included
in the analysis), 6 static tasks (S1-S6), and 2 maintenance tasks (M1, M2).
We had three different types of static tasks, two tasks per type:

1: Identifying all files in which a certain feature was implemented (S1, S4).

2: Locating nested ifdef directives, which is important for reasoning about
feature interactions, cf. Section 5.1.4 (S2, S5).

3: Identifying all features that occur in a certain file (S3, S6).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 31

As example, we present the first static task (S1):
S1: In which files does feature CONFIG_XENO_OPT_STATS occur?

For maintenance tasks, we proceeded as for the first experiment. That is, we in-
troduced bugs into the source code and gave subjects a typical bug description
that included the feature selections in which the bug occurred. We consulted
an expert in C and Xenomai to make sure that the bugs were typical for C
programs. As example, we present the first maintenance task:

M1: 1f the PEAK parallel port dongle driver (XENO_DRIVERS_CAN_SJA1000_

PEAK_DNG) should be unloaded, a segmentation fault is thrown.

The problem occurs, when features CONFIG_XENO_DRIVERS_CAN and CONFIG_

XENO_DRIVERS_CAN_SJA1000 and CONFIG_XENO_DRIVERS_CAN_SJA1000_

PEAK_DNG are selected.

In the code, we omitted the check whether a variable was null. Instead of
if (ckfn && (err = ckfn(block)) !'= 0), the code said if ((err = ckfn(block)) !=
0). If that variable would be accessed when it is null, a segmentation fault
would be thrown.

7.1.5 Design

Since our sample was rather small, we used a within-subjects design with
two phases (i.e., we let each subject complete tasks with both tool versions).
Group A worked with the color version in the first phase and switched to
the ifdef version in the second phase, whereas group B worked with the ifdef
version in the first phase and switched to the color version in the second
phase. In each phase, both groups worked with the same tasks in the following
order: W1, S1, S2, S3, M1 in the first phase, and W2, S4, S5, S6, M2 in the
second phase.'® Hence, group A solved tasks W1, S1, S2, S3, and M1 with the
color version and W2, S4, S5, S6, and M2 with the ifdef version (vice versa for
group B). Corresponding tasks of both phases (i.e., W1/W2, S1/S4, S2/S5,
S3/S6, M1/M2) were designed to be comparable (e.g., the same number of
features had to be entered as solution). This allows us to compare the results
within phases (between groups), and between phases (within groups).

7.1.6 Conduct

The experiment took place in June 2010 instead of a regular lecture session in
a room with sufficient working stations (Windows XP) with 177 TFT displays.
We gave an introduction, in which we explained the procedure of the experi-
ment and how to use the tool. After the introduction, subjects started to work
on their own. When a subject finished the last task of a phase, we gave him
the usual paper-based questionnaire to assess his opinion. Three experimenters
checked that subjects worked as planned. No deviations occurred.

15 The tasks are available at the project’s website.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

32 Janet Feigenspan et al.
S1-A t-4 3+0.8
S1-B -4 6.612
S2-A S 5.3t2.5
S2-B - T 1 10.3%4.2
S3-A HTH o 4.1%2
S3-B HA 3.310.7
S4-A S 45+1.9
S4-B I 4%1.1
S5-A 3 R ° 6.5t3.1
S5-B = 4.6%1.8
S6-A b--[T 4.1%15
S6-B o] - 3.6+1.4

I I I I I I
0 5 10 15 20 25
min
M1-A k- --4 13.345.2
M1-B - 16.545.8
M2-A | J------ 124.5¥19.3
M2-B F-- - 26.6%5.3

I I I I I I I
0 10 20 30 40 50 60
min
Fig. 8 Experiment 3: Response time of subjects in minutes. Highlighted boxes indicate
groups that worked with the color version.

7.2 Analysis
7.2.1 Descriptive Statistics

Like we did in the first experiment, we examined response times and correct-
ness of tasks. In Fig. 8, we show the response times of our subjects. We can see
that for the first two static tasks (S1 and S2), group A (color version) is faster
than group B: In S1, group A needed only 3 minutes, compared to 6.6 minutes
of group B (speed up by 55%). In S2, group A needed 5.3 minutes, and group
B 10.3 minutes (speed up by 49 %). Furthermore, maintenance tasks needed
considerable more time (note the different scale in the lower part of Fig. 8).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 33
0% 20 % 40 % 60 % 80 % 100 %
| I 1 | |
A (color) ‘ 4
st B (ifdef)
A (color) B
S2 75 (ifaen) 5 ‘
A (color)
s3 B (ifdef) 3‘
g4 _Alifdef) 2
B (color)
A (ifdef) 3
S5 B (color)
A (ifdef) ‘ 3 ‘
B (color) 5

‘ I Correct [J Incorrect ‘

Fig. 9 Experiment 3: Frequencies of correct solutions.

In Fig. 9, we show the correctness of answers. We omitted maintenance
tasks in Fig. 9, because we could not regard any of the answers as correct,
although most subjects narrowed the problem down to the correct file and
method. We discuss this issue in Section 7.4. In S1, the difference is the largest,
such that subjects of group B (without colors) performed better than subjects
of group A.

In Fig. 10, we present the opinion of subjects, which we asked after each
phase. In the first phase, subjects of group A thought they would have per-
formed worse with the ifdef version (medians for each task range from 2 to 3),
whereas subjects of group B thought they would have performed better with
the color version (medians for each task vary from 3 to 5). In the second phase,
this estimation was reversed for each group in consistence with our expecta-
tion, such that subjects of group A thought they would have performed better
with the color version (medians of 4 in each task), and vice versa for group B
(medians of 2 in each task). For difficulty, we see that in four static tasks
(S1: locating files of a feature; S2, S5: locating nested #ifdefs; S3: locating all
features in a file) and one maintenance task, the median is the same. For the
remaining tasks, the median differs by 1. Regarding motivation, we can see
that subjects rated their motivation more heterogeneously. The median shows
at least a mediocre level of motivation. For the first maintenance task (M1),
the motivation for group A (with colors) was very high, compared to group B
with a mediocre motivation.

