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Are Delayed Issues Harder to Resolve? Revisiting Cost-to-Fix
of Defects throughout the Lifecycle
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Abstract Many practitioners and academics believe in a delayed issue effect (DIE); i.e. the
longer an issue lingers in the system, the more effort it requires to resolve. This belief is
often used to justify major investments in new development processes that promise to retire
more issues sooner.

This paper tests for the delayed issue effect in 171 software projects conducted around
the world in the period from 2006-2014. To the best of our knowledge, this is the largest
study yet published on this effect. We found no evidence for the delayed issue effect; i.e.
the effort to resolve issues in a later phase was not consistently or substantially greater than
when issues were resolved soon after their introduction.

This paper documents the above study and explores reasons for this mismatch between
this common rule of thumb and empirical data. In summary, DIE is not some constant across
all projects. Rather, DIE might be an historical relic that occurs intermittently only in certain
kinds of projects. This is a significant result since it predicts that new development processes
that promise to faster retire more issues will not have a guaranteed return on investment
(depending on the context where applied), and that a long-held truth in software engineering
should not be considered a global truism.

Categories/Subject Descriptors: D.2.8 [Software Engineering]: Process metrics.

Keywords: software economics, phase delay, cost to fix.

1 Introduction

In 2013-2014, eleven million programmers [4] and half a trillion dollars [45] were spent
on information technology. Such a large and growing effort should be managed and opti-
mized via well-researched conclusions. To assist in achieving this, there has been a growing
recognition within the software engineering research community of the importance of theory
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building [70l[891[93]]. A good theory allows empirical research to go beyond simply report-
ing observations and instead provides explanations for why results are observed [93]]. This
occurs by testing theories against data from multiple sources; by reconciling similarities and
differences in results it can be determined what factors need to be accounted for in a theory
[88]l. Theory-building needs to be an iterative process, in which results from practice are
used to refine theories and theories are used to inform future observation and data collection
. It is no coincidence that it is standard practice in other fields, such as medicine, to
continually revisit old conclusions in the light of new theories [[77].

Accordingly, this paper revisits the commonly held theory we label the delayed issue
effect (hereafter, DIE): more effort is required to resolve an issue the longer an issue lingers
in a system. Figurem shows an example of the delayed issue effect (relating the relative cost
of fixing requirements issues at different phases of a project). As a falsifiable theory, the DIE
can be compared to empirical data and, if inconsistencies are observed, refinements to the
theory may be generated that better describe the phenomenon under observation [73].

The DIE theory is worth examination since it has been used as the basis for decision-
making in software engineering. For example, Basili and Boehm comment that, since the
1980s, this effect

“...has been a major driver in focusing industrial software practice on thorough re-
quirements analysis and design, on early verification and validation, and on up-front
prototyping and simulation to avoid costly downstream fixes” [16].

Like any good theory, DIE includes a rationale for why the expected results would be
seen. McConnell mentions it as a “common observation” in the field and summarizes the
intuitive argument for why it should be so:

”A small mistake in upstream work can affect large amounts of downstream work.
A change to a single sentence in a requirements specification can imply changes in
hundreds of lines of code spread across numerous classes or modules, dozens of test
cases, and numerous pages of end-user documentation” [61].

Glass also endorses this rationale, asserting that “requirements errors are the most expensive
to fix when found during production but the cheapest to fix early in development” is “really
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Fig. 1 A widely-recreated chart of the DIE effect. Adapted from Boehm’81 .
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just common sense” [37]]. Other researchers are just as adamant in asserting that the delayed
issue effect is a generally useful law of software engineering. For example, what we call the
delayed issued effect was listed at #1 by Boehm and Basili in their “Top 10 list” of “objective
and quantitative data, relationships, and predictive models that help software developers
avoid predictable pitfalls and improve their ability to predict and control efficient software
projects” [[16].

In analyzing data from a contemporary set of software development projects, however,
we did not find results to corroborate these claims. While the delayed issue effect might
have been a dominant effect decades ago, this does not mean that it is necessarily so for
21°% century software development. The delayed issue effect was first reported in 1976 in a
era of punch card programming and non-interactive environments [[12]. In the 21°% century,
we program in interactive environments with higher-level languages and better source code
control tools. Such tools allow for the faster refactoring of existing code— in which case,
managing the changes required to fix (say) an incorrect requirements assumption is far less
onerous than before. Further, software engineering theory and practice has evolved into
new paradigms focused on rapid feedback and delivery, enabled by significant technological
advances in the past 40 years. There is little empirical evidence for the delayed issue effect
since its initial observation, no doubt due in part to DIE being “just common sense” as Glass
states [|37].

This article explores the currency of the delayed issue effect. After some initial defini-
tions, we discuss the value of checking old ideas. Next, we present a survey of industrial
practitioners and researchers that documents the widespread belief that delayed issues have
a negative impact on projects. After that, we analyze 171 software projects developed in the
period 2006-2014 and find no evidence of the delayed issue effect. Finally, we discuss the
validity and implications of our results, as well as possible reasons for the lack of observed
effect given the state of the practice - reasons which, when subjected to further testing, may
prove useful for refining the theory. To ensure reproducibility, all the data used in this study
is available in the PROMISE repository at openscience.us/repo. To the best of our knowl-
edge, this the largest study devoted the delayed issue effect yet conducted.

1.1 Preliminaries

Before beginning, it is appropriate to make the following full disclosure statement. All 171
software projects studied here were developed using the Team Software Process (TSPSM),
which is a software development methodology developed and promulgated by the employer
of the second and third author of this paper (for more details on TSP, see §5.1).

We argue that TSP is not such a radical change to software development that it can
stamp out a supposedly rampant problem like the delayed issue effect. We view TSP as a
better way to monitor the activities of existing projects. TSP does not significantly change
a project— it just offers a better way to log the activity within that project. The limitations
of our sample drawing from TSP projects are discussed more thoroughly in the Threats to
Validity section.

2 Definitions & Claims

This paper uses the following definitions:
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— The delayed issue effect: it is very much more difficult to resolve issues in a software
project, the longer they remain.

— Longer time is defined as per Boehm’81 [14]; i.e. the gap between the phases where
issues are introduced and resolved.

— We say that a measure m collected in phase 1,.,4,..7 is very much more when that
measure at phase j is larger than the sum of those measures in the earlier phases; i.e.

20 m.

— Issues are more difficult when their resolution takes more time or costs more (e.g. needs

expensive debugging tools or the skills of expensive developers).

Note that this definition of “difficult to resolve” combines two concepts: time to change
and cost to change. Is it valid to assume the equivalence of time and cost? Certainly, there
are cases where time is not the same as cost. Consider, for example, if debugging required
some very expensive tool or the services or a very senior (and hence, very expensive) de-
veloper. Under those circumstances, time does not equate to cost. Having documented the
above issues, we assert that they are unlikely to be major issues in the study. One of us
(Nichols) was closely associated with many of the projects in our sample. He is unaware of
any frequent use of exorbitantly expensive tools or people on these projects. For more on
the validity of this definition of “difficult to resolve” see

This paper defends the following claim and hypothesis. The hypothesis is defended us-
ing some statistical significance tests while the claim is supported via a variety of arguments.

Claim: “DIE” is a commonly held, yet poorly documented belief. We examine the
literature promoting the DIE and find that most reference a few primary sources. Many
of the papers reporting the DIE either (1) are quite old (papers dating from last century);
(2) quote prior papers without presenting new data; (3) or cite data sources that can no
longer be confirmed. We follow-up with a short survey that finds that DIE appears as the
most strongly-held belief among software engineers in our sample.

Hypothesis: Delayed issues are not harder to resolve. In our sample of 171 commer-
cial software projects, we offer a statistical analysis showing that, in overwhelming majority
of our results, there is no significant increase in the time to resolve issues as they are delayed
across multiple phases.

3 Reassessing Old Truisms

General theories of software engineering principles are common to both research and prac-
tice, although not always explicitly stated. Such theories underlie lists of proposed general
“best practices” for effective software development, such as the IEEE 1012 standard for
software verification [43]]. Endres & Rombach offer empirical observations, theories, and
1awsE] [31]. Many other commonly cited researchers do the same, e.g., Glass [[37]], Jones [47],
and Boehm [17]. Budgen & Kitchenham seek to reorganize SE research using general con-
clusions drawn from a larger number of studies [21}{53]].

