Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Empirical Assessment of Machine Learning-Based Malware
Detectors for Android

Measuring the Gap between In-the-Lab and In-the-Wild
Validation Scenarios

Kevin Allix - Tegawendé F. Bissyandé -
Quentin Jérome - Jacques Klein - Radu
State - Yves Le Traon

Abstract To address the issue of malware detection through large sets of applications,
researchers have recently started to investigate the capabilities of machine-learning
techniques for proposing effective approaches. So far, several promising results were
recorded in the literature, many approaches being assessed with what we call in the
lab validation scenarios. This paper revisits the purpose of malware detection to dis-
cuss whether such in the lab validation scenarios provide reliable indications on the
performance of malware detectors in real-world settings, aka in the wild.

To this end, we have devised several Machine Learning classifiers that rely on a
set of features built from applications’ CFGs. We use a sizeable dataset of over 50 000
Android applications collected from sources where state-of-the art approaches have se-
lected their data. We show that, in the lab, our approach outperforms existing machine
learning-based approaches. However, this high performance does not translate in high
performance in the wild. The performance gap we observed—F-measures dropping from
over 0.9 in the lab to below 0.1 in the wild—raises one important question: How do
state-of-the-art approaches perform in the wild?

Keywords Machine Learning, Ten-Fold, Malware, Android

1 Introduction

The momentum of malware detection research is growing, stimulated by the rapid
spread of mobile malware. Indeed, the increasing adoption of smartphones and elec-
tronic tablets has created unprecedented opportunities of damages by malicious soft-
ware which are hidden among the millions of mobile apps available, often for free,
on application markets (). This reality is currently witnessed on the
Android platform, where more and more users of Android-enabled smartphones and
other handheld devices are able to install third party applications from both official

K. Allix - T. F. Bissyandé - Q. Jérome - J. Klein - R. State - Y. Le Traon

Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, 4 rue
Alphonse Weicker, 1-2721 Luxembourg, Luxembourg

E-mail: {firstname.lastname}@uni.lu

2 Kevin Allix et al.

and alternative markets. In such a context, the security of devices as well as the se-
curity of the underlying network have become an essential challenge for both the end
users and their service providers. Malware pose various threats that range from simple
user tracking and leakage of personal information (), to unwarranted
premium-rate subscription of SMS services, advanced fraud, and even damaging par-
ticipation to botnets (). Although these threats are equally
important in both the desktop computing world and the mobile computing world, most
users of handheld devices fail to realize the severity of the dangers these devices expose
them to. This situation is further exacerbated by the fact that Antivirus vendors have
not yet achieved the same kind of performance that they have achieved for personal
computers, nor will they be given the time to do so by developers of mobile malware.

Machine learning techniques, by allowing to sift through large sets of applications
to detect malicious applications based on measures of similarity of features, appear to
be promising for large-scale malware detection (;

; ; ;). Un-
fortunately, measuring the quality of a malware detection scheme has always been a
challenge, especially in the case of malware detectors whose authors claim that they
work “in the wild”. Furthermore, when the approach is based on machine learning,
authors often perform a 10-Fold cross validation experiment on small datasets to as-
sess the efficiency of the approach. This combination of 10-Fold Cross Validation and
small dataset is what we call an in the lab scenario. However, we claim that, in the
field of malware detection, all the underlying hypotheses associated with an in the lab
experiment must be outlined to allow a correct interpretation of the results. Indeed,
validation experiments of malware detection approaches are often controlled and the
datasets used may not be representative, both in terms of size and in terms of quality,
of the targeted universe.

The present paper is both an illustration and a complement to the study published
by () and called "Prudent Practices for Designing Malware Experi-
ments: Status Quo and Outlook". Our work focuses on realistic empirical assessment,
one of the many issues raised by Rossow et al. In their introduction, they state:

[...] we find that published work frequently lacks sufficient consideration of ex-
perimental design and empirical assessment to enable translation from proposed
methodologies to viable, practical solutions. In the worst case, papers can vali-
date techniques with experimental results that suggest the authors have solved
a given problem, but the solution will prove inadequate in real use.

Indeed, while most of the studies presented in our related work section (7) were
published after the paper of Rossow et al., they all present this very shortcoming in
their validation methodology.

This paper. We discuss in this paper a new machine learning-based malware de-
tection approach that is effective when assessed with the in the lab validation scenario.
However, our work aims at shedding light on whether a high performance recorded with
a typical in the lab experiment guarantees even a good performance in realistic malware
detection use-cases. To this end, we proceed to compare the performance of machine
learning classifiers when they are being validated in the lab and when they are used
in the wild (i.e., the way they are intended to be used). Due to the scarcity of author
data and the lack of sufficient implementation details to reproduce approaches from
the state-of-the art literature, we base our investigation on our newly designed malware
detection approach. We have devised several machine learning classifiers and built a

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 3

set of features which are textual representations of basic blocks extracted from the
Control-Flow Graph of applications’ bytecode. We use a sizeable dataset of over 50 000
Android applications collected from sources that are used by authors of state-of-the
art approaches.

The contributions of this paper are:

— We propose a feature set for machine-learning classifiers for malware detection.

— We show that our implemented classifiers yield a high malware discriminating power
when evaluated and compared with state of the art techniques from the literature.
This in the lab evaluation is based on the 10-Fold cross validation scheme which is
popular in the machine learning-based malware detection community.

— We demonstrate limitations of this validation scenario that is performed in the
literature of malware detection. In particular, we show with abundant experimental
data that 10-Fold validation on the usual sizes of datasets presented in the literature
is not a reliable performance indicator for realistic malware detectors.

This paper is organised as follows. Section 2 discusses malware detection in the wild
and highlights the associated challenges. We provide in Section 3 various information on
the datasets of our experiments, the investigated research questions as well as the used
evaluation metrics. Section 4 describes our approach of malware detection, exploring
the variables that can be parameterized to tune the output of the machine learning
process. Section 5 presents the assessment of our approach, highlighting its performance
against state of the art approaches, but also showing its counter-performance in the
wild. Section 6 discusses potential threats to validity. Related work is discussed in
Section 7. Section 8 concludes and enumerates future work.

2 Malware Detection in the Wild

The market share of Android and its open source architecture has made it a primary
target for malware attacks among mobile operating systems. In the official Android
application store, Google Play, up to 40 000 new applications are registered in a month
according to (). In this context, especially for alternative markets, it
is important to devise malware detection approaches that are efficient in: (1) quickly
identifying, with high precision, new malware among thousands of newly arrived appli-
cations, (2) classifying a large set of applications to expose its entire subset of suspicious
ones.

Machine learning is a tool used in Artificial Intelligence to provide computers with
capabilities for automatically improving themselves in the recognition of patterns.
Machine-learning algorithms rely on selected features and training data to infer the
commonalities that a group of searched items share and that discriminate them from
the rest of the universe. The success of these algorithms therefore depend on the rel-
evance of the features for discrimating between the group of searched items and the
rest, and on the quality of training data for being unbiased and representative of the
universe of items. In machine learning-based malware detection, there is a challenge to
meet both requirements. Indeed, in the wild, i.e., in real-world scenarios, there are much
more goodware than malware, and it is yet difficult to build a set of “perfect” goodware
that does not contain a single malware. Consequently, validation of the performance
of malware detectors should reflect these specificities. Indeed:

4 Kevin Allix et al.

— Using small datasets of goodware and malware of similar size cannot guarantee
a realistic assessment of a malware detector that is intended to be used in the
wild.