In addition, we asked what version subjects prefer: 12 subjects like the color
version better and 13 said the color version is more suitable when working with
preprocessor-based SPLs. One subject did not answer any of both questions.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

34 Janet Feigenspan et al.
Difficulty Motivation

S1-A 4 S1-A 4
S1-B S1-B

S2-A S2-A

S2-B S2-B

S3-A S3-A
S3-B S3-B |
VA N [S— R s 1 M1-A —
MI-B 4 1 M1-B —
S4-A bronneosnnnen s E— — S4-A o
S4-B - | S4-B
S5-A — © | S5-A
S5-B | e—| S5-B
S6-A | [I — S6-A |
S6-B | S6-B
M2-A — | o M2-A —
M2-B - M2-B

T T T T T T T T T T
very difficult difficult medium easy very easy very unmotiv. unmotiv. medium motivated very motiv.

Performance with other version

S1-A
S1-B —
S2-A
S2-B —
S3-A — °
S3-B
M1-A — °
M1-B —
S4-A
S4-B — °
S5-A —
S5-B — °
S6-A —
S6-B —
M2-A —
M2-B o

clearly worse worse the same better clearly better

Fig. 10 Experiment 3: Box plots of subjects’ opinion.

7.2.2 Hypotheses Testing

To evaluate our research hypotheses, we proceed as for the first experiment.
We start with comparing the response times of subjects in static maintenance
tasks (RH6), for which we make several comparisons: between groups, which
means group A vs. group B, as well as within groups, which means group A
(first phase) vs. group A (second phase) and group B (first phase) vs. group
B (second phase). Since we make 3 comparisons on the same data, we need
to adjust the significance level, for example, with a Bonferoni correction (An-
derson & Finn, 1996). In our case, we have to divide the significance level by
three (because of 3 comparisons), which leads to a significance level of 0.017
to observe a significant difference (instead of 0.05).

We start with group A vs. group B. We applied t tests for independent
samples, since the response times are normally distributed (Anderson & Finn,
1996). In this experiment, we included incorrect answers, because our sample
was too small to delete them. We discuss this in Section 7.4.1. We only observed
significant differences for tasks S1 (p value: 0.001) and S2 (p value: 0.017).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 35

Hence, only for the first two tasks, subjects that worked with the color version
(group A) were faster. In the second phase, we did not observe a benefit of
background colors for program comprehension. As effect size, we computed
Cohen’s d, because the t test is a parametric test (Cohen, 1969). For S1, the
value is -2.29 and for S2, the value is -1.46, both indicating a large effect.

Next, we compare the response times of corresponding tasks between both
phases (within groups), that is, S1 vs. S4, S2 vs. S5, S3 vs. 56, and M1 vs. M2.
For group A, we did not find any significant differences. However, for group
B, we observed a significant speed up for S4 (compared to S1; p value: 0.007)
and S5 (compared to S2; p value: 0.011). Hence, when adding background col-
ors, the performance of according subjects increased for two tasks. The effect
size for both tasks indicates a large effect (S1/S4: 1.56, S2/S5: 1.79). On the
other hand, removing background colors does not seem to affect performance,
because subjects of group A were not significantly slower in the second phase.
Hence, the results regarding response time speak both in favor of and against
our research hypothesis.

Regarding correctness of answers, we conduct a x? test. To meet its require-
ments'® despite our small sample size, we summarize the number of correct
and incorrect answers for the static tasks of each phase. Hence, we compare
the frequencies of correct and incorrect answers of tasks S1 + S2 + S3 and
54+ 55+ 56. The x2 test indicates no significant differences in the number of
correct answers for static tasks (p values: 1.000 and 0.747, respectively). Since
for maintenance tasks none of the subjects provided a correct solution, we do
not need to test for significant differences here.

Finally, we compare the opinion of subjects (RH7). A Mann-Whitney-U
test reveals that the difference regarding estimation of performance with the
other version is significant for all tasks but M1, the first maintenance task.'”
For difficulty, subjects of group B rated S4 and S5 significantly easier than
subjects of group A. This is also reflected in the performance, such that sub-
jects of group B are faster in these tasks (S4 vs. S1, S5 vs. S2). For motivation,
we observe a significant difference only for the first maintenance tasks, such
that subjects of group A were more motivated to solve this task compared to
group B.

7.3 Interpretation

RHG6 Background colors improve program comprehension in large SPLs: Our
data can be interpreted both in favor of and against this hypothesis. When
comparing the response times between groups, we observed significant differ-
ences only in the first phase for two static tasks, such that subjects working

16 Expected frequencies for single tasks are too small due to the small number of observa-
tions.

17 We cannot provide p values in this case, because due to our small sample, we had to look
up whether observed differences are significant in a table of the U distribution (Giventer,
2008).

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

36 Janet Feigenspan et al.

with the color version were up to 55 % faster. In the second phase, we did
not observe any significant differences between groups. However, we observed
that when we add colors in the second phase, the comprehension process of
according subjects (group B) got faster by up to 55 %, which indicates a large
effect according to Cohen’s d. For maintenance tasks, we did not observe a
significant difference in response time. Hence, we found that background col-
ors improve program comprehension in preprocessor-based SPLs in two static
tasks.

For the third kind of static tasks (i.e., locating all features in a file), we did
not observe significant differences. A possible reason is that in these tasks, the
number of relevant features was 12, which means that subjects had to work
with 12 different colors. Although we selected colors to be clearly distinguish-
able without direct comparison, 12 might be too much and exceed the limits
of human perception (cf. Section 7.1.1). Additionally, the working memory
capacity of 7+ 2 is exceeded with 12 features. For the other tasks, only 1 (S1,
S4) or 2 (S2, S5) features had to be kept in mind. However, since we only
combined 12 features with the third kind of static tasks, we can only theorize
why this result occurred.

Furthermore, none of our subjects solved a maintenance task correctly. The
most likely explanation is that these tasks were too difficult given the short
time of the experiment. We discuss this problem in more detail in Section 7.4.

To sum up, background colors can help to familiarize with a large SPL,
especially to get an overview of the files of a feature or of nested ifdef direc-
tives. When we add background colors in the second phase, the performance
of according subjects increases. When we remove colors, it has no effect on the
performance of according subjects. Our observations align with the results of
the first experiment that background colors can improve program comprehen-
sion in static tasks.

RHY Subjects prefer background colors over ifdef directives in large SPLs:
We can accept this research hypothesis, because we found a preference for
background colors. Subjects who worked with the color version estimate they
would perform worse without colors, even when we observed no difference in
performance. We found the same effect in our first experiment. Additionally, all
subjects rate colors as more suitable when working with preprocessor-based
SPLs, and all but one subject preferred colors over no colors (except one
subject who answered neither of both questions). This is also in line with the
first experiment, in which background colors were rated positively.