In contrast, there are many empirical findings that demonstrate the difficulty in finding
general truisms in software engineering, even for claims that seem intuitive:

1. Turhan [66] lists 28 studies with contradictory conclusions on the relation of object-
oriented (OO) measures to defects. Those results directly contradict some of the laws
listed by Endres & Rombach [31].

I Endres & Rombach note that these are not laws of nature in the scientific sense, but theories with repeated
empirical evidence.
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2. Ray et al. [79] tested if strongly typed languages predict for better code quality. In 728
projects, they found only a modest benefit in strong typing and warn that the effect may
be due to other conflating factors.

3. Fenton & Neil [33]34] critique the truism that “pre-release fault rates for software are a
predictor for post-release failures” (as claimed in [28]], amongst others). For the systems
described in [35], they show that software modules that were highly fault-prone prior to
release revealed very few faults after release.

4. Numerous recent local learning results compare single models learned from all available
data to multiple models learned from clusters within the data [9}/10,/66-H68\/76,/99,/100].
A repeated result in those studies is that the local models generated the better effort and
defect predictions (better median results, lower variance in the predictions).

The dilemma of updating truths in the face of new evidence is not particular to software
engineering. The medical profession applies many practices based on studies that have been
disproved. For example, a recent article in the Mayo Clinic Proceedings [77|] found 146
medical practices based on studies in year i, but which were reversed by subsequent trials
within years ¢4-10. Even when the evidence for or against a treatment or intervention is clear,
medical providers and patients may not accept it [2]. Aschwanden warns that “cognitive
biases” such as confirmation bias (the tendency to look for evidence that supports what you
already know and to ignore the rest) influence how we process information [3].

The cognitive issues that complicate medicine are also found in software engineering.
Passos et al. [[72]] warn that developers usually develop their own theories of what works
and what doesn’t work in creating software, based on experiences from a few past projects.
Too often, these theories are assumed to be general truisms with widespread applicability to
future projects. They comment “past experiences were taken into account without much con-
sideration for their context” [[72]. The results of Jergensen & Gruschke [49]] support Passos
et al. In an empirical study of expert effort estimation, they report that the experts rarely use
lessons from past projects to improve their future reasoning in effort estimation [49]. They
note that, when the experts fail to revise their beliefs, this leads to poor conclusions and soft-
ware projects (see examples in [49])). A similar effect is reported by Devanbu et al. [27] who
examined responses from 564 Microsoft software developers from around the world; they
found that “(a) programmers do indeed have very strong beliefs on certain topics; (b) their
beliefs are primarily formed based on personal experience, rather than on findings in empir-
ical research; (c) beliefs can vary with each project, but do not necessarily correspond with
actual evidence in that project.” Devanbu et al. further comment that “programmers give
personal experience as the strongest influence in forming their opinions.” This is a troubling
result, especially given the above comments from Passos and Jgrgensen et al. [49}|72] about
how quickly practitioners form, freeze, and rarely revisit those opinions.

From all we above we conclude that, just as in medicine, it is important for our field to
regularly reassess old truisms like the delayed issue effect.

4 Motivation: “DIE” is commonly held, yet poorly documented

One reason that industrial practitioners and academics believe so strongly in the delayed
issue effect is that it is often referenced in the SE literature. Yet when we look at the litera-
ture, the evidence for delayed issue effect is both very sparse and very old. As shown in this
section, a goal of agile methods is to reduce the difficulty associated with making changes
later in the lifecycle [8]]. Yet, as shown below, relatively little empirical data exists on this
point.
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Fig. 2 Historical cost-to-fix curve. Adapted from [[14], p. 40.

We examined the literature on the delayed issue effect through a combination of snow-
ball sampling [97]] and database search. We searched Google Scholar for terms such as “cost
to fix” and “defect cost” and “software quality cost”. The majority of the search results
discuss quality measurements, quality improvement, or the cost savings of phase-specific
quality improvement efforts (e.g., heuristic test case selection vs. smoke testing). A system-
atic literature review of software quality cost research can be found in [51]. Relatively few
articles discuss cost-to-fix as a function of when the defect was injected or found. We also
conducted a general Google search for the above terms. We found a number of website arti-
cles and blog postings on this topic, e.g., [3844,(711/90]. From these, we gathered additional
citations for the delayed issue effect, the vast majority of which were secondary sources,
e.g., [19157,/60,/6 11/64,/94]. Our literature search is not exhaustive, but our results yielded an
obvious trend: nearly every citation to the delayed issue effect could be traced to the seminal
Software Engineering Economics [14] or its related works [11} 16]E]

Ultimately, we identified nine sources of evidence for the delayed issue effect based on
real project data: the original four [12,25/32,/92]] reported in Software Engineering Eco-
nomics [|14]], a 1995 report by Baziuk [[6] on repair costs at Nortel, a 1998 report by Willis
et al. [96] on software projects at Hughes Aircraft, a 2002 experiment by Westland [95] to
fit regression lines to cost-to-fix of localization errors, a 2004 report by Stecklein et al. [91]
on cost-to-fix in five NASA projects, and a 2007 survey by Reifer on CMMI Level 5 orga-
nization [80]].

2 For example, popular sources such as [|16,/31}371/78]], with a combined citation count of over 14,500 on
Google Scholar, can all trace their evidence to Software Engineering Economics ||14].



Are Delayed Issues Harder to Resolve? 7

Figure [2 shows the DIE as reported in Software Engineering Economics [[14] based on
data from large systems in the late 70s from IBM [32], TRW [12], GTE [_25]], and Bell
Labs [92]]. We note that it is unclear from the text in [25] and [12]| if cost is defined in
terms of effort, or in actual cost (i.e., labor, materiel, travel, etc). The data points from these
studies are not published for analysis. Baziuk [6]] reports an exponential increase in the cost
to patch software in the field versus system test, and Stecklein et al. [91] produce a cost-
to-fix curve (as price) that fits precisely with Figure [2| Westland [95] finds that the cost
to fix engineering errors is exponentially related to the cost of the overall cost of a case
study project. Reifer [80] confirms the exponential increase in the DIE in 19 CMMI Level 5
organizations though this appears to be based on survey rather than empirical data.

Shull et al. [[87] conducted a literature survey and held a series of e-workshops with
industry experts on fighting defects. Workshop participants from Toshiba and IBM reported
cost-to-fix ratios between early lifecycle and post-delivery defects of 1:137 and 1:117 for
large projects respectively [[87] — but the raw data points were not provided and thus cannot
be confirmed. Elssamadisy and Schalliol [30] offer an anecdotal report on the growing, high
cost of rework in a 50 person, three-year, SOOKLOC Extreme Programming project as the
project grew in size and complexity— but again we cannot access their exact figures. This
was a common theme in the literature reviewed for this paper— i.e. that it was no longer
possible to access the data used to make prior conclusions.

Some studies report smaller increases in the effort required to fix delayed issues. Boehm [/13]]
provides data suggesting that the cost-to-fix curve for small projects is flatter than for large
projects (the dashed line of Figure2). Data from NASA’s Johnson Space Flight Center, re-
ported by Shull [87]], found that the cost to fix certain non-critical classes of defects was
fairly constant across lifecycle phases (1.2 hours on average early in the project, versus 1.5
hours late in the project). Royce [83] studied a million-line, safety-critical missile defense
system. Design changes (including architecture changes) required approximately twice the
effort of implementation and test changes, and the cost-to-fix in implementation and test
phases increased slowly. Boehm [[15] attributes this success to a development process fo-
cused on removing architecture risk early in the lifecycle. Willis et al. ( [96], page 54)
provide tables summarizing the effort to fix over 66,000 defects as a function of lifecycle
phase injected and removed from multiple projects. The tables are partly obscured, but seem
to provide the first large scale evidence that a) DIE need not be exponential and b) DIE need
not be monotonically increasing. Again, the data points from these studies are not available,
and thus newer evidence both in favor of and contrary to the DIE cannot be evaluated.