— Blindly using a goodware set without properly validating that it does not contain
malware will significantly bias the yielded results

3 Data Sources, Research Questions and Metrics

In this section, we mainly present the datasets that are used to assess our malware
detection approach as well as the different aspects that are evaluated.

3.1 Datasets

For our experiments we have used two sources of Android applications that are often
used by researchers and practitioners of machine learning-based malware detection
for Android. However, to the best of our knowledge our dataset is the largest ever
presented in the Android malware detection literature. We make it available to the
research community.

Building an Android market dataset. Google Play' is the main Android applications
market available, and thus constitutes a unique source of relevant applications that
are used and that reflects the state of Android application development. We have
built a tool that automatically crawls and downloads free applications available in this
source. Due to limitations in the implementation of our tool and to restrictions set
by Google regarding automatic crawling, we could not retrieve all free applications.
Nonetheless, in the course of six (6) months, we have collected a sizeable dataset of
nearly 52000 unique applications. Although Google use various tools to keep Google
Play free of malware, we found, after investigation with antivirus, that our collected
dataset includes malware.

Collecting known malware. For training needs, we must have access to a reliable and
representative set of Android malware. To this end, we leverage a dataset released
in the course of the Genome project by researchers from the North Carolina State
University (). The Genome dataset contains over 1200 Android
malware samples.

3.2 Research Questions & Metrics

We now discuss four important research questions that we have formulated to assess
the effectiveness of our machine learning-based malware detectors.

RQ1. What is the sensitivity of the malware detector when the Goodware/Malware
ratio changes in training data? Because training data is an important element of a
machine learning process, we investigate the impact of the composition of this data on
the output of the malware detector.

1 Google Play was formerly known as Google Market

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 5

RQ2. How does the number of selected features influence the performance of the
tool? We study the correlation between the number of features used to discriminate
malware and the performance of the malware detection scheme.

RQ3. What is the impact of the underlying machine learning algorithm? With this
research question we want to assess that the algorithm that is used for the implemen-
tation of our approach does not significantly bias our findings.

RQ4. What is the sensitivity of the tool towards the quality of training data? In the
wild, the supposed goodware dataset may be imperfect and contain unknown malware,
hence adding noise to the training phase. We investigate the impact that such misrep-
resentations in training data can have to the final output of the malware detector.

Those four research questions contribute to the common goal of determining the
performance of a malware detector for several sets of parameters. Indeed, evaluating
a malware detector for one fixed set of parameters only tells the experimenter how it
would perform under the exact same conditions.

Malware labeling. For the purpose of guaranteeing a reliable assessment of our ap-
proach, we undertake to label all applications by classifying them beforehand as mal-
ware or goodware, thus building the ground truth. To construct a reference independent
classification to which we can compare the predictions yielded by our machine learning-
based approach, we collected from VirusTotal® the analysis report of each application
in our datasets. VirusTotal is a service that allows security practitioners to readily ob-
tain information on antivirus products which have identified a given application sample
as malware. At the time of writing, VirusTotal supported around 40 different antivirus
products which are continuously updated both in terms of software release version and
in terms of malware databases. Several thousands of the malware in our datasets were
unknown to VirusTotal before we submitted them.

Assessment metrics. To quantitatively evaluate the efficacy of our approach, we pro-
pose to use standard metrics from the field of Information Retrieval, namely the Pre-
cision, Recall, and F-measure metrics.

— Precision, as captured by Equation (1), quantifies the effectiveness of the tool
to identify suspicious applications that are actually malware. When the tool
reports applications as malware and all turn out to be as such, its Precision
amounts to 1.

[{labeled malware} N {malware in ferred by tool }|

(1)

Precision —
recision [{malware in ferred by tool }|

— Recall on the other hand explores the capability of the tool to identify most of
the malware. Equation (2) provides the formula for its computation. A Recall
evaluated to 0 indicates that no actual malware in the test set has been identified
as such by the tool.

{labeled malware} N {malware inferred by tool}|

_
Recall = |{labeled malware}|

(2)

2 https://www.virustotal.com

https://www.virustotal.com

6 Kevin Allix et al.

— Finally, we compute the F-Measure, the harmonic mean between Recall and
Precision. We consider that both Precision and Recall are equally important and
thus, they are equally weighted in the computation of F-measure in Equation

3)-

Precision x Recall

F-Measure = F1 = 2

®3)

" Precision + Recall

4 Experimental Setup

Malware detection shares a few challenges with other field of computer science such as
natural language processing where information retrieval techniques can be leveraged to
isolate and retrieve information that is hard to see at first glance. For text classifica-
tion (), researchers often rely on approaches based on n-grams,
which, given a string of length M, are all the substrings of length n (with n < M) of
this string. The difficulty in malware detection consists in recognizing, for classification
purpose, the signature of a malware. Already in 1994, Kephart at IBM has proposed
to use N-grams for malware analysis (). More recently a large body of
research in malware detection based on machine learning have opted for n-grams to
generate file/program signatures for the training dataset of malware (

; ;). Despite the high perfor-
mance claimed by the authors for very small datasets, between 500 and 3 000 software
programs, we believe that a malware detector based on n-grams, because of its vulner-
ability to obfuscation, could be trivially defeated by malware authors. For the Android
platform, () recently proposed to use a combination of Android
permission and a representation of programs’ control-flow graphs. However, since all
malware are not related to a permission issue, we believe that their approach will yield
poor results for other various types of malware.

In this paper we propose a different approach to extract, from an application pro-
gram, data blocks that are semantically more relevant for executed software. These
blocks are elements of applications’ Control Flow Graphs which should capture, in a
more meaningful way than n-grams, the implementation of a malicious behavior inside
program code.

4.1 Our Feature Set for Malware Detection

As detailed in previous sections, machine learning-based malware detection relies on a
training data that is analyzed to learn what could suggest that a given application is
a potential malware. To that end, the learning algorithm must be “told” what features
are relevant in each piece of data of the dataset. Indeed, Machine Learning algorithms
cannot work directly on Android applications; Each application must be represented
with an ordered list of properties—called a Feature vector in the context of Machine
Learning. Several sets of features designed to characterize executable code have been
introduced in previous approaches (Cf. section 7).

Features are often extracted from program metadata or program code (binaries,
bytecode, source code). In the case of the Android Operating System, features can be
extracted from application bytecode using static analysis. Indeed, Android applications
are distributed in the form of . apk files which are packages containing the application’s

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 7

Dalvik® bytecode, assets such as images, and metadata specific to the Android platform.
Android applications are generally written in Java. The program is then compiled to
Java bytecode which is converted into Dalvik bytecode. Unlike the typical binary code,
Dalvik bytecode retains most of the information contained in Java bytecode. Thus,
such code can be fed to Static Analysis tools that support Dalvik bytecode or after
converting it back to Java Bytecode for which many analyzers exist. In our work, the
static analysis was performed using .