Hence, in large SPLs, background colors have a potentially positive impact
on program comprehension in preprocessor-based SPLs in terms of locating
feature code. This means that we can circumvent human limitations regarding
(preattentive) color perception and working memory capacity. Instead of a
one-to-one mapping, we used an as-needed mapping based on observations
about the occurrences of ifdef directives in source code, which scales to large
SPLs with over 300 features.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 37

7.4 Threats to Validity
7.4.1 Internal Validity

One problem is that we could not rate any solution for maintenance task as
correct. However, subjects often named the correct file and method, which in-
dicates that if subjects had more time, they might have succeeded eventually.
We believe that the realistic nature of the maintenance task (ensured by an
expert on C and Xenomai) was too difficult for the time constraint and sub-
jects’ expertise, despite pre-tests. Furthermore, our primary focus were static
tasks.

Another threat is caused by our small sample. To deal with it, we used a
within-subjects design and applied variants of standard significant tests that
were developed for small sample sizes.

Additionally, we did not correct the response times for wrong answers.
The size of our sample does not allow us to omit wrong answers. Another
possibility is to compute an efficiency measure as combination of correctness
of answers and response time (e.g., Otero & Dolado (2004)). However, it is not
clear whether the use of such a measure may lead to falsely accept or reject
a hypothesis, because there are several ways to define a measure. To the best
of our knowledge, there is no agreed and evaluated efficiency measure. Since
we found no indication in our data that subjects entered a wrong answer
deliberately (i.e., wrong answers often missed only one or two features and
the response times did not deviate very much toward zero from the mean), we
argue that results regarding response time and correctness are still valid.

7.4.2 Ezternal Validity

Our sample consisted mostly of master’s students who were rather unexpe-
rienced with large SPLs. However, we also included some PhD students who
had several years of programming experience in the domain of operating and
embedded systems. Hence, our results can carefully be interpreted for experi-
enced programmers, as well.

8 Summary of the Experiments

All three experiments analyzed how background colors influence the readabil-
ity of preprocessor-based SPLs. The focus of the first experiment was on pro-
gram comprehension in small preprocessor-based SPLs, the focus of the second
experiment on the behavior of subjects using medium-sized preprocessor-based
SPLs, and the focus of the third experiment was on program comprehension
in large preprocessor-based SPLs. In Table 3, we summarize the results of our
three experiments to give a better overview.

Interpreting the results of all three experiments together yields the follow-
ing conclusions:

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

38 Janet Feigenspan et al.
Experiment Source code LOC Features Result
1 MobileMedia 5000 4 Colors speed up static tasks; no effect or
slow down for maintenance tasks
2 MobileMedia 5000 4 Subjects are unaware of the potentially
negative effect of colors
3 Xenomai 99010 346 The positive effects found in experiment 1

scale for large SPLs

Table 3 Summary of main findings for all three experiments.

1. Carefully chosen colors improve program comprehension in preprocessor-
based SPLs in terms of locating feature code, independently of size and
programming language of the underlying SPL.

2. Colors with a high saturation can slow down the comprehension process in
terms of bug fixing.

3. Subjects like and prefer the color idea.

First, we could show that carefully chosen background colors lead to a
performance increase of subjects for static tasks. This generalizes to medium-
sized and large SPLs. Additionally, we observed a performance speed up with
both Java and C. Although we showed the positive effect only for two different
sizes and two different programming languages, we expect similar positive
effects also with medium-sized SPLs and other programming languages.

Second, we found that highly saturated background colors can slow down
the comprehension process when subjects are fixing bugs. We believe that vi-
sual fatigue causes this slow down. However, when given the choice, subjects
do not seem to be aware that a background color is disturbing and slowing
them down. Nevertheless, for locating feature code, we did only find positive
(or no) effects of background colors. Hence, depending on the task, the satura-
tion of colors may play an important role. Thus, we suggest that source-code
editors using background colors provide the option to adjust the saturation of
background colors.

Third, the majority of our subjects favored background colors. This is
encouraging, because a new concept that is not accepted by the ones who are
supposed to use it will hardly be used in practice. Hence, the acceptance of
background colors is an important positive result.

However, we have to be careful with our conclusions. We cannot state that
background colors are always helpful in every situation in which preprocessors
are used to implement variability. Instead, we have to keep in mind the con-
text of our experiments. We used mostly students for our experiments with
considerably less experience than experts having spent years and years on
developing and maintaining preprocessor-based SPLs. Furthermore, we only
used two different SPLs. Our results only apply to similar SPLs, although we
have evidence that many open-source systems, such as FreeBSD, Linux, So-
laris, SQLite, and Sylpheed have similar characteristics. If the nature of an
SPL is different, we can only theorize how background colors affect the com-
prehension of preprocessor directives. Hence, future experiments with different

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 39
3 FeatureCommander /0 Featrecommancer =)
Show Load] [show |. @
Explorer | |Explorer E EcEcecoteNete @ Feature Model @9 x
© Features () Flestructure § | © Featwes ® Fiestructure iy { . Q 4 Xenomai B
7 r = 7 4 Nucleus [
o smvne BT et m)
[xenomai T ofexamples 9 . 3 = 3 L@ CXOPT_PERVA... (]
include {| »findiude o G Semdcade T . i—;ﬂ’:x—:;fﬁ;”
4 —
4 143 e K0P
lesrc i AL] 144 o » schedClasses
s J T 15 #include <nucleus/heap.h> il C_X_OPT_STATS
1 { (i | 144 #include <nucleus/pod.h> w 4 Debug
* nucleus { [oimers s L C_X_OPT_DEBUG
/ e 8 =l 142 #include <nucleus/assert.n> -_X_OPT_|
+ skins | elnueds oy L)
p il L] 150| ||+ | #:£ndes conere_xevo_oeT_pEBUC NUCLEUS)
| CXOPT_PRIOCPL ‘ § = 151] #define CONFIG_XENO_OFT_DESUG_NUCLEUS i
{ - 152) dendif
| X_OPT_PIPELINE HEAD hespc 153 &
r 154 f#ifder CONFIG_XENO_OPT_PERVASIVE Colors 8 X
*|C_X_OPT_SCHED_CLASSES J int 155|
L = L) || 156] #include <asm/xenomai/syscall.h> 0 b d
S M A G
15¢) 71
| CX_.OPTSCHED SPORADIC ¢ B2 e \fn void xnbufd_map_kread(struct xab
4 160 * \brief Initialize a buffer descripto
exss =
1 4 162| * The new buffer descriptor may be use
CX_OPT_DEBUG | i _ 163| * memory. This routine should be used
{ 164 * xnbufd_unmap_kread() .
Cexortmwes T | |-
{ 168 + @param bufd The address of the buffe Color u\
cxopr prsus pweteus | I | || | ;e ien pyves xeroer memery area, o2
1 T 168| CEEE ad
exomomenwoe | || sl el il f
d

Fig. 11 Screenshot of FeatureCommander. The numbers designate concepts we explain in
detail in the text.

experimental contexts are necessary to build a more complete understanding
of the effect of background colors on program comprehension in preprocessor-
based SPLs.