To gain a sense of how current the perception of the DIE is, we conducted two surveys
of software engineers. The surveys collected data on software engineers’ views of the DIE
and other commonly held software engineering “laws”. The surveys were conducted using
Amazon’s Mechanical Turk. The first survey was conducted only with professional software
engineers. Participants were required to complete a pretest to verify their status as a profes-
sional or open source software developer and to confirm their knowledge of basic software
engineering terminology and technology. The second survey was conducted with Program
Committee members of the ESEC/FSE 2015 and ICSE 2014 conferences solicited via email.

The practitioner survey presented the following law: “requirements errors are the most
expensive to fix when found during production but the cheapest to fix early in development”
(from Glass [37] p.71 who references Boehm & Basili [16]). We abbreviate this law as
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thsErrE] The PC member survey presented the RqtsErr law and an additional law on the
DelayedIssueEffect: “In general, the longer errors are in the system (requirements errors,
design errors, coding errors, etc.), the more expensive they are to fix”. The respondents
answered two questions in response to each law:

— Agreement: “Based on your experience, do you agree that the statement above is cor-
rect?” A Likert scale captured the agreement score from Strongly Disagree to Strongly
Agree. A text box was provided to explain the answer.

— Applicability: “To the extent that you believe it, how widely do you think it applies
among software development contexts?” The possible answers were: -1: I don’t know,
0: this law does not apply at all, ..., 5: always applies. Respondents were required to
explain the applicability score in a text box.

agreement applicability
Practitioner survey N med | mode | med | mode
Rqts errors are most expensive... 16 5 5 4 5
Inspections can remove 90% of defects 18 4 5 4
80-20 rule (defects to modules) 12 4 5 4 5
Most time is spent removing errors 16 4 4 4 5
Process maturity improves output 17 4 4 4 4
Missing reqts are hardest to fix 17 4 4 4 4
Reuse increases prod. and qual. 16 4 4 4 4
OO-programming reduces errors 13 4 4 4 3
Adding manpower to a late project 15 4 4 4 4
Smaller changes have higher error density 14 3 3 35 5
A developer is unsuited to test own code 17 3 1 4 5
Researcher survey
Process maturity improves output 4 4 4 4 5
Rgqts errors are most expensive... 30 4 4 4 4
DelayedIssueEffect 30 4 4 - -
Reuse increases prod. and qual. 6 4 4 4 4
80-20 rule (defects to modules) 6 4 4 4 3
Missing reqts are hardest to fix 7 4 4 4 3
OO-programming reduces errors 6 4 4 3 4
Inspections can remove 90% of defects 7 4 4 3 3
Adding manpower to a late project 4 3 4 4 3
Most time is spent removing errors 6 3 3 4 4
Smaller changes have higher error density 4 3 - 4 4
A developer is unsuited to test own code 7 2 1 3 3

Fig. 3 Agreement and applicability of SE axioms.

Summary statistics for the agreement and applicability scores for the RqtsErr and De-
layedIssueEffect laws are presented in Figure [3] Responses whose Applicability response
was "I don’t know” are omitted from analysis. Laws other than RqtsErr and DIE are not
relevant to this paper, but are shown for comparison.

Both practitioners and researchers strongly believed in RqtsErr. In both sets of responses,
RqtsErr received scores higher than most other laws. Overall, the RqtsErr law was the most
agreed upon and most applicable law of 11 surveyed amongst practitioners, and the second
most agreed upon law amongst researchers. From the free response texts, we note that the
researchers who disagreed with RqtsErr generally asserted that requirements change can be

3 We use the RqtsErr formulation since this issue typically needs no supportive explanatory text. If we
had asked respondents about our more general term “delayed issue effect”, we would have had to burden our
respondents with extra explanations.
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expensive, but that the effect depends on the process used (e.g., agile vs. waterfall) and the
adaptability of the system architecture.

The above arguments provide evidence to the claim that the DIE is both poorly docu-
mented yet (still) widely believed. The comments of Glass [37], that the DIE is “just com-
mon sense”, suggest that DIE may be the target of confirmation bias. An example of this
is Figure {4f from [91]], which purports to show nine references to “studies [that] have been
performed to determine the software error cost factors”. Only one of these sources, Software
Engineering Economics [14]], is based on real project data. Despite a lack of recent evidence,
the perception of the DIE persists today among both the software engineers sampled in our
survey and in popular literature. In the intervening years, many advances in software tech-
nology and processes have been made precisely to deal with risks such as the DIE. Thus, it
is appropriate to ask the question, does the DIE still exist?

Phase Requirements Issue Found
Cited source | Requirements Design  Code Test | Data sources used to determine DIE
[14] 1 5 10 50 | Multiple projects
Hoffman, 2001 1 3 5 37 | Unknown - no bibliography entry

[23] 1 3 7 51 | Extrapolated from defect counts for a one project
[81] 5 33 75 | Fictitious example

[81] Case B 10 40 | Fictitious example

[81] Case C 10 40 | Fictitious example
[82]] 1 20 45 250 | Fictitious example
[74] 1 10 100 1000 | None provided
[62] 5 50 | Pen & paper exercise - no real data

Fig. 4 Confirmation bias — sources for DIE cited in Table 1 of [91]]. Note that all of these are cited as “studies
[that] have been performed to determine the software error cost factors”, but only one, [14], is backed by
actual data.

4.1 Early Onset of the DIE Effect

One feature of the the DIE literature is important to our subsequent discussion: the onset of
DIE prior to delivery.

- Figure[T]reports a 40-fold increase in effort requirements to acceptance testing
- Figure[2]reports a 100-fold increase (for the larger projects) before the code is delivered

Any manager noticing this early onset of DIE (prior to delivery, during the initial devel-
opment) would be well-justified in believing that the difficulty in resolving issues will get
much worse. Such managers would therefore expect DIE to have a marked effect post-
deployment. We make this point since, in the new project data presented below, we focus on
DIE pre-delivery.

5 Delayed Issues are not Harder to Resolve

The above analysis motivates a more detailed look at the delayed issued effect. Accordingly,
we examined 171 software projects conducted between 2006 and 2014.

These projects took place at organizations in many countries and were conducted using
the Team Software Process (TSPSM). Since 2000, the SEI has been teaching and coaching
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TSP teams. One of the authors (Nichols) has mentored software development teams and
coaches around the world as they deploy TSP within their organizations since 2006. The
most recent completions were in 2015.

The projects were mostly small to medium, with a median duration of 46 days and a
maximum duration of 90 days in major increments. Several projects extended for multiple
incremental development cycles. Median team size was 7 people, with a maximum of 40.
See Figure[5]for the total effort seen in those projects. Many of the projects were e-commerce
web portals or banking systems in the US, South Africa, and Mexico. There were some
medical device projects in the US, France, Japan, and Germany as well as a commercial
computer-aided design systems, and embedded systems. A more thorough characterization
of the projects providing data is provided in §§5.4]

An anonymized version of that data is available in the PROMISE repository at open-
science.us/repo. For confidentiality restrictions, we cannot offer further details on these
projects.

5.1 About TSPSM

TSP is a software project management approach developed at the Software Engineering
Institute (SEI) at Carnegie Mellon University [41]. TSP is an extension of the Personal
Software Process (PSPSM) developed at the SEI by Watts Humphrey [41].

Common features of TSP projects include planning, personal reviews, peer inspections,
and coaching. A TSP coach helps the team to plan and analyze performance. The coach is
the only role authorized to submit project data to the SEI. Before reviewing data with the
teams, therefore before submission, these coaches check the data for obvious errors.

During Planning, developers estimate the size of work products and convert this to a
total effort using historical rates. Time in specific tasks come from the process phases and
historical percent time in phase distributions. Defects are estimated using historical phase
injection rates and phase removal yields. Coaches help the developers to compare estimates
against actual results. In this way, developers acquire a more realistic understanding of their
work behavior, performance, and schedule status.

