
Empirical evaluation of the effects of experience on code
quality and programmer productivity: an
exploratory study

Oscar Dieste1 & Alejandrina M. Aranda1 & Fernando Uyaguari1 & Burak Turhan
Ayse Tosun3 & Davide Fucci2 & Markku Oivo2 & Natalia Juristo1 ,2

Abstract
Context There is a widespread belief in both SE and other branches of science that experience helps
professionals to improve their performance. However, cases have been reported where experience
not only does not have a positive influence but sometimes even degrades the performance of
professionals.
Aim Determine whether years of experience influence programmer performance.
Method We have analysed 10 quasi-experiments executed both in academia with graduate and
postgraduate students and in industry with professionals. The experimental task was to apply
ITLD on two experimental problems and then measure external code quality and programmer
productivity.
Results Programming experience gained in industry does not appear to have any effect
whatsoever on quality and productivity. Overall programming experience gained in academia
does tend to have a positive influence on programmer performance. These two findings may
be related to the fact that, as opposed to deliberate practice, routine practice does not appear to
lead to improved performance. Experience in the use of productivity tools, such as testing
frameworks and IDE also has positive effects.
Conclusion Years of experience are a poor predictor of programmer performance. Academic
background and specialized knowledge of task-related aspects appear to be rather good predictors.

* Oscar Dieste Alejandrina M. Aranda Fernando Uyaguari Burak Turhan
odieste@fi.upm.es alearanda@gmail.com fuyaguari01@gmail.com Burak.Turhan@oulu.fi

Ayse Tosun Davide Fucci Markku Oivo Natalia Juristo
tosunmisirli@itu.edu.tr Davide.Fucci@oulu.fi Markku.Oivo@oulu.fi Natalia.Juristo@oulu.fi

Escuela Técnica Superior de Ingenieros en Informática, Universidad Politécnica de Madrid, Campus
de Montegancedo, 28660 Boadilla del Monte, Spain

Department of Information Processing Science, University of Oulu, P. O. Box 3000, 90014 Oulu,
Finland

Faculty of Computer & Informatics, Istanbul Technical University, 34469 MaslakIstanbul, Turkey

mailto:odieste@fi.upm.es
mailto:alearanda@gmail.com
mailto:fuyaguari01@gmail.com
mailto:Burak.Turhan@oulu.fi
mailto:tosunmisirli@itu.edu.tr
mailto:Davide.Fucci@oulu.fi
mailto:Markku.Oivo@oulu.fi
mailto:Natalia.Juristo@oulu.fi

1 Introduction

The older you are, the wiser you get; An old ox makes a straight furrow; They who live longest
will see most: the passage of time is, proverbially, one and perhaps the major factor facilitating
learning. This factor is none other than experience.

Things are not very different in software engineering (SE) either. Some people within an
organization know more or better, and their participation in the project can be vital to its
success (e.g., Curtis et al. 1988). These truisms are backed up by a large number of papers in a
range of SE areas, e.g., requirements (Marakas and Elam 1998), design (Sonnentag 1998),
usability (MacDorman et al. 2011) or testing (Chmiel and Loui 2004), where it is generally
agreed that experience makes the difference with respect to practitioner performance.

There are two different definitions of experience (Merriam-Webster 2015): (1) skill or knowledge
that you get by doing something, and (2) the length of time that you have spent doing something
(such as a particular job). The two definitions mirror the fact that experience is a theoretical construct:
the substance of experience (skills, knowledge) cannot be directly observed, and its existence has to
be estimated, where the length of time that a subject has been performing a particular task is the most
obvious and easiest-to-measure operationalization. Accordingly, it is common practice to divide
subjects into two groups: (1) experts, whose characteristic is that they have been working in an area
for quite a long time, typically years, and (2) novices who not been working in the field for very long.

Focusing on SE, programming, which is the area addressed in this paper, is the field where most
evidence for the beneficial effects of experience has been found. To cite just a few examples, expert
programmers are quicker at identifying valid sentences in a programming language (Wiedenbeck
1985), more accurately remember meaningful code snippets (McKeithen et al. 1981) or have more
sophisticated reasoning strategies than novices (Jeffries et al. 1981). These results match the findings
for other areas of SE (e.g., cited above), and other fields outside SE, e.g., physics (Larkin et al. 1980).
Until quite recently at least, it looked as if achieving expert performance was the inevitable result of a
length of service from around 10 years in an area (Ericsson 2006a).

Later research into experience has tinged the above picture. The key difference between the
previous and present conception of experience is the intensity of practice. Activity execution

does not in itself appear to lead to improvements in a subject’s performance; improvements
come when a deliberate effort is made in order to improve performance (Ericsson 2006b). In
fact, performance has even been found to drop as experience increases (Ericsson 2006a). This
should not come as a surprise. Surely everyone can think of someone that they know who has a
lot of experience but is a poor performer. There are some (not very many) SE studies that
conclude that there no differences of performance between experts and novices, e.g., (Agarwal
and Tanniru 1991). Some of these studies also focus on programming (Adelson 1984).

There is therefore a lot of uncertainty surrounding whether experience is associated with
better performance. As regards programming, this uncertainty is especially worrying because:
(1) programming, together with testing, are quantitatively the most important activities in the
software development process, and (2) experience is one of the key variables used by
employers to hire programmers. The aim of this paper is to determine whether expert
programmers exhibit better performance than novice programmers. To do this, we have
conducted a series of quasi-experiments analysing the quality of the generated code by
programmers and programmer productivity depending on their years of experience. We
collected data at four companies and three universities from a total of 115 programmers with
a range of experiences, averaging from 0 to 10 years. A key issue is the inclusion of
professional programmers currently working in industry, as many earlier studies were con­
ducted without access to real programmers (Votta 1994).

Our results suggest that: (1) experience gained in industry is not related to better
quality or higher productivity, (2) secondary issues, like familiarity with the unit testing
framework or integrated development environments (IDE), appear to have quite a
positive effect on quality and productivity, and (3) academic learning, which could be
considered as an instance of deliberate practice, does influence quality and productivity
as opposed to on-the-job learning.

The conclusion from our findings is that years of experience are a poor predictor of programmer
performance. In turn, academic background (probably also formal training courses in industry) and
knowledge of specialized task-related aspects (e.g., the IDE in our case) are good predictors.

This paper is structured as follows. Section 2 briefly describes research into the effects of
experience, focusing especially on programming. Section 3 describes the family of experi­
ments. Section 4 describes the working hypotheses and working methodology. Section 4
describes the quasi-experiments, characteristics of the collected data, and the choice of the
best-suited statistical analysis method. Section 5 reports the results of the linear analysis,
whereas Section 6 reports the nonlinear analysis; both are discussed in Section 7. The paper
ends with a discussion of the validity threats and conclusions in Section 8 and 9, respectively.

2 Background

The study of experience goes way back. The original aim was to determine which factors
caused expert subjects to perform better than novices. Studies by (De Groot 1978)
revealed that experts had two key characteristics in common: an in-depth knowledge
of their field of expertise and a long length of service in the area. Chase and Simon
(1973) formalized experience as a process by means of which, over time, experts acquired
knowledge that they stored as complex mental patterns and that they used to quickly and
effectively solve problems in their area of expertise. Experience had nothing to do with
natural talent, such as intelligence, and was very specialized, that is, it was not

transferable from one area to another (Colvin 2008). Related literature reports that it takes
around 10 years or 10,000 working hours to acquire a substantial amount of patterns, although
this is by no means a fixed number and depends on the area and type of instruction received
(Ericsson et al. 1993). For quite some time, therefore, experience was assumed to be a natural
consequence of the passage of time (Ericsson 2006a). From this viewpoint, experience could
be likened to a measure of time, e.g., the above 10 years of service.

SE has also studied experience ever since the early days of the discipline. The
focus in the 1980s was on programming and low-level design (Curtis 1984). Since
then, however, experience has been studied in almost all areas of SE: requirements
(Marakas and Elam 1998), design (Sonnentag 1998), usability (MacDorman et al.
2011), testing (Chmiel and Loui 2004), etc.

A weakness of the study of experience in SE is that there are hardly any synthesis papers.
Curtis (1984) conducted a broad literature review, which is, however, completely out of date
today. Mayer (1997) reviewed 33 studies on the effect of experience on programing published
prior to 1997 but, since then, a number of similar studies have been published e.g., (Lui and
Chan 2006). Siegmund et al. (2014) conducted a review on how to measure programming
experience, but without any reference to expert-novice behaviour.

As opposed to an exhaustive state of the art, which is beyond the scope of this paper,
Tabl e 1 shows a summary of the existing studies that address the effects of experience in
programming. Programming is a rather complex area, in which a diversity of notations,
languages, design approaches, programming techniques, etc. have been investigated. In
Tab l e 1, we have included only studies that explore programming abilities. For instance,
(Burkhardt et al. 1997) examine the mental representations of objects (in a program).
This study seems to be exploring a design but not a programming aspect, and therefore
has not been included in Table 1. In the same vein (Ricca et al. 2007), investigates the
impact of annotations in UML diagrams, depending on the subjects’ experience. Again,
this study has been excluded because it addresses a modelling but not a programming
feature.

The studies in Table 1 have the following characteristics:

& Research methodology: The vast majority of studies are experiments. In most cases, they
compare two groups (novices vs. experts). Studies with only one group of subjects,
characterized by their experience years, are also common, e.g., (Sheppard et al. 1979).
These later studies, with the exception of (Askar and Davenport 2009), are quasi-
experiments.

& Characterization of novices and experts: All studies use novices with very little, e.g.,
(Wiedenbeck 1985) or no experience, e.g., (McKeithen et al. 1981). On what regards
expert characterization, the situation is far from uniform. Some studies use experts
with limited experience, e.g., graduate students (Weiser and Shertz 1984; Ye and
Salvendy 1994). In other cases, experts may have quite a lot of experience, e.g.,
(Burkhardt et al. 2002) use professional programmers with experience in object-
oriented design with C++.

& Response variables and measurement procedures: Programmer performance is typically
measured indirectly, e.g., ability to identify valid programming language sentences
(Wiedenbeck 1985), ability to remember meaningful code snippets (McKeithen et al.
1981), etc. Subjective measures, e.g., self-efficacy scores (Askar and Davenport 2009) have
also been used. Direct measurements e.g., effort (Arisholm et al. 2007) are uncommon.

T
ab

le
 1

R

el
at

ed
 e

m
pi

ri
ca

l
st

ud
ie

s

R
ef

St

ud
y

#S
ub

je
ct

s
In

de
pe

nd
en

t
V

ar
ia

bl
e

D
ep

en
de

nt
 V

ar
ia

bl
e

E
xp

er
im

en
ta

l
ta

sk

(W
ie

de
nb

ec
k

E
xp

er
im

en
t

10
 E

xp
er

ts

19
85

)
10

 N
ov

ic
es

(Y
e

an
d

Q
ua

si
-E

xp
er

im
en

t
10

 E
xp

er
ts

Sa

lv
en

dy

10
 N

ov
ic

es

19
94

))

(M
cK

ei
th

en

E
xp

er
im

en
t

et
 a

l.
19

81
)

6
E

xp
er

ts

23
 I

nt
er

m
ed

ia
te

s
4

N
ov

ic
es

(A
ri

sh
ol

m
 e

t
al

.
Q

ua
si

-E
xp

er
im

en
t

Ju
ni

or

20
07

)
In

te
rm

ed
ia

te

Se
ni

or

(A
sk

ar
 a

nd

Su
rv

ey

D
av

en
po

rt

20
09

)

20
0

fi
rs

t
ye

ar
 s

tu
de

nt
s

fr
om

th

e
co

m
pu

te
r,

el

ec
tr

on
ic

s,
 a

nd

E
xp

er
ts

:
11

,0
00

 h
.

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

.
N

ov
ic

es
:

20
0

h.

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

.

E
xp

er
ts

:
gr

ad
ua

te
 s

tu
de

nt
s

in
 c

om
pu

te
r

sc
ie

nc
e.

N

ov
ic

es
:

un
de

rg
ra

du
at

es

w
it

h
on

e
co

ur
se

 i
n

C

pr
og

ra
m

m
in

g.

E
xp

er
ts

:
40

0
h.

 i
n

A
L

G
O

L

W
 a

nd
 2

00
0

h.
 o

f
ge

ne
ra

l
pr

og
ra

m
m

in
g.

N

ov
ic

es
:

0
h.

Ju
ni

or
:

In
d.

:
0-

23
 y

ea
rs

..
Pa

ir
:

0-
25

 y
r.

In

te
rm

ed
ia

te
:

In
d.

:
0-

26
 y

ea
rs

.,
Pa

ir
:

0-
24

 y
r.

Se

ni
or

 p
ro

fe
ss

io
na

l
Ja

va

co
ns

ul
ta

nt
s:

 I
nd

.:
0-

27
 y

r.,
 P

ai
r:

 1
-3

0
yr

.

E
xp

er
ie

nc
e

ye
ar

s

Sp
ee

d
an

d
ac

cu
ra

cy
 f

or

ge
ne

ra
ti

ng
 s

yn
ta

ct
ic

al
ly

pr

og
ra

m
m

in
g

se
nt

en
ce

s.

R
at

in
gs

E
ff

or
t

Se
lf

-e
ff

ic
ac

y
sc

or
es

.

0
to

 6
 L

ik
er

t
sc

al
e

N
um

be
r

of
 l

in
es

 w
ri

tt
en

ve

rb
at

im
 i

n
th

ei
r

pr
op

er

E
la

ps
ed

 t
im

e
ta

ke
n

to

pe
rf

or
m

 a
 s

et
 o

f
ch

an
ge

ta

sk
s.

T
ot

al
 n

um
be

r
of

pr

og
ra

m
m

er
 h

ou
rs

 t
ak

en

to
 d

ev
el

op
 a

 c
or

re
ct

pr

og
ra

m
.

W
he

th
er

 o
r

no
t

th
e

fi
na

l,
m

ai
nt

ai
ne

d
pr

og
ra

m

po
ss

es
se

d
th

e
re

qu
ir

ed

fu
nc

tio
na

lit
y.

1
to

 7
 L

ik
er

t
sc

al
e

R
ec

og
ni

ti
on

 o
f

sy
nt

ac
tic

er

ro
rs

 a
nd

 u
nd

er
st

an
di

ng

of
 th

e
st

ru
ct

ur
e

an
d

fu
nc

tio
n

of
 s

im
pl

e
st

er
eo

ty
pe

d
co

de

se
gm

en
ts

R
at

e
th

e
re

la
te

dn
es

s
of

 2
3

co
nc

ep
ts

 i
n

C
 c

om
pu

te
r

pr
og

ra
m

m
in

g.

P
ar

ti
ci

pa
nt

s
vi

ew
ed

 a

31
-l

in
e

A
L

G
O

L
 p

ro
­

gr
am

 p
re

se
nt

ed
 i

n
ei

th
er

no

rm
al

 o
r

sc
ra

m
bl

ed
 o

r­
de

r
fo

r
2

m
in

,
an

d
th

en

w
er

e
gi

ve
n

3
m

in
 t

o
re

­
ca

ll
th

e
pr

og
ra

m
.

Pe
rf

or
m

 m
ai

nt
en

an
ce

 t
as

ks

on
 J

av
a

co
de

.

A
ns

w
er

 a
 q

ue
st

io
nn

ai
re

re

ga
rd

in
g

se
lf

-e
ff

ic
ac

y
in

 J
A

V
A

 p
ro

gr
am

m
in

g.

T
he

 e
xp

er
ts

 w
er

e
ap

pr
ox

im
at

el
y

25
 %

fa

st
er

 a
nd

 h
ad

 4
0

%

lo
w

er
 e

rr
or

 r
at

es
 t

ha
n

th
e

no
vi

ce
s.

T
he

 e
xp

er
ts

 b
ea

t n
ov

ic
es

 o
n

de
fi

ni
ng

 r
el

at
io

ns
hi

ps

be
tw

ee
n

te
rm

s
an

d
ca

te
go

ri
es

 c
re

at
io

n.

Fo
r

th
e

no
rm

al
 p

ro
gr

am
s,

ex

pe
rt

s
re

ca
ll

ed

ap
pr

ox
im

at
el

y
th

re
e

ti
m

es
 a

s
m

an
y

li
ne

s
as

th

e
no

vi
ce

s.

Fo
r

th
e

sc
ra

m
bl

ed

pr
og

ra
m

s,
 t

he

ex
pe

rt
-n

ov
ic

e
di

ff
er

­
en

ce
s

w
er

e
la

rg
el

y

D
if

fe
re

nc
es

 b
et

w
ee

n
pa

ir
s

an
d

in
di

vi
du

al
s

do
 n

ot

de
pe

nd
 o

n
pr

og
ra

m
m

er

ex
pe

rt
is

e.

T
he

 n
um

be
r

of
 y

ea
rs

 o
f

ex
pe

ri
en

ce
 a

 s
tu

de
nt

 h
ad

w

it
h

co
m

pu
te

rs
 h

ad
 a

si

gn
if

ic
an

t
lin

ea
r

T
ab

le
 1

(c

on
tin

ue
d)

St
ud

y
#S

ub
je

ct
s

In
de

pe
nd

en
t

V
ar

ia
bl

e
D

ep
en

de
nt

 V
ar

ia
bl

e
E

xp
er

im
en

ta
l

ta
sk

(A
de

ls
on

 1
98

1)

E
xp

er
im

en
t

(S
he

pp
ar

d
et

 a
l.

Q
ua

si
-e

xp
er

im
en

t
19

79
)

in
du

st
ri

al
 e

ng
in

ee
ri

ng

de
pa

rt
m

en
ts

.
20

 f
ir

st
 y

ea
r

sc
ie

nc
e

st
ud

en
ts

,
al

l
of

 w
ho

m

w
er

e
en

ro
lle

d
in

 a
n

in
tr

od
uc

to
ry

 J
av

a
pr

og
ra

m
m

in
g

co
ur

se
.

10
6

se
co

nd
,

th
ir

d
an

d
fo

ur
th

 y
ea

r
co

m
pu

te
r

en
gi

ne
er

in
g

st
ud

en
ts

.

5
E

xp
er

ts

N
ov

ic
es

:
un

de
rg

ra
du

at
es

5

N
ov

ic
es

w

ho
 h

ad
 j

us
t

co
m

pl
et

ed

an
 i

nt
ro

du
ct

or
y

co
ur

se

in
 c

om
pu

te
r

pr
og

ra
m

m
in

g
in

 P
P

L
.

E
xp

er
ts

:
te

ac
hi

ng
 f

el
lo

w
s

fo
r

th
e

sa
m

e
co

ur
se

.