To sum up, all results encourage us to use background colors more often
in source-code editors. Hence, we developed a prototype FeatureCommander,
which we present next.

9 Toward Better Tool Support

Our experiments were based on a relatively simple concept of background col-
ors, much like our browser setting in the first experiment (cf. Section 5.1.2).
Specifically, we based our work on CIDE (Ké&stner et al., 2008), a tool that
uses background colors to visualize feature code. With our experiments, we
gained useful insights into tool requirements for preprocessor-based product-
line development. Based on these insights, including comments and suggestions
from subjects about functionalities, and by consulting other similar tools (e.g.,
Spotlight) and literature on software visualization (e.g., Diehl (2007)), we im-
plemented a tool called FeatureCommander'®.

FeatureCommander is a prototype for preprocessor-based SPL develop-
ment. It offers multiple visualizations that support program comprehension in

18 nttp://fosd.de/fc. On the website, there is also a video demonstrating the use of
FeatureCommander. This video shows all functionality of FeatureCommander, not the re-
duced set we used in the third experiment. FeatureCommander with the reduced set is also
available at the website.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

40 Janet Feigenspan et al.

large preprocessor-based SPLs. The basic characteristic of FeatureComman-
der is the consistent usage of colors throughout all visualizations. In Fig. 11,
we show a screenshot of FeatureCommander displaying source code from our
third experiment. We refer to the numbers in Fig. 11 when explaining the
according concepts in the next paragraphs.

To assign colors to feature, we provide two different options: First, users
can assign colors to features by dragging a color from a color palette (1) and
dropping it on a feature in any of the visualizations.'® For efficiency, users
can also automatically assign a palette of colors to multiple features (2). The
automatic color assignment chooses colors such that they are as different as
possible in the hue value of the HSV color model. Furthermore, color assign-
ments can be saved (3) and loaded (4), so that a developer can easily resume
her work. This way, we support an as-needed mapping of colors to features.
When no color is assigned to a feature, it is represented by a shade of gray in
all visualizations.

Similar to other IDEs (Ké&stner et al., 2009b; Stengel et al., 2011), we pro-
vide different views: source-code view, explorer view, and feature-model view.
In the source-code view (5), the background color of source-code fragments in-
dicates to which features fragments are related; according ifdef directives are
also shown. To compromise between code readability and feature recognition,
users can adjust the opacity of the background color (6). This way, we address
that too highly saturated colors negatively affect program comprehension. If a
code fragment is assigned to multiple features, we show only the background
color of the innermost feature (7). The other features are visualized in the
sidebars on either side of the code view, which visualize features as bars, or-
dered by the nesting hierarchy (8, 9). The right sidebar gives an overview of
the whole document (8), the left sidebar shows the hierarchy of features of
the currently displayed source code (9). Both sidebars are interactive, such
that clicking them immediately shows the according code fragment. We im-
plemented both sidebars, because it further supports a user in locating a code
fragment (although we did not evaluate the impact on program comprehen-
sion).

In the explorer view (10), users can navigate the file structure and open
files. We provide two tree representations of the project: One ordered according
to the file structure, the other ordered by features (11). In the background of
each tree node, we display the percentage of each feature that occurs in the
represented file or folder, either with default alternating shades of gray (12) or
with the assigned color (13). Thus, users get an overview of the distribution
of features without having to open files.

In the feature-model view (14), the feature model is shown as a simple tree.
Features that are currently not of interest can be collapsed.

With FeatureCommander, we give researchers a tool that implements sev-
eral concepts that improve program comprehension in large-scale preprocessor-

19 To recognize feature code, FeatureCommander uses a file that describes where an ifdef
directive starts and where it ends.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 41

based SPLs. Hence, we created a base, from which further research on concepts
and their effect on program comprehension can emerge. Additionally, we pro-
vide practitioners with a tool that has shown that it can improve program
comprehension in preprocessor-based SPLs in terms of locating feature code,
and, consequently, can reduce the cost of software maintenance.

10 Previous and Related Work
10.1 Previous Work

In prior work, we described the first experiment (Feigenspan, 2009; Feigenspan
et al., 2009). It was conducted as part of the first author’s master’s the-
sis (Feigenspan, 2009). We subsequently briefly summarized the results in a
workshop paper, motivating the necessity of empirical research and explaining
the path we took toward this paper (Feigenspan et al., 2009). The primary
intent was not to present the experiment nor its results, but to analyze the
feasibility of program-comprehension experiments in the context of feature-
oriented software development (Apel & Kastner, 2009). The present work is
the first time we present the experiment as well as its results and their impli-
cations in detail.

We published our third experiment with focus on our tool FeatureCom-
mander and the implementation of concepts to support a developer in her
comprehension process (Feigenspan et al., 2011b). We also published a tool
demo of FeatureCommander, in which we only focus on the tool, not on the
evaluation (Feigenspan et al., 2011a).

Our first experiment was based on the background-color concept imple-
mented in CIDE (Feigenspan et al., 2010; Késtner et al., 2008). CIDE was
developed to support a programmer in decomposing legacy applications into
features. Besides background colors, it provides code folding of feature code
(i.e., it hides source code of selected features) and different views on source
code. Furthermore, it enforces disciplined annotations, leading always to syn-
tactically correct code when feature code is removed to create a variant. For
example, an opening bracket can only be annotated with a corresponding clos-
ing one. Furthermore, we provide FeatureIDE (Késtner et al., 2009b), a tool
that also supports the development of SPLs. In contrast to FeatureComman-
der, FeatureIDE supports more SPL-implementation techniques in addition to
preprocessor directives and aims at the complete development process of SPLs
(i.e., from the design phase to the maintenance phase).