Personal review is a technique taken from the PSP and its use in TSP is unique. Devel-
opers follow a systematic process to remove defects by examining their own work products
using a checklist built from their personal defect profile. This personal review occurs after
some product or part of a product is considered to be constructed and before peer reviews or
test.

Peer inspection is a technique in traditional software engineering and is often called peer
review. Basili and Boehm commented in 2001 [[16] that peer reviews can catch over half the
defects introduced into a system. Peer inspection can be conducted on any artifact generated
anywhere in the software lifecycle and can quickly be adapted to new kinds of artifacts.
TSP peer reviews follow the Fagan style in which the reviewer uses a checklist composed
of common team defects prior to a review team meeting.

Overall, the effort associated with adding TSP to a project is not onerous. McHale re-
ports [63]]:

— The time spent tracking time, defects, and tasks requires less than 3% of a developer’s
time. Weekly team meetings require at most an hour, which is only 2.5% of a 40 hour
work week.

— Team launches and replans average about 1 day per month or 5% planning overhead.
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Fig. 5 Distribution of effort (which is team size times days of work). For example, if 10 programmers work
for 10 days, then the effort is 100 days. The median value in this plot 271 days.

It is true that one staff member is needed as a “coach” to mentor the teams and certify and
monitor that data collection. However, one of us (Nichols) has worked with dozens of TSP
teams. He reports that one trained coach can support 4 or 6 teams (depending upon team
experience).

5.2 Data Collection and Definitions

Organizations using TSP agree to provide their project data to the SEI for use in research. In
return the SEI agrees that data must not be traceable to its source. The data are collected at
major project events: launch, interim checkpoints, and at project completion. The data from
these TSP projects were collected and stored in the Software Engineering Measured Process
Repository (SEMPR) at the SEI.

As of November 2014, the SEI TSP database contained data from 212 TSP projects. The
projects completed between July 2006 and November 2014; they included 47 organizations
and 843 people. The database fact tables contain 268,726 time logs, 154,238 task logs,
47,376 defect logs, and 26,534 size logs. In this paper, we exclude 41 of the 212 that had
too few defects (less than 30), leaving 171 projects included in the analysis.

5.2.1 Definition: time for plan item

Using a tool supporting the SEI data specification, developers keep detailed time-tracking
logs. The time-tracking logs record work start time, work end time, delta work time, and in-
terruption time. Software engineers are often interrupted by meetings, requests for technical
help, reporting, and so forth. These events are recorded, in minutes, as interruption time. In
TSP, time logs are recorded against plan items. A planned item is a specific task assigned to
a specific developer, such as resolving a defect, coding a feature, performing an inspection
or writing a test. Each work session includes a start time, an end time, and interruption time.
The active time, or actual time for the plan item is calculated by summing the active time
durations for all work sessions on that task.

actual time for plan item := SUM(end time — start time — interruption time)
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Fig. 6 Relative frequencies of these defect types seen in our TSP data.

Time is tracked per person per plan item in the time-tracking logs, e.g. a 30 minute design
review session involving 3 people will have three time log entries summing to 90 minutes.
Time includes the time to analyze, repair, and validate a defect fix.

5.2.2 Definition: defects and time-to-fix

In the TSP, a defect is any change to a product, after its construction, that is necessary to
make the product correct. A typographical error found in review is a defect. If that same
defect is discovered while writing the code but before review, it is not considered to be a
defect. SEI TSP defect types are:

— Environment: design, compile, test, other support problems
— Interface: procedure calls and reference, I/O, user format

— Data: structure, content

— Documentation: comments, messages

— Syntax: spelling, punctuation typos, instruction formats

— Function: logic, pointers, loops, recursion, computation

— Checking: error messages, inadequate checks

— Build: change management, library, version control

— Assignment: package declaration, duplicate names, scope
— System: configuration, timing, memory

In our TSP data, the relative frequencies of these defect types are shown in Figure [
Around a quarter of the fixes were simple documentation changes. That said, 75% of the
changes are quite elaborate; e.g. fixes to function necessitates a careful reflection of the
purpose of the code.

Individual defects are recorded as line items in the defect logs uploaded to the SEMPR
at the SEI. The defect entry includes the time and date a defect was discovered, the phase
in which that defect was injected, the development phase in which it was removed, the time
(in minutes) required to find and fix the defect, and the categorical type.

In the TSP, defect data includes the affected artifact, the estimated developer fix effort
(find and fix), the lifecycle phases in which the defect was injected and removed, and the
developer who implemented the fix. In the database, the task is associated with a plan item.
Defects (one or more) are recorded in the defect log and associated with the plan item (task)
in the time tracking logs. For example, a review session, an inspection meeting, or a test
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would be plan items associated with some product component. When defects are found and
fixed, the time recorded in the time-tracking logs against the plan items includes the direct
effort time (stop watch rather than wall clock time) required to (a) collect data and realize
there is an error, (b) prepare a fix, and (c) apply some validation procedure to check the fix
(e.g. discuss it with a colleague or execute some tests). Although we have explicit estimates
of ”find and fix” effort for each defect, this fails to account for the full costs (e.g. meeting
time or test execution). Because the vast majority of defects are removed in explicit removal
phases, we chose to estimate defect cost using the entire time in removal phases divided by
the number of defects. We recognize that this approach can exaggerate cost per defect for
cases with few defects and large overhead effort, such large test suites or slow running tests
that require continuous developer attention. Nonetheless, this approach provides a better
comparison between early removals from inspections later removals from test. The result
will be a time per defect that is greater than the directly measured "find and fix” time, but
smaller than the wall clock or calendar time.

Since multiple defects can be recorded against a plan item, the time-to-fix a defect is
defined as:

time for defect plan item
# of defects in plan item

time-to-fix a defect :=

5.2.3 Definition: development phase

The development phases against which plan items are logged in the data are shown in Fig-
ure[7] Although the representation suggests a waterfall model, the SEI experience is that the
projects follow a spiral approach or perform the work in iterative and/or incremental devel-
opment cycles. The phases are thus the logical stages through which each increment must
progress during development.

Before

inspect Planm-ng

review
inspect

. review
inspect

review Design )
inspect
: review

= —
e

SysTest Eeee & AcceptTest

Fig. 7 Phases of our data. Abbreviations: Before= before development; Reqgts = requirements; HLD = high-
level design; IntTest = Integration testing (with code from others); Sys7est = system test (e.g. load stress tests);
AcceptTest = acceptance testing (with users); review = private activity; inspect = group activity.
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One special feature of Figure[7]is the before phase, in which the TSP team assures that
management has clearly identified cost, schedule, and scope goals appropriate to the up-
coming development activities, often including a conceptual model [42]]. For example an
architecture team must have sufficient requirements to reason about, prototype, and spec-
ify an architecture [5] while a coding only team within a larger project would have more
precisely defined requirements and high level design.

Note that, in Figure[7] several phases in which the product is created have sub-phases
of review and inspect to remove defects. As discussed in individuals perform personal
reviews of their work products prior to the peer review (which TSP calls the inspection).
Testing activities are divided as follows. Developers perform unit test prior to code complete.
After code complete a standard phase is integration, which combines program units into a
workable system ready for system test. Integration, system test, and acceptance test are often
performed by another group.

5.3 Data Integrity

A common property of real-world data sets is the presence of noisy entries (superfluous or
spurious data). The level of noise can be quite high. For example, as reported in [[85]], around
10% to 30% of the records in the NASA MDP defect data sets are affected by noise.

One reason to use the SEI data for the analysis of this paper is its remarkably low level
of noise. Nichols et al. [86] report that the noise levels in the SEI TSP data are smaller than
those seen in other data sets. They found in the SEI TSP data that:

— 4% of the data was incorrect (e.g. nulls, illegal formats);

— 2% of the data has inconsistencies such as timestamps where the stop time was before
the start time;

— 3% of the data contained values that were not credible such as tasks listed in one day
that took more than six hours for a single developer.

One explanation for this low level of noise is the TSP process. One the guiding principles
of TSP was that people performing the work are responsible for planning and tracking the
work. That is, all the data collected here was entered by local developers, who use the data
for planning and tracking their projects. This data was then checked by local coaches before
being sent to the SEI databases. While coaches are certified by demonstrating competent
use of the TSP process with the artifacts and data, project success or performance is not a
criterion. The use of certified local coaches within each project increases the integrity of our
data.