Pr
of

es
si

on
al

 p
ro

gr
am

m
er

s
P

ro
gr

am
m

in
g

ye
ar

s
C

om
pr

eh
en

si
on

T
he

 n
um

be
r

of
 i

te
m

s
re

ca
lle

d.

N
um

be
r

of
 i

te
m

s
in

 a
 b

ur
st

of

 r
ec

al
l.

Pe
rc

en
t

of
 s

ta
te

m
en

ts

co
rr

ec
tly

 r
ec

al
le

d.

P
ro

gr
am

m
in

g
ye

ar
s

M
od

if
ic

at
io

n
Pe

rc
en

t
co

rr
ec

t
ti

m
e

(t
o

co
m

pl
et

e
th

e
m

od
if

ic
at

io
n)

.

R
ec

al
li

ng
 1

6
li

ne
s

of
 P

PL

co
de

.

T
he

 p
ar

ti
ci

pa
nt

s
w

er
e

al
lo

w
ed

 2
5

m
in

 t
o

st
ud

y
se

ve
ra

l
pr

og
ra

m
s,

du

ri
ng

 w
hi

ch
 t

im
e

th
ey

co

ul
d

m
ak

e
no

te
s

or

dr
aw

 f
lo

w
ch

ar
ts

.
A

t
th

e
en

d
of

 s
tu

dy
 p

er
io

d,
 t

he

pr
og

ra
m

 a
nd

 a
ll

sc
ra

p
pa

pe
r

w
er

e
co

lle
ct

ed
,

an
d

ea
ch

 p
ar

ti
ci

pa
nt

 w
as

gi

ve
n

20
 m

in
 t

o
re

co
ns

tr
uc

ts
 f

un
ct

io
na

lly

eq
ui

va
le

nt
 c

od
e

fr
om

m

em
or

y
on

 b
la

nk
 s

he
et

of

 p
ap

er
.

co
nt

ri
bu

ti
on

 t
o

th
ei

r
se

lf
-e

ff
ic

ac
y

sc
or

es
.

A
s

th
e

co
m

pu
te

r
ex

pe
ri

en
ce

in

cr
ea

se
s,

 t
he

re
 i

s
a

te
nd

en
cy

 t
o

ga
in

se

lf
-e

ff
ic

ac
y

in
 p

ro
­

gr
am

m
in

g.

T
he

 e
xp

er
ts

 r
ec

al
le

d
m

or
e

th
an

 t
he

 n
ov

ic
es

,
an

d
ha

d
la

rg
er

 r
ec

al
l

ch
un

ks
.

T
he

 n
um

be
r

of
 y

ea
rs

 o
f

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

 d
id

 n
ot

co

rr
el

at
e

w
it

h
pe

rf
or

m
an

ce
.

T
he

 n
um

be
r

of
 y

ea
rs

 o
f

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

 d
id

 n
ot

T
ab

le
 1

(c

on
tin

ue
d)

St
ud

y
#S

ub
je

ct
s

In
de

pe
nd

en
t

V
ar

ia
bl

e
D

ep
en

de
nt

 V
ar

ia
bl

e
E

xp
er

im
en

ta
l

ta
sk

(S
ol

ow
ay

 e
t

al
.

E
xp

er
im

en
t

19
83

)

(C
ro

sb
y

et
 a

l.
E

xp
er

im
en

t
20

02
)

45
 P

ro
gr

am
m

er
s

E
xp

er
im

en
t

15
 i

nt
er

m
ed

ia
te

pr

og
ra

m
m

er
s

15
 a

dv
an

ce
d

pr
og

ra
m

m
er

s

N
ov

ic
es

 h
ad

 b
ee

n
ta

ug
ht

ab

ou
t

an
d

ha
d

ex
pe

ri
en

ce
 w

it
h

th
e

w
hi

le
 l

oo
p

an
d

th
e

ot
he

r
tw

o
lo

op
in

g
co

ns
tr

uc
ts

;
th

is
 o

cc
ur

re
d

th
re

e-
qu

ar
te

rs
 o

f
th

e
w

ay
 t

hr
ou

gh
 t

he
 s

em
es

­
te

r.

In
te

rm
ed

ia
te

s
w

er
e

st
ud

en
ts

 c
ur

re
nt

ly

tw
o-

th
ir

ds
 t

hr
ou

gh
 a

se

co
nd

 c
ou

rs
e

in
 p

ro
­

gr
am

m
in

g
(e

.g
.,

ei
th

er
 a

da

ta
 s

tr
uc

tu
re

s
co

ur
se

us

in
g

P
as

ca
l

or
 a

n
as

­
se

m
bl

y
la

ng
ua

ge

co
ur

se
).

T
he

 a
dv

an
ce

d
gr

ou
p

w
er

e
ju

ni
or

s
an

d
se

ni
or

s
in

sy

st
em

s
pr

og
ra

m
m

in
g

an
d

pr
og

ra
m

m
in

g
m

et
ho

do
lo

gi
es

.

N
ov

ic
e:

 C
S

st
ud

en
ts

.
In

te
rm

ed
ia

te
:

C
S

St
ud

en
ts

at

 th
e

ju
ni

or
 o

r
se

ni
or

un

de
rg

ra
du

at
e

le
ve

l.
A

dv
an

ce
d:

 g
ra

du
at

e
C

S
st

ud
en

ts
 a

nd
 C

S
fa

cu
lty

.

A
cc

ur
ac

y
N

ot
 d

ef
in

ed
 i

n
th

e
m

an
us

cr
ip

t

T
he

 p
ro

gr
am

m
er

s
w

er
e

th
en

as

ke
d

to
 r

an
k

(o
n

a
6

po
in

t s
ca

le
)

ho
w

 l
ik

el
y

it
w

as
 t

ha
t

a
pa

rt
ic

ul
ar

 l
in

e
of

 c
od

e
ca

m
e

fr
om

 a

bi
na

ry
 s

ea
rc

h
pr

og
ra

m
.

0
to

 6
 L

ik
er

t
sc

al
e

In
te

rm
ed

ia
te

:
C

S
S

tu
de

nt
s

C
or

re
ct

ne
ss

at

 th
e

ju
ni

or
 o

r
se

ni
or

un

de
rg

ra
du

at
e

le
ve

l.

T
he

 r
es

po
ns

e
w

as
 c

la
ss

if
ie

d
as

 c
or

re
ct

 i
f

th
e

pr
og

ra
m

m
er

 w
as

 a
bl

e
to

id

en
tif

y
th

e
or

ig
in

St
ud

en
ts

 w
er

e
gi

ve
n

a
tw

o-
pa

rt
 t

es
t.

In
 t

he
 f

ir
st

pa

rt
,

th
ey

 w
er

e
as

ke
d

to

w
ri

te
 a

 p
la

n
th

at
 w

ou
ld

so

lv
e

th
e

st
at

ed
 p

ro
b­

le
m

.
In

 t
he

 t
he

 s
ec

on
d

pa
rt

,
ha

lf
 s

tu
de

nt
s

w
er

e
as

ke
d

to
 w

ri
te

 a
 P

as
ca

l
pr

og
ra

m
 t

ha
t

so
lv

ed
 t

he

pr
ob

le
m

, w
hi

le
 t

he
 o

th
er

ha

lf
 w

er
e

as
ke

d
to

 s
ol

ve

th
e

pr
ob

le
m

 u
si

ng
 P

as
­

ca
l

L
.

co
rr

el
at

e
w

it
h

pe
rf

or
m

an
ce

.

A
cc

ur
ac

y
im

pr
ov

es
 f

ro
m

19

 %
 f

or
 t

he
 n

ov
ic

e
gr

ou
p

to
 4

9
%

 f
or

 t
he

in

te
rm

ed
ia

te
 g

ro
up

 t
o

83
 %

 f
or

 t
he

 a
dv

an
ce

d
gr

ou
p.

R
at

e
li

ne
s

of
 c

od
e

as
 to

 h
ow

N

ov
ic

es
 d

is
cr

im
in

at
e

ve
ry

in

di
ca

tiv
e

th
ey

 w
er

e
of

 a

pr
og

ra
m

 f
un

ct
io

n.

lit
tle

 b
et

w
ee

n
pr

og
ra

m

ar
ea

s.

M
or

e
ex

pe
ri

en
ce

d
pr

og
ra

m
m

er
s

te
nd

 t
o

co
nc

en
tr

at
e

on
 t

he

im
po

rt
an

t
ar

ea
s

of
 a

pr

og
ra

m
.

D
et

er
m

in
e

w
hi

ch
 p

ro
gr

am
 a

T

he
 a

dv
an

ce
d

gr
ou

p
lin

e
of

 c
od

e
w

as
 m

os
t

co
m

pl
et

ed
 t

he
 t

as
k

in

lik
el

y
to

 r
ep

re
se

nt
.

le
ss

 t
im

e.

T
ab

le
 1

(c

on
tin

ue
d)

St
ud

y
#S

ub
je

ct
s

In
de

pe
nd

en
t

V
ar

ia
bl

e
D

ep
en

de
nt

 V
ar

ia
bl

e
E

xp
er

im
en

ta
l

ta
sk

E
xp

er
im

en
t

9
no

vi
ce

 p
ro

gr
am

m
er

s
10

 a
dv

an
ce

d
pr

og
ra

m
m

er
s

(S
ol

ow
ay

 a
nd

E

xp
er

im
en

t
E

hr
lic

b
19

84
)

94
 n

ov
ic

e
pr

og
ra

m
m

er
s

45
 a

dv
an

ce
d

pr
og

ra
m

m
er

s

A
dv

an
ce

d:
 g

ra
du

at
e

C
S

st
ud

en
ts

 a
nd

 C
S

fa
cu

lty
.

N
ov

ic
e:

 s
tu

de
nt

s
w

it
h

on
e

se
m

es
te

r
of

pr

og
ra

m
m

in
g

ex
pe

ri
en

ce
.

A
dv

an
ce

d:
 C

S
fa

cu
lty

m

em
be

rs
 a

nd
 s

tu
de

nt
s

fr
om

 a
dv

an
ce

d
un

de
rg

ra
du

at
e

an
d

gr
ad

ua
te

 c
la

ss
es

.

N
ov

ic
e:

 p
ro

gr
am

m
er

s
w

er
e

st
ud

en
ts

 a
t

th
e

en
d

of
 a

fi

rs
t

co
ur

se
 i

n
Pa

sc
al

pr

og
ra

m
m

in
g.

A

dv
an

ce
d:

 p
ro

gr
am

m
er

s
w

ho
 h

ad
 c

om
pl

et
ed

 a
t

le
as

t
3

pr
og

ra
m

m
in

g
co

ur
se

s,
 a

nd
 m

os
t

w
er

e
ei

th
er

 c
om

pu
te

r
sc

ie
nc

e
m

aj
or

s
or

 f
ir

st
 y

ea
r

gr
ad

ua
te

 s
tu

de
nt

s
in

co

m
pu

te
r

sc
ie

nc
e;

 a
ll

ha
d

ex
te

ns
iv

e
ex

pe
ri

en
ce

 w
it

h
Pa

sc
al

.

(d
ep

th
 f

ir
st

 s
ea

rc
h,

 s
he

ll
so

rt
 o

r
bi

na
ry

 s
ea

rc
h)

 o
f

a
lin

e
of

 c
od

e.

R
es

po
ns

e
tim

e

F
ix

at
io

ns
 (

at
te

nt
io

n
th

at
 a

pr

og
ra

m
m

er
 p

ay
s

to
 a

pi

ec
e

of
 c

od
e

de
te

ct
ed

by

 a
n

ey
e

tr
ac

ki
ng

de

vi
ce

).

F
ix

at
io

ns
 t

im
es

A
cc

ur
ac

y
of

 r
es

po
ns

e

N
um

be
r

of
 f

ix
at

io
ns

Fi
xa

ti
on

 t
im

es

A
 c

or
re

ct
 r

es
po

ns
e

w
as

 o
ne

th

at
 c

om
pl

et
ed

 t
he

in

te
nd

ed
 p

la
n.

T
hi

s
ex

pe
ri

m
en

t
us

ed
 e

ye

tr
ac

ki
ng

 t
o

pr
ec

is
el

y
de

te
rm

in
e

no
t

on
ly

 w
ha

t
pr

og
ra

m
m

er
s

vi
ew

ed

bu
t

al
so

 h
ow

 l
on

g
th

ey

fi
xa

te
d

on
 e

ac
h

ty
pe

 o
f

pr
og

ra
m

 s
ta

te
m

en
t

O
ne

 l
in

e
of

 c
od

e
w

as
 t

ak
en

ou

t
fr

om
 t

he
 p

ro
gr

am

an
d

re
pl

ac
ed

 w
it

h
a

bl
an

k
li

ne
.

T
he

 s
ub

je
ct

s
fi

lle
d

th
e

bl
an

k
lin

e
w

it
h

th
e

pi
ec

e
of

 c
od

e
th

at
,

in

th
ei

r
op

in
io

n,
 b

es
t

co
m

pl
et

e
th

e
pr

og
ra

m
.

T
he

 i
nt

er
m

ed
ia

te
 a

nd
 m

or
e

ad
va

nc
ed

 p
ro

gr
am

m
er

s
di

sp
la

ye
d

th
e

sa
m

e
ab

ili
ty

 i
n

te
rm

s
of

pe

rc
en

ta
ge

 o
f

co
rr

ec
t

re
sp

on
se

s.

T
he

 m
or

e
ad

va
nc

ed

pr
og

ra
m

m
er

s
w

er
e

ab
le

to

 a
cc

om
pl

is
h

th
is

 i
n

si
gn

if
ic

an
tly

 l
es

s
ti

m
e,

re

ga
rd

le
ss

 o
f

th
e

lin
e

of

co
de

.

T
he

 a
ve

ra
ge

 f
ix

at
io

n
du

ra
ti

on
 w

as
 s

ta
tis

tic
al

ly

si
gn

if
ic

an
t

fo
r

ex
pe

ri
en

ce
.

T
he

 e
xp

er
ts

 p
er

fo
rm

ed

be
tt

er
 t

ha
n

no
vi

ce
s.

T
ab

le
 1

(c

on
tin

ue
d)

St
ud

y
#S

ub
je

ct
s

In
de

pe
nd

en
t

V
ar

ia
bl

e
D

ep
en

de
nt

 V
ar

ia
bl

e
E

xp
er

im
en

ta
l

ta
sk

(A
de

ls
on

 1
98

4)

E
xp

er
im

en
t

18
 N

ov
ic

es

18
 E

xp
er

ts

(B
ur

kh
ar

dt

E
xp

er
im

en
t

et
 a

l.
20

02
)

21
 N

ov
ic

es

30
 E

xp
er

ts

(W
ei

se
r

an
d

E
xp

er
im

en
t

Sh
er

tz

19
84

)

(M
ul

le
r

an
d

E
xp

er
im

en
t

H
of

er
 2

00
7)

6
N

ov
ic

es

9
E

xp
er

ts

7
T

D
D

 E
xp

er
ts

9

T
D

D
 N

ov
ic

es

N
ov

ic
e:

 u
nd

er
gr

ad
ua

te
s

T
yp

e
of

 p
ro

gr
am

w

ho
 h

ad
 c

om
pl

et
ed

 a
n

re
pr

es
en

ta
ti

on
,

in
tr

od
uc

to
ry

 c
om

pu
te

r
pr

og
ra

m
m

in
g

co
ur

se
.

E
xp

er
t:

 f
el

lo
w

s
of

 th
e

sa
m

e

C
om

pr
eh

en
si

on

N
ov

ic
e:

 a
dv

an
ce

d
st

ud
en

ts
.

E
xp

er
t:

 p
ro

fe
ss

io
na

l
pr

og
ra

m
m

er
s

ex
pe

ri
en

ce
d

in
 O

O

de
si

gn
 w

it
h

C
+

+
.

N
ov

ic
es

:
st

ud
en

ts
 o

f
se

co
nd

P

ro
gr

am
m

in
g

pr
ob

le
m

an

d
th

ir
d

se
m

es
te

r
re

pr
es

en
ta

ti
on

.
E

xp
er

ts
:

gr
ad

ua
te

 s
tu

de
nt

s

E
xp

er
ts

.
Pr

of
es

si
on

al

pr
og

ra
m

m
er

s
w

ith

in
du

st
ri

al
 T

D
D

ex

pe
ri

en
ce

So
rt

in
g

tim
e

C
on

fo
rm

an
ce

 t
o

T
D

D
.

C
ha

ng
es

 t
o

li
ne

s
of

 c
od

e.

A
bs

tr
ac

t
or

 c
on

cr
et

e
re

pr
es

en
ta

ti
on

.

C
or

re
ct

ne
ss

 o
f

re
sp

on
se

s

A
 s

et
 o

f
ca

te
go

ri
es

 p
ro

po
se

d
by

 e
xp

er
im

en
ta

l
su

bj
ec

ts

af
te

r
so

rt
in

g
ta

sk
.

T
D

D
 c

ha
ng

es
 p

lu
s

re
fa

ct
or

in
gs

,
ov

er
 a

ll
ch

an
ge

s

T
he

 n
um

be
r

of
 c

ha
ng

ed

lin
es

 o
f

co
de

 (
C

L
O

C
)

E
ac

h
pa

rt
ic

ip
an

t
w

as
 g

iv
en

a

co
nc

re
te

 o
r

ab
st

ra
ct

fl

ow
ch

ar
t

fo
llo

w
ed

 b
y

th
e

pr
og

ra
m

 a
nd

 b
y

co
nc

re
te

 o
r

ab
st

ra
ct

co

m
pr

eh
en

si
on

qu

es
ti

on
s.

 A
bs

tr
ac

t
qu

es
ti

on
s

fo
cu

se
d

on
 th

e
un

de
rl

yi
ng

 p
la

n
of

 t
he

pr

og
ra

m
.

C
on

cr
et

e
qu

es
ti

on
s

fo
cu

se
d

on

su
rf

ac
e

de
ta

ils
 o

f
ho

w

th
e

pr
og

ra
m

 e
ar

ne
d

ou
t

th
e

pl
an

.

D
ur

in
g

ph
as

e
1,

 p
ar

ti
ci

pa
nt

s
w

er
e

al
lo

w
ed

 t
o

st
ud

y
th

e
pr

og
ra

m
,

ru
n

it
(a

n
ex

ec
ut

ab
le

 w
as

pr

ov
id

ed
),

 a
nd

 t
ak

e
no

te
s.

 A
ft

er
 t

hi
s

in
iti

al

st
ud

y
ph

as
e,

 p
ar

ti
ci

pa
nt

s
an

sw
er

ed
 a

qu

es
ti

on
na

ir
e.