Another tool of our’s is View Infinity, which also aims at improving pro-
gram comprehension in preprocessor-based SPLs (Stengel et al., 2011). In ad-
dition to background colors, ViewInfinity provides semantic zooming from the
feature-model level over the file structure to the source-code level. An em-
pirical evaluation focused on how experienced SPL developers use and like
the semantic-zooming concept, not on background-color usage on source-code
level.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

42 Janet Feigenspan et al.

In a parallel line of work independent of colors, visualization, and tooling,
we explored the discipline and granularity of ifdef directives in 40 medium-
to large-scale software systems (Liebig et al., 2010, 2011). We found that de-
velopers use ifdef directives to a large extent, and that most directives are
disciplined and occur in the source code at a fine grain. This supports our
argument that ifdef directives can cause problems and that their readability
can be improved with background colors.

10.2 Related Work

In literature, the C preprocessor is often heavily criticized. Numerous studies
discuss the negative effect of preprocessor usage on code quality and maintain-
ability (e.g., Spencer & Collyer (1992); Krone & Snelting (1994); Favre (1995,
1997); Ernst et al. (2002); Adams et al. (2008)). However, researchers have
also explored different strategies to deal with these problems.

One group of approaches attempts to extract structures from the source
code (e.g., nesting, dependencies, and include hierarchies) and visualize them
in a separate view (Pearse & Oman, 1997; Spencer & Collyer, 1992; Krone &
Snelting, 1994). We follow this line of work and use similarly simple structures,
but we focus on supporting developers directly in working with the annotated
source code and integrate a visual representation of annotations with the un-
derlying source code.

The model editors fmp2rsm (Czarnecki & Antkiewicz, 2005) and Fea-
tureMapper (Heidenreich et al., 2008) allow a user to annotate model ele-
ments to generate different model variants. Both tools can represent annota-
tions with colors. The tool Spotlight (Coppit et al., 2007) uses vertical bars in
the source-code editor to represent annotations, which are more subtle than
background colors. Spotlight aims at improving the traceability of scattered
concerns, which are represented by different colors. SeeSoft (Eick et al., 1992)
represents files as rectangles and source-code lines as colored pixel lines. The
color is an indicator of the age of the according source-code line. In contrast
to our work, the influence of visualizations of these tools on program compre-
hension has not been assessed empirically.

In addition to visualizations, also views on configurations have been ex-
plored, which show only part of the feature code and hence reduce complex-
ity (Atkins et al., 2002; Chu-Carroll et al., 2003; Hofer et al., 2010; Késtner
et al., 2008; Singh et al., 2007). A view on a variant or a view on a feature
displays only feature code of selected features and hides all remaining code.
Some tools even hide annotations completely, such that a developer only works
on one variant and may not even be aware of other variants or features (Atkins
et al., 2002). In an analysis of the change history of a large telephone switching
software system, Atkins et al. showed a productivity increase of 40 %, when
developers work with views provided by the Version Editor. However, hiding
feature code may not always be feasible: For example, when code of a hidden
feature shares code with a feature in which a developer fixes a bug, she might

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 43

introduce bugs into the hidden feature code without knowing it (Ribeiro et al.,
2010). In this case, a developer needs the context of the complete SPL to fix
a feature-specific bug. Hence, views on source code and background colors
complement each other for different tasks.

Furthermore, a severe problem for many approaches is precise fact extrac-
tion from unpreprocessed C code, especially if one wants to reason not only
about the preprocessor directives, but also about their combination of C code.
Many researchers have attempted analysis and rewrite systems for unprepro-
cessed C code (Aversano et al., 2002; Hu et al., 2000; Overbey & Johnson,
2009; Vidacs et al., 2004; Tartler et al., 2011; Garrido & Johnson, 2005; Bax-
ter & Mehlich, 2001; Livadas & Small, 1994). For example, Ernst et al. (2002)
identify problematic patterns and quantify them in a large code base, Tartler
et al. (2011) search for code blocks that are dead in all feature configurations,
and Hu et al. (2000) use control flow graphs to analyze the inclusion structure
of files. However, all these approaches aim not directly at improving program
comprehension by developers, but form underlying mechanisms and can be
used to build tools.

Whereas we focused solely on conditional compilation, also lexical macros
can pose significant stress on program comprehension. Several researchers have
investigated analysis and visualizations strategies that can explain macro ex-
pansion and add debugging tasks. For example, Spinellis (2003) provide an
automated approach to rewrite macro expansions. Kullbach & Riediger (2001)
present folding to hide or show preprocessor-annotated code as needed. These
mechanisms are complementary to our approach.

To overcome preprocessor understanding problems in general, many re-
searchers recommend to abandon preprocessor usage in favor of more disci-
plined implementation approaches, such as feature-oriented programming (Pre-
hofer, 1997) and aspect-oriented programming (Kiczales et al., 1997), or syn-
tactic preprocessors such as ASTEC (McCloskey & Brewer, 2005). Several re-
searchers have even investigated automated refactorings (Adams et al., 2009;
Késtner et al., 2009a). But preprocessors are still prevalent in practice and
the vast amount of legacy code will not disappear soon. Hence there is still
significant need for tools like ours that support developers when forced to deal
with legacy code.

Finally, the idea of using colors to support a developer is not new. Early
empirical work was published in 1986 (Rambally, 1986). In this experiment,
Rambally found that annotating source-code fragments with colors according
to their functionality improves program comprehension, compared to control-
structure color-coding scheme (e.g., loops, and if-then-else statements), and
no colors at all. Furthermore, color usage for various tasks is evaluated by
several research groups, for example, highlighting source code for error report-
ing (Oberg & Notkin, 1992) or merging (Yang, 1994). In 1988, the ANSI/HFS
100-1988 standard?® was published, which included recommendations about
the contrast of background colors and foreground colors. Today, syntax high-

20 http://www.hfes.org/web/Standards/standards.html.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

44 Janet Feigenspan et al.

lighting (i.e., coloring of syntactic elements) is an integral part of most IDEs
(e.g., Eclipse). However, to the best of our knowledge, the use of background
colors in preprocessor-based software has not been evaluated empirically.

11 Conclusion

Preprocessors are frequently used in practice to implement software product
lines. However, they introduce threats to program comprehension and are even
referred to as “#ifdef hell”. To improve readability of preprocessor-based soft-
ware, we proposed to use background colors, such that source code annotated
with ifdef directives is highlighted and can be easily perceived at first sight.