5.4 Project Descriptive Characteristics

In this section we provide some descriptive statistics, discuss the projects from which this
data was drawn, summarize some additional contextual information. The project contexts
describe the conditions under which these measures were obtained, help determine relevance
of the results, and may guide future data analysis with segmentation. Key attributes of the
context include the business and application domains, product size, project duration, work
flows, team size, team management, development and integration approaches, organization
size, location or distribution, certifications, developer experience, programming languages
and tools used.
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We are unable at this time to provide all individual context data for each of the projects
for several reasons. While the development data was recorded in tools and submitted in a
structured form, context data was collected in less structured project questionnaires, site
questionnaires, team member surveys, launch presentations and reports, post mortem pre-
sentations and reports. This data has not yet been mined from the submissions 1) because of
the cost and effort required, 2) we are obligated to avoid providing any data that can identify
projects (that is, the data must remain anonymous), and 3) the unstructured data may not
be complete when submitted. Gathering more projects will make it easier to anonymize the
data and overcome missing data problems. Interest in the data sets by the community may
encourage our sponsor to fund additional data mining. Nonetheless, much context is avail-
able from the project data and we provide some additional context not included within the
fact sheets.

The projects included come from 45 unique organizations from 6 countries. Figure
shows the country of origin and application domains for the projects. Figure 9] shows the
number of projects from each organization.

The most common countries of origin are the US and Mexico. Not apparent in this
display is that the US companies tend to be fewer and larger with many projects while the
Mexican companies are more likely to have one to several projects. Several companies,
typically larger companies, are international with development teams in the US and either
France or China.

The most common project application domains are banking, consumer applications, en-
gineering design tools, and medical devices. The data for programming languages is incom-
plete, with most projects using more than one language, but few reporting programming
language by component or size. The list of languages includes ABAP, ADA, Alpha, C, C++,
C#, ASPnet, Delphi, Gauss, Genexus, Hotware, HTML, Java, JavaScript, PHP, PLSQL,
Ruby, SQL, and Visual Basic.

The specific process work flows and practices are developed by the development team
personnel who have received specific training on defining work processes as part of their
Personal Software Process training. The process data was collected by the team members
to self-manage their personal and team work. The members also exhibited self-management
behavior by estimating planning and scheduling the work tasks.

While the processes and work flows among these projects can vary, the logical order de-
scribed in section [5.2.3]is followed. Development tasks such as requirements development,
design, or code, are typically followed by an appraisal phase such as personal review or
inspection. Effort and effectiveness of these activities vary among projects and developers.

The project schedule, cost, and scope are characterized by calendar duration, develop-
ment team size project, and product size (measured in added and modified lines of code and
number of components). These data are all available from the project fact sheets for each
project. Summary statistics and the year of project initiation are displayed in Figure [T1]
From this table we can make some observations about the range of project characteristics.

Of the 171 projects in the sample, only 117 collected size data in lines of code. However
all projects tracked effort and the component counts with applied effort are provided. Other
data are complete for all 171 projects. The projects were mostly of short duration and small
to medium size. The median project began in 2012 lasted 61 days, produced 4,200 Lines
of Code, 49 components (modules or features). Duration ranged from 7 to 1,918 days. Size
ranged from minimal (this may represent a short maintenance project) to 88,394. The earliest
project was in 2006 and the most recent in 2014.

How many of these teams could be classified as agile” is not clear because actual
practices in the agile world can vary. We did not ask teams to self-identify, however we
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Country % of projects Application Domain count
China 1.0 % Aviation 19
France 10.0 % Banking 23
Mexico 41.0 % Business intelligence 19
South Africa 4.0 % Construction Support tools 3
UK 1.5% Consumer applications 24

1

2

us 42.5% Custom Applications
Embedded systems
Engineering Design Tools 2
Geography and Mapping
Government
Human Resources Management
Information Technology
Manufacturing
Medical Devices
Other
Payroll services
Solutions Integration
Web applications
Wholesale or retail trade

—_ —
O W= =W — WU —

Fig. 8 Project nationality and application domain
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Fig. 9 Number of projects per development organization.

Begin Phase Final Phase Count
Requirements Unit Test 12
Requirements Build and Integration Test 19
Requirements System Test 36
High Level Design Unit Test 3
High Level Design Build and Integration Test 10
High Level Design System Test 9
Detailed Level Design ~ Unit Test 18
Detailed Level Design ~ Build and Integration Test 24
Detailed Level Design ~ System Test 17

Fig. 10 Earliest and latest process phases used by the projects

offer the following observations regarding characteristics commonly associated with agile
behavior.

all teams were self managed, defining work flows, practices, and schedules

teams met at least weekly to evaluate progress and re-plan

most teams were small with a median size of 6 and a mean of 7.8; only 25% of the teams
were larger than 10 with a long tail on the distribution

the median project lasted only 60 days, suggesting limited scope for each integration
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N Min Q1 Median Q3 Max Mean Distribution

Team size 171 1 4 6 10 36 7.8

Duration [days] 171 7 33 61 118 1918 107 L" B

Added & Modified LOC 117 2 1125 4201 13092 88394 10259 L'"' I

Defects Found & Fixed 171 1 28 95 278 4580 3244 - -

Components 171 8 26 49 107 4170 116.2 L— —-= ==
[

Project Initiation Year 171 2006 2011 2012 2013 2014 20119 - == -I =

Fig. 11 Project summary description
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Fig. 12 Distribution of defects by phase removed.

5.5 Statistical Analysis

In the following presentation of our results, three statistical methods were used to test for
the delayed issue effect: the Scott-Knott ranker; bootstrap sampling (to test for statistical
significantly different results); and an effect size test (to reject any significant differences
that are trivially small). Scott-Knott allows for a direct answer to the following questions:

— Given an issue raised at phase 7 and resolved at phase Vj, k € {i,i + 1,7 + 2,...},...
— ... Isit true that the time to resolve issues in phase j is significantly different to the time
to resolve issues in phase k?

Note that if j, k times are significantly different, then we can compare the median values
to say (e.g.) resolution time at phase & is 3 times slower than phase j. Note also that if all
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times j, k are not significantly different then we say that the phases all rank the same (and
we denote this by setting all such ranks to 1).

In the following results, we nearly always encountered the second case; i.e. the times to
resolve issues at different times were usually not significantly different.

As to technical details of the Scott-Knott methods, this ranker was recommended by
Mittas and Angelis in a recent TSE’13 article [69] and by Ghotra et al. in a recent ICSE’ 15
article [36] Scott-Knott is a top-down clustering approach used to rank different treatments.
If that clustering finds an “interesting division” of the data, then some statistical test is ap-
plied to the two divisions to check if they are statistically significant different. If so, Scott-
Knott considers recurses into both halves. Before Scott-Knot recurses, however, it applies
some statistical hypothesis test H to check if m, n are significantly different. To operational-
ize “interesting”,

— Scott-Knott seeks the division of [ treatments into subsets of size m,n (so if n was
appended to the end of m then that new list would the same as [).

— We say that [, m, n have sizes ls, ms, ns and median values .x, m.u, n.p (respectively)

— Scott-Knott tries all ways to split [ into m,n and returns the one that maximizes the
differences in the mean values before and after the splits; i.e.

@abs(m.p —Lp)*+ Eabs(n.u —L.p)?

ls ls

To operationalize H, we use both bootstrap sampling and Vargha and Delaney’s A12 effect

size test. In other words, we divide the data if both bootstrap sampling and effect size test

agree that a division is statistically significant (with a confidence of 99%) and not a small

effect (A12 > 0.6). For a justification of the use of non-parametric bootstrapping, see Efron

& Tibshirani [29, p220-223]. For a justification of the use of effect size tests see Shepperd

and MacDonell [84]; Kampenes [50]; and Kocaguenli et al. [54]]. These researchers warn

that even if a hypothesis test declares two populations to be “significantly” different, then

that result is misleading if the “effect size” is very small. Hence, to assess the performance

differences we first must rule out small effects using Vargha and Delaney’s A12 test, a test

endorsed by Arcuri and Briand at ICSE’ 11 [1]].