We perform static analysis of Android applications’ bytecode to extract a represen-
tation of the program control-flow graph (CFG). The extracted CFG is expressed as
character strings using a method devised by Pouik et al. in their work on establishing
similarity between Android applications (). This method is based on
a grammar proposed by (). This derived string representation
of the CFG is an abstraction of the application’s code that retains information about
the structure of the code, but discards low-level details such as variable names or regis-
ter numbers. In the context of malware detection, this is a desirable property. Indeed,
two variants of a malware may share the same abstract CFG while having different
bytecode. Thus, using an abstract representation of the code could allow to resist to
basic forms of obfuscation, a threat to validity that n-grams-based approaches cannot
readily overcome.

Given the abstract representation of an application’s CFG, we collect all basic
blocks that compose and refer to them as the features of the application. A basic block
is a sequence of instructions in the CFG with only one entry point and one exit point.
It thus represents the smallest piece of the program that is always executed altogether.
By learning from the training dataset, it is possible to expose, if any, the basic blocks
that appear statistically more in malware.

Let us note BB; a basic block and BB,;; the set of the n basic blocks encountered
at least in one application.

BB,; ={BB1,BB2,--- ,BB,} (4)

For every application App, we build a list, Featuresapp, of binary values (0,1) that
codifies all basic blocks from BB, that appear in the App and those that do not.

Features app = (bapp,1,0app,2:- - >bApp.n) (5)

In Equation 5, bapp,; is set to 1 if the basic block BB; is present in the abstract CFG
of App, and 0 otherwise.

Experimental analysis with all applications from our datasets have shown that
with this method, we could extract over 2.5 millions different basic blocks, each ap-
pearing once or more in the CFGs of applications. The basic block representation used
in our approach is a high-level abstraction of small parts of an Android application.
Depending on its position inside a method, one sequence of instructions may lead to
different bytecode because of register renumbering. Our abstract basic block represen-
tation however will always produce the same string for one sequence of instructions
of a basic block, hence providing a higher resistance to code variations than low-level
representations such as n-grams computed on bytecode. For reproducibility purposes,
and to allow the research community to build on our experience, the feature matrices
that we have computed for both the Genome and the Google Play dataset are publicly
available for download®.

3 Dalvik is a virtual machine that is included in the Android OS
4 https://github.com/malwaredetector/malware-detect

https://github.com/malwaredetector/malware-detect

8 Kevin Allix et al.

4.2 Classification Model

Classification in machine learning-based approaches is the central phase during which
an algorithm assigns items in a collection to target classes. In our case, the classification
phase aims at predicting if a given application should be assigned to the malware class.
In preparation to the classification phase, we must build a dataset in which the class as-
signments, i.e., goodware or malware, are known for the application. The classification
model is then built by a classification algorithm which attempts to find relationships be-
tween the features of the applications and their class assignments. This process is known
as the training phase of the algorithm. In our approach we rely on four (4) well-known
classification algorithms, namely Support Vector Machine (SVM) (

), the RandomForest ensemble decision-trees algorithm (), the RIP-
PER rule-learning algorithm () and the tree-based C4.5 algorithm (

).

We now discuss the different steps, illustrated in Figure 1, for building the classi-

fication model.

Step 0: Set composition Our complete dataset contains over 50000 applications that
we divide into two distinct sets, one significantly smaller than the other, for the purpose
of assessment. The first set, Setq, contains all known malware, i.e., all items in the
Genome dataset. To complete this set, we randomly select a subset of the Google Play
dataset to add as the goodware portion of the dataset. The second set, Setg, is then
composed of the remaining subset of the Google Play dataset. Sets is always used as
a testing set, whereas Setq can be used as training set (in the wild) or as the entire
universe (10-Fold), i.e., testing and training sets combined (cf. Fig. 1).

Step 1: Feature Fvaluation Once the sets of an experiment are defined, a feature eval-
uation step is performed to measure the discriminating power of every feature. This
measure is computed using the InfoGain Feature evaluation as implemented in the
Machine Learning software Weka® ().

Step 2: Feature Selection For practical reasons, given the large sizes of the datasets,
hence the high number of features to process, we must improve computation efficiency
by reducing the number of features. Indeed, reducing the number of features considered
for the classification will decrease the working size of the sets, leading to lowered 1/0,
memory and CPU consumption for the subsequent processing steps. In our approach
we only retain, after the evaluation step, the best NV features, i.e. those with the highest
InfoGain values. The number of features is reduced in both the training set and the
testing set. For every built training set, we derived about 2.5 millions features, and
over 99% of them had a null (0) InfoGain measure. We thus discard those features
whose null discrimination power implies that they are “irrelevant”. Previous work has
already demonstrated that removing such irrelevant features may, beyond computation
efficiency gain, improve classifiers’ ability to generalize its model (),
which in turn could lead to a better detection of previously unknown malware.

5 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 9

Google Genome
Play
; S
Random T
Selection E
P
unselected selected 0
Setg,
Set 5
L1
Feature S
Evaluation T
E
" P
. 1
(feature, InfoGain) ¢
Feature i Feature A
Selection Selection s
T
E
N P
2
n best v
features of of Setq
Set 5 A
11
S
~_ .. 10-Fold
Training Cross-Validation T
T E
Y P
Classificati 3
on Model Accuracy
H Metrics v
Classification |------}
VirusTotal In the lab
Labelling S
H T
Validation S
P
’ 3
Accuracy
Metrics

Large scale ("in the wild")

Fig. 1 The steps in our approach

Step 3: Classification validation scenarios We propose to use two distinct scenarios to
validate our malware detection approach.

10 Kevin Allix et al.

Validation in the lab Traditionally, machine learning-based approaches are assessed
in a cross validation scenario that validates the classification model by assessing how
the result will generalize to an independent dataset. To estimate how the prediction
model will perform in practice, a cross-validation scenario partitions the sample data
into 2 subsets. The first subset is used for learning analysis, i.e., building the model
during the training phase. The second subset is used to validate the model. However,
to reduce variability of the results, multiple rounds are performed and the results are
averaged over the rounds. A well-known type of cross-validation is the 10-Fold cross
validation () which randomly partitions the sample data into 10
subsamples, 9 of which are used for training and 1 for validation. The process is then
repeated with each subsample being used exactly once for validation. This method
enables to consider all elements in the original sample for training but to have each
element validated only and exactly once. For assessing our malware detection approach
with the 10-Fold cross validation scheme we consider Set,, which was defined in Step
0, as the dataset where both training and testing data will be drawn. This dataset
contains both malware and goodware. Every Android application of this dataset will
then be classified exactly once, allowing us to easily determine the performance of our
approach in this setting.

Another common aspect of in the lab validation is the size of the dataset, usually
a few thousands applications at most as can be seen in table 1 in appendix.

Validation in the wild. Unfortunately, the 10-Fold cross validation scenario as it is
described above does not quite capture the real-world settings in which the malware
detector is intended to be used. Indeed, by splitting a dataset in 10 parts, 9 of which
are used for training, a 10-Fold cross-validation implicitly assumes that 90% of the
domain knowledge is known beforehand—a condition that contradicts the very idea of
in the wild.