E
ac

h
pa

rt
ic

ip
an

t
w

as
 g

iv
en

sp

ec
if

ic
at

io
ns

 f
or

 2
7

di
ff

er
en

t
pr

og
ra

m
m

in
g

pr
ob

le
m

s,
 a

nd
 w

as

as
ke

d
to

 g
ro

up
 t

og
et

he
r

pr
ob

le
m

s
w

ho
se

 m
et

ho
d

of
 s

ol
ut

io
n

w
ou

ld
 b

e
si

m
ila

r.

Pe
rf

or
m

in
g

a
co

di
ng

 t
as

k
in

T

D
D

.

E
xp

er
ts

 p
er

fo
rm

ed
 b

et
te

r
on

ab

st
ra

ct
 q

ue
st

io
ns

,
w

he
re

as
 n

ov
ic

es

pe
rf

or
m

ed
 b

et
te

r
on

co

nc
re

te
 q

ue
st

io
ns

.

E
xp

er
ts

 a
re

 b
et

te
r

th
an

no

vi
ce

s
at

 c
on

st
ru

ct
in

g
co

rr
ec

t
m

en
ta

l
re

pr
es

en
ta

ti
on

s
of

 t
he

pr

og
ra

m
.

N
ov

ic
es

 c
on

si
de

r
th

e
su

rf
ac

e
fe

at
ur

es
 o

f
th

e
pr

ob
le

m
 b

ut
 r

ep
re

se
nt

pr

ob
le

m
s

in
co

ns
is

te
nt

ly
.

E
xp

er
ts

 c
on

si
de

r
th

e
de

ep

fe
at

ur
es

 a
nd

 t
en

d
to

ag

re
e

w
it

h
on

e
an

ot
he

r.

T
he

 e
xp

er
ts

 a
ch

ie
ve

 a

hi
gh

er
 c

on
fo

rm
an

ce
 t

o
th

e
m

le
s

of
 t

he

te
st

-d
ri

ve
n

de
ve

lo
pm

en
t

pr
oc

es
s

th
an

 t
he

 n
ov

­
ic

es
.

£*

T
ab

le
 1

(c

on
tin

ue
d)

St
ud

y
#S

ub
je

ct
s

In
de

pe
nd

en
t

V
ar

ia
bl

e
D

ep
en

de
nt

 V
ar

ia
bl

e
E

xp
er

im
en

ta
l

ta
sk

N
ov

ic
es

.
S

tu
de

nt
s

w
ho

fi

ni
sh

ed
 a

n
X

P
la

b

Sp
ee

d
fo

r
ap

pl
ic

at
io

n
co

de

an
d

te
st

 c
od

e

du
ri

ng
 t

he
 w

ho
le

 i
m

pl
e­

m
en

ta
ti

on
 p

ro
ce

ss

C
ha

ng
ed

 l
in

es
 o

f
co

de
 p

er

ho
ur

D
ur

at
io

n
of

 I
m

pl
em

en
ta

ti
on

D

ur
at

io
n

of
 t

he

im
pl

em
en

ta
ti

on
 u

nt
il

 t
he

fi

rs
t

ac
ce

pt
an

ce
 t

es
t

Q
ua

lit
y

of
 T

es
t

T
he

 q
ua

li
ty

 o
f

th
e

de
ve

lo
pe

d
te

st
s

in
 t

er
m

s
of

 s
ta

te
m

en
t

an
d

bl
oc

k
co

ve
ra

ge

(M
ul

le
r

an
d

Q
ua

si
-e

xp
er

im
en

t
38

 c
om

pu
te

r
sc

ie
nc

e
P

ad
be

rg

st
ud

en
ts

 w
it

h
JA

V
A

20

04
)

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

P
ro

gr
am

m
in

g
ye

ar
s,

 b
ot

h
at

Im

pl
em

en
ta

ti
on

 t
im

e
th

e
in

di
vi

du
al

 a
nd

 p
ai

r
le

ve
ls

Pe
rf

or
m

in
g

a
co

di
ng

 t
as

k
in

T

D
D

.

T
he

 n
um

be
r

of
 c

ha
ng

ed

lin
es

 o
f

co
de

 d
ur

in
g

th
e

w
ho

le
 i

m
pl

em
en

ta
ti

on

pr
oc

es
s

is
 s

m
al

le
r

fo
r

th
e

ex
pe

rt
s

th
an

 f
or

 t
he

no

vi
ce

s.

T
he

 e
xp

er
ts

 a
re

 f
as

te
r

in

ch
an

gi
ng

 a
pp

lic
at

io
n

co
de

 a
nd

 t
es

t
co

de
.

T
he

 e
xp

er
ts

 a
re

 s
ig

ni
fi

ca
nt

ly

fa
st

er
 t

ha
n

th
e

no
vi

ce
s.

T

he
 t

es
ts

 d
ev

el
op

ed
 b

y
th

e
ex

pe
rt

s
ac

hi
ev

e
a

hi
gh

er

co
ve

ra
ge

 o
n

th
e

ap
pl

ic
at

io
n

co
de

 t
ha

n
th

e
te

st
s

of
 t

he
 n

ov
ic

es

In
di

vi
du

al
 e

xp
er

ie
nc

e
le

ve
ls

an

d
th

e
pa

ir

pe
rf

or
m

an
ce

 a
re

un

co
rr

el
at

ed
.

T
he

re
 i

s
no

 c
or

re
la

tio
n

be
tw

ee
n

th
e

ex
pe

ri
en

ce

le
ve

l
an

d
th

e
im

pl
em

en
ta

ti
on

 t
im

e.

Ja
va

 p
ro

gr
am

m
in

g
ex

pe
ri

en
ce

 (
m

ea
su

re
d

ei
th

er
 i

n
ye

ar
s

or
 l

in
es

 o
f

co
de

)
an

d
im

pl
em

en
ta

ti
on

 t
im

e
ar

e
un

co
rr

el
at

ed
.

T
he

re
 i

s
no

 c
or

re
la

tio
n

be
tw

ee
n

th
es

e
in

di
vi

du
al

ex

pe
ri

en
ce

 l
ev

el
s

an
d

th
e

im
pl

em
en

ta
ti

on

ti
m

e.

& Experimental tasks: Most of the studies have many points in common with
classical experiments on expert behaviour. There are plenty of recognition,
matching and recall tasks. There are relatively few studies where subjects are
called upon to generate code, e.g., (Muller and Padberg 2004). Experimental
objects are ad-hoc and especially prepared for each study. With regard to com­
plexity, the objects are generally simple. Studies where actual coding is performed,
e.g., (Müller and Höfer 2007) use general problem domains where specialized
(domain-specific) knowledge is not required.

Save very rare exceptions, Chase and Simon’s theory of experience (Chase and
Simon 1973) has generally been repeatedly confirmed. Experts identify or remember
more programming language sentences than novices (McKeithen et al. 1981), consider
deeper program features (Weiser and Shertz 1984) or are faster than novices (Müller
and Höfer 2007). Experts do not always outperform novices, e.g., (McKeithen et al.
1981) but this can usually be explained by the non-transferability of experience, i.e.,
in such cases, experts are working outside their area of expertise, where their
strategies are not applicable and, therefore, they perform similarly to novices.

There have been reports in the literature of cases where experience does not always
lead to better performance. McDaniel et al. (1988) reported low correlations between
experience and performance. Camerer and Johnson (1997) conclude that subjects with
experience make decisions or predictions that are no better or even worse than those
made by inexperienced subjects. There are studies with similar outcomes in the area
of programming (Muller and Padberg 2004; Sheppard et al. 1979), as well as in other
areas of SE, e.g., (Marakas and Elam 1998; Sonnentag 1995). This apparent contra­
diction can be explained if a distinction is made between experience and expertise. In
order to achieve the performance of an expert, subjects need to complete a period of
intensive practice, with the deliberate intention of improving performance (i.e., achiev­
ing expertise). The mere practice of an activity (i.e., the years of experience) may
improve performance but not to the point of it being equal to that of people who are
generally recognized as experts in an area (Ericsson and Charness 1994).

Finally, it is noteworthy that experience has mainly been studied indirectly. The
typical study presents some task(s) to expert and novices subjects, and some facet of
the problem solving process (e.g., the top-down or bottom-up programming strategy)
is observed. Later, on the basis of Chase and Simon’s theory of experience (Chase
and Simon 1973) a given strategy (e.g., top-down) is associated to expert behaviour.
It is assumed that such strategy will lead to better programs and subjects are
categorized according to it. However, expert behaviour does not equate to expert
performance. Existing studies are missing direct measures of programmer perfor­
mance, e.g., whether expert programmers are more productive or generate programs
of better quality than novices. In fact, one of the two existing studies reporting
negative results (Muller and Padberg 2004) uses direct measures. Recent research,
e.g., (Ericsson 2006b) emphasizes the need of explicitly measuring expert perfor­
mance, instead of relying on (apparent) expert behaviour. On this ground, this paper
addresses the following research question:

RQ: Is the performance (measured directly) of expert programmers (i.e., with longer
periods of service) superior than that of novice programmers?

3 Family of Experiments

3.1 Conducted Quasi-Experiments

We conducted 10 quasi-experiments, six of which were run in industry and four in academia.
All the quasi-experiments were conducted as part of the Empirical Software Engineering
Industry Lab (ESEIL) project, led by N. Juristo and funded by TEKES.1 The research has been
conducted according to the regulations laid out by the Universidad Politécnica de Madrid and
University of Oulu’s Ethical Boards. Both the funding agency and the participating researchers
state that they have no conflicts of interest with respect to the research results. In all cases, the
experimental procedure was as follows:

& Before conducting the quasi-experiments, the experimental tasks (shown in Appendix 2)
were selected and the code templates were prepared. H. Erdogmus, B. Turhan, D. Fucci, A.
Tosum and T. Raty performed this task.

& Again before the quasi-experiments were performed, the forms described in Appendices 3
and 4 were used to acquire data about the experimental subjects. A. Santos processed the
demographic data.

& Each quasi-experiment used a particular programming language, testing framework and
IDE depending on the preferences of the host organization. The most commonly used
technology was Java + jUnit + Eclipse.

& The quasi-experiment had a total duration of 8 h:

– The first 4 h were spent on training the subjects to use the selected testing frameworks and
practical exercises. B. Turhan delivered the training for quasi-experiments 1–5 (with the
help of T. Raty in one case2). O. Dieste delivered the training for experiments 6–10.

– The experimental task (MR, BSK, with or without slicing) was completed after training. It
had a duration of 2 h without breaks. The task assignment to experimental subjects
differed slightly in each quasi-experiment for the purpose of alignment with the needs
of the research on programming strategies and TDD of which this study is part. Tasks
were assigned rigorously without introducing validity threats.

– D. Fucci, A. Tosun and S. Vegas (depending on the case) supervised the experimental
task. At the end of the experimental task, subjects handed in their code and the quasi-
experiment was concluded with a short debriefing.

Ta b l e 2 shows the particular conditions under which each quasi-experiment was
conducted. As such contextual variables can have a bearing on code quality and
programmer productivity (e.g., C++ and Boost Test are more complicated to use than
Java and jUnit), they have to be specifically considered and, where appropriate, added
as blocking variables to the analysis. One exception to this rule is the IDE, as it is
the same in almost all cases (Eclipse) and has no predictive ability. Although the
same might be said of programming language (C++ and Java) and testing framework
(jUnit, Google Test and Boost Test), each group has a sizeable number of subjects in
these two cases (e.g., 29 subjects used C++). It is therefore preferable not to jump to

TEKES: Finnish Funding Agency for Technology and Innovation
Not specified so as not to disclose T. Raty’s organization.

Ta b l e 2 Contextual variables characterizing each of the conducted quasi-experiments

Trainer Site Programming Testing Framework IDE
language

Experiment code 1 B.Turhan Industry Java

2 B.Turhan Industry Java

3 B.Turhan Industry Java

4 B.Turhan Industry C++

5 B.Turhan Academia Java

6 O.Dieste Industry Java

7 O.Dieste Academia Java

8 O.Dieste Academia Java

9 O.Dieste Academia Java

10 O.Dieste Industry C++

jUnit

jUnit

jUnit

Google Test

jUnit

jUnit

jUnit

jUnit

jUnit

Boost test

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse

Eclipse (17 cases)
Vim (2 cases)

conclusions and have the actual analysis procedure determine (e.g., by collinearity)
whether or not these contextual variables should be omitted.

3.2 Dependent Variables

The effect construct is programmer performance. As the research question states, we
passed over the response variables typically used to study the effect of programmer
experience, e.g., ability to identify valid sentences in a programming language
(Wiedenbeck 1985), and we used operationalizations focused on code properties that
could be directly measured.

Code can be examined from different viewpoints. In this research, we used the
External quality of the code and the Productivity of programmers as response vari­
ables. External quality is equivalent to the functional concept of quality defined in
ISO/IEC 25010 as the extent to which a software product satisfies certain needs (ISO
2011). In this respect, quality is related to what functionality code users get rather
than the internal structure of the code, which is why we use the adjective external.
Productivity is generally defined as the amount of work done. Section 3.9 details the
metrics and measurement procedures for both variables, which are basically percent­
ages representing the ratio of External Quality or Productivity to their respective
maximum values.

The use of the above variables has two practical advantages. On one hand, this
research into the effect of programmer experience is part of a wider research project
into programming strategies and test-driven development (TDD). The External Quality
and Productivity variables are often used in TDD studies, e.g., (Erdogmus et al. 2005;
Munir et al. 2014). Therefore, their use will keep both research projects aligned and
create synergies. On the other hand, External quality and Productivity can be defined
separately from the task, programming language, etc. This provides for the compar­
ison and joint analysis of data from a range of experiments. This is a very important
point, as sample sizes of over a hundred subjects are required to achieve adequate
statistics power (see Section 5.1.2). The sample size of a single experiment is not

usually this big, and several experimental replications have to be conducted and
jointly analysed.

3.3 Subject Selection

The experimental subjects were convenience sampled (i.e. selected by availability). They are
members of two separate groups:

& Programmers with different levels of experience from four European companies located in
Finland and Estonia.

& Senior undergraduate and postgraduate students from three universities located in Spain
and Ecuador. Most of the students do not have professional experience, although some
have already worked or are working in industry.

3.4 Experimental Task

The quasi-experiment has only one experimental task, which is to apply an Incremen­
tal test-last development (ITLD) strategy (Madeyski 2005). This strategy involves
writing production and testing code in parallel, without prioritizing testing code as
in TDD. The ITLD strategy is in widespread use in industry, where there is a
recognized need for automated testing to increase production code quality (Williams
et al. 2009). ITLD is not unusual, albeit less common, in academia. No further
conditions were imposed on ITLD, i.e., each programmer was allowed to select
whichever slice granularity and tests he or she wanted to use. In other words, the
programmers completed the task more or less as per usual practice. All programmers
were informed verbally, at the beginning of the experimental session, that the goal
was to complete the experimental problem in the allocated time frame.

3.5 Experimental Problems

The subjects applied ITLD on two experimental problems, MarsRover API (MR) and
Bowling Scorekeeper (BSK). BSK and MR are generic programming assignments, and
thus they do not specifically belong to the domain of experience of any of the
experimental subjects. They enable a clear separation between potential domain
knowledge effects (i.e., the performance improvements achieved because the program­
ming assignment is familiar) and the effects due only to the length of programming
experience, which are the ones relevant for this research.

Appendix 2 gives a full description of the programming assignments that the
subjects were set. There are two versions: with and without slices. Slices conform
the original definition by (Weiser 1981), although we are using them from a different
perspective (Lee et al. 2001). MR and BSK problems are not at all challenging for
professional programmers and should be doable for undergraduate and postgraduate
students.

3.5.1 MarsRover API

MR is a programming exercise that requires the development of a public interface for
controlling the movement of a fictitious vehicle on a grid with obstacles. MR is a
popular exercise used by the agile community to teach and practice unit testing.

MR is an algorithm-oriented task and does not involve the creation of a user interface.
The implementer needs to handle several boundary cases in order to produce the expected
results. The implementation of MR leverages a NxN matrix data structure representing an
imaginary planet on which the rover moves. Each matrix cell may store an obstacle on the
planet’s surface. Obstacles are without behaviour and can be modelled using simple data types
(e.g., a Boolean for representing presence/absence). Subjects have to implement six main
operations necessary to move the rover on the planet’s surface. The task can easily be solved
using just one class. The possible operations are:

& Matrix initialization and assignment of obstacles to cells
& Command parsing
& Forward and backward moves
& Left and right turns.

The forward and backward moves are the most complex operations. Command
parsing and left/right turns are straightforward operations. The assignment of obstacles
to cells upon initialization requires some parsing and type casting.

Subjects were given the MR specification document and a project template in order to get
them started and provide a common package structure that would make data collection easier
to automate.

3.5.2 Bowling Scorekeeper

BSK is a modified version of Robert Martin’s Bowling Scorekeeper (Bob 2005). This
task is popular in the agile community. The goal of the task is to calculate the score
of a single bowling game. The task is algorithm-oriented and it does not involve the
creation of a user interface. The task does not require prior knowledge of bowling
scoring rules: this knowledge is embedded in the specification. BSK also has six main
operations:

& Add a frame or bonus throws
& Detect when a frame is a spare or strike
& Calculate a frame score
& Calculate the game score.

The most complex operation is the calculation of the frame score. It depends on the type of
the frame (regular, spare or strike), the position of the frame in the game, and whether or not
the next frame is a strike.

We gave subjects the BSK specification document and a code template.

3.6 Treatment Assignment to Subjects

We have used a quasi-experimental design to study the effect of experience. Quasi-
experiments are used when the subjects cannot be randomly assigned to an experi­
mental condition, or, alternatively, a treatment cannot be assigned to a group. This
applies in our case, as the experimental subjects’ characteristics are intrinsic and
cannot be randomized or blocked. Consequently, all the subjects have performed the
same task (ITLD) to the same experimental object (MR or BSK, either sliced or not).
Note that each subject participated only once. The quasi-experimental design of this
study means that the relationship between the independent and dependent variables
cannot be said to be causal.

3.7 Instrumentation

The subjects implemented the experimental tasks in Java or C++ . The language was
selected depending on preferences at the site where each quasi-experiment was
conducted. They used the jUnit, Google Test and Boost Test testing frameworks. In
all cases, we gave subjects stubs so that they did not have to write the testing
framework initialization code (not necessarily evident in the case of Boost Test) and
could focus exclusively on writing the tests that they considered necessary. Most
subjects used the Eclipse integrated development environment (IDE), although some
subjects preferred to use text-mode editors like Vim.

3.8 Measurement Procedure

3.8.1 Independent Variables

We gathered the values of the independent variables using a questionnaire implement­
ed in Google Forms. Appendices 3 and 4 show the questionnaires for professionals
and students, respectively.