In three controlled experiments, we revealed both benefits and drawbacks
of background-color usage with regard to supporting program comprehension
in preprocessor-based SPLs. The results clearly showed that background col-
ors have the potential to improve program comprehension. We could show
that background colors positively influence program comprehension in terms
of locating feature code, independently of size and language of the underlying
projects. Additionally, we found in all experiments that subjects favor back-
ground colors. This is an important result, because the attitude of developers
toward the tool they are working with can significantly affect their perfor-
mance (Mook, 1996), for example, because they may stick longer with a task
(and not get frustrated by the tool). This effect is exploited in many tools,
which typically have numerous customizing options, so that users can adjust
the tool according to their preferences.

However, we also found that colors have to be chosen with great care.
Otherwise, they could slow developers down. Our results indicate that bright,
saturated colors, such as we used in our first setting, are distracting and cause
visual fatigue. Consequently, developers need more time when working with
colors, for example, because of a need to rest the eyes. Hence, developers
should be able to customize color settings according to their needs (e.g., like we
provided in the second and third experiment). For example, when a developer
has located a code fragment that she suspects to cause a problem, she can
turn colors off or adjust the saturation to a low degree.

Based on the results of our experiments, we implemented the prototype
FeatureCommander, in which we realized scalable background-color usage.
Developers can efficiently adjust color settings to their needs, for example
by adjusting opacity. Thus, customizable background-color concepts as im-
plemented in FeatureCommander can increase the efficiency of maintenance
developers and reduce the cost of software development.

Acknowledgments

We are grateful to Mathias Frisch for helpful discussions and to Jana Schu-
mann, Veit Koppen, and Thomas Thiim for their support with the experi-
ments. Also thanks to all the reviewers of this article. Feigenspan’s and Saake’s

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 45

work is supported by BMBF project ViERforES (01IM10002B), Ké&stner’s
work partly by ERC (#203099), and Apel’s work is supported by the German
Research Foundation (DFG — AP 206/2, AP 206/4, and LE 912/13). Dachselt’s
work is funded by the ”Stifterverband fiir die Deutsche Wissenschaft” from
funds of the Claussen-Simon-Endowment. The first experiment was conducted
as part of Feigenspan’s master’s thesis while she visited the Metop Research
Center.

References

B. Adams, et al. (2009). ‘Can We Refactor Conditional Compilation into
Aspects?’. In Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pp. 243-254. ACM Press.

B. Adams, et al. (2008). ‘Aspect Mining in the Presence of the C Preprocessor’.
In Proc. AOSD Workshop on Linking Aspect Technology and Evolution, pp.
1-6. ACM Press.

T. Anderson & J. Finn (1996). The New Statistical Analysis of Data. Springer.

S. Apel & C. Késtner (2009). ‘An Overview of Feature-Oriented Software
Development’. Journal of Object Technology 8(4):1-36.

S. Apel, et al. (2008). ‘Aspectual Feature Modules’. IEEE Trans. Softw. Eng.
34(2):162-180.

D. Atkins, et al. (2002). ‘Using Version Control Data to Evaluate the Impact
of Software Tools: A Case Study of the Version Editor’. IEEE Trans. Softw.
Eng. 28(7):625-637.

L. Aversano, et al. (2002). ‘Handling Preprocessor-Conditioned Declarations’.
In Proc. IEEFE Int’l Workshop on Source Code Analysis and Manipulation,
pp- 83-92. IEEE CS.

V. R. Basili (1992). ‘Software Modeling and Measurement: The Goal/Ques-
tion/Metric Paradigm’. Tech. Rep. CS-TR-2956 (UMIACS-TR-92-96),.

I. D. Baxter & M. Mehlich (2001). ‘Preprocessor Conditional Removal by
Simple Partial Evaluation’. In Proc. Working Conf. Reverse Engineering
(WCRE), pp. 281-290. IEEE CS.

B. Boehm (1981). Software Engineering Economics. Prentice Hall.

J. Boysen (1977). Factors Affecting Computer Program Comprehension. Ph.D.
thesis, lowa State University.

R. Brooks (1978). ‘Using a Behavioral Theory of Program Comprehension in
Software Engineering’. In Proc. Int’l Conf. Software Engineering (ICSE),
pp. 196-201. IEEE CS.

F. Chevalier, et al. (2010). ‘Using text animated transitions to support navi-
gation in document histories’. In Proc. Conf. Human Factors in Computing
Systems (CHI), pp. 683-692. ACM Press.

M. Chu-Carroll, et al. (2003). ‘Visual Separation of Concerns through Multidi-
mensional Program Storage’. In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pp. 188-197. ACM Press.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

46 Janet Feigenspan et al.

P. Clements & L. Northrop (2001). Software Product Lines: Practice and
Patterns. Addison Wesley.

N. Cliff (1993). ‘Dominance statistics: Ordinal analyses to answer ordinal
questions.”. Psychological Bulletin 114(3):494-509.

J. Cohen (1969). Statistical Power Analysis for the Behavioral Sciences. Aca-
demic Press.

D. Coppit, et al. (2007). ‘Spotlight: A Prototype Tool for Software Plans’. In
Proc. Int’l Conf. Software Engineering (ICSE), pp. 754-757. IEEE CS.

M. V. Couto, et al. (2011). ‘Extracting Software Product Lines: A Case Study
Using Conditional Compilation’. In Proc. FEurop. Conf. Software Mainte-
nance and Reengineering (CSMR), pp. 191-200.

K. Czarnecki & M. Antkiewicz (2005). ‘Mapping Features to Models: A Tem-
plate Approach Based on Superimposed Variants’. In Proc. Int’l Conf. Gen-
erative Programming and Component Engineering (GPCE), pp. 422-437.
Springer.

J. Daly, et al. (1995). ‘The Effect of Inheritance on the Maintainability of
Object-Oriented Software: An Empirical Study’. In Proc. Int’l Conf. Soft-
ware Maintenance (ICSM), pp. 20-29. IEEE CS.

S. Diehl (2007). Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer.

A. Dunsmore & M. Roper (2000). ‘A Comparative Evaluation of Program
Comprehension Measures’. Tech. Rep. EFoCS 35-2000, Department of Com-
puter Science, University of Strathclyde.

S. Eick, et al. (1992). ‘SeeSoft — A Tool for Visualizing Line Oriented Software
Statistics’. IEEE Trans. Softw. Eng. 18(11):957-968.

M. Ernst, et al. (2002). ‘An Empirical Analysis of C Preprocessor Use’. IEEE
Trans. Softw. Eng. 28(12):1146-1170.

J-M. Favre (1995). ‘The CPP Paradox’. In Proc. European Workshop on
Software Maintenance.