A 10-Fold cross-validation experiment only serves to validate that a given classi-
fier performs well in this one set of conditions, and not that its performance can be
generalised outside the scope of these datasets. In the wild, the malware detection tool
will only know a size-constrained sample of malware. It could also know a few true
goodware, the majority of applications being of an unknown class. To detect malware
in this last category, the malware detection tool must be able to perform at large.

We perform large-scale experiments where the classification algorithm of our ap-
proach is trained on Set,. To investigate the impact of the quality of the training set,
we perform two rounds of experiments where the randomly selected “goodware” from
the Google Play dataset are alternatively just considered as such, or confirmed and
cleaned, as true goodware using antivirus products. The trained classifier obtained is
then used to predict the class, either malware or goodware, of every single application
from Sets. Those predictions are finally compared to our reference malware classi-
fication obtained from VirusTotal to assess the performance of the approach in the
wild.

4.3 Varying & Tuning the Experiments

In this section we succinctly describe the parameters that are used in our experiments
to vary and tune the experiments to share insights in the practice of malware detection
with machine learning techniques. These parameters were selected in accordance with
the research questions outlined previously in Section 3.2.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 11

Goodware/Malware ratio We see a first parameter in the building of the datasets.
Indeed, given that the size of the malware set is fixed and known, what size of goodware
should be selected in the very large set of goodware available to yield a good ratio? We
performed various experiments to analyze the impact of the potential class imbalance
between in the dataset, tuning the ratio value to 1/2, 1, 2 and up to 3, representing
respectively 620, 1247, 2500 and 3500 Android applications selected in the goodware
set. Having the vast majority of examples from one of the classes, aka class imbalance,
is a well-documented threat to Machine Learning performance in general (

;). This threat is even more severe in malware detection
because of the relative scarcity of malware in comparison to the number of available
benign applications. Yet, surprisingly, the literature of machine learning-based malware
detection often eludes this question in experiments (Cf. Section 7).

Volume of processed features Feature selection is an important step of the classification
model. However, it can bias the output of the classification depending on the threshold
that is set for defining best features. We investigate the role played by the number
of features considered as relevant for our malware detector. To this end, we vary this
number for the values of 50, 250, 500, 1000, 1500, 5000.

Classification algorithm Last, as introduced in the description of the classification
model, our malware detectors are implemented using 4 different algorithms which are
well-known in the community of machine learning. For all algorithms, we have used ex-
isting implementations in Weka, namely RandomForest, J48, JRip and LibSVM, that
were already referred to in the literature. In all of our experiments, these algorithms
are used with the default parameters set by the Weka framework.

Overall, since the selection of Goodware performed in Step 1 of the classification
is performed randomly, we reduce variability of the results by repeating 10 times each
experiment with a given triplet of parameter values. In total, 4 (values for number
of Goodware) x6 (values for number of features) x4 (number of algorithms) x10
= 960 runs were processed for our experiments. The entire process took over thirty
(30) CPU-days to complete.

5 Assessment

In this section we present an extensive assessment of our machine learning-based mal-
ware detection approach. We first validate the approach using a typical in the lab
validation scenario, while discussing the impact of the different parameters that are
involved in the process. Second, we compare the performance of our malware detector
with approaches in the literature to highlight the relevance of our feature set. However,
we take the experiments further to investigate the capability of malware detectors to
scale in the wild.

5.1 Evaluation in the lab

We run 960 10-Fold cross validation experiments with all combinations of parameter
values to assess the performance of our malware detection approach. Because in each

12 Kevin Allix et al.

experiment the goodware set is varied, computed features vary, and thus the classifi-
cation model leads to distinct classifiers. The validation thus assesses altogether the
960 classifiers that were built in the experiments. Figure 2 depicts the distribution of
precision, recall and F-measure that the validation tests have yielded. In each boxplot
diagram presented, whiskers go from the minimum value recorded to the maximum
value. The box itself is built as follows: the bottom line of the box represents the 25th
percentile; the top of the box represents the 75th percentile; the line inside the box

represents the median value.

09 -
0.8 -
0.7 -
0.6 -
05
04
03 -
0.2 -

0 \ \ \
Precision Recall Fy

Fig. 2 Distribution of precision, recall and F-measure for the malware class yielded in all 960
in the lab experiments

Overall, the results indicate that the vast majority of our 960 built classifiers exhibit
a very high precision rate with a median value of 0.94. The median value of recall is
recorded at 0.91, meaning that half of the classifiers have recall values that are equal or
higher to 0.91. Although recall values are lower than precision values, a large portion of
the built classifiers exhibit a high recall rate. Given the precision and pecall rates, the
F-measure values obtained are globally high, going from 0.53 to 0.96, with a median
value of 0.91.

5.1.1 Impact of class imbalance

We now investigate in detail how class imbalance in the constructed dataset threatens
the performance of machine learning-based malware detectors, and thus, how a collec-
tion of unrealistic datasets can bias validation results. To this end, as announced in Sec-
tion 4.3, we perform in the lab experiments using datasets where the goodware/malware
ratio is varied between 1/2 and 3. All other parameters are varied across all their value
ranges.

Figure 3 shows that when the goodware/malware ratio is increasing in favor of
goodware, the precision of malware detectors increases, while its recall decreases. The
increase of the precision can be attributed to the fact that the classification model has
a better view of the universe and can discriminate more accurately malware against
goodware. However, at the same time, the classifiers can no longer recognize all malware
since most will be more similar to some of the too many goodware. This drop in recall
rate is so marked that the overall performance, measured with F-measure, decreases
as revealed by the boxplots of Figure 3. This observation is of particular importance

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 13

in the field of malware detection since, in real-world scenarios, there is much more
goodware than malware.

RQ1: The performance of the machine learning-based mal-
ware detector decreases when there are fewer malware than

goodware in the training dataset.

03 F : In-the-lab: F measure Distribution]
02— : In-the-lab: Precision median
0.1 — : In-the-la‘b: Recall median —X—

0 | | |
172 1 2 3

Goodware/Malware Ratio

Fig. 3 Distribution of F-measure and evolution of precision and recall for various good-
ware/malware ratio values

5.1.2 Sensitivity to the volume of relevant features

We survey the effect that an implementation choice on the number of relevant features
to retain for classification can have on the performance of the malware detector. In
each experiment, about 2.5 millions distinct features are generated, most of which are
evaluated to being completely irrelevant. Using the remaining features, we successively
select between 50 and 5000 to use as relevant features for the classifiers. Figure 4
shows that the overall performance, measured with F-measure, is improving with the
number of features retained. However the figure also shows that over a certain threshold
number, about 1000, of features, the median value of F-measure is no longer affected.
The improvement is thus confined at the upper level.

RQ2: The more features are considered for the training

phase, the better the performance of the malware detector.

5.1.8 Effect of classification algorithm

Finally, we investigate the role played by the classification algorithm in the variation of
performance between classifiers. To that end we compare the performance of classifiers
after regrouping them by the underlying algorithm. Figure 5 represents the distribution
of F-measure for the 4 algorithms that are used in our experiments. RandomForest, the
RIPPER rule-learning algorithm, and C4.5 exhibit high F-measure rates. SVM on the
other hand provides results with a wider distribution and an overall lower F-measure.

14 Kevin Allix et al.

83@%????