3.8.2 Dependent Variables

We used acceptance tests as the main instrument for extracting the Productivity (PROD) and
External Quality (QLTY) response variable data. We wrote a set of acceptance tests for all
tasks. MR can be decomposed into 11 subtasks (or slices) that represent all the functionality
required to complete this task. A total of 13 subtasks can be defined for BSK. Appendix 2 lists
the MR and BSK subtasks. One of the researchers (D. Fucci) wrote tests for MR, whereas the
BSK tests were adapted from a previous experiment (Erdogmus et al. 2005). MR’s acceptance
test suite has 11 test classes, 52 test methods and 89 assertions. BSK has 13 test classes, 51 test
methods and 56 assertions. Each test class implements the test of a particular subtask.

Productivity can be defined as (Kitchenham and Mendes 2004):

Process output . .
Productivity = (11

Process inputs

Process output is some measure of size, such as the number of lines of code (LOC)
produced by a developer, number/percentage of user stories implemented, or the number/
percentage of passing test cases. LOC has known weaknesses as metric (Armour 2004).
Conformance-based metrics are widely used (Darcy and Ma 2005). Therefore, we opted to
use the percentage of passing test assertions over all assertions as the basis for output
calculation.

The most common input is some measure of effort (Fenton and Bieman 2014), such
as man-months or monetary cost. In our case, subjects have a maximum time to
complete the tasks and tend to use in its entirety. Therefore, a time-based metric is
useless. We also ruled out monetary cost, due to the quasi-experimental character of our
research. Therefore, the process input is constant across subjects and experimental runs.
Being constant, it can be discarded for productivity calculation.

Thus, PROD represents the amount of functionality delivered by programmers (i.e., the
amount of work done), and it is defined as shown in Eq. 2:

PROD = ; — x 100 (2)
=frAssert(All)

The concept of quality that we are using is the extent to which a software product
satisfies certain needs (ISO 2011). Defined as such, quality can be interpreted as the
amount of functionality delivered by programmers, i.e., productivity. However, this
equality is only valid when coding is complete, that is, when programmers are able to
finish the task before delivery. When it does not happen, the amount of functionality
underestimates quality. For instance, let’s assume that a programmer completes only a
fraction (e.g., 80 %) of a given task, with no errors. His or her productivity is clearly
80 % (the amount of delivered functionality), but the quality of the code cannot be
80 % because it is completely correct; quality should be 100 %.

In this research, most experimental subjects have been unable to complete the
programming tasks. Therefore, we need to find out the degree of termination of each
task to fine-tune quality accordingly. We have accomplished this goal examining MR
and BSK subtasks. We have considered that an experimental subject has worked on a
given subtask when at least one assert statement in the acceptance test suite associated
with that subtask passes. This criterion is used to objectively separate subtasks to
which a subject made a reasonable amount of effort to complete, from other subtasks
in which a subject invested little or no effort.

In order to formalize this criterion, we have defined whether a subtask i has been "tackled"
(TST) as indicated in Eq. 3:

TST; = I (3)
0 otherwise

The number of tackled subtasks (TST) is calculated using Eq. 4, where n is the total number
of subtasks of the experimental problem.

E n

. TSTj (4)

We use TST to calculate QLTY in Eq. 5:

QLTY i
(5)

TSTt=1 JST

where QLTYi is the quality of the i-th tackled subtask, and is defined as:

QLTY: = ; —— x 100 (6
=frAsserti(AU)

#Asserti(Pass) represents the number of passing assertions in the acceptance test suite
associated with the i-th subtask. In other words, QLTY represents how correct (in percentage)
the code corresponding to the tackled tasks is.

The dependent variables PROD and QLTY are related in such a way that QLTY > = PROD.
This restriction implies that QLTY can take any value when PROD is low but, as PROD
increases, QLTY increases accordingly. When PROD nears 100 %, QLTY also approaches
100 %. The strong relationship between PROD and QLTY makes that both constructs cannot
be differentiated when subjects are highly productive, i.e., in such a case we observe
Productivity or External Quality (likely the later), but not both. Nevertheless, in the set of
quasi-experiments that we are using for this research, the time is constrained and only a
fraction of subjects achieve high PROD values. Therefore, we are rather confident that the
constructs Productivity and External Quality have been reasonably operationalized.

3.8.3 Data Collection

The measurement procedure involved executing the test suites on the code written by subjects.
Subjects were told not to modify the API for the MR and BSK problems which was well
defined in the code templates that they were given. Even so, they did. This caused compilation
errors in the test suite. These errors were corrected by adapting the production code to the test
code and vice versa depending on each case. We tried to modify the code written by subjects as
little as possible so as not to introduce validity threats. However, the alternative in many cases
was to assign QLTY = PROD = 0 values for the subjects that had altered the API, which was
clearly going too far.

Measurement was based on a set of test cases, but some type of adaptation of the subjects’
source code (e.g.: aligning return data types, fixing problems with leading/training spaces, etc.)
should be made in almost all cases. The measurer can have an influence here, e.g., one
measurer might make more changes to the production code than another. This possible threat
to validity is addressed in Section 7. D. Fucci measured quasi-experiments 1-3 (a total of 24
subjects), O. Dieste measured quasi-experiments 8-9 (a total of 22 subjects), and F. Uyaguari
measured the other five quasi-experiments (a total of 80 subjects). We collected data from a
total of 126 subjects.

3.9 Experimental Repository

Experimental data is confidential nowadays. A sanitized version is available at http://www.
grise.upm.es/sites/extras/11. This website also stores the test cases used for measurement.

http://www

4 Methodology

The study of the effects of experience on programmers’ performance was conducted by means
of a series of quasi-experiments. The programmers completed a programming assignment, and
their experience and performance were then compared. The quasi-experiment design is
detailed in the following.

4.1 Hypothesis

The main hypothesis of this paper, stated as null/alternative hypothesis, is as follows:

H 0 programmer experience does not influence their performance

H 1 programmer experience does influence their performance.
It is a generally accepted fact in SE that experience improves programmer performance.

Therefore, one might be tempted to test the hypotheses using one-tailed (i.e., programmer
experience improves their performance) rather than two-tailed tests. However, the reviewed
literature shows that there are contradictory opinions with respect to experienced programmers
performing better. As this is an exploratory study, we decided provide for possible effects in
both directions, i.e., experience having both positive and negative effects, to be on the safe
side.

In this research, performance has been operationalized as the quality (QLTY) and produc­
tivity (PROD) response variables. QLTY represents the degree of correctness in the experi­
mental task that the programmers were able to achieve. PROD represents the amount of
functionality delivered. If experience influence performance positively, then we should find a
direct relationship between any experience-related variable and quality/productivity. It is
unlikely that experience influence positively quality or productivity alone. Common sense
suggests that an expert programmer does not only do more work than novices in the same time,
but the work outcome is also better, i.e., of higher quality. Nevertheless, we will test H0

independently for quality and productivity to evaluate all possible alternatives.

4.2 Independent Variables

4.2.1 Experience-Related Independent Variables

The cause construct refers to Programmer experience. Experience is not a directly observable
construct (Siegmund et al. 2014) that can be operationalized using multiple independent
variables (e.g., programming experience, unit testing experience), where each independent
variable can be measured in different ways (e.g., years, Likert scales).

In this research, we decided to use as many independent variables as possible to prevent
mistaken conclusions being reached due to the operationalization. For example, Unit testing
experience could be considered a poor operationalization of Programmer experience, as a
good tester is not necessarily a good programmer. However, it is reasonable to assume that a
programmer with some Unit testing experience might produce better quality code. Therefore, it

is not wrong to use the Unit testing experience as an independent variable. Table 3 details the
studied independent variables.

The categorical variables have two possible values (No/Yes) with a numerical equivalence
for ease of interpretation if their effect is as expected (e.g., 1 = NO CS degree, 2 = YES CS
degree, assuming that CS degree holdership improves both programmer quality and produc­
tivity). The ordinal variables are measured by means of four-point Likert scales, coded as
follows:

& 1 = No experience (<2 years)
& 2 = Novice (2–5 years)
& 3 = Intermediate (5–10 years)
& 4 = Expert (>10 years)

The Likert scale is based on year ranges that are equivalent to the time spans commonly
specified in the literature that it takes to acquire the respective expertise. Campbell and Bello
(1996) point out that programmers need (at least) 2 years to become Smalltalk experts. Sim
et al. (2006) consider that 5 experience years are a reasonable period (not necessarily
sufficient) for an engineer to achieve expertise. Additionally, these ranges counteract the
optimism with which the subjects interpret the text labels (i.e., novice, expert), which biases
measurements (Aranda et al. 2014). Positive biases have been reported in several SE activities,
e.g., (Jørgensen et al. 2007).

Programming experience is probably the most interesting aspect in this research. The
ordinal variables Experience in the programming language used in the experiment and Overall
programming experience are very useful for studying the effect of experience on program­
ming, as they are handy means for subjects to rate and report their experience. On the other
hand, however, their accuracy is limited on two grounds:

& The results of the multiple linear regression analyses (i.e., the analysis method used in this
research, see Section 4.3) may be biased by the use of ordinal values (Winship and Mare
1984).

& The experimental subjects (see Section 3.4) are both professionals working in industry and
students taking different programmes in academia. The extent and rate of exposure to the

Ta b l e 3 Independent variables used

Categorical (dummies) Ordinal Scalar

Holds a CS degree
Currently uses a unit
testing framework

Has specialized
training in unit
testing

Has specialized
training in TDD

Current uses the IDE
used in the
experiment

Currently uses TDD

Experience in the unit testing
framework used during the
experiment

Experience in the programming
language used in the experiment

Overall programming experience
Unit testing experience
TDD experience in TDD (if
currently uses TDD = YES)

• Experience in the programming language
used in the experiment acquired in
academia

• Experience in the programming language
used in the experiment acquired in industry

Overall programming experience acquired in
academia

Overall programming experience acquired in
industry

programming activity in both groups should be considerably different and it is seldom
clear that they can be measured using the same variables.

In order to set off the ordinal variables, we have also captured separate scalar variables for
industry and academia measured in years and referred to both experience in the programming
language used in the experiment and overall experience.

4.2.2 Other Independent Variables

This paper is, in essence, a secondary analysis that relies on data collected in diverse
contexts using different experimental designs. Such diversity gives rise to the appearance
of several variables, such as TRAINER, SLICING or TASK_ITLD, not directly related
to the experience construct. For the reader convenience, the independent variables used
are listed in Appendix 1.

4.3 Dataset

Table 4 summarizes the key demographic sample data. As we can see, both professional
programmers and students state that they have from 2 to 10 years of overall programming
experience and slightly less (from 0 to 5 years) experience in the specific programming
language used in each experiment. Appendix 5 shows the breakdown of experience measured
in years. Generally, the experience measured in years is quite well aligned with the Likert-scale
data. The experience on the programming language used in each quasi-experiment is slightly
greater among students than in industry (2.1 vs. 1.8 years). This is probably a reflection of the
widespread use of Java in academia as opposed to the wider range of programming languages
that are used at companies. Overall programming experience is, predictably, greater in industry
(4 vs. 5.1 years).

As regards experience broken down by subject types, we found that students have slightly
more academic experience than practitioners regarding the programming language used in
each quasi-experiment (2.2 vs. 2.0 years on average, respectively). However, practitioners,
predictably, have more experience than students in industry (0.7 vs. 2.7 years). The pattern is
similar for overall programming experience (5.9 vs. 2.7 and 2.4 vs. 7.1 years). Experience
measured in years clearly appears to better account for population characteristics than the
ordinal variables, and will be given preference.

The biggest difference between both groups (professionals and students) is with
respect to years of unit testing experience, IDE use and academic training received.
Most students are pursuing a degree in computer science, whereas professionals have
different educational backgrounds. On the other hand, professional programmers have
more experience in unit testing, whereas students are more acquainted with IDE use.

The number of subjects in each independent variable category is reasonably well balanced,
on which ground we expect the research results will not be biased by group size, except
perhaps with regard to educational background and TDD use. This could be considered as a
possible threat to validity as described in Section 7. Additionally, the experience ranges at our
disposal match the specifications in the related literature, where theoretically expertise is
acquired after from 5 to 10 years of deliberate practice (see Section 2). The experimental
subjects should therefore be suitable for identifying the effects of experience on code quality
and programmer productivity.

Ta b l e 4 Characterization of subjects. Totals do not match due to missing responses

Characteristics Levels Environment

No computer science

Computer science

Total

No experience (<2 years)

Novice (2-5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total

No experience (<2 years)

Novice (2–5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total

No experience (<2 years)

Novice (2–5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total

No

Ye s

Total

No

Yes

Total

Academia

1

54

55

7

25

23

1

56

16

28

12

0

56

50

6

0

0

56

10

45

55

50

6

56

Industry

29

36

65

5

20

29

15

69

24

26

12

8

70

31

25

11

3

70

36

34

70

51

19

70

Total

30

90

120

12

45

52

16

125

40

54

24

8

126

81

31

11

3

126

46

79

125

101

25

126

4.4 Analysis Strategy

Each quasi-experiment separately is insufficient for detecting effects in either of the response
variables. For example, a correlation analysis requires 67 subjects to identify medium effects
(r = 0.3) with a power of 80 %. The simultaneous analysis of several variables would be less
statistically powerful. Consequently, the data collected from the quasi-experiments must be
analysed jointly.

We have to rule out meta-analysis on two grounds: (1) there are not many well-developed
meta-analysis models for multiple independent variables, and (2) we have subject-level data,
meaning that the most common analysis methods (e.g., ANOVA, multiple regression) are
applicable (provided the right blocking variables are introduced (Hedges and Olkin 1985). The
analysis of subject data just might, although the literature on this point is unclear, output more
solid findings (e.g., with a higher statistical power) than experiment-level analyses (Riley et al.
2010).

The independent variables that we have used in this research are ordinal (dummy-coded
binary) or scalar. Apart from these independent variables, the particular characteristics of each

CS degree holdership

Overall programming experience

Experience in programming language
used in the experiment

Experience in unit testing

Current usage of the IDE
used in the experiment

Current usage of TDD

quasi-experiment have generated categorical contextual variables (e.g., testing framework,
programming language, etc., see Appendix 1) which have to be accounted for in the analysis as
blocking variables. The mix of variables is problematic, as there is no method that can analyse
all of these variables together. Possible scenarios follow:

1. The usual experiment analysis methods, such as ANOVA or mixed models, cannot use
scalar independent variables.

2. If we were to omit the scalar variables and use only ordinal independent variables, we
could use ANOVA and mixed models but the different ordinal variable values would be
considered as different categories. This means that we would lose all the information
associated with the order relationship between the ordinal variables. We do not think that
this is a good strategy as: (1) it is equivalent to a dichotomization that may lead to
incorrect results (MacCallum et al. 2002), and (2) the very phenomenon under study (the
effect of Programmer experience) requires the magnitudes to be specifically considered,
e.g., 3 years of experience < 4 years of experience, irrespective of the fact that 3 and
4 years of experience can be considered as intermediate experience.

3. The linear regression model can deal with categorical variables. When categorical vari­
ables have just two values (/levels), they can be used directly (provided that they are
recoded as dummy variables). Categorical variables with more than 2 levels require a
more complicated apparatus (Weisberg 2005). Ordinal and scalar variables can be used
without restrictions.

We believe that the best analysis option is to use the multiple linear regression model
(MLR), because, as discussed in Section 3.1, there are only two categorical variables with
more than two values (Testing framework used in the quasi-experiment and Experiment code)
in our dataset. In the first case, we would not be running too much of a risk if we recoded the
variable, as specified in Section 4.4. This way we would be able to take advantage of the fact
that MLR is better able to deal with ordinal and scalar variables. The second case is not as
straightforward. There is a definite possibility of subject performance being better at one
company or university than another. Therefore, the analysis should take into account Exper­
iment code. However, as we will see later, Experiment code is highly collinear (i.e., the values
of Experiment code are confounded with other variables). This rules out its use in MLR. A
possible trade-off is to ignore the Experiment code during the first stage of the analysis using
MLR, and then study whether the model residuals are systematically related to Experiment
code. This is the approach that we take.

Four basic conditions have to hold for MLR to be reliable. They are: collinearity, sample
size, normality and homoscedasticity (Field et al. 2012).

1. Collinearity. For the model to be reliable, we have to assure that the model predictor
variables are not collinear. Collinearity occurs in a regression model when one or more of
the predictor variables (dummies, ordinal or scalar) are linearly correlated with other
model variables. We used the variance inflation factor (VIF), tolerance (T) and condition
index (CI) to test for the collinearity between variables.

2. Sample size. The study will be more statistically powerful the larger the sample size is,
that is, the statistical power of a study with a small sample size will be low. Consequently,
the estimates will be less accurate, and we will be less likely to detect significant effects.
This highlights the importance of a large enough sample size.

3. Normality. The distribution of residuals must be normal with zero mean and random but
constant variance. We used the Lilliefors-corrected Kolmogorov-Smirnov test, the
Shapiro-Wilks test, and Q-Q plots to test for the normal distribution of residuals.

4. Homoscedasticity. We tested for homogeneity of variance using scatter plots of model
residuals against predicted values.

In addition to the MLR, we will use decision trees to explore nonlinear effects
(Brandmaier et al. 2013). Several algorithms for building decision trees could be
used: CHAID, exhaustive CHAID, CART and QUEST. Each one has strengths and
weaknesses. We will use CART (Classification and Regression Trees), because it
has intimate connections with MLR analysis (they both use mean squared errors
for scale dependent variables). Therefore, the outcomes of the CART trees and the
MLR support each other. Furthermore, CART does not impose restrictions on
independent and dependent variables, and it is not affected by the variable type
(categorical, ordinal o scale), outliers, heteroskedasticity, collinearity or distribu­
tional error structures (Nisbet et al. 2009). CART can be used with smaller
datasets than e.g., CHAID as well (Chulis 2012).

4.5 Data Transformations

As illustrated in Section 4.2, Table 3, the categorical variable Testing framework has three
levels: gTest, jUnit and Boost Test. In order to use MLR, we had to recode one of the variable
levels to output a dummy variable. Specifically, we have recoded the gTest levels and jUnit
levels as a single xUnit value. We believe that this is feasible as the syntax of gTest and jUnit is
very similar and the gTest code templates given to students mean that it is used in more or less
the same way as jUnit in practice. We did not equate Boost Test to jUnit and gTest, because
Boost Test’s syntax is much more complex and it has a number of concepts that are quite far
removed from jUnit and gTest. It could therefore be considered more complex than jUnit and
gTest, for which reason we decided to consider it separately in the analysis.