J.-M. Favre (1997). ‘Understanding-In-The-Large’. In Proc. Int’l Workshop
on Program Comprehension, p. 29. IEEE CS.

J. Feigenspan (2009). ‘Empirical Comparison of FOSD Approaches Regarding
Program Comprehension — A Feasibility Study’. Master’s thesis, University
of Magdeburg.

J. Feigenspan, et al. (2009). ‘How to Compare Program Comprehension in
FOSD Empirically - An Experience Report’. In Proc. Int’l Workshop on
Feature-Oriented Software Development, pp. 55—62. ACM Press.

J. Feigenspan, et al. (2010). ‘Visual Support for Understanding Product Lines’.
In Proc. Int’l Conf. Program Comprehension (ICPC), pp. 34-35. IEEE CS.
Demo Paper.

J. Feigenspan, et al. (2011a). ‘FeatureCommander: Colorful #ifdef World’. In
Software Product Line Conference, pp. 1-2. ACM Press. paper 3.

J. Feigenspan, et al. (2011b). ‘Using Background Colors to Support Program
Comprehension in Software Product Lines’. In Proc. Int’l Conf. Evaluation
and Assessment in Software Engineering (EASE), pp. 66-75. Institution of
Engineering and Technology.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 47

E. Figueiredo, et al. (2008). ‘Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability’. In Proc. Int’l Conf. Software
Engineering (ICSE), pp. 261-270. ACM Press.

D. Fisher & K. Tan (1989). ‘Visual Displays: The Highlighting Paradox’.
Human Factors 31(1):17-30.

A. Garrido & R. E. Johnson (2005). ‘Analyzing Multiple Configurations of a C
Program’. In Proc. Int’l Conf. Software Maintenance (ICSM), pp. 379-388.
IEEE CS.

L. Giventer (2008). Statistical Analysis for Public Administration. Jones and
Bartlett Publishing, second edn.

B. Goldstein (2002). Sensation and Perception. Cengage Learning Services,
fifth edn.

S. Hanenberg (2010). ‘An Experiment about Static and Dynamic Type
Sytems’. In Proc. Int’l Conf. Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pp. 22-35. ACM Press.

W. Harrison & H. Ossher (1993). ‘Subject-oriented Programming: A Critique
of Pure Objects’. In Proc. Int’l Conf. Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pp. 411-428. IEEE CS.

F. Heidenreich, et al. (2008). ‘FeatureMapper: Mapping Features to Mod-
els’. In Comp. Int’l Conf. Software Engineering (ICSE), pp. 943-944. ACM
Press. Demo Paper.

W. Hofer, et al. (2010). ‘Toolchain-independent Variant Management with
the Leviathan Filesystem’. In Proc. Int’l Workshop on Feature-Oriented
Software Development, pp. 18-24. ACM Press.

Y. Hu, et al. (2000). ‘C/C++ Conditional Compilation Analysis using Sym-
bolic Execution’. In Proc. Int’l Conf. Software Maintenance (ICSM), pp.
196—-206. IEEE CS.

C. Kistner (2010). Virtual Separation of Concerns: Preprocessors 2.0. Ph.D.
thesis, University of Magdeburg.

C. Késtner, et al. (2008). ‘Granularity in Software Product Lines’. In Proc.
Int’l Conf. Software Engineering (ICSE), pp. 311-320. ACM Press.

C. Kastner, et al. (2009a). ‘A Model of Refactoring Physically and Virtu-
ally Separated Features’. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pp. 157-166. ACM Press.

C. Késtner, et al. (2009b). ‘FeatureIDE: Tool Framework for Feature-Oriented
Software Development’. In Proc. Int’l Conf. Software Engineering (ICSE),
pp- 611-614. ITEEE CS. Demo Paper.

G. Kiczales, et al. (1997). ‘Aspect-Oriented Programming’. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP), pp. 220-242. Springer.

B. Kitchenham, et al. (2008). ‘Evaluating Guidelines for Reporting Empirical
Software Engineering Studies’. Empirical Software Engineering 13(1):97—
121.

J. Koenemann & S. Robertson (1991). ‘Expert Problem Solving Strategies
for Program Comprehension’. In Proc. Conf. Human Factors in Computing
Systems (CHI), pp. 125-130. ACM Press.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

48 Janet Feigenspan et al.

M. Krone & G. Snelting (1994). ‘On the Inference of Configuration Structures
from Source Code’. In Proc. Int’l Conf. Software Engineering (ICSE), pp.
49-57. IEEE CS.

B. Kullbach & V. Riediger (2001). ‘Folding: An Approach to Enable Program
Understanding of Preprocessed Languages’. In Proc. Working Conf. Reverse
Engineering (WCRE), pp. 3-12. IEEE CS.

H. Levkowitz & G. T. Herman (1992). ‘Color Scales for Image Data’. IEEE
Computer Graphics and Applications 12(1):72-80.

J. Liebig, et al. (2010). ‘An Analysis of the Variability in Forty Preprocessor-
Based Software Product Lines’. In Proc. Int’l Conf. Software Engineering
(ICSE), pp. 105-114. ACM Press.

J. Liebig, et al. (2011). ‘Analyzing the Discipline of Preprocessor Annotations
in 30 Million Lines of C Code’. In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pp. 191-202. ACM Press.

R. Likert (1932). ‘A Technique for the Measurement of Attitudes’. Archives
of Psychology 22(140):1-55.

P. Livadas & D. Small (1994). ‘Understanding Code Containing Preprocessor
Constructs’. In Proc. Int’l Workshop Program Comprehension (IWPC), pp.
89-97. IEEE CS.

D. Lohmann, et al. (2006). ‘A Quantitative Analysis of Aspects in the eCos
Kernel’. In Proc. FEurop. Conf. Computer Systems (EuroSys), pp. 191-204.
ACM Press.

B. McCloskey & E. Brewer (2005). ‘ASTEC: A New Approach to Refactoring
C’. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pp. 21-30. ACM Press.

G. Miller (1956). ‘The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information’. Psychological Review
63(2):81-97.

D. Mook (1996). Motivation: The Organization of Action. W.W. Norton &
Co., second edn.

D. Muthig & T. Patzke (2003). ‘Generic Implementation of Product Line
Components’. In Int’l Conf. NetObjectDays, pp. 313-329. Springer.