To apply Scott-Knott, we divided data into the phases Py where issues are introduced.
Next, for each division, we separated all the issues that were removed at different subsequent
issues Pr € {P1, Py, ..}. For each pair Py, Py, we build one treatment containing the issue
resolution times for issues raised in Py and resolved in P,. These treatments were then
ranked by Scott-Knott.

5.6 Observations from 171 Projects

The count by phase in which defects were removed is shown in Figure [I2] Defects are
counted only if they they escape the introduction phase unless a bad fix introduces a new
defect. These secondary defects occur almost exclusively in test and very rarely in an in-
spection. A high percentage of defects (44%) were found and fixed in the early phases, i.e.,
prior to coding. This distribution is similar to that observed for other projects that empha-
sized investment in software engineering quality assurance practices. For example, Jones
and Bonsignour report 52% of pretest defects removed before entering implementation, for
large projects that focus on upfront defect removal techniques [48|]. NASA robotics projects
had a slightly higher percentage (58%) of defects removed before implementation began,
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Percentiles
(units = Growth with respect to earliest phase
Phase minutes) (unitless ratios of two time values)
rank | injected removed | 50th  IQR 50th percentile growth
1 Before DesignInspect 10 14 | 1.00 S
1 CodeReview 8 14 | oso NN
1 Codelnspect 10 16 | 1.00 N
1 UnitTest 12 21 120 I
1 IntTest 15 31 | 150 N
1 SysTest 11 22 | 1.10
1 Planning ReqtsReview 8 14 oo NN
1 DesignInspect 11 13 | 138 I
2 UnitTest 24 25 | 3.00 N
1 Reqts ReqtsReview 13 20 | 1.00 N
1 ReqtsInspect 12 18 | 092 NN
1 DesignReview 10 14 077 N
1 DesignInspect 9 15 | 069
1 Codelnspect 13 24 1.00 I
1 UnitTest 10 17 | 077 N
1 IntTest 33 42 | 254 IS
1 SysTest 24 108 1.85 I
1 Design DesignReview 11 16 1.00 I
1 DesignInspect 8 12 | 073 N
1 CodeReview 10 18 | 091 IR
1 Codelnspect 9 14 0.82 N
1 UnitTest 11 18 1.00 IS
1 IntTest 17 31 | 155 I
1 SysTest 13 18 1.1s I
1 AcceptTest 14 19 | 127 I
1 Code CodeReview 10 16 | 100 N
1 Codelnspect 10 15 .00 I
1 UnitTest 12 20 | 120 NN
1 IntTest 14 25 140 I
1 SysTest 13 20 1.30 I
1 AcceptTest 16 25 | 1.60 N

Fig. 13 Median times to resolve issues seen in the SEI TSP data. For an explanation of this figure, see

although these had invested in independent verification and validation on top of other forms
of defect removal [65]].

Figure |13| and Figure [14] show the 50th and 90th percentile (respectively) of the time
spent resolving issues (note that, in TSP, when developers see issues, they enter review
or inspect or test until that issue is retired). These values include all the time required to
(a) collect data and realize there is an error; (b) prepare a fix; and (c) apply some validation
procedure to check the fix (e.g. discuss it with a colleague or execute some tests).

To understand that figure, we offer the following notes:

— Shown here are the 50th/90th percentiles of issue resolution times for issues injected in
phase Py and resolved in phase P (these values are calculated by sorting all resolution
time, then reporting the middle values of that sort).

— The “IQR” column shows the “inter-quartile range”; i.e. the range of values representing
the 75th - 25th percentile range

— The results in that figure are split out according to issues that were fixed in phase P
after being introduced in phase Py. The data are sub-divided into tables according to Po;
i.e. according to before, planning, requirements, design or code.
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Percentiles Growth with respect to earliest phase
Phase (units= miniutes) (unitless ratios of two time values)
rank injected removed 90th 90th percentile growth
1 Before DesignInspect 32 | 1.00 NN
1 CodeReview 31 097 N
1 Codelnspect 32 | 1.00 NN
1 UnitTest 45 | 141 IS
1 IntTest 63 | 1.97 IS
1 SysTest 46 | 1.44 IS
1 Planning ReqtsReview 35 | 1.00 NN
1 DesignInspect 31 | 0.89 NN
2 UnitTest 53 | 1.51 I
1 Reqts ReqtsReview 42 | 1.00 N
1 ReqtsInspect 40 0.95 NN
1 DesignReview 34 | 0.81 NN
1 DesignInspect 38 | 090 NN
1 Codelnspect 45 | 1.07 I
1 UnitTest 40 | 095 I
1 IntTest 95 | 226 I
1 SysTest 126 | 3.00 I
1 Design DesignReview 37 1.00 I
1 DesignInspect 28 | 076 I
1 CodeReview 40 1.os NN
1 Codelnspect 33 | 0.89 NN
1 UnitTest 41 1.11 ]
1 IntTest 75 | 2.03 I
1 SysTest 40 | 1.08 I
1 AcceptTest 44 1.19 I
1 Code CodeReview 35 | 1.00 NN
1 Codelnspect 32 | 091 N
1 UnitTest 45 129 IS
1 IntTest 58 | 1.66 NN
1 SysTest 47 1.34 I
1 AcceptTest 60 | 1.71 NN

Fig. 14 90th percentile times to resolve issues seen in the SEI TSP data. Same format as Figure (but here
we look at 90th percentile outliers while Figure[T3]explored the central tendencies of the data).

— The left-hand-side “rank” column shows the result of the Scott-Knott ranking proce-

dure described in §5.5] These statistical results were applied separately to each group
Before, Planning, Reqts, Design, Code. Recall from §5.5 that if all the fix times within a
group were statistically insignificantly different, then they all earn “rank=1". Note that
most treatments achieved the same ranks i.e. they were found to be insignificantly dif-
ferent from each other (the one exception is within the Planning:UnitTest results where
UnitTests were ranked 2).

The right-hand-side bars show the relative sizes of the increases for the 50th (median)
percentile values. These increases are calculated with respect to the first value in each
section “Before, Planning, Reqts. Design, Code”.

These right-hand-side bars are unitless since they are ratios. For example, on the last
line of Figure [T3] issues injected during coding and fixed in SysTest take 13 minutes
(median) to resolve. This is 130% more than the 10 minutes (median) required to re-
solve coding issues during CodeReview. The right-hand-side bar visually represents that
130%.
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Technical note: to ensure representativeness, we display examples where there exist at least
N > 30 exampleﬁ of issues injected in phase Py then removed in phase P..

The two key features of Figure[I3]and Figure[I4]are:

1. Nowhere in these results do we see the kind of very large increases reported in the papers
documenting DIE; neither in the median fix times of Figure [[3]or at the 90th percentile
level of Figure [T4] For example, consider the ratio of the issue resolution time between
Before/Designinspect and Before/SysTest result of Figure[I3] That ratio is 1.11 which is
far smaller than the scale ups seen in Figure[T]

2. Nearly all the supposed increases seen in Figure [I3] and Figure [T4] are insignificantly
different to the other treatments. The left hand column of Figure[T3|shows the results of
the Scott-Knott statistical tests. Note that nearly all the treatments have the same rank
(“17); i.e. usually there is no statistically significant difference in the time to resolve
issues. The only exception here is Planning:UnitTest which is ranked “2” but even here,
the scale up is merely a factor of 3, and not the exponential increase promised by classic
reports of the delayed issue effect.

One possible explanation for the lack of a DIE effect is that we are looking broadly at the
entire data set but not at specific stratifications. To address that concern, we spent some time
reproducing these figures for various subsets of our data. That proved to be an unfruitful-no
stratification was found that contained an exponential expansion in the time to fix issues. The
reason for this was the small size of those stratifications exacerbated the large IQR’s seen
in this dateﬂ Our 171 projects stratify into subsets of varying sizes. The two largest subsets
contained only 17 and 12 projects, with numerous much smaller stratifications. Reasoning
over such small samples is problematic in the general case and, in the case of our data,
it is even more problematic due to the large IQRs of the data. (To see these large IQRs,
please compare the 50th percentile and IQR columns of Figure where most of the IQRs
are larger than the 50th percentile; i.e. software data exhibits large variances, which in this
case are exacerbated by the smaller samples seen in the stratifications). Our conclusion from
exploring the stratifications is that, given the currently available data, we cannot check for a
DIE effect in subsets of this data.