0 I I I I I I
50 250 500 1000 1500 5000
Number of Features

Fig. 4 Distribution of F-measure for different volumes of the set of considered relevant features

0 I I I I
C4.5 RIPPER SVM RandomForest

Fig. 5 Distribution of F-measure for 4 different classification algorithms

Figure 6 plots the values of precision and recall for all classifiers built when using
each algorithm. We note that SVM leads to numerous classifiers with precision values
close to 1, but that present lower recall rates than the other algorithms. Although SVM
yields the best classifiers—the top 66 classifiers with highest precision and the top 42
with highest recall are based on SVM—it tends in our approach to yield few classifiers
that have both good precision and good recall.

RQ3: Four common classifications algorithms have led to
similar performance with our feature set, suggesting that the
approach is not tailored to a specific algorithm.

5.2 Comparison with Previous work

Table 1 in appendix summarizes a number of state-of-the-art machine learning-based
malware detection approaches for the Android platform. We indicate the features that
are used, the type of validation that were performed in the paper, the sizes and compo-
sition of the training set, the size of the testing set, if known, and an overall performance
comparison with our approach. Overall, we note that our cross validation experiments
have yielded at worst similar performance than state-the-art approaches, and at best,
our worst classifiers perform better than classifiers of approaches in the literature. All

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 15

Precision
coo
wn
T
i

4 Cc45 + n
03 1 RIPPER B
02+ SVM x -
0.1 *Rand‘omFor‘est ‘<> ‘ : ‘ : ‘ : b
0 01 02 03 04 05 06 07 08 09 1
Recall

Fig. 6 Precision and recall values yielded by all classifiers for the 4 different classification
algorithms

comparisons were done on equivalent experiments, i.e., with similar training and testing
sets, and the same classification algorithms whenever possible.

We provide this comparison to provide a settings for a stronger, and more general,
discussion on the scope of 10-Fold cross validation for approaches that are meant to be
applied on datasets in the wild.

Finding: Our classifiers, when built with similar parameters
than existing approaches, and evaluated in the lab, are highly
performant.

5.3 Evaluation in the wild

Beyond simply demonstrating the performance of our malware detection approach us-
ing cross-validation, we explore in this section its performance in the wild. We perform
large-scale experiments on sizes of datasets that are unusually large for the literature
of malware detection, but that better reflect realistic use-cases. Two points should be
highlighted:

— 10-Fold cross-validation assesses the performance of a classifier by considering
90% of the dataset for training, thus supposing a prior knowledge of the mal-
ware class of each application in 90% of the dataset. Real-world datasets of
applications however present a contrasting specificity: the known malware set
is limited and is insignificant compared to the rest (i.e. goodware + unknown
malware).

— Performance assessment of malware detectors should be carefully performed so
as to expose the scope in which they can be of use in real-world settings. Thus,
large-scale experiments with varying parameters can help refine a methodology
for using, in realistic settings, a malware detection approach that was shown
successful with 10-Fold cross validation on controlled datasets.

The experimental protocol used in this evaluation is similar to that used in the
validation experiments of Section 5.1, except that we do not perform 10-Fold cross
validation. Instead, we use our entire Training data, i.e., the entire set of known malware
+ a randomly selected subset of the goodware, to build the classification model (cf.

16 Kevin Allix et al.

Figure 1). By varying the different parameters explicited in Section 4.3, we obtain again
960 classifiers that will be used to test the large remaining set of goodware containing
from 48 422 to 51 302 applications. Each experiment with a specific set of parameters is
repeated 10 times to stabilize the results. Indeed, since step 0 of our experimental setup
randomly selects parts of the training dataset, repeating experiments ten times, each
with a different training-set prevents the results from being biased by the possibility
that the randomly selected training set is particularly good or particularly bad.

The predictions of the malware detector are then checked against the independent
reference classification (cf. Section 3.2).

Figure 7 illustrates the distribution of precision, recall and F-measure values for the
960 classifiers that were built during the large-scale experiments. Overall, the classifiers
exhibit a very low precision rate with a median value of 0.11. We have enumerated 13
classifiers with the highest precision value of 1. However, these only classified between
5 and 7 applications, thus yielding an exceedingly low recall rate. Also, most of the
960 classifiers have a recall value close to 0. Even the unique classifier which provided
a 0.45 recall value had to classify half of the dataset as malware. Finally, with a low
precision and an even lower recall, the global performance of the classifiers severely
drops in large-scale experiments, with a majority of classifiers yielding a F-measure
value close to 0.

09 -
0.8 -
0.7 -
0.6 —
0.5 -
0.4
03 -

af e L

Precision Recall Fy

Fig. 7 Distribution of precision, recall and F-measure values in “in the wild” experiments

Figure 8 shows that when the ratio of goodware/malware in the training set is
balanced in favor of the goodware set in training data, the precision rates increase
slightly while recall values decrease rapidly. This figure shows that a class imbalance
in favor of the goodware set leads to an overall performance drop, with the F-measure
values closer to 0.

Again, as in the case of in the lab experiments, we investigate the sensitivity of
the malware detector to the volume of relevant features. Figure 9, which depicts the
distribution of F-measure values for different experiments with varied number of fea-
tures that are kept as relevant, shows that, in the wild, their impact is not significant.
Indeed, aside from the first boxplot for a really small number, 50, of features, all other
boxplot show a compact distribution with similarly low median values.

Finally, Figure 10 presents the distribution of F-measure for classifiers built based
on the four different classification algorithms used in our experiments. The distributions
reveal that no algorithm significantly outperforms the others for our experiments in
the wild.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 17

0.9 In the wild: F measure Distribution]
0.8 - In the wild: Precision median
0.7 - ; In the wild: Recall median —¥—

12 1 2 3
Goodware/Malware Ratio

Fig. 8 Distribution of F-measure and evolution of precision and recall for various good-
ware/malware ratio values in “in the wild” experiments

=]
I

; s =
50 250 500 1000 1500 5000
Number of Features

Fig. 9 Distribution of F-measure for different volumes of the set of considered relevant features
in “in the wild” experiments

09 b S P
08 T P e e
07 b S
05 b P
0.4 e T
03 b S

0.2 b T e T T
0.1 Frrm
0 =

C4.5 RIPPER SVM RandomForest

Fig. 10 Distribution of F-measure for different algorithms in “in the wild” experiments

Summary: In the wild, experiments have revealed a poor overall performance
of the malware detectors. Variations of goodware/malware ratio and classi-
fication algorithms yield the same evolutions as for in the lab experiments.
In contrast, increase in the volume of features lead to a drop in performance
during large-scale experiments.

18 Kevin Allix et al.

5.4 Discussion

In the lab experiments with the 960 different built classifiers have demonstrated that
our malware detection approach performs well in comparison with existing approaches
in the literature. However applying those classifiers to detect malware in very large
datasets have yielded very low performance. Figure 11 illustrates the contrasting F-
measure median values for both experimental scenarios with varying number of fea-
tures.