After this procedure, the Testing framework was transformed to a dummy value with the
following levels: xUnit and Boost Test.

5 Linear Model Analysis

5.1 Data Exploration

This section reports some descriptive statistics about the dataset that we will use to answer the
research questions. First, we show the overall distribution of the QLTY and PROD variables,
separated by programming assignment (MR, BSK). Later, we give an account of the average
quality and productivity scores obtained by the subjects, depending on their experience level
and site (industry or academy).

5.1.1 Overall Distribution

Figure 1 contains histograms describing the distribution of the quality and productivity
scores. We provide separated histograms for MR and BSK because, although both

experimental objects have comparable complexity, other aspects (e.g., domain knowl­
edge, ability with algorithmic programming, etc.) may influence programmers’ per­
formance. The plots suggest that MR and BSK are not exactly alike. Subjects fail
quite more often (see the tall column in the 0–10 class) when they work on MR.
The lesser complexity of BSK can also be seen in the skewness (to the right) of
the distribution: more subjects achieve high quality/productivity when solving
BSK. Leaving this apart, the shapes of the histograms do not reveal dramatically
different patterns.

5.1.2 Quality

Ta bles 5 and 6 report the number of subjects and the corresponding quality averages for
different experience levels. The grand means (both in Tables 5 and 6) are similar,
although the scores are slightly higher (3 % difference) for industry than academia.
The most striking difference is the relationship between experience levels and scores.
In academia, students improve in quality as their experience increase. In industry, the
scores keep essentially constant (with some exceptions, as the zigzag pattern shown in
Table 6).

The patters are more evident when we run Pearson correlations, as we show in
Table 7. Experiences in academy have low/medium effects (Cohen 1988), statistically

Fig. 1 Data distribution (per programming assignment)

Ta b l e 5 Mean quality of subjects depending on programming language experience

QLTY Academy Industry

No experience (<2 years)

Novice (2–5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total subjects

#Subjects

14

28

12

54

Mean

40.33 %

56.91 %

77.04 %

57.08 %

#Subjects

24

26

12

8

70

Mean

68.89 %

45.65 %

65.55 %

73.01 %

60.15 %

significant or close to significance. In turn, experiences in industry are low in both
cases and non-significant.

5.1.3 Productivity

Tables 8 and 9 show the productivity scores using the same conventions than
previous section. There are several differences as compared to quality. First
regards the grand mean for the Academia and Industry categories: students achieve
higher productivity than practitioners. Second, students increase productivity with
experience, whereas practitioners exhibit a decreasing trend.

Pearson correlations, shown in Table 10, confirm the visual exploration of Tables 7
and 9. The overall programming experience in academia has a very strong correlation
with productivity. Industry-related experience exhibit very low correlation coeffi­
cients, negative (confirming the decreasing trend), and non-significant.

The descriptive statistics suggest that industry experience does not seem to be
related to superior performance. Academic experience could. However, the previous
tables and correlation coefficients summarize the dataset in a very coarse-grained
manner. There are many other independent variables that may have an influence on
the quality and productivity scores. A more in-depth analysis will be conducted in the
following sections.

Ta b l e 6 Mean quality of subjects depending on overall programming experience

QLTY Academia Industry

No experience (<2 years)

Novice (2–5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total subjects

#Subjects

6

25

22
1

54

Mean

36.08 %

60.09 %

61.99 %

.00 %

57.08 %

#Subjects

5

20

29

15

69

Mean

58.97 %

61.24 %

63.36 %

53.57 %

60.30 %

Ta b l e 7 Pearson correlations (for QLTY)

Response variable SITE Independent variable correlation

r

.155

.240*

.131

.108

p-value

.086

.007

.146

.235

N

124
124
124
122

QLTY Academia Experience Programming Language
Overall Programming Experience

Industry Experience Programming Language
Overall Programming Experience

5.2 Choosing the Best Regression Model

The aim of this section is to determine which regression model best fits the data. The
original model contained all the demographic variables and contextual variables (see
Appendix 6). We then checked that the independent variables were not collinear. If they
were, we eliminated any variables that were strongly correlated to the others, thereby
simplifying the regression model.

5.2.1 Checking for Collinearity

One way of determining whether the independent variables are collinear is to use the variance
inflation factor with the condition index.

& The variance inflation factor (VIF): a measure of the impact of collinearity between the
regression model variables. High VIF values are a sign that a variable can be largely
explained by the other variables, that is, that the model variables are collinear. A VIF-
related parameter is tolerance (T), which is defined as T = 1/VIF. A guideline often
used by researchers is to use a high VIF, that is, VIF > 10, which is output when R2 >
0.9 and T < 0.1. A second, more rigorous, option is to lower the bounds to VIF > 5 with
R2 > 0.8 and T < 0.2 (Heiberger and Holland 2013) as evidence of collinearity.

& Condition index (IC): a measure of ill-conditioning in a matrix. Belsley (1991) suggest
three levels of collinearity depending on the CI: slight (CI < 10), moderate (10 < CI <
30) and severe (CI ≥ 30). When a model has a severe CI, the variance of one or more of
its variables is substantially collinear with the other variables. A high proportion of

Ta b l e 8 Mean productivity of subjects depending on programming language experience

PROD Academy Industry

No experience (<2 years)
Novice (2–5 years)
Intermediate (5–10 years)
Expert (>10 years)
Total subjects

#Subjects

14
28
12

54

Mean

37.74 %
40.89 %
66.74 %

45.82 %

#Subjects

24
26
12
8
70

Mean

40.08 %
26.64 %
39.34 %
31.46 %
33.97 %

Ta b l e 9 Mean productivity of subjects depending on overall programming experience

PROD Academia Industry

No experience (<2 years)

Novice (2–5 years)

Intermediate (5–10 years)

Expert (>10 years)

Total subjects

#Subjects

6

25

22
1

54

Mean

25.98 %

46.06 %

53.04 %

0.00 %

45.82 %

#Subjects

5

20

29

15

69

Mean

47.16 %

36.44 %

36.14 %

24.26 %

34.44 %

variance explained (greater than 0.5) is usually considered to be a sign that the
respective variable is involved in the collinear relationship.

As shown in Appendix 6 we have 15 independent variables that might be included in the
regression model. The collinearity statistics shown in Table 11 suggest that none of the
variables has a VIF greater than 10 (a T less than 0.1). Looking at the more rigorous option
(VIF > 5 or T < 0.2), we find that the pattern for the Testing framework variable
(UNIT_TESTING_FRAMEWORK_ ADAPTED) could pose problems of collinearity, as its
values are close to the bounds established for the VIF (VIF = 4.943) and tolerance is (T =
0.202). On the other hand, the collinearity statistics for the other variables are within the
expected bounds (FIV < 5 and T > 0.2), which suggests that they are not collinear.

The collinearity diagnostics of the model specified in Table 11, as shown in Appendix 6,
report that the UNIT_TESTING_FRAMEWORK_ADAPTED and EXPERIMENT_
PROGRAMMING_LANGUAGE variables have an collinearity problem. One way of solving
the collinearity problem is to remove the most collinear variable, which, in this case, is
UNIT_TESTING_FRAMEWORK_ADAPTED.

The removal of collinear variables has two implications: one positive and one negative. The
positive consequence is the elimination of the UNIT_TESTING_FRAMEWORK_ADAPTED
variable, which represents the recoding of the three testing frameworks (gTest, jUnit and Boost
Test) into two (xUnit and Boost Test). The removal of UNIT_TESTING_FRAMEWORK_
ADAPTED variable eliminates the potential threats to validity posed by recoding. In either
case, we checked that UNIT_TESTING_FRAMEWORK would have been collinear even if
the UNIT_TESTING_FRAMEWORK had not been recoded.

On the negative side, (O’Brien 2007) discourages the removal of variables as a means to
solve collinearity problems. One exception to this advice is that the elimination is theoretically

Table 10 Pearson correlations (for PROD)

Response variable SITE Independent variable correlation

r

.064

.378

-.010

-.096

p-value

.481

.000

.913

.292

N

124

124

124

122

PROD Academia Experience Programming Language

Overall Programming Experience

Industry Experience Programming Language

Overall Programming Experience

T
ab

le
 1

1
V

IF
 a

nd
 T

 f
or

 o
ri

gi
na

l
M

L
R

 m
od

el

M
od

el

U
ns

ta
nd

ar
di

ze
d

C
oe

ff
ic

ie
nt

s

B

-6
4.

52
7

36
.1

51

2.
47

6

17
.0

18

-1
4.

92
7

8.
90

3

23
.8

61

.3
37

1.
19

8

3.
32

6

.9
59

-9
.5

77

16
.6

05

-1
.8

73

8.
51

1

29
.7

35

St
d.

 E
rr

or

65
.0

70

10
.4

68

11
.3

80

9.
76

7

21
.8

38

8.
84

1

17
.3

29

1.
99

5

1.
97

8

1.
28

9

1.
03

9

7.
41

1

9.
18

7

10
.7

23

13
.5

14

13
.4

77

St
an

di

B
et

a

.4
25

.0
28

.1
77

-.
12

3

.1
19

.2
30

.0
22

.0
86

.2
85

.1
35

-.
16

2

.1
90

-.
01

7

.0
94

.3
30

St
an

da
rd

iz
ed

 C
oe

ff
ic

ie
nt

s
t t -.

99
2

3.
45

4

.2
18

1.
74

2

-.
68

4

1.
00

7

1.
37

7

.1
69

.6
06

2.
58

1

.9
23

-1
.2

92

1.
80

7

-.
17

5

.6
30

2.
20

6

P
-v

al

.3
24

.0
01

.8
28

.0
85

.4
96

.3
16

.1
72

.8
66

.5
46

.0
11

.3
58

.1
99

.0
74

.8
62

.5
30

.0
30

C
ol

lin
ea

rir
y

St
at

is
tic

s

T
ol

er
an

ce

.4
29

.3
98

.6
28

.2
02

.4
64

.2
33

.3
82

.3
21

.5
34

.3
04

.4
12

.5
90

.6
50

.2
90

.2
92

V
IF

2.
33

0

2.
51

2

1.
59

2

4.
94

3

2.
15

7

4.
29

2

2.
62

1

3.
11

9

1.
87

3

3.
29

2

2.
42

6

1.
69

4

1.
54

0

3.
44

9

3.
43

0

1
(C

on
st

an
t)

SI
T

E

T
R

A
IN

E
R

C
S

T
IT

L
E

U
N

IT
T

E
S

T
IN

G
F

R
A

M
E

W
O

R
K

A
D

A
P

T
E

D

E
X

P
E

R
IE

N
C

E
U

M
T

T
E

S
T

IN
G

F
R

A
M

E
W

O
R

K
L

IK
E

R
T

S
C

A
L

E

E
X

P
E

R
IM

E
N

T
P

R
O

G
R

A
M

M
IN

G
L

A
N

G
U

A
G

E

E
X

P
E

R
IE

N
C

E
E

X
P

E
R

IM
E

N
T

P
R

O
G

R
A

M
M

IN
G

L
A

N
G

U
A

G
E

A
C

A
D

E
M

Y
Y

E
A

R
S

E
X

P
E

R
IE

N
C

E
E

X
P

E
R

IM
E

N
T

P
R

O
G

R
A

M
M

IN
G

L
A

N
G

U
A

G
E

T
N

D
U

S
T

R
Y

Y
E

A
R

S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

A
C

A
D

E
M

Y
Y

E
A

R
S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

IN
D

U
S

T
R

Y
Y

E
A

R
S

E
X

P
E

R
IE

N
C

E
U

N
IT

T
E

S
T

IN
G

L
IK

E
R

T
S

C
A

L
E

E
X

P
E

R
IM

E
N

T
JD

E
U

S
E

D
D

U
M

M
Y

T
D

D
U

S
E

D
D

U
M

M
Y

T
A

S
K

JT
L

D

SL
IC

E
D

 I
T

L
D

 D
U

M
M

Y

D
ep

en
de

nt
 V

ar
ia

bl
e:

 Q
L

T
Y

motivated. In our case, the collinearity between UNIT_TESTING_FRAMEWORK_
ADAPTED, EXPERIMENTPROGRAMMINGLANGUAGE and the other variables is
probably due to most of the experiments were run using Java and jUnit. In other words, the
data that we have are not diverse enough to identify the moderator effects of
U N I T T E S T I N G F R A M E W O R K A D A P T E D and E X P E R I M E N T A L _
PROGRAMMINGLANGUAGE. Furthermore, those variables are not related to the con­
struct of interest, i.e., programmer experience. Thus, the elimination of those variables looks
justified and, in turn, we obtain a reduction in the variance of the model residuals and thus
more power to identify significant effects.

Note that this is not a single-phase process; it is repeated as often as necessary to output the
best model whose variables do not have serious collinearity problems. In our case, the final
regression model was output after three rounds, as shown in Appendix 6. The regression
model that meets the collinearity conditions is composed of 12 predictor variables, as shown
below:

DEPENDENT VARIABLE =

pi*SITE +

p2*CS_DEGREE +

p3*EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE +

p4* EXPERIENCEEXPERIMENTPROGRAMMINGLANGUAGEACADEMIAYEARS +

p5*EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_YEARS +

p6*OVERALL_EXPERIENCE_PROGRAMMING_ACADEMIA_YEARS +

p7*OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS +

B8*EXPERIENCE_UNIT_TESTING_LIKERT_SCALE +

p9*EXPERIMENT_IDE_USED_DUMMY +

pio*TDD_USED_DUMMY +

pn*TASK_ITLD +

pi2*SLICED_ITLD_DUMMY + Error

5.2.2 Determining the Sample Size Necessary in Order to Achieve a Statistical Power
of 80 %

There are many ways of determining the minimum sample size for a regression model. The
most often used are based on: 1) number of model predictors or 2) the effect size and expected
statistical power.

& Determining the sample size depending on the number of predictors
Green (1991) suggests two heuristic rules for determining an acceptable sample size.

The first refers to the overall goodness of fit of the model and the second to the goodness
of fit of each of the independent variables in the model.

1. Overall goodness of fit of the regression model. A rule of thumb often used to
determine overall goodness of fit is that the required sample size for k variables is
n = 50 + 8*k.

2. Goodness of fit for each independent variable in the model. The suggested minimum
samples size is n = 104 + k.

As we have 12 independent variables, we would need approximately 50 + 8*12 =
146 subjects for a good overall model fit, whereas we would need 104 + 12 = 116
experimental subjects in order to detect a significant effect for each predictor variable.
The two heuristic rules do not appear to be consistent (it does not make sense that the
overall goodness of fit of a model should be more demanding than for the 12
individual predictors). On this ground, we also use other methods to estimate the
sample size later. In any case, the required sample size is consistent with the number
of subjects3 in our dataset.

& Determining sample size depending on the effect size

Apart from using the number of predictors, it is possible to determine the sample size
depending on the effect size and required statistical power. There are several ways of
conducting this analysis. The most common one is to use specialized tools like G*Power
(Faul et al. 2007). In this case, for 12 predictor variables, with a moderate effect size (f2 = 0.15)
and a statistical power of 80 % (which is usually required to consider the results of an empirical
study to be reliable), we would need 127 subjects for a good overall regression model fit.

On the other hand, Miles and Shevlin (2001) propose some very useful plots that illustrate
the sample sizes required to achieve a power of 80 % for different effect sizes and predictor
numbers. In order to detect a moderate effect size with 12 variables, we would need
approximately 150 experimental subjects. A large effect requires only 60. In sum, we believe
that the available 126 (in actual fact 115) subjects are enough to detect moderate effects with a
statistical power very close to 80 %. Additionally, as the sample size is large enough, we avoid
the risk of overfitting. Overfitting occurs when the model is a very good fit for the data because
there are a large number of independent variables with respect to number of cases/observa­
tions. This does not appear to apply in our case.

5.3 Results of Model Application

Tables 12 and 13 show the results of the model regression for both QLTY and PROD,
respectively. Note that the observed patterns and effects are quite similar with respect to both
quality and productivity. In both cases, the models were significant, with R2 = 0.339 and R2 =
0.422, respectively. It is thus possible to interpret the results for each independent variable
reported below.

5.3.1 Quality

As Table 12 shows, none of the programming experiences, except OVERALL_
EXPERIENCE_ PROGRAMMING_ ACADEMIA_YEARS, have a significant effect:

& Experience in the specific programming language used in the experiment in industry
(EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_

3 Although we had 126 experimental subjects, 11 observations were lost during the analysis as two subjects failed
to complete the experimental task, six failed to report their academic qualifications and four failed to report any
experience. Consequently, we were only able to effectively process 115 cases.

T
ab

le
 1

2
M

L
R

 r
es

ul
ts

 f
or

 Q
LT

Y

M
od

el

U
ns

ta
nd

ar
di

ze
d

St
an

da
rd

iz
ed

t

C
oe

ff
ic

ie
nt

s
C

oe
ff

ic
ie

nt
sB

et
a

p-
va

l.
95

.0
 %

 C
on

fid
en

ce

Ef
fe

ct

C
ol

lin
ea

rit
y

In
te

rv
al

 f
or

 B

Si
ze

 (
d)

St

at
is

tic
s

B

-5
8.

38
4

32
.4

47

18
.8

13

12
.4

11

-.
76

1

St
d.

E

rr
or

29
.3

99

9.
90

1

9.
41

2

8.
48

9

1.
78

6

.3
82

.1
96

.1
66

-.
05

0

L
ow

er

B
ou

nd

U
pp

er

B
ou

nd

T
ol

er
an

ce

V
IF

1
(C

on
st

an
t)

SI
TE

C
S

T
IT

L
E

E
X

P
E

R
IE

N
C

E
U

N
IT

T
E

S
T

IN
G

F
R

A
M

E
W

O
R

K
L

IK
E

R
T

S
C

A
L

E

E
X

PE
R

IE
N

C
E

_E
X

PE
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_L
A

N
G

U
A

G
E

_
A

C
A

D
E

M
Y

Y
E

A
R

S

E
X

PE
R

IE
N

C
E

_E
X

PE
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_L
A

N
G

U
A

G
E

_
IN

D
U

S
T

R
Y

Y
E

A
R

S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

A
C

A
D

E
M

Y
Y

E
A

R
S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

IN
D

U
S

T
R

Y
Y

E
A

R
S

E
X

PE
R

IE
N

C
E

U

N
IT

T
E

S
T

IN
G

L
IK

E
R

T
S

C
A

L
E

E
X

P
E

R
IM

E
N

T
JD

E
U

S
E

D
D

U
M

M
Y

T
D

D
U

S
E

D
D

U
M

M
Y

T
A

S
K

JT
L

D

SL
IC

E
D

 I
T

L
D

 D
U

M
M

Y

.7
93

1.