Before moving on, we comment on some of the counter-intuitive results in these figures.
Consider, for example, the “Reqts” results of Figure[I3| where the time required to fix issues
actually tends to decrease the longer they are left in the system. In terms of explaining this
result, the key thing is the left-hand-side statistical ranking: all these treatments were found
to be statistically indistinguishable. In such a set of treatments, the observed difference may
not be a causal effect; rather, it may just be the result of random noise.

6 Threats to Validity

Threats to validity are reported according to the four categories described in Wohlin et
al. [[98]], which are drawn from Cook and Campbell [24].

4 We selected 30 for this threshold via the central limit theorem [59].

5 Recall that in a sorted list of numbers, the inter-quartile range, or IQR, is the difference between the 75th
and 25th percentile value.
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6.1 Conclusion Validity

Threats to conclusion validity are “issues that affect the ability to draw the correct conclusion
about relations between the treatment and the outcome” [98]]. We do not have a traditional
treatment or control as in a classical experiment. Instead, we evaluate if the DIE holds in
a modern data set. The data set is comprised of TSP projects, so the treatment could be
misconstrued as TSP, but this is not that case as we do not have an experimental control to
compare TSP against.

Low statistical power: Our data set is comprised of 47,376 defect logs. Our primary
analysis in Figure [13|is based on injection-removal phase pairs whose with sample size
> 30. The justification for the statistical techniques used in this paper is provided in §5.5]

Reliability of measures: The base measures in this study described in §5.2] are defects
recorded in TSP defect logs and time reported in time tracking logs. The primary threats to
the reliability of these measures are: that the definition of a defect varies between projects
and that time is not reported accurately or consistently. The reliability of the time reporting
is discussed in §5.3] Time is reported on a level of minutes. We do not have a precise as-
sessment of the error margin for time reporting. Some developers are less precise with time
or estimates. Nonetheless, we have applied several tests to verify that the data is accurate.
First we compare entries from the defect and time logs to verify that defect log times-to-fix
sum to less than the total time log effort in the phase. Second, time log time stamps must
be consistent with both the the time stamps and phase for defect in the defect log. Third,
we applied a Benford test on the leading digits from the time log and defect log times to
estimate the number data entries that do not result from a natural process (that is, guessed
or estimated rather than measured values) [86]. Based on these tests we believe that greater
than 90% of the time log data is recorded in real time. The fidelity and consistency of data
will be subject of a future paper.

We assume that each team has similar defect recording practices, and the TSP coach-
ing provides guidance on what constitutes a defect. Nonetheless, individual developers and
teams may apply their own internal rules for filtering defects, which would lead to inconsis-
tent reporting thresholds among the projects in our sample. A related issue is that we assume
developers correctly report in which phases a defect was injected and corrected. One point
of variation is the measurement framework that identifies process phases and joins the effort
to a size measurement framework. Individual projects may choose to implement a differ-
ent framework, for example adding phases for specific types of development (for example,
adding static analysis or special testing or a non-standard size unit).

Certainly, if the defect and time reporting was done incorrectly in this study, then all our
results must be questioned. However, this issue threatens every study on the delayed issue
effect— so if our results are to be doubted on this score, then all prior work that reported
the delayed issue effect should also be doubted. In TSP, developers are trained and supplied
with templates for defect and time tracking, all data entry is double-checked by the team
TSP coach, and developers are required to analyze their data to make process improvements.
That is, TSP developers are always testing if their project insights are accurate. In such an
environment, it is more likely that they will accurately identify the injection phase.

Reliability of treatment implementation: Although TSP is not prescriptive about the de-
velopment process, goals, or strategy, TSP provides precise guidance and training for data
gathering. The guidance for logging time and defects is precisely defined. All tasks should
be logged as the work is performed with a stopwatch tool. All defects that escape a phase
must be logged. All data fields for each defect must be completed.
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There are a number of reasons to believe that the data are consistent between developers
and between projects. First, developers receive PSP training, during which instructors focus
on complete and accurate data gathering. Second, each project that submitted data had a
certified TSP coach responsible for evaluating process adherence and submitting the data.
Third, because the teams use their data to manage the projects the team is motivated to col-
lect complete, accurate, and precise data otherwise the data gathering and analysis would be
wasted effort. Fourth, process fidelity issues are apparent to the TSP coach as missing or in-
consistent data (e.g. time and defect logs do not match, log entries have excessive rounding,
or a developer is an outlier). Fifth, 15 of the projects received a TSP Certification in which
process fidelity was evaluated independently by an observer and data analyst examining
data internal consistency and consistency with distributional properties known to consistent
among all projects and team members. Sixth, all projects in this sample used the same data
gathering tool. Nonetheless, some variations exist.

6.2 Internal validity

Threats to internal validity concern the causal relationship between the treatment and the
outcome [98]]. Again, we do not consider TSP as a treatment, but we observe that the DIE
does not hold in the TSP data set. Nonetheless, it is useful to consider threats to internal va-
lidity at an abstract level between the software engineering milieu that generated the original
DIE observations and today’s context where TSP was applied.

History: Many technological advances have occurred in the time between when DIE
was originally observed in the late 70s and today. Processors are more powerful, memory
is cheap, programming languages are more expressive, developer tools are more advanced,
access to information is easier via the Internet, and significant evolutions in programming
paradigms and software process have been realized in the past 40 years. In addition to the
risk-oriented, disciplined nature of TSP, any or all of these additional historical factors may
have contributed to the lack of the delayed issue effect in our data.

Instrumentation: The forms by which the TSP defect and time data are collected have
been studied and matured over 20 years. Conversely, we do not find much documented
evidence on how time and defects are reported for the original DIE papers (see §4)). Thus,
we cannot be assured that reporting and data capture were not a significant influence on the
delayed issue effect in the original papers.

Interactions with selection: As described in all TSP teams are required to contribute
time and defect data to the SEI, and thus there should be no selection bias in this sample
compared to the overall population of TSP projects. However, there is likely selection bias in
the teams that elect to use TSP compared to the entire population of software development
teams. We do not have a basis for comparing TSP teams to those teams in which the DIE
was originally observed.

6.3 Construct validity

Construct validity concerns “generalizing the result of the experiment to the concept or
theory behind the experiment” [98]]. Thus, do the observations in this paper provide evidence
on the general delayed issue effect theory?
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Inadequate pre-operational explication of constructs: As described in the measures
of defect, time, and cost in the original DIE papers are not clearly deﬁrf_;% Note that in
Figure[2] the units of “cost-to-fix” are not expressed — in the source references, cost appears
as calendar time, effort, and price. In the TSP, a defect is defined as “any change to a product,
after its construction, that is necessary to make the product correc” and time to correct a
defect includes “the time to analyze, repair, and validate a defect fix.” Our analysis of DIE
focuses on time as a measure of time-as-effort (persons * time).

The data used in this analysis does not extend into post-delivery deployment. As men-
tioned in §4.1] every other paper reporting DIE also reported early onset of DIE within the
current development. Specifically: those pro-DIE papers reported very large increases in the
time required to resolve issues even before delivery. That is, extrapolating those trends it
would be possible to predict for a large DIE effect, even before delivering the software. This
is an important point since Figure [[3] shows an absence of any large DIE effect during de-
velopment (in this data, the greatest increase in difficulty in resolving requirements issues
was the 2.16 to 4.37 scale-up seen in the before to integration testing which is far smaller
than the 37 to 250-fold increases reported in Figure [T|and Figure [2).