=
[z In the wild —+—
In the lab —X—

50 500 1000 1500 5000
Number of Features

Fig. 11 Comparison of F-measure median values

We now enumerate a few points that are relevant to discuss the performance of
Malware classifiers in the wild:

Size of training sets: Given the importance of the training phase, it could be argued
that the size of training set that we have used in large-scale experiments are too small
compared to the size of the testing set. Nonetheless, the gap between these sizes is
in respect with real-world scenarios as discussed in Section 2. Furthermore, our ex-

periments, illustrated in Figure 8, have shown that the Recall rates actually decreases
when the size of training set increases.

Quality of training sets: The poor performance of classifiers during experiments in the
wild could be attributed to some potential noise in the “goodware” set collected from

Google Play; i.e., some goodware in this set are actually unknown malware whose
features are biasing the classification model. Indeed, according to detection reports
from VirusTotal, 16% of the applications obtained from Google Play are malware. We
have then run experiments where the training data contained alternatively a goodware
set that were uncleaned and a goodware set that were cleaned with Antivirus products.
Figure 12 shows the slight improvement that cleaned dataset provides. Nonetheless,
the global performance remains significantly low. Furthermore, since, to the best of
our knowledge, there is no publicly available collection of known goodware that one
can rely upon, a good classifier should perform relatively well even in presence of noisy
training datasets.

RQ4: The machine learning-based malware detector is sen-
sitive to the quality of training data. A cleaned goodware set
positively impacts overall performance.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 19

09 + With uncleaned goodware set []
08 With cleaned goodware set]

314
o1 |y By =
C4.5 RIPPER SVM RandomForest

Fig. 12 Distribution of F-measure values with cleaned and uncleaned goodware sets for ex-
periments in the wild

6 Threats to Validity

Our study presents a number of threats to validity that we discuss in the following to
highlight their potential impact on our findings and the measures we have taken to
mitigate their bias.

6.1 External Validity

Datasets representativity: During collection of datasets from Google Play, we did not
consider downloading any paid application. However, free applications account for the
majority of Android applications available () and appear to be the
most affected by malware.

Furthermore, the malware from the Genome dataset that we have used may not
be representative enough of the malware corpus available in Google Play. However,
to the best of our knowledge, this is the most comprehensive collection of Android
malware available to researchers in the Security and Privacy field. Besides, malware
representativity is hard to define in practice, since it would require that one knows
beforehand all malware that are being looked for.

Google’s own malware detector: In February 2012, Google announced ()
they were using Bouncer, their own Android malware detector, to prevent malicious
applications to reach the official Google Play market. While Bouncer still allows many
malware to enter Google Play (), it may bias our dataset collection.

Since both our in the lab and in the wild experiments used apps collected from
Google Play, both validation scenarios should be affected by this bias. Bouncer there-
fore cannot play a significant role in the performance gap we observed. However, if
Bouncer had a negative impact on Android malware detectors, our results show that
this impact would be marginal in the lab, but significant in the wild, hence highlighting
the importance of in the wild experiments.

6.2 Construct Validity

Labeling methods: In our experiments, two different reference classification sources were
used as ground truth: in the lab experiments were based on the Genome project classi-

20 Kevin Allix et al.

fication alone while in the wild experiments used the Genome project for training and
were tested against VirusTotal classification. Although we verified beforehand that ev-
ery app from the Genome project is classified as malware by VirusTotal,
the use of two different labeling sources could be one possible explanation for the dif-
ferences in accuracy we found when comparing in the lab with in the wild experiments.
To investigate this hypothesis, we performed the same experiments again, this time
using only VirusTotal for both training and testing. As can be seen on Fig 13, using a
single, coherent reference classification does not result in significantly different results.
Hence, the performance gap between in the lab and in the wild experiments cannot be
explained by our usage of labelling sources.

09
0.8
Inthelab]
E 04 - In the wild]

0.2 [~
0.1 -
Trained on Genome Trained on VirusTotal
Tested on VirusTotal Tested on VirusTotal

Fig. 13 Distribution of F-measure for different classification references usages

Ezhaustiveness of classification algorithms: Machine-learning algorithms perform differ-
ently depending on the context. It is thus possible that the four well-known algorithms
that we have selected were used in this study outside of their comfort zone. Nonethe-
less, we note that 3 very distinct algorithms exhibited similar patterns, suggesting that
our findings are not specific to a particular type of classification algorithm.

Relevance of feature set: Our experiments were performed with the same type of fea-
tures, which are based on basic blocks of CFGs. Possibly, this particular feature set is
incompatible with experiments in the wild. However, we have not found in the state-
of-the-art literature evidence suggesting that other feature sets with high performance
in in the lab validation actually perform well in large-scale experiments as well.

Limited experiments with 2-grams extracted from raw bytecode, resulted in the
same performance gap between in the lab and in the wild validation scenarios.

Furthermore, we note that if our feature-set was deemed unsound, or unsuitable for
this study, this would actually strengthen our argument. Indeed, it would demonstrate
that even an unsound feature-set can lead to high-performance in the lab, or in other
words, that high performance in the lab is not even a valid indicator of soundness for
a feature-set.

6.3 Internal Validity

Composition of training and testing sets: The size of training sets and the ratio between
goodware and malware sets take various values that appear to be unjustified since,

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 21

to the best of our knowledge, no survey has determined their appropriate values for
malware detection. However, we have ensured that the sizes that are used in our study
are comparable to other research work, and that they are representative of the data
available to the research community.

6.4 Other Threats

Specificity of Findings to the Android platform: Experiments in this study focused
on Android applications. We have not studied malware detection for other Operating
Systems. Although our feature set does not take into account any specificities, such as
Android Permissions scheme, we cannot rule out that the gap between in the lab and
in the wild scenarios could be narrower in other platforms.

7 Related Work

Previously, we have reported () preliminary findings of this work to
the Computer security community.

A significant amount of Machine Learning approaches to malware detection has
been presented to the research community. Although most of those approaches could
not be reproduced due to undisclosed parameters and/or undisclosed datasets, we try
to compare their evaluation metrics with our most-closely in the lab classifiers. None
of the approaches introduced by the literature discussed in this section provide a large
scale evaluation of their approach.

Android malware detection In 2012, () built an Android malware
detector with features based on a combination of Android-specific permissions and
a Control-Flow Graph representation. Their classifier was tested with k-Fold 6 cross
validation on a dataset of 91 malware and 2081 goodware. We obtained comparable
values of recall but much higher values for precision and F-measure. Using permissions
and API calls as features, () performed their experiments on a dataset
of 1500 goodware and 238 malware. Many of our classifiers exhibit higher values of
both precision and recall than theirs. In 2013, () leveraged dynamic
application profiling in their malware detector. The evaluation metrics of their 10-
Fold experiment are slightly lowers than ours. () also used dynamic
application analysis to perform malware detection with a dataset of 210 goodware
and 503 malware. Many of our in the lab classifiers achieved higher performance than
their best classifier. () built malware classifiers based on API calls,
external program execution and permissions. Their dataset consists in 1000 goodware
and 1000 malware. Many of our in the lab classifiers achieved higher performance than
their best classifier. () experimented feature sets based on SysCalls
and permissions. Their classifiers, evaluated on a dataset of 200 goodware and 200
malware, yielded lower precision and lower recall than ours.