94
5

.0
57

3.
59

9

1.
08

5

-1
1.

25
6

18
.5

14

-.
46

3

8.
33

2

31
.9

62

1.
20

9

1.
03

3

7.
26

0

8.
81

0

9.
91

7

13
.3

85

13
.3

30

.3
08

.1
53

-.
19

1

.2
12

-.
00

4

.0
92

.3
54

-1
.9

86

.0
50

-1

16
.6

97

-.
07

0

3.
27

7
.0

01

12
.8

09

52
.0

85

.6
46

1.
99

9
.0

48

.1
45

37

.4
82

.3

94

1.
46

2
.1

47

-4
.4

28

29
.2

49

.2
88

-.
42

6
.6

71

-4
.3

03

2.
78

0
-.

08
4

.4
77

.6
73

.5
01

.4
74

2.
09

5

1.
48

5

1.
99

8

2.
10

9

.4
08

2.
97

6

1.
05

1

-1
.5

50

2.
10

2

-.
04

7

.6
22

2.
39

8

.6
84

.0
04

.2
96

.1
24

.0
38

.9
63

.5
35

.0
18

-3
.0

64

1.
20

0

-.
96

3

-2
5.

65
6

1.
04

0

-2
0.

13
3

-1
8.

21
8

5.
52

1

4.
65

0

5.
99

7

3.
13

4

3.
14

3

35
.9

89

19
.2

06

34
.8

81

58
.4

03

.0
80

.5
86

.2
07

-.
30

5

.4
14

-.
00

9

.1
23

.4
73

.3
30

.6
04

.3
06

.4
28

.6
39

.7
56

.2
94

.2
97

3.
02

9

1.
65

7

3.
26

7

2.
33

9

1.
56

5

1.
32

3

3.
40

0

3.
37

2

D
ep

en
de

nt
 V

ar
ia

bl
e:

 Q
LT

Y

T
ab

le
 1

3
M

L
R

 r
es

ul
ts

 f
or

 P
R

O
D

M
od

el

U
ns

ta
nd

ar
di

ze
d

St
an

da
rd

iz
ed

C

oe
ff

ic
ie

nt
s

C
oe

ff
ic

ie
nt

s
p-

va
i

95
.0

 %
 C

on
fid

en
ce

Ef

fe
ct

C

ol
lin

ea
rit

y
In

te
rv

al
 f

or
 B

Si

ze
 (

d)

St
at

is
tic

s

B

-6
1.

69
9

20
.2

52

14
.3

33

13
.2

45

-1
.9

38

St
d.

E

rr
or

24
.9

27

8.
39

4

7.
98

0

7.
19

8

1.
51

4

B
et

a

.2
63

.1
65

.1
96

-.
14

0

L
ow

er

B
ou

nd

U
pp

er

B
ou

nd

T
ol

er
an

ce

V
IF

1
(C

on
st

an
t)

SI
TE

C
S

T
IT

L
E

E
X

PE
R

IE
N

C
E

U

N
IT

T
E

S
T

IN
G

F
R

A
M

E
W

O
R

K
L

IK
E

R
T

S
C

A
L

E

E
X

PE
R

IE
N

C
E

_E
X

PE
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_L
A

N
G

U
A

G
E

_
A

C
A

D
E

M
Y

Y
E

A
R

S

E
X

PE
R

IE
N

C
E

_E
X

PE
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_L
A

N
G

U
A

G
E

_
IN

D
U

S
T

R
Y

Y
E

A
R

S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

A
C

A
D

E
M

Y
Y

E
A

R
S

O
V

E
R

A
L

L
_E

X
PE

R
IE

N
C

E
_P

R
O

G
R

A
M

M
N

G
JN

D
U

ST
R

Y
_Y

E
A

R
S

E
X

P
E

R
IE

N
C

E
U

N
IT

T
E

S
T

IN
G

L
IK

E
R

T
S

C
A

L
E

E
X

P
E

R
IM

E
N

T
JD

E
U

S
E

D
D

U
M

M
Y

T
D

D
U

S
E

D
D

U
M

M
Y

T
A

S
K

JT
L

D

SL
IC

E
D

 I
T

L
D

 D
U

M
M

Y

-.
57

4
1.

64
9

-.0
46

4.
34

5

.5
19

-5
.1

60

17
.5

73

-9
.2

95

12
.0

29

28
.7

77

1.
02

5

.8
76

6.
15

5

7.
47

0

8.
40

8

11
.3

49

11
.3

03

.4
10

.0
81

-.
09

6

.2
21

-.
09

6

.1
47

.3
52

2.
41

2

1.
79

6

1.
84

0

-1
.2

80

-.
34

8

4.
23

8

.5
93

-.
83

8

2.
35

3

-1
.1

06

1.
06

0

2.
54

6

.0
18

.0
75

.0
69

.2
03

.7
28

.0
00

.5
54

.4
04

.0
21

.2
72

.2
92

.0
12

3.
60

1

-1
.4

96

-1
.0

31

-4
.9

41

-3
.8

44

2.
31

1

-1
.2

17

-1
7.

37
0

2.
75

7

-2
5.

97
2

-1
0.

48
2

6.
35

8

36
.9

02

30
.1

62

27
.5

22

1.
06

5

2.
69

6

6.
37

9

2.
25

6

7.
04

9

32
.3

89

7.
38

2

34
.5

40

51
.1

96

.4
75

.3
54

.3
63

-.
25

2

-.
06

8

.8
35

.1
17

-.
16

5

.4
64

-.
21

8

.2
09

.5
02

.4
77

.6
73

.5
01

.4
74

.3
30

.6
04

.3
06

.4
28

.6
39

.7
56

.2
94

.2
97

2.
09

5

1.
48

5

1.
99

8

2.
10

9

3.
02

9

1.
65

7

3.
26

7

2.
33

9

1.
56

5

1.
32

3

3.
40

0

3.
37

2

D
ep

en
de

nt
 V

ar
ia

bl
e:

 P
R

O
D

YEARS) and in academia (EXPERIENCE_EXPERIMENT_PROGRAMMING_
LANGUAGE_ACADEMIA_YEARS) are nowhere near statistical significance
(p-value = 0.671 and 0.684, respectively) and have a very small and practically
negligible effect (β4 = -0.76 and β 5 = 0.79 respectively, which is equivalent in the
independent variable metric to increases or decreases of -0.76 % and 0.79 % per
year, respectively). The same could be said about overall programming experience
gained by subjects in industry (OVERALL_EXPERIENCE_ PROGRAMMING_
INDUSTRY_YEARS).

& On the other hand, overall programming experience gained in academia
(OVERALL_EXPERIENCE_ PROGRAMMING_ ACADEMIA_YEARS) has a
clearly significant (p-value = 0.004) moderate effect (3.6 % per year).

& Experience in the unit testing framework (EXPERIENCE_UNIT_TESTING_
FRAMEWORK_ LIKERT_SCALE) has a relatively large effect on quality compared to
the other experience variables. The quality of the product output by subjects improved
according to experience level (i.e., Bnovice^ as opposed to Bno experience^ or
Bintermediate^ as opposed to Bnovice^). Additionally, although not significant, the p-value
is relatively small (0.147). This variable is not significant because of its high standard error
(8.5), which is probably due to this variable being measured on a Likert scale. This
suggests that this variable actually does have an impact on the quality of the code produced
by programmers.

& Unit testing (EXPERIENCE_UNIT_TESTING_LIKERT_SCALE) has a similar pattern
to EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE, albeit in the
opposite direction. The variable has a sizeable, but negative, effect (-11.25 %).
The p-value is also quite low, although not significant (0.124) because of the high standard error
associated with the variable (7.3), which was again measured on a Likert scale.

Apart from the variables directly related to programmer experience, the analysis also
yielded results related to other influential variables, all of which, except for subject academic
background (CS_DEGREE), are moderator variables:

& Subjects’ academic background (CS_DEGREE) has a statistically significant (p-value =
0.048) and big positive effect (β2 = 18.8). Subjects with specialized training in computer
science tend to produce products whose quality is 18.8 % better than non-computer
scientists.

& Subject typology (students vs. professionals) or, rather, the SITE where the quasi-
experiments were run (academia vs. industry) has a statistically significant (p-value =
0.001) and marked positive influence (β 1 = 32.0). The industry subjects tend to output
better quality code than students.

& When subjects are familiar with the use of the IDE used in the experiments
(EXPERIMENT_IDE_USED_DUMMY), it has a statistically significant (p-value =
0.038) and positive effect (β9 = 18.5). In other words, code quality improves if subjects
have used the IDE before.

& The use of sliced specifications (SLICED_ITLD_DUMMY) has a big positive influence
(β12 = 31.96) on quality irrespective of the task completed (TASK_ITLD), which is not
significant. The extent to which TDD skills might improve the quality of programmer
output (remember that the treatment was an Iterative test-last strategy) also turned out not
to be significant.

The results of the MLR cannot be graphically displayed, due to the existence of multiple
independent variables (the corresponding scatter plot would be 13-dimensional). However, we
can create scatter plots for the most interesting variables (overall programming experience,
both for industry and academy), provided that we plot them independently, using the model
residuals (which is probably debatable from the statistical viewpoint, but revealing). The
strategy is the following:

1. We have created a predictive model including all the influential variables (e.g.: SITE,
CS_DEGREE, etc.) for quality, with the exception of the OVERALL_
PROGRAMMING_EXPERIENCE_ACADEMY _YEARS.

2. We have obtained the residuals of the model. The residuals represent the original data,
once the influence of the statistically significant variables (all the model variables,
actually) has been removed.

3. We have plotted the model residuals against the variable OVERALL PROGRAMMING
EXPERIENCE ACADEMY YEARS.

A similar procedure has been applied to the variable OVERALL PROGRAMMING
EXPERIENCE INDUSTRY YEARS. The corresponding scatter plots are shown in Fig. 2.
It can be easily perceived that the point cloud has an appreciable ascending direction. The
r e g r e s s i o n l i n e s c o n f i r m t h e v i s u a l i m p r e s s i o n . T h e v a r i a b l e
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS is strongly correlated
with qua l i ty (r = 0 .26) . Cor re la t ion is s t a t i s t i ca l ly s ign i f i can t . In tu rn ,
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS is weakly correlated
with quality (r = 0.13), and this correlation is non-significant (p-value = 0.15).

5.3.2 Productivity

The results with respect to Productivity reported in Table 13 are more or less that same as the
above, although they differ as to the specific values. There are only two new noteworthy points:

& The significance associated with testing framework experience (EXPERIENCE_
UNIT_TESTING_ FRAMEWORK_LIKERT_SCALE) is p-value=0.069, that is, very

n1 Linear - 0.017

Overall experience In programming acquired In
industry

Overall experience in programming acquired in
academy

Fig. 2 Correlation between industry/academy experience and the residuals of the linear model containing the
variables SITE, CS_DEGREE, EXPERIMENT_IDE_USED_DUMMY and SLICED_ITLD_DUMMY

nearly significant. This strengthens our belief that this variable does have an influence on
both code quality and productivity (effect = 13.25 %).

& The statistical significance of unit testing experience (EXPERIENCE_UNIT_
TESTING_LIKERT_SCALE) is much greater (p-value = 0.404). The simplest, albeit not
altogether convincing, explanation is that unit testing experience does not affect produc­
tivity, despite it downgrading code quality.

Figure 3 shows the scatter plot for the overall programming experience, both for industry
and academy, using the same strategy than in previous section. The variable
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY _YEARS is strongly and sig­
nificantly correlated with productivity (r = 0.349). The correlation between
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS and productivity is
virtually zero.

5.4 Normality and Homoscedasticity Examination

The MLR has two requirements: (1) the model residuals should be normally distributed and (2) the
variance should be the same across all independent variable levels. These conditions are studied below.

5.4.1 Normality of Model Residuals

We used the Lilliefors-corrected Kolmogorov-Smirnov and the Shapiro-Wilk tests in order to
test for the normality of model residuals, and Q-Q plots to illustrate the tests results.

The Kolmogorov-Smirnov test shows that the residuals are normal (p-value = .200 > 0.05)
for both Quality (QLTY) and Productivity (PROD), as shown in Table 14. The Shapiro –Wilk
test (which is better suited for small sample sizes) returns a similar result. Skewness and
kurtosis statistics are within the range ± 1, as expected for normal distributions.

Q-Q plots simultaneously plot for each data point the observed residual value against the
standardized residual value. If the residuals are normally distributed, the points are arranged on
a straight line (bisecting the coordinate axes). Fig. 4a and b show that the residuals for both
QLTY and PROD line in a more or less a straight line. Q-Q plots confirm that the residuals
follow a normal distribution.

»» Linear - 8.0S0E-4 R} Linear - 0.116

Fig. 3 Correlation between industry/academy experience and the residuals of the linear model containing the
variables SITE, EXPERIMENT_IDE_USED_DUMMY and SLICED_ITLD_DUMMY

Table 14 Normality tests

QLTY

PROD

Statistic

Skewness

.023

.310

Kurtosis

-.470

.021

Kolmogorov-Smirnova

Statistic

.076

.072

df

115

115

P-val.

.096

.200b

Shapiro-Wilk

Statistic

.986

.989

df

115

115

P-val.

.261

.464

Lilliefors-corrected significance

This is a lower bound of the true significance

5.4.2 Testing for Homoscedasticity

This condition can be tested visually using a scatter plot of the predicted and expected values of the
standardized residuals. As the plots in Fig. 5a and b show, the variance is quite uniform across the
range of standardized predicted values in both cases. Thus, the data meet the homoscedasticity or
equality of variances condition for both Quality (QLTY) and Productivity (PROD). Note that this
effect is clearer for PROD than for QLTY. For QLTY, there is a region to the left of the plot with
missing data points. This could pose a validity threat, as discussed in Section 7.

6 Nonlinear Analysis

Multiple linear regression (MLR) is often used for the analysis of large datasets. In this research, the
directional character of the research question (/hypotheses) and the existence of multiple indepen­
dent variables make MRL the best-suited analysis method. However, MLR has two limitations:

& The existence of potential nonlinear effects: It is possible that the relationship between experi­
ence and performance has e.g., a bell-like shape, i.e., growing up to certain point (e.g., 40 years
old), and decreasing both to left and right. A linear regression model would report a null effect in
this case. The decision tree could split the dataset in three groups: left, middle and right side,
along with their respective averages.

a) QLTY b) PROD

Normal Q-Q Plot of Unstandardized Residual QLTY Normal Q-Q Plot of Unstandardized Residual PROD

-100 -50 0 50 100 150 -100 -50 0 50 100

Observed Value Observed Value

Fig. 4 Q-Q plot of residuals (a. QLTY, b. PROD)

a)QLTY

5
1
1i_

1 °^

0

I
- 3 -

©

\

-2

5catterplot
Dependent Variable QLTY

o<h

00 "***&,
Si*® °o°° „

X Q °°° ° °° ° o

1 0 1 2 3

Regression Standardized Residual

b) PROD

3-

1
1 ''

|

o

t
01

- 2 -

o

-3 -2

Scatterplot
Dependent Variable: PROD

%

° n°° %D°o

= 0 o o ° ^ >

\ °D oo°o°g ° Q °\Q 0

°
- 1 0 1 2

Regression Standardized Residual

-

3

Fig. 5 Scatter plot (a. QLTY, b. PROD)

& Interactions when dummies or ordinal variables are involved: It is easy to define the
interactions between scale variables (i.e., multiplying them into a new variable which
represents the interaction). However, dummies and ordinal variables have arbitrary nu­
merical codes. In this case, the multiplication makes little sense. That is the reason why we
have not included interactions in the MLR (in addition to a propensity to analyse main
effects only with limited size datasets).

In the following sections, we include the CART decision trees for the response variables QLTY
and PROD, respectively. This statistical procedure has been previously outlined in Section 4.4.

6.1 Quality

In order to create a decision tree, the researcher has some freedom to define the analysis
parameters, such as the max tree depth and the minimal number of cases per node. Choosing
one of another value yields different (although related) results.

We have set the max tree depth to 5. This is the default value in SPSS. We have tested
different values for the number of cases. The respective decision trees are shown in Appendix
10. Trees with few levels are uninformative. Very complex trees (many nodes and levels) are
difficult to interpret. We examined the different trees and chose those with average complexity
(3–5 levels and 2 nodes per level). The most informative trees were obtained setting the
number of cases to 12 for parent nodes, and 6 for child nodes). It is noticeable that, according
to Glenwick (2016), for small datasets the optimum number of cases is 10 % and 5 % of the
sample size for parent and child nodes, respectively. The values that we have chosen match
exactly these percentages (our sample size is N = 124).

Figure 6 shows the decision tree for the QLTY response variable. The tree has 5 levels
(including the root node). This root node defines the average quality for the entire population
(59 %). As we move down from the root node, we find subpopulations defined by values of
the independent variables exhibiting different quality averages.

The second level is defined by the SLICED_ITLD_DUMMY variable. This variable represents
whether the subjects have used a sliced specification during the experimental sessions. The subjects
that have used a sliced specification (SLICED_ITLD_DUMMY > no, that is ,

SLICED_ULD_DUMMY=yes) obtain 80 % quality in average. The average quality for non-
sliced specifications is considerably lower (50 %).

Two variables define the third level: OVERALL_EXPERIENCE_PROGRAMMING_
I N D U S T R Y Y E A R S and O V E R A L L _ E X P E R I E N C E _ P R O G R A M M I N G _
ACADEMY_YEARS for non-sliced and sliced specifications, respectively. This result
is equivalent to the existence of two interactions SLICED_ITLD_DUMMY x

QLTYJTLD

Node 0
Mean
Std. Dev.
n

% Predicted

58.816
42.181

124
100.0
58.816

SUCEDJTLDJXJMMY
Improve ment=214.210

Node 1
Mean
Std. Dev.
n

% Predicted

48.530
43.801
83
66.9
48.530

Overall experience in
programming acquired in

industry
Improve ment=153.204

Node 2
Mean
Std. Dev.
n

% Predicted

79.640
29.565
41
33.1
79.640

Overall experience in
programming acquired in

academy
Improve me nt=63.982

Node 3
Mean
Std. Dev.
n

% Predicted

19.359
37.074
17
13.7
19.359

Node 4
Mean
Std. Dev.