B. Oberg & D. Notkin (1992). ‘Error Reporting with Graduated Color’. IEEE
Software 9(6):33-38.

M. Otero & J. Dolado (2004). ‘Evaluation of the Comprehension of the Dy-
namic Modeling in UML’. Journal of Information and Software Technology
46(1):35-53.

J. L. Overbey & R. E. Johnson (2009). ‘Software Language Engineering’. chap.
Generating Rewritable Abstract Syntax Trees, pp. 114-133.

T. Pearse & P. Oman (1997). ‘Experiences Developing and Maintaining Soft-
ware in a Multi-Platform Environment’. In Proc. Int’l Conf. Software Main-
tenance (ICSM), pp. 270-277. IEEE CS.

N. Pennington (1987). ‘Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs’. Cognitive Psychologys
19(3):295-341.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

Do Background Colors Improve Program Comprehension in the #ifdef Hell? 49

K. Pohl, et al. (2005). Software Product Line Engineering: Foundations, Prin-
ciples, and Techniques. Springer.

L. Prechelt, et al. (2002). ‘Two Controlled Experiments Assessing the Use-
fulness of Design Pattern Documentation in Program Maintenance’. IEEE
Trans. Softw. Eng. 28(6):595-606.

C. Prehofer (1997). ‘Feature-Oriented Programming: A Fresh Look at Ob-
jects’. In ECOOP ’97: Proceedings of the 11th European Conference on
Object-Oriented Programming, pp. 419-443. Springer.

G. Rambally (1986). ‘The Influence of Color on Program Readability and
Comprehensibility’. In Proc. Technical Symposium on Computer Science
Education (SIGCSE), pp. 173-181. ACM Press.

M. Ribeiro, et al. (2010). ‘Emergent Feature Modularization’. In Proceedings
of the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, SPLASH ’10, pp.
11-18. ACM Press.

J. Rice (1991). ‘Display Color Coding: 10 Rules of Thumb’. IEEE Software
8(1):86-88.

R. Riggs, et al. (2003). Programming Wireless Devices with the Java 2 Plat-
form, Micro Edition. Sun Microsystems, Inc.

T. Shaft & I. Vessey (1995). ‘The Relevance of Application Domain Knowl-
edge: The Case of Computer Program Comprehension’. Information Sys-
tems Research 6(3):286-299.

S. Shapiro & M. Wilk (1965). ‘An Analysis of Variance Test for Normality
(Complete Samples)’. Biometrika 52(3/4):591-611.

B. Shneiderman & R. Mayer (1979). ‘Syntactic/Semantic Interactions in Pro-
grammer Behavior: A Model and Experimental Results’. International Jour-
nal of Parallel Programming 8(3):219-238.

N. Singh, et al. (2007). ‘C-CLR: A Tool for Navigating Highly Configurable
System Software’. In Proc. Workshop Aspects, Components, and Patterns
for Infrastr. Software. ACM Press.

N. Singh, et al. (2006). ‘CViMe: Viewing Conditionally Compiled C/C++
Sources through Java’. In Companion to the 21st ACM SIGPLAN Sym-
posium on Object-oriented Programming Systems, Languages, and Applica-
tions, pp. 730-731. ACM Press.

Y. Smaragdakis & D. Batory (1998). ‘Implementing Layered Designs
with Mixin Layers’. In Proc. Europ. Conf. Object-Oriented Programming
(ECOOP), pp. 550-570. Springer.

E. Soloway & K. Ehrlich (1984). ‘Empirical Studies of Programming Knowl-
edge’. IEEE Trans. Softw. Eng. 10(5):595-609.

M. Someren, et al. (1994). The Think Aloud Method: A Practical Guide to
Modelling Cognitive Processes. Academic Press.

H. Spencer & G. Collyer (1992). ‘#ifdef Considered Harmful or Portability
Experience With C News’. In Proc. USENIX Conf., pp. 185-198. USENIX
Association.

D. Spinellis (2003). ‘Global Analysis and Transformations in Preprocessed
Languages’. IEEE Trans. Softw. Eng. 29(11):1019-1030.

This is the authors' version and intended for personal use only. Any other use may violate the copyright.

50 Janet Feigenspan et al.

T. Standish (1984). ‘An Essay on Software Reuse’. IEEE Trans. Softw. Eng.
SE—10(5):494-497.

M. Stengel, et al. (2011). ‘View Infinity: A Zoomable Interface for Feature-
Oriented Software Development’. In Proc. Int’l Conf. Software Engineering
(ICSE), pp. 1031-1033. ACM Press.

F. Tamborello & M. Byrne (2007). ‘Adaptive but non-optimal Visual Search
with Highlighted Displays’. Cognitive Systems Research 8(3):182-191.

R. Tartler, et al. (2011). ‘Feature Consistency in Compile-Time Configurable
System Software’. In Proc. EuroSys 2011 Conference (EuroSys ’11), pp.
47-60. ACM Press.

R. Tiarks (2011). ‘What Programmers Really Do: An Observational Study’.
In Proc. Workshop Software Reengineering (WSR), pp. 36-37.

W. F. Tichy (1998). ‘Should Computer Scientists Experiment More?’. Com-
puter 31(5):32-40.

L. Vidacs, et al. (2004). ‘Columbus schema for C/C++ preprocessing’. In
Proc. Europ. Conf. Software Maintenance and Reengineering (CSMR), pp.
75-84. IEEE CS.

A. von Mayrhauser & A. Vans (1993). ‘From Program Comprehension to
Tool Requirements for an Industrial Environment’. In Proc. Int’l Workshop
Program Comprehension (IWPC), pp. 78-86. IEEE CS.

A. von Mayrhauser, et al. (1997). ‘Program Understanding Behaviour during
Enhancement of Large-scale Software’. Journal of Software Maintenance:
Research and Practice 9(5):299-327.

A. von Mayrhauser & M. Vans (1995). ‘Program Comprehension During Soft-
ware Maintenance and Evolution’. Computer 28(8):44-55.

C. Ware (2000). Information Visualization: Perception for Design. Morgan
Kaufmann.

M. Wijffelaars, et al. (2008). ‘Generating Color Palettes Using Intuitive Pa-
rameters’. Computer Graphics Forum 27(3):743-750.

W. Yang (1994). ‘How to Merge Program Texts’. Journal of Systems and
Software 27(2):129-135.

J. Yellott (1971). ‘Correction for Fast Guessing and the Speed Accuracy Trade-
off in Choice Reaction Time’. Journal of Mathematical Psychology 8(2):159—
199.