6 The value of k used by Sahs & Khan was not disclosed.

22 Kevin Allix et al.

Windows malware detection () performed malware classifica-
tion on Windows Executable files. Using n-grams extracted from those binary files, and
the Information Gain feature selection method, they obtained high performance met-
rics with 10-Fold experimentations on two collections: The first one consisting in 476
malwares and 561 goodware, the second one containing 1651 malware and 1971 good-
ware. Many of our in the lab classifiers achieved higher performance metrics. In 2006,
() provided experimental results of a malware detector
based on a sophisticated n-grams selection algorithm. They evaluated their classifier
using 5-Fold” on a dataset of 3000 samples, of which 1512 were malware and 1488
were goodware. The majority of our classifiers achieved better results than Henchiri &
Japkowicz best ones, even though we used a simple feature selection method.

() leveraged a multi-classifier combination to build a malware detector. They
evaluated the quality of their detector with the 5-Fold method on three datasets, each
containing 150 malware and 423 goodware. The features they are using are based on
n-grams, and are selected with InfoGain. Zhang et al. mentions testing on a larger
dataset as a future work. () performed malware detection using
strings and byte sequences as features. They obtained very high recall and precision
with 5-Fold Cross Validation on a dataset of 4 266 Windows executables (3265 known
malicious binaries and 1001 benign). Many of our classifiers performed similarly good
or better. () built a packed executable detector that achieved near
99% accuracy. Their classifiers were trained on 4493 labelled executables and then
tested on 1005 binaries. The same authors leveraged their packed executable detection
method () and added two malicious code detectors, one of which
is based on n-grams. They first evaluated one of this detector with 5-Fold cross vali-
dation on 2229 goodware and 128 malware and the other detector with 3 856 malware
and 169 goodware. Finally, their complete approach called “McBoost” was evaluated
with 5-Fold on 3 830 malware and 503 goodware. () recently presented
“Mal-ID”, a malware detector that relies on high-level features obtained with Static
Analysis. Their experiments are performed with 10-Fold on a dataset built with 2627
benign executables and 849 known malware.

8 Conclusion

We have discussed in this paper the validation of machine-learning malware detection
with in the lab and in the wild scenarios. A first contribution of our work is a Feature
set for building classifiers that yield high performance measures in in the lab evaluation
scenarios and in comparison with state-of-the-art approaches. Beyond this evaluation,
however, we have assessed the actual ability of our classifiers to detect Malware in a
significantly large dataset. The recorded poor performance has provided us with new
insights as to the limits to which an in the lab validation scheme is a reliable indicator
for real-world malware detectors. We have thus identified several parameters that are
likely to impact the performance of Malware Detectors. Finally, we make available to
the research community all our datasets to improve the research on Android malware
detection.

7 While 10-Fold is equivalent to testing 10 times on 10% while being trained on 90% of
the dataset, 5-Fold is equivalent to testing 5 times on 20% while being trained on 80% of the
dataset.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 23

Our Argument. By presenting here an approach that exhibits high performance
in the lab and yet has little practical usefulness in the wild, we demonstrated that
there exists at least one approach for which this performance gap exists. While this
paper cannot demonstrate that the same gap exists for other published approaches, we
claim that until those approaches are tested in the wild, they cannot be supposed to
represent a significant improvement to the malware detection domain.

We also showed here that this issue of validation scenario is not merely a minor
bias in experimental results: in the lab results are not a slightly optimistic version of
results in the wild. Instead, they can be vastly different and tell widely different stories.

Hence, evaluating malware detector in the wild, with a sound empirical methodol-
ogy is of the utmost importance. In other words, we call for the Machine Learning-based
malware detection community to devise and agree on what would be sound, in-depth
and meaningful validation scenarios.

In future work, we plan to investigate the reasons of the observed performance
gap, and to formalise a methodology for sound, extensive, reliable and reproducible
empirical evaluation of malware detectors.

Acknowledgements We would like to thank VirusTotal for providing us the ability to lever-
age their infrastructure and detection report databases to build a reference classification as
described in section 3.2.

24

Kevin Allix et al.

9 Appendix

Table 1 Recent research in Machine Learning-based Android Malware Detection

Authors Features Algorithm Evaluation Datasets Training set Test Set Comment
Sal and Permissions, 1-class SVM k-fold 2081 goodware Subsets of the 91 malware Sahs & Khan approach yielded
Khan CFG sub- 91 malware goodware set (and remain- high recall with low precision. The
(2012) graphs der of training vast majority of our in the lab clas-
set?) sifiers yielded both a high recall
and a high precision.
\mos et al Profiling RandomForest, 10-fold on 1777 Apps 408 goodware 24 goodware Our closest experiment (good-
(2013) (Dynamic) C4.5, etc. training 1330 malware 23 malware ware/malware ratio: 1/2) yielded
set and dozens of classifiers with equivalent
evalua- or better performance
tion on a
test set
Yerima API calls, Bayesian 5-fold 1000 goodware T 71 Our closest in the lab experi-
et al (2013) external 1000 malware ment (goodware/malware ratio: 1)
tool execu- yielded 74 classifiers with both
tion, per- higher recall and higher precision
missions than Yerima et al.’s best classifier.
(Static)
Demme Performance KNN, Ran- 7T 210 goodware 7% 71 The majority of our in the lab
et al (2013) Counters domForest, 503 malware classifiers yielded higher recall and
(Dynamic) etc. higher precision than Demme et
al.’s best classifier
Canfora SysCalls, C4.5, Random- 7T 200 goodware 7T 7! In our closest experiment by
et al (2013) Permis- Forest, etc. 200 malware dataset size (goodware/malware
sions ratio :1/2), our worst classifier per-
forms better than Canfora et al.’s
best classifier. In our closest exper-
iment by goodware/malware ratio
(1), the vast majority of our clas-
sifier perform better than Canfora
et al.’s best classifier.
Wu et al Permissions, KNN, Naive- 7% 1500 goodware 71 7T More than 100 of our in the lab
(2012) API Calls, Bayes 238 malware classifiers yielded both a higher re-
ete. call and a higher precision than
their best classifier.
References

Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2014a) Large-scale machine
learning-based malware detection: Confronting the "10-fold cross validation" scheme with
reality. In: Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, ACM, New York, NY, USA, CODASPY ’14, pp 163-166, DOI 10.1145/2557547.
2557587, URL http://doi.acm.org.proxy.bnl.1lu/10.1145/2557547.2557587

Allix K, Jérome Q, Bissyandé TF, Klein J, State R, Le Traon Y (2014b) A forensic analysis
of android malware: How is malware written and how it could be detected? In: Computer

Software and Applications Conference (COMPSAC)

Amos B, Turner H, White J (2013) Applying machine learning classifiers to dynamic an-
droid malware detection at scale. In: Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International, pp 1666-1671, DOI 10.1109/TWCMC.2013.
6583806

AndroGuard (2013) Apktool for reverse engineering android applications. URL https://code.
google.com/p/androguard/, accessed: 2013-09-09

AppBrain (2013a) Comparison of free and paid android apps. URL http://www.appbrain.
com/stats/free-and-paid-android-applications, accessed: 2013-09-09

AppBrain (2013b) Number of available android applications. URL http://www.appbrain.com/
stats/number-of -android-apps, accessed: 2013-09-09