56.043
42.451

n 66
% 53.2
Predicted 56.043

I B
Experience in programming

language used in the
experiment acquired in

academy
lmprovement=83.621

Node 5
Mean
Std. Dev.
n

% Predicted

59.225
37.440
13
10.5
59.225

Node 6
Mean
Std. Dev.
n

% Predicted

89.119
19.444
28
22.6
89.119

3
Experience in programming

language used in the
experiment acquired in

academy
Improve me nt= 14.648

Node 7
Mean
Std. Dev.
n

% Predicted

44.947
42.485
37
29.8
44.947

Node 8
Mean
Std. Dev.
n

% Predicted

70.201
38.631
29
23.4
70.201

B
Have a degree in CS

Improve me nt=29.456

r
Computer sie nee

Node 9
Mean
Std. Dev.
n

% Predicted

75.169
35.319

7
5.6

75.169

Node 11
Mean
Std. Dev.
n

% Predicted

74.730
37.396
23
18.5
74.730

No computer sience

Node 12
Mean
Std. Dev.
n

% Predicted

52.841
41.805

6
4.8

52.841

Node 10
Mean
Std. Dev.
n

% Predicted

93.769
6.735

21
16.9
93.769

0
Experience in programming

language used in the
experiment acquired in industry

Improve ment=0.805

Node 13
Mean
Std. Dev.
n

% Predicted

91.483
7.420

10
8.1

91.483

Node 14
Mean
Std. Dev.
n

% Predicted

95.847
5.585

11
8.9

95.847

Fig. 6 CART decision tree for QLTY

O V E R A L L _ E X P E R I E N C E _ P R O G R A M M I N G _ I N D U S T R Y _ Y E A R S and
SLICED_ITLD_DUMMY x O V E R A L L _ E X P E R I E N C E _ P R O G R A M M I N G _
ACADEMY_YEARS. These interactions have not been considered in the MLR. In the case of
non-sliced specifications:

& Subjects with very little industry programming experience (less than 0.6 years)
perform poorly (quality = 19 %) . Subjects above 0.6 years obtain average
quality values (56 %) .

& Among the 83 subjects that used a non-sliced specification, there are both students
and professionals. However, academy-related experience does not play a role in
this level/branch. This suggests that subjects with industry experience can use
regular, real-life (non-sliced) specifications effectively, whereas subjects with lon­
ger academic experience (probably, the students themselves) perform better with
more detailed (sliced) specifications (see below).

& It is also noticeable that the variable OVERALL_EXPERIENCE_PROGRAMMING_
INDUSTRY _YEARS does not show a significant main effect (that is, by itself, without
considering the type of specification) in the MLR.

In the case of sliced specifications:

& Subjects with more than 2.5 years programming experience in academia obtain rather high
quality scores (89 %). The scores situate in the average for lower experiences (59 %).

& As above, among the 41 subjects in this group, there are both professionals and students.
However, the subjects that take more advantage of the sliced specifications are the ones
with longer programming experience obtained during their academic training.

The fourth level is defined by the variable EXPERIENCE_EXPERIMENT_
PROGRAMMING _LANGUAGE_ACADEMY_YEARS, regardless of the tree branch.
The direction of the effect is as expected: longer experiences increase quality scores by 19–
25 %. However, this increment applies only to experienced (either in industry or academy)
subjects. Notice that this variable does not show a significant effect in the MLR.

The firth level is defined by the CS_DEGREE and EXPERIENCE_EXPERIMENT_
PROGRAMMING_ LANGUAGE_INDUSTRY_YEARS. Holding a CS degree makes a
big difference in the average scores (22 % difference). The impact of the industry experience
in the programming language used in the experiment is negligible (4 % difference).

In general, the results of the CART decision tree are aligned to the MLR. The most
influential variable is the sliced character of the specification. This variable has the 2nd larger
effect size in the MLR, and it appears at the top level in the decision tree. The overall
programming experience obtained in academy and holding a CS degree also show beneficial
effects both in the MLR and the decision tree.

There are some differences between the MLR and the CART decision tree. The site
where the experiment was conducted and the actual usage of the IDE used during the
experiment do not appear as explanatory variables in the CART tree. In turn, the
overall programming experience in academy appears to be influential, although limited
to non-sliced specifications. The experience in the programming language used in the
experiment obtained in academy has an influential effect also, but only for experi­
enced (either industry or academy) subjects.

6.2 Productivity

We have used the same values for the max tree depth, and number of cases per node, than in
the previous section. The corresponding tree is displayed in Fig. 7.

The tree has only 4 levels, and a much simple splitting pattern than Fig. 6. The grand mean is
39 %. The second level is defined by SLICED_ITLD_DUMMY variable. The subjects that used a
sliced specification perform better (36 % difference in average) than those who used a regular

PROD ITLD

Node 0
Mean
Std. Dev.
n
%
Predicted

39.132
38.016

124
100.0
39.132

SLICED_ITLD_DUMMY
lmprovement=294.164

<= No >No

Node 1
Mean
Std. Dev.
n
%
Predicted

27.077
33.649
83
66.9
27.077

Node 2
Mean
Std. Dev.
n
%
Predicted

63.534
34.798
41
33.1
63.534

Overall experience in
programming acquired in

academy
Improve me nt=116.435

<= 1.5 > 1.5

Node 3
Mean
Std. Dev.
n

%
Predicted

28.150
32.106
9
7.3

28.150

Node 4
Mean
Std. Dev.
n
%
Predicted

73.486
28.822
32
25.8
73.486

I 0
Current usage of the IDE used

in the experiment
Improve me nt=35.998

<= No >No

Node 5
Mean
Std. Dev.
n
%
Predicted

56.537
39.103

9
7.3

56.537

Node 6
Mean
Std. Dev.
n
%
Predicted

80.119
21.238
23
18.5
80.119

Fig. 7 CART decision tree for PROD

specification. The subjects that used a sliced specification can be further divided at the third level
depending on their overall programming experience acquired in academia. Again, those subjects
with longer experiences (1.5 or more years) perform dramatically better (45 % difference) than
inexperienced ones. Finally, the fourth level is defined by the actual usage of the experimental IDE,
exhibiting smaller but also considerable improvement (24 % difference).

The coincidences with the MLR are almost perfect. All variables, with the exception of
SITE, that yielded significant results in the MLR also appear as influential in the CART
decision tree. It is also noticeable that the second and third levels in Fig. 7 replicate the right
branch in Fig. 6. This suggest that the most influential variables are independent of the
measurement procedure (i.e., the concrete response variable used).

7 Discussion

7.1 Preliminary Considerations

Before trying to interpret the results, it is worth considering whether: (1) the measurement of
experience (in years) yield different results than the measurement of experience using Likert
scales, and (2) whether there are any systematic differences (note, for example, that the
analysis omitted the EXPERIMENT_CODE variable) between experiments that rule out joint
analysis and pose a threat to the validity of the results.

With regard to the first question, Appendix 7 reports the MLR analysis in which experience
measured in years was replaced by variables measured on a Likert scale. The observed trends
in terms of both β-values and statistical significance are exactly the same. Indeed, the standard
error for the EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_
LIKERT_SCALE and OVERALL_EXPERIENCE_PROGRAMMING_LIKERT_SCALE
variables is inflated with respect to their equivalent values measured in years. This worsens
the detection of significant effects.

With regard to the second question, Appendix 8 analyses the model residuals against the
EXPERIMENT_CODE variable. We noted in Section 5 that the model residuals were normal
and, consequently, had zero mean and random but constant variance. The boxplots charting the
residuals by experiment appear to follow the same pattern: each box is centred around zero, and the
Q1-Q3 ranges are almost equal (note that there are not many subjects in each experiment, so exact
matches are unlikely). The results of the tests of the equality of means (a univariate ANOVA) are not
significant. This implies that the quality or productivity does not depend on the concrete company or
university were the quasi-experiments were conducted. The Levene test is significant for Quality, but
non-significant for Productivity. Nevertheless, it is not a surprise that that the quasi-experiments have
different variances due to sample size and diversity of the underlying populations. It appears,
therefore, that the data can be jointly analysed and interpreted.

7.2 Effect of Experience

The results of the Multiple Linear Regression (MLR) suggests that programming experience (except
for OVERALL_EXPERIENCE_PROGRAMMING_ACADEMIA_YEARS) is not related to bet­
ter programmer performance (in terms of quality or productivity). In turn, the impact of the
programming experience gained in academia is considerable. In terms of percentages, each training
year adds around 4 % increment in both quality and productivity, i.e., 3 years of programming

experience gained by subjects during their degree (a reasonable assumption) implies that the code
contains 12 % less errors (in average). In terms of Cohen’s effect size, these values represent a
medium effect size for quality (d = 0.59) and a large effect size for productivity (d = 0.84).

These results appear to be consistent with more modern theories of experience (Ericsson
2006a) that make a distinction between length of service (which does not lead to expertise) and
deliberate and intensive practice (which does lead to expertise):

& The experience gained in industry could (generally) be considered as a routine. Professionals are
expected to Bdo their job^ within some standard limits of quality and productivity, e.g.: the
average company defect rate. Although at the individual level programmers can attend to
training courses and/or self-educate to beat those limits, such improvement is not likely intensive
enough (e.g., not performed daily for several hours), because the daily work is priority, and the
remaining (/spare) time is usually filled up with personal or family activities.

& In academia, students perform programming tasks within training courses. In turn, these courses
are typically designed in such a way that: (1) new topics are introduced progressively; (2) the
difficulty of the tasks, e.g., programming assignments, increase with time and (3) students make
every effort, every day during the academic period, to get high grades. Thus, the salient feature
of academia is deliberate and intensive training, and according to Ericsson’s theory it should
make an effect on performance, which is exactly what we have observed in this research.

Of course, the problem is how to reconcile our results with the findings of previous programming
studies. We cannot, of course, rule out error on our part. However, we can venture a hypothesis.
Ta b l e s 5 to 9 show the average quality and productivity achieved by subjects depending on their
programming experience and site (academia, industry), without considering the other variables in
the analysis. As said before, these tables should be used merely to identify trends and not as an
independent instance for analysis. However, the data reported are informative:

& Looking at the average values for academia, we find that there is a clear trend towards
better performance as experience increases. This being true, studies that use students with
different experience levels (e.g.: freshmen vs. seniors) could find significant differences
between them. There is some evidence that the positive effects of experience become
visible in this context, e.g., (Daun et al. 2015; Runeson 2003).

& In industry, the data plot has zigzag profile with no clear trends. However, the MLR yields
a positive, significant effect for SITE, i.e., professionals perform better than students in
average (see Section 5.3.1). Considering that several studies have been conducted com­
paring students with professionals, it is not surprising that they found that experience did
have an effect.

The decision trees give a somewhat different picture. The most noticeable difference is the
absence of the variable SITE in both trees, whereas SITE has a strong, statistically significant
effect (β > 20 %, Cohen’s d > 0.4) in the MLR for both quality and productivity. The reason
for difference lies, most likely, in an interaction among variables.

The decision tree algorithm splits the root note using the variable that more clearly separates
the original dataset into subsets. This variable is SLICED_ITLD_DUMMY (i.e., the sliced
character of the specification), both for quality and productivity. This decision could be
anticipated just by looking at the MLR tables, because SLICED_ITLD_DUMMY has the
largest effect size, both for quality and productivity.

Further splitting is dependent upon the decisions taken in the higher level nodes i.e., they
represent interactions. Here, the splitting pattern draws a distinction between quality and
productivity.

& For quality, the 2nd level nodes are defined by two variables: OVERALL_EXPERIENCE_
PROGRAMMING_INDUSTRY_YEARS (for non-sliced specifications) and OVERALL_
EXPERIENCE_PROGRAMMING_ACADEMY_YEARS (for sliced specifications).

& For productivity, only the node corresponding to sliced specifications breaks down into
two child nodes, defined again by the OVERALL_EXPERIENCE_PROGRAMMING_
ACADEMY_YEARS variable.

We venture out that the positive, statistically significant effect for SITE in the MLR is related to
the i n t e r a c t i o n S L I C E D _ I T L D _ D U M M Y x O V E R A L L _ E X P E R I E N C E _
P R O G R A M M I N G _ I N D U S T R Y _ Y E A R S and S L I C E D _ I T L D _ D U M M Y x
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS. The MLR does not con­
tain this interaction, so that SITE is assigned the variability associated to SLICED_ITLD_DUMMY
x OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS. The p-values in the
MLR tables (see Sections 5.3.1 and 5.3.2) also back up this explanation: SITE has lower p-values
(or higher effect size) for quality; OVERALL_EXPERIENCE_PROGRAMMING_
INDUSTRY_YEARS emerges precisely in the quality decision tree).

If we accept that programming experience in industry has an effect when subjects
use non-sliced specifications, the previous argumentation regarding the routine char­
acter of the experience in industry would be wrong; however, the impact of the
experience in industry is rather low. The child nodes are split at 0.6 experience years,
and only a fraction of subjects (17 vs. 66) are located the in low performing node. In
other words, after 7 experience months, there are not substantial differences in
practitioners’ performance (in average).

We have not discussed further above the impact of the sliced character of the specification
because it is secondary for this paper’ research goal, but a quick look at Appendix 2 clearly
shows that sliced specifications are more detailed and provide guidance to the programmers
during the coding task. We expected that sliced specification exhibit higher quality and
productivity scores. However, it is somewhat surprising that sliced specifications interact with
programming experience. In our opinion, we are envisioning a domain knowledge effect here:

& Non-sliced specifications (not the ones we provide in Appendix 2 but comparable to some
extent) are typically used in industry. After some time (our decision tree suggests
0.6 years), programmers get used to this type of specification and solve the corresponding
task professionally.

& Students are not usually exposed to problem assignments where a lot of domain knowl­
edge is required to enable resolution. Problem sheets are typically detailed (again, com­
parable to the specifications in Appendix 2, including hints and examples to ease
understanding. Students get used to this type of documents after some time (2.5 years)
and become proficient.

The influence of the type of specification represents, most likely, another confirmation of
the specificity of the experience (Ericsson and Lehmann 1996). Subjects exhibit expertise in
some domains only. Notice the restricted character of domain, which is linked in our case to

specification types. Domain influence could extend to the types of tasks, development
environment, etc as well. We discuss these issues below.

7.3 Effect of Other Variables

Three other variables (besides the sliced character of the specification) have shown a clear
influence on programmer performance, although only the first was statistically significant: use
of IDE, testing framework experience and unit testing experience.

The results for IDE usage and testing framework experience are not at all surprising. It is
reasonable to assume that the use of proper tools should improve programmer performance. It
is remarkable, however, that these variables (whose associated β-values are from 10 to 20 %)
should have such a noticeable effect.

With regard to unit testing experience, we did not expect to find that it had negative effects.
There are possible interpretations for this result. Subjects who are experienced in unit testing
might pay more attention to quality and thus be less productive. However, the result of the
MLR suggests just the opposite. Unit testing experience has a negative impact on quality (with
a β-value of around -10 %, not far from statistical significance).

A possible alternative argument is that the testing activity and the programming activity are
performed by different subject profiles, i.e., testers do not make code and programmers do not
test. A logical implication of this assumption would be that testers (i.e., people with unit testing
experience) achieve lower quality and productivity scores than programmers. This could be
true: Quality decreases as unit testing experience increases, and although productivity has a
large p-value, the associated β-value is negative, around - 5 %. However, the correlations
between unit testing experience and programming experience are substantial, positive (r 0.3)
and statistically significant. Also, the correlation between unit testing experience and testing
framework experience is very high, positive (r = 0.568) and statistically significant. In other
words: it seems that testers do know (at least in our sample) how to make code.

The reason why unit testing experience leads to decreasing quality and productivity is
unclear for us; it requires further research.

8 Validity T h r e a t s

8.1 Threats to Statistical Conclusion Validity

& Homoscedasticity-related problems. Although the regression model for external quality
satisfactorily meets the normality condition, we found, when testing for homoscedasticity,
that the data were not uniformly distributed. Heteroscedasticity does not affect the
estimation of the regression model coefficients (β-values), although it does influence
statistical significance. We believe that this threat is not at work, as our results with respect
to programming experience show that the associated effect sizes are very small. On this
ground, although the statistical significances could be affected, we can likewise conclude
that experience does not have a sizeable effect on code quality and subject productivity.

& Unbalancing in some independent variables. The parameter estimation could be subject to
unbalanced groups (for example, academic background or use of IDE). However, although we
cannot rule out this having a negative effect among variables, we believe that this threat does not
challenge our main findings on two grounds: (1) the size and power of the regression models are

large enough, and they are significant, normal and reasonably homoscedastic, and (2)
unbalancing does not affect the main variables concerning programming experience.

& Recoding of the Experience in testing framework used in the experiment variable. The process

of recoding applied to the testing framework experience levels could cause some sort of bias.
However, this should not happen on two grounds: (1) this variable has been removed from the
model on collinearity grounds, and (2) we have found that, if introduced into the MLR without
applying recoding (i.e., considering all three levels —gTest, jUnit and Boost Test—), this
variable is still collinear and would therefore also have been removed from the model.

& Measurement bias. Each quasi-experiment was measured by a single measurer. More than
one person should conduct the measurement process in order to improve measurement
accuracy. In order to counteract this threat, we defined and gave experimental subjects API
code templates for the experimental tasks. These code templates contain methods and
parameters definitions that can be used to solve the experimental tasks. Those methods and
parameters are also used by the test suites. Code templates reduce the manipulations that
measurers need to make in the subjects’ code, improving between-measurers accuracy.

8.2 Threats to Internal Validity

& Ambiguity surrounding the causality of the effects. Since this is quasi-experimental research, the
conclusions cannot be interpreted in causal sense. In our research, we have studied several
independent variables (k = 12) regarding experience or specialized knowledge for performing
an experimental task. However, there could be moderator variables that we have not taken into
account and that explain the results, e.g., variables referring to soft skills or programmer
personality. The strategy that we used to counteract this was to measure all the moderator
variables that looked as if they might realistically have an effect on code quality and programmer
productivity. But, of course, we cannot be sure that we have considered all the relevant variables.

& Population heterogeneity. The results of this research may be threatened by combining several
experimental populations with different characteristics, which could interact with experience
and counteract the effects when analysed jointly. We believe that this threat is not at work.

Individual experiments (in particular, industry experiments) have insufficient sample size by
themselves for the regression model achieving a reasonable power. The approach that we have
followed to assess whether the population coming from a given experiment (which, in turn,
corresponds to a concrete company/university and moment in time) departs from the global
behavior is the examination of the global regression model residuals at the experiment level. We
have not detected substantial differences between the model residuals when they are studied
separately by experiment (see appendix 8).

Population subgroups can be defined on different grounds. Probably, the two most relevant
(and meaningful) sub-populations are students vs. professionals. When they are analysed
independently, the results are not exactly alike, but much the same; in particular, the lack of
effect of industry experience, and the positive effect of academic training, does not change.

On the other side, the mix of populations can be seen as a strength of our study, as the
diversity of the populations increases external validity.