Mono-method bias: We only measure the delayed issue effect in terms of defects (as
reported by teams) and time (in minutes of effort). To mitigate mono-method bias, additional
measures of these constructs would be needed. For example, defects may be segmented into
customer-reported defects and pre-release defects. In addition to time-as-effort, calendar
time and price to fix (including labor, CPU time, overhead) would provide a more complete
picture of the abstraction “cost to fix a defect”. Further, there are no subjective measures of
cost-to-fix, such as the social impact on the team or frustration of the customer.

Confounding constructs and levels of constructs: We do not consider the severity of
defects in this analysis. Evidence discussed in [87] suggests that low severity defects may
exhibit a lower cost to change. Nonetheless, even “small” errors have been known to cause
enormous damage (e.g., the Mars Climate Orbiter). It is possible that high-severity defects
require more effort to fix simply because more people work on them, or conversely, low-
severity defects may be fixed quickly simply because they it is easier to do so. High-severity
defects are of particular concern in software projects, and even if the number of high-severity
defects is low their cost to fix may be extremely large. Note that if such outliers were com-
mon in our data, they would appear in the upper percentiles of results.

Restricted generalizability across constructs: While we observe a lack of DIE in the
TSP dataset, we examine only the construct of time-to-fix. We do not consider the tradeoffs
between time-to-fix and other "-ilities”, such as maintainability. For example, a low time-
to-fix may come at the expense of a more robust solution, i.e., a quick and dirty fix instead
of an elegant repair.

6.4 External Validity

External validity concerns the generalizability of findings [98] beyond the context of the
study. Madigan et al. [58]] and Carlson & Morrison [22] discuss primarily external validity
concerns drawn from studies of large datasets in medicine that are useful for identifying
limitations in our study.

6 1In retrospect, empirical software engineering studies at that time were extremely rare, and guidance for
reporting empirical case studies and experiments have improved substantially. One of the seminal books on
quasi-experimentation and reporting of validity concerns, Cook and Campbell [24], had not been published
when most of the DIE papers were written.
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Interaction of selection and treatment: The most obvious limitation in our study is that
the dataset in which we observed no DIE was composed entirely of TSP projects. TSP is
a mature process constructed with risk mitigation as its primary purpose. We do not claim
that our findings generalize beyond the projects using the TSP process. Similarly, we make
no claims regarding generalizability across domains (e.g., defense, banking, games, COTS),
scope (# of features, people, and development length), or organizational features. The pur-
pose of this study is to draw attention to the notion that commonly-held belief of the delayed
issue effect may not be a universal truth. This study adds to the evidence offered by the case
study in Royce [83]]. Our study invites a further explanation into the causal factors that mit-
igate DIE.

Interaction of setting and treatment: The 171 TSP projects in our data set as well as
the case studies in the original DIE papers were all industry projects conducted by soft-
ware development teams. The TSP projects contain examples of a wide variety of systems
(ranging from e-commerce web portals to banking systems) run in a variety of ways (agile
or waterfall or some combination of the two). These are realistic settings for contemporary
software development teams, though perhaps not representative of all types of projects (see
prior paragraph).

Interaction of history and treatment: The TSP projects and the original DIE projects
took place over several months or years of development. Thus, it is unlikely that the data are
substantially influenced by rare events that occurred during project execution.

7 Discussion

Earlier we noted that the delayed issue effect was first reported in 1976 in an era of punch
card programming and non-interactive environments [[12]]. We also note that other devel-
opment practices have changed in ways that could mitigate the delayed issued effect. Pre-
viously, most software systems were large, monolithic, and “write once and maintain for-
ever.” Today, even large software systems are trending toward DevOps and cloud-based
deployment. Advances in network communications, CPU processing power, memory stor-
age, virtualization, and cloud architectures have enabled faster changes to software, even for
large systems. Facebook deploys its 1.5 GB binary blob via BitTorrent in 30 minutes every
day [73]. Upgrades to the Microsoft Windows operating system are moving from service
patches and major releases to a stream of updates (so there will be no Windows 11- just a
stream of continuous updates to what is currently called Windows 10) [20].

Even organizations that build complex, high assurance systems are turning to agile de-
velopment processes that purport to address the DIE. For example, agile methods have been
advocated for software acquisitions within the US Department of Defense [52f], and interest
and adoption has been growing [55]]. This change in DoD culture is enabled by a separa-
tion of baseline architecture (e.g., the design of an aircraft carrier) marked by significant
up-front design and the agile development of applications within that architecture. For the
baseline architecture, bad decisions made early in the life cycle may be too expensive to
change and the DIE may still hold. However, smaller projects within the larger architecture
(e.g., lift controls, radar displays) can leverage more agile, interactive development provided
that interfaces and architectural requirements are well-defined.

So, is it really surprising that DIE was not observed? Many software engineering tech-
nologies have been created precisely to avoid the delayed issue effect by removing risk as
early as possible. Boehm’s spiral model [18]], Humphrey’s PSP [40] and TSP [41], the Uni-
fied Software Development Process [46], and agile methods [7] all in part or in whole focus
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on removing risk early in the development lifecycle. Indeed, this idea is core to the whole
history of iterative and incremental product development dating back to “plan-do-study-act”
developed at Bell Labs in the 1930’s [56] and popularized by W. Edwards Deming [26].
Harter et al. find a statistical correlation between fewer high severity defects and rigorous
process discipline in large or complex systems [39]. Technical advancements in processing
power, storage, networking, and parallelism have combined with a deeper scientific under-
standing of software construction to enable a whole host of software assurance technologies,
from early-phase requirements modeling to automated release testing.

The delayed issue effect may continue to be prevalent in some cases, such as high-
assurance software, architecturally complex systems, or in projects with poor engineering
discipline. We do not have evidence for or against such claims. However, our data shows that
the DIE has been mitigated through some combination of software engineering technology
and process in a large set of projects in many domains. Our results are evidence that the
software engineering community has been successful in meeting one of its over-arching
goals. But our results raise an equally important point - should the DIE persist as a truism
(see §4), or is it a project outcome that can be controlled by software engineering process
and technology?

8 Conclusion

In this paper, we explored the papers and data related to the commonly believed delayed
issue effect (that delaying the resolution of issues very much increases the difficulty of com-
pleting that resolution). Several prominent SE researchers state this effect is a fundamental
law of software engineering [16}37,/61]]. Based on a survey of both researchers and practi-
tioners, we found that a specific form of this effect (requirements errors are hardest to fix) is
commonly believed in the community.

We checked for traces of this effect in 171 projects from the period 2006-2014. That
data held no trace of the delayed issued effect. To the best of our knowledge, this paper is
the largest study of this effect yet performed.

We do not claim that this theory never holds in software projects; just that it cannot
be assumed to always hold, as data have been found that falsify the general theory. Our
explanation of the observed lack-of-effect is five-fold. Each of the following explanations
is essentially a hypothesis which should be tested against empirical data before we can
effectively propose a new theory of the delayed issue effect.

1. The effect might be an historical relic, which does not always hold on contemporary
projects. Evidence: the effect was first described in the era of punch card computing and
non-interactive environments.

2. The effect might be intermittent (rather than some fundamental law of software). Evi-
dence: we can found nearly as many papers reporting the effect [[12}/14,{32,/91,92] as
otherwise [13}/83L/87]].

3. The effect might be confined to very large systems- in which case it would be acceptable
during development to let smaller to medium sized projects carry some unresolved issues
from early phases into later phases.

4. The effect might be mitigated by modern software development approaches that encour-
age change and revision of older parts of the system.

5. The effect might be mitigated by modern software development tools that simplify the
process of large-scale reorganization of software systems.
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Our results beg the question: why does the delayed issue effect persist as a truism in soft-
ware engineering literature? No doubt the original evidence was compelling at the time, but
much has changed in the realm of software development in the subsequent 40 years. Possibly
the concept of the delayed issue effect (or its more specific description: requirements errors
are the hardest to fix) has persisted because, to use Glass’s terms on the subject, it seems
to be “just common sense” [37]]. Nevertheless, in a rapidly changing field such as software
engineering, even commonly held rules of thumb must be periodically re-verified. Progress
in the domain of software analytics has made such periodic checks more cost-effective and
feasible, and we argue that an examination of local behaviors (rather than simply accepting
global heuristics) can be of significant benefit.
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