Breiman L (2001) Random forests. Machine learning 45(1):5-32

Canfora G, Mercaldo F, Visaggio CA (2013) A classifier of malicious android applications. In:
Availability, Reliability and Security (ARES), 2013 eight International Conference on

1 We were unable to infer this information.

http://doi.acm.org.proxy.bnl.lu/10.1145/2557547.2557587
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 25

Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: Pro-
ceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing -
Volume 107, Australian Computer Society, Inc., Darlinghurst, Australia, Australia, Aus-
PDC 10, pp 61-70

Cohen WW (1995) Fast effective rule induction. In: Machine Learning-International Workshop
Then Conference, Morgan Kaufmann Publishers, Inc., pp 115-123

Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20(3):273-297, DOI
10.1007/BF00994018, URL http://dx.doi.org/10.1007/BF00994018

Demme J, Maycock M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S (2013)
On the feasibility of online malware detection with performance counters. In: Proceedings
of the 40th Annual International Symposium on Computer Architecture, ACM, New York,
NY, USA, ISCA 13, pp 559-570, DOI 10.1145/2485922.2485970

Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security.
In: Proceedings of the 20th USENIX conference on Security, USENIX Association, Berke-
ley, CA, USA, SEC’11, pp 21-21, URL http://dl.acm.org/citation.cfm?id=2028067.
2028088

Felt AP, Finifter M, Chin E, Hanna S, Wagner D (2011) A survey of mobile malware in the
wild. In: Proceedings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, ACM, New York, NY, USA, SPSM ’11, pp 3-14, DOI 10.1145,/2046614.
2046618, URL http://doi.acm.org/10.1145/2046614.2046618

Google (2012) Android and security (bouncer announcement). http://googlemobile.
blogspot.fr/2012/02/android-and-security.html, accessed: 2014-06-14

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data
mining software: an update. SIGKDD Explor Newsl 11(1):10-18, DOI 10.1145/1656274.
1656278

He H, Garcia E (2009) Learning from imbalanced data. Knowledge and Data Engineering,
IEEE Transactions on 21(9):1263-1284, DOI 10.1109/TKDE.2008.239

Henchiri O, Japkowicz N (2006) A feature selection and evaluation scheme for computer virus
detection. In: Proceedings of the Sixth International Conference on Data Mining, IEEE
Computer Society, Washington, DC, USA, ICDM ’06, pp 891-895, DOI 10.1109/ICDM.
2006.4

Jacob A, Gokhale M (2007) Language classification using n-grams accelerated by fpga-based
bloom filters. In: Proceedings of the 1lst international workshop on High-performance re-
configurable computing technology and applications: held in conjunction with SC07, Reno,
Nevada, USA, HPRCTA 07, pp 31-37

Kephart JO (1994) A biologically inspired immune system for computers. In: In Artificial Life
IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, MIT Press, pp 130-139

Kolter JZ, Maloof MA (2006) Learning to detect and classify malicious executables in the wild.
J Mach Learn Res 7:2721-2744, URL http://dl.acm.org/citation.cfm?id=1248547.
1248646

McLachlan G, Do KA, Ambroise C (2005) Analyzing microarray gene expression data, vol 422.
Wiley. com

Perdisci R, Lanzi A, Lee W (2008a) Classification of packed executables for accurate
computer virus detection. Pattern Recognition Letters 29(14):1941 — 1946, DOI 10.
1016/j.patrec.2008.06.016, URL http://www.sciencedirect.com/science/article/pii/
S0167865508002110

Perdisci R, Lanzi A, Lee W (2008b) Mcboost: Boosting scalability in malware collection and
analysis using statistical classification of executables. In: Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pp 301-310, DOI 10.1109/ACSAC.2008.22

Pieterse H, Olivier M (2012) Android botnets on the rise: Trends and characteristics. In: Infor-
mation Security for South Africa (ISSA), 2012, pp 1-5, DOI 10.1109/ISSA.2012.6320432

Pouik, GOrfi3ld (2012) Similarities for fun & profit. Phrack 14(68), URL http://wuw.phrack.
org/issues.html?id=15&issue=68

Quinlan JR (1993) C4. 5: programs for machine learning, vol 1. Morgan kaufmann

Rossow C, Dietrich C, Grier C, Kreibich C, Paxson V, Pohlmann N, Bos H, van Steen M
(2012) Prudent practices for designing malware experiments: Status quo and outlook. In:
Security and Privacy (SP), 2012 IEEE Symposium on, pp 65-79, DOI 10.1109/SP.2012.14

Sahs J, Khan L (2012) A machine learning approach to android malware detection. In: Intel-
ligence and Security Informatics Conference (EISIC), 2012 European, IEEE, pp 141-147,

http://dx.doi.org/10.1007/BF00994018
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://doi.acm.org/10.1145/2046614.2046618
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://dl.acm.org/citation.cfm?id=1248547.1248646
http://dl.acm.org/citation.cfm?id=1248547.1248646
http://www.sciencedirect.com/science/article/pii/S0167865508002110
http://www.sciencedirect.com/science/article/pii/S0167865508002110
http://www.phrack.org/issues.html?id=15&issue=68
http://www.phrack.org/issues.html?id=15&issue=68

26 Kevin Allix et al.

DOI 10.1109/EISIC.2012.34

Santos I, Penya YK, Devesa J, Bringas PG (2009) N-grams-based file signatures for malware
detection. In: ICEIS, pp 317-320

Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data mining methods for detection of new
malicious executables. In: Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE
Symposium on, pp 38-49, DOI 10.1109/SECPRI.2001.924286

Tahan G, Rokach L, Shahar Y (2012) Mal-id: Automatic malware detection using common
segment analysis and meta-features. J Mach Learn Res 98888:949-979

Van Hulse J, Khoshgoftaar TM, Napolitano A (2007) Experimental perspectives on learn-
ing from imbalanced data. In: Proceedings of the 24th international conference on Ma-
chine learning, ACM, New York, NY, USA, ICML *07, pp 935-942, DOT 10.1145/1273496.
1273614

Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection
through manifest and api calls tracing. In: Information Security (Asia JCIS), 2012 Seventh
Asia Joint Conference on, pp 62-69, DOI 10.1109/AsiaJCIS.2012.18

Yerima S, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection
approach using bayesian classification. In: Advanced Information Networking and Ap-
plications (AINA), 2013 IEEE 27th International Conference on, pp 121-128, DOI
10.1109/AINA.2013.88

Zhang B, Yin J, Hao J, Zhang D, Wang S (2007) Malicious codes detection based on ensemble
learning. In: Proceedings of the 4th international conference on Autonomic and Trusted
Computing, Springer-Verlag, Berlin, Heidelberg, ATC’07, pp 468477

Zhou Y, Jiang X (2012) Dissecting android malware: Characterization and evolution. In: Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy, IEEE Computer So-
ciety, Washington, DC, USA, SP ’12, pp 95-109, DOI 10.1109/SP.2012.16, URL http:
//dx.doi.org/10.1109/SP.2012.16

http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16

	Introduction
	Malware Detection in the Wild
	Data Sources, Research Questions and Metrics
	Experimental Setup
	Assessment
	Threats to Validity
	Related Work
	Conclusion
	Appendix