& Perturbations caused by the use of ITLD. Although ITLD is a very well-known and popular
strategy among programmers, we cannot be sure that all the subjects were familiar with its use.
This might lead to a change in the subjects’ work method, which would affect their productivity
and performance. We have applied two strategies to counteract this threat. First, we provided

specific training on ITLD before applying the treatment. Second, we did not oblige program­
mers to apply a particular ITLD variant; it was left up to them to apply whichever ITLD strategy
they saw fit without this having any impact whatsoever on the response variable measurement.

& Perturbations caused by the use of specific IDEs or unit testing frameworks. A large proportion
of subjects do not have experience with the IDE used during the experiment and/or unit testing.
Although we have controlled these variables explicitly (notice that they have been included both
in the multiple linear regression and decision tree analyses), we cannot rule out that experienced
subjects perform particularly bad when they have to code in unfamiliar contexts (e.g., an IDE
they are not very familiar with). This makes identifying experience effects more difficult.

8.3 Threats to Construct Validity

& Nature of the experimental tasks. We used the MarsRover API (MR) and Bowling
Scorekeeper (BSK) experimental tasks. Both are basically algorithmic tasks. BSK uses
some terms (e.g., strike, spare) with which the experimental subjects may not be familiar.
These tasks were specified in two ways: sliced and non-sliced. We cannot rule out that
these decisions may have biased our results. In order to counteract this threat, we included
variables that represent the task and the specification type in the MLR analysis, which we
trust will separate their effects from the effects of experience.

8.4 Threats to External Validity

& Effects of programming experience vs. domain knowledge. The area of expertise under study is
programming. Programming is generally defined here as consisting of knowledge of program­
ming languages, algorithms and strategies (e.g., dynamic programming), good practices (e.g.,
design patterns), some libraries (e.g., regex), etc. Programming could also be construed as
meaning knowledge of how to perform a task in a specific domain, e.g., code a specific network
controller. Our aim was to study the effect of programming experience and not the effect of
domain knowledge (which is ultimately another facet of expertise). BSK and MR are outside of
the domain of the experimental subjects, particularly professional programmers. By using tasks
that are outside the programmer’s domain, we have separated the effects of domain knowledge
from the effects of programming experience. Therefore, our results: (1) should be interpreted
exclusively in terms of the effect of programming experience (the results might differ if we used
other, more familiar experimental problems), and (2) have greater external validity, as they are
domain independent.

& Limitation of the number of experimental problems. We have only used two experimental
problems (MR and BSK) so that the groups derived from the combination of treatments,
tasks and blocking variables have the largest possible number of subjects. This improves
the statistical analysis. On the other hand, our study has been conducted in a limited
setting. Therefore, our results should be extrapolated to other contexts with due caution.

9 Conclusions

This paper studied the effects of different types of experience (academic background, pro­
gramming experience, unit testing experience, and IDE and TDD use) on the performance of a
set of 126 programmers from four companies and three universities across 10 quasi-experi-
ments. The experimental design used separates the effects of domain knowledge from the
effects of programming experience, which is the focus of this study.

The most important result is that years of experience are not able to predict programmer
performance at all. The only exception is years of programming experience in academia (in
other words, years of training), which does appear to have a positive influence on programmer
performance. Other influential variables are testing framework experience and routine use of
the IDE, which we believe reflects the positive influence of modern programming tools on
programmer performance.

From another viewpoint, companies should give serious consideration to their programmer
lifelong training, as the mere repetition of routine tasks does not improve their performance
beyond mere competency. However, training courses may, or may not, contribute to increased
performance. For instance, industry training courses tend to skip strict performance assess­
ment, on social, psychological or labor law grounds. In turn, academic training is characterized
by setting goals and thresholds, and reasonably strict assessment procedures. To what extent
transferring academic strategies to industry could be successful? Which strategies have higher
yields? Answering those questions require interdisciplinary research, from the perspectives of
applied psychology, education, and software engineering disciplines.

From the viewpoint of the representativeness of our sample, as well as the statistical power
and rigour of the analysis, the above results are reasonably reliable. There are, however, many
open questions. The model’s coefficient of determination (R2 0.4) clearly indicates that there
is a lot of unexplained variance. This variance is very likely to due programmers’ personal
characteristics (soft skills or personal traits). For example, the negative effects of unit testing
experience appear to be related to the programmer’s profile. We intend to explore this research
line in the future.

Acknowledgments We would like to acknowledge Dr.Hakan Erdogmus who contributed to the design of
one of the tasks used in the study (BSK) and the corresponding test cases. We also wish to acknowledge Mr.
Timo Raty for his participation in the creation of the code templates for C++, and the training given in one
of the quasi-experiments. We wish also acknowledge Mr. Adrian Santos for his support in the collection of
the subjects’ data.

Appendix 1: Description of the Independent Variables

Table 15 shows the 15 independent variables used in this research. The main aim of this
appendix is to list each variable giving a brief description of the variable, its type (nominal,
ordinal or dummy) and its respective levels. Section 3 details the types and measurement of
variables.

T
ab

le
 1

5
In

de
pe

nd
en

t
va

ri
ab

le
s

In
de

pe
nd

en
t

va
ri

ab
le

D

es
cr

ip
tio

n
V

ar
ia

bl
e

ty
pe

L

ev
el

s
(m

et
ri

c)

C
S

_D
E

G
R

E
E

E
X

P
E

R
IE

N
C

E
_E

X
P

E
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E
_A

C
A

D
E

M
IA

_Y
E

A
R

S

E
X

P
E

R
IE

N
C

E
_E

X
P

E
R

IM
E

N
T

_P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E
_I

N
D

U
S

T
R

Y
_Y

E
A

R
S

E
X

P
E

R
IE

N
C

E

U
N

IT

T
E

S
T

IN
G

L

K
E

R
T

S

C
A

L
E

E
X

P
E

R
IM

E
N

T
_I

D
E

_U
S

E
D

_D
U

M
M

Y

E
X

P
E

R
M

E
N

T
_P

R
O

G
R

A
M

M
IN

G
_L

A
N

G
U

A
G

E

O
V

E
R

A
L

L
_E

X
P

E
R

IE
N

C
E

_P
R

O
G

R
A

M
M

IN
G

_
A

C
A

D
E

M
IA

_Y
E

A
R

S

O
V

E
R

A
L

L
_E

X
P

E
R

IE
N

C
E

_P
R

O
G

R
A

M
M

IN
G

_
IN

D
U

S
T

R
Y

_Y
E

A
R

S

SI
T

E

S
L

IC
E

D
_I

T
L

D
_D

U
M

M
Y

T
A

SK
_I

T
L

D

T
D

D
_U

S
E

D
_D

U
M

M
Y

T
R

A
IN

E
R

U
N

IT

T
E

S
T

IN
G

F

R
A

M
E

W
O

R
K

L

IK
E

R
T

SC

A
L

E

U
N

IT
_T

E
S

T
IN

G
_F

R
A

M
E

W
O

R
K

_L
IK

E
R

T
_S

C
A

L
E

_
A

D
A

P
T

E
D

E
du

ca
ti

on
 o

f
ex

pe
ri

m
en

ta
l

su
bj

ec
ts

Y
ea

rs
 o

f
pr

og
ra

m
m

in
g

la
ng

ua
ge

 e
xp

er
ie

nc
e

ga
in

ed
 i

n
ac

ad
em

ia

Y
ea

rs
 o

f
pr

og
ra

m
m

in
g

la
ng

ua
ge

 e
xp

er
ie

nc
e

ga
in

ed
 i

n
in

du
st

ry

U
ni

t
te

st
in

g
ex

pe
ri

en
ce

 m
ea

su
re

d
on

 a
 L

ik
er

t
sc

al
e

(1
^1

)

K
no

w
le

dg
e

of
 I

D
E

 u
se

P
ro

gr
am

m
in

g
la

ng
ua

ge
 u

se
d

in
 t

he
 e

xp
er

im
en

t

Y
ea

rs
 o

f
ov

er
al

l
pr

og
ra

m
m

in
g

ex
pe

ri
en

ce
 g

ai
ne

d
in

 a
ca

de
m

ia

Y
ea

rs
 o

f
ov

er
al

l
pr

og
ra

m
m

in
g

ex
pe

ri
en

ce
 g

ai
ne

d
in

 i
nd

us
tr

y

Si
te

 a
t

w
hi

ch
 t

he
 e

xp
er

im
en

t
w

as
 r

un

W
he

th
er

 o
r

no
t

sl
ic

in
g

w
as

 u
se

d
in

 t
he

 t
as

k

T
as

ks
 t

ha
t

su
bj

ec
ts

 h
ad

 t
o

so
lv

e

K
no

w
le

dg
e

of
 T

D
D

 u
se

T
ra

in
er

 f
or

 T
D

D

F
ra

m
ew

or
k

us
ed

 t
o

w
ri

te
 u

ni
t

te
st

s

T
es

tin
g

fr
am

ew
or

k
re

co
de

d
in

 o
rd

er
 t

o
tr

an
sf

or
m

 t
he

 c
at

eg
or

ic
al

va

ri
ab

le
 i

nt
o

a
du

m
m

y
va

ri
ab

le

D
um

m
y

Sc
al

ar

Sc
al

ar

O
rd

in
al

D
um

m
y

0.
 N

on
-c

om
pu

te
r

sc
ie

nc
e

1.
 C

om
pu

te
r

sc
ie

nc
e

N
um

be
r

of
 y

ea
rs

N
um

be
r

of
 y

ea
rs

1.
 N

o
ex

pe
ri

en
ce

 (
<

2
ye

ar
s)

2.

 N
ov

ic
e

(2
-5

 y
ea

rs
)

3.
 I

nt
er

m
ed

ia
te

 (
5-

10
 y

ea
rs

)
4.

 E
xp

er
t

(>
10

 y
ea

rs
)

0.
 N

o
l.

Y
es

D

um
m

y

C
at

eg
or

ic
al

Sc
al

ar

Sc
al

ar

D
um

m
y

D
um

m
y

C
at

eg
or

ic
al

D
um

m
y

D
um

m
y

C
at

eg
or

ic
al

D
um

m
y

0.
 N

o
l.

Y
es

1.

C
+

+

2.
 J

A
V

A

N
um

be
r

of
 y

ea
rs

N
um

be
r

of
 y

ea
rs

0.
 A

ca
de

m
ia

1.

 I
nd

us
tr

y

O
.N

o
l.

Y
es

l.

M
R

2.

 B
S

K

O
.N

o
l.

Y
es

1.

 B
ur

ak
 T

ur
ha

n
2.

 O
sc

ar
 D

ie
st

e
l.

G
T

E
S

T

2.
 B

O
O

S
T

3.

 J
U

N
IT

2.
 B

O
O

S
T

3.

xU
N

IT

Appendix 2: Details of the Experiment

Specification for Mars Rover API with Slicing

Develop an API that moves a rover around a planet. The planet is represented as a
grid with x and y coordinates. The rover is also facing in a direction. The direction
can be north (N), south (S), west (W) or east (E). The input received by the rover is a
string representing the commands it needs to execute.

The Planet

The planet on which the rover moves is represented as a square grid, with size (x, y).
Requirement: Define a planet of size (x, y).
Example: (100,100) creates a planet of size 100 × 100.

Landing

When the rover lands on the planet, it begins its journey at the start of the grid facing
north.

Requirement: When the rover lands on the planet its position shall be (0,0) facing
north.

Example: An empty command (i.e., B^) to the rover returns its landing status
(0,0,N).

Tu rning

The rover turns right or left. It remains in the same cell of the grid. Its direction changes
accordingly.

Requirement: Compute the position of the rover after turning left (command Bl^) or right
(command Br^).

Example: A rover at position (0,0,N) is at position (0,0,E) after executing
command Br^. A rover at position (0,0,N) is at position (0,0,W) after executing
command Bl^.

Moving

The rover moves forward or backward one grid cell in the direction that it is
facing. The rover’s direction does not change.

Requirement: Compute the position of the rover after moving forward (command
Bf^) or backward (command Bb^) one grid cell.

Example: A rover at position (7,6,N) moves to (7,7,N) after executing a Bf̂
command. A rover at position (5,8,E) moves to (4,8,E) after executing a Bb^
command.

Moving and Turning Combined

The rover shall be able to execute arbitrary sequences of Bf̂ , Bb^, Bl^ and Br^
commands.

Requirement: Compute the position of the rover after executing a series of
commands.

Example: A rover at position (0,0,N) moves to position (2,2,E) after executing
Bffrff^.

Wrapping

Since the planet is a sphere the rover wraps at the opposite edge once it moves over it.
Requirement: Compute the position of the rover moving over the edges. The rover shall

spawn on the opposite side.
Example: A rover on a planet of size 100 × 100, which moves backward (command Bb^)

after landing (remember that landing always takes place at position (0,0,N)) moves to position
(0,99,N).

Positioning of Obstacles

Obstacles can be positioned on specific cells of the grid.
Requirement: Define the obstacles as a string (x1,y1) (x2,y2)… Place the obstacles on the

grid.
Example: B(1,1) (4,5)^ defines two obstacles, one at position (1,1) and another at position

(4,5). Notice that the planet grid should be greater than or equal to 6 × 6.

Identifying a Single Obstacle

The rover might encounter (i.e., tries to move into) an obstacle. When it does it should report
the obstacle and continue executing the remaining commands.

Requirement: Compute the position of a rover encountering an obstacle and report the
obstacle. The same obstacle should be reported only once.

Example: A rover just landed (position (0,0,N)). There is one obstacle at planet coordinates
(2,2). The rover executes Bffrfff̂ and reports (1,2,E) (2,2). Notice that the same obstacle is
encountered twice but reported only once.

Identifying Multiple Obstacles

The rover might encounter multiple obstacles. When it does, it should report all of them once
and in the order they were encountered.

Requirement: Compute the position of the rover encountering obstacles, and report the
obstacles encountered in the order they are encountered. The same obstacle shall be reported
only once.

Example: A rover just landed (position(0,0,N)). There are two obstacles at planet coordi­
nates (2,2) and (2,1). The rover executes Bffrfffrflf̂ and reports (1,1,E) (2,2) (2,1). Notice that
the first obstacle is encountered twice but reported only once.

A Tour Around the Planet

The rover goes on a tour around the planet encountering several obstacles, and wrapping in
both axes.

Requirement: Compute the position of a rover that executes a series of commands that
result in moving along both axes in both directions, encountering several obstacles and
wrapping from both edges of the planet.

Example: The rover lands on a 6 × 6 planet with obstacles at (2,2), (0,5) and (5,0). It
executes the command Bffrfffrbbblllfrfrbbl^ and returns (0,0,N) (2,2) (0,5) (5,0).

Congratulations, you are done!

Specification for Mars Rover API without Slicing

The API manages a rover that moves on a planet (/squared grid) of arbitrary size (x,y). The
rover starts the movement at position (0,0). The direction of the movement can be N (north), S
(south), E (east) and W (west). The rover is north facing at the start.

The rover receives a string of commands: l (left), r (right), f (forward) and b (backward). l
and r change the rover’s direction counter- and clockwise, respectively, but do not alter its
position. f and b move the rover 1 position on the grid in or away from the direction that it is
facing, respectively. The direction in which the rover is facing does not change. When the
rover moves over the edges of the planet, it spawns on the opposite side.

The planet (/grid) may contain obstacles. Obstacles are defined as a list of coordinates
B(obs1X, obs1Y) (obs2X, obs2Y)…^ . When the rover finds an obstacle during a tour, it skips
the current command (i.e., it does not move to the cell in which the obstacle is located) and
continues to execute the remaining commands.

Upon processing the string of commands, the rover returns its position and direction in the
format B(posX, posY, facing)^. If obstacles are found, the output will be B(posX, posY, facing)
(obs1X, obs1Y) (obs2X, obs2Y)…^ The same obstacle shall be reported only once. Obstacles
are reported in the order in which they are found.

Example of a rover’s tour on a 3x3 planet in response

to the command “ffrf”. The starting position is (0,0)

facing north. After the 1st f (forward) command, the

rover moves to position (0,1) facing north. Subsequent

commands keep the rover moving. The expected output

is (1,2,E). With two more fs, the rover would spawn

over the right edge to the final position (0,2,E).

Example of a rover’s tour on a 3x3 planet in response to

the command “ffrf”, with one obstacle in position (0,2).

After the 1st f (forward) command, the rover moves to

position (0,1) facing north. The 2nd f command does

not change the rover’s position, because there is an

obstacle in (0,2). This second f command is thus

skipped. The expected output is (1,1,E)(0,2).

Specification for Bowling Score Keeper with Slicing

The objective is to develop an application that can calculate the score of a single
bowling game using TDD. There is no graphical user interface. All that you will use
in this assignment is the objects and JUnit testing. You will not need a main
method.

The application requirements are divided into a set of user stories, which is as your
to-do list. You should be able to incrementally develop a complete solution without an
upfront comprehension of all the game’s rules. For this exercise, don’t read ahead,
and handle the requirements one at a time in the stated order. Solve the problem
using TDD, starting with the requirement for the first story. Remember to always lead
with a test case, taking hints from the examples provided. Do not move to the next
story until you have done with the last one. A story is done when you are confident
that your program correctly implements the functionality stipulated by the requirement
for the story. This means that all of your test cases for that story and all of the test
cases for the previous stories pass. You may need to tweak your solution as you
progress towards more advanced stories.

Frame

Each turn of a bowling game is called a frame. 10 pins are arranged in each frame. The goal of
the player is to knock down as many pins as possible in each frame. The player has two
chances, or throws, to do so. The value of a throw is given by the number of pins knocked
down in that throw.

Story: As the scorekeeper, I want to be able to record a frame as composed of two throws.
The first and second throws should be distinguishable.

Example: [2, 4] is a frame with two throws, in which two pins were knocked down in the
first throw and four pins were knocked down in the second.

Frame Score

An ordinary frame’s score is the sum of its throws.
Story: As the scorekeeper, I want to be able to compute the score of an ordinary frame after

a player has rolled both throws.
Examples: The score of the frame [2, 6] is 8. The score of the frame [0, 9] is 9.

Game

A single game consists of 10 frames.
Story: As the scorekeeper, I want to define a game as a sequence of 10 frames.
Example: The sequence of frames [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2,

6] represents a game. You may reuse this game from now on to represent and test different
scenarios, modifying only a few frames each time.

Partial Game

When the player rolls a throw, the throw is automatically recorded in the correct frame.

Story: As the scorekeeper, when a player rolls throws, I want the game to keep track of the
frames and figure out in which frame to place the next throw depending on the past throws.
You think this is easy. Maybe for now. We’ll see.

Example: If the game currently consists of the frames [1, 5] [3, 6] [7, 2] [3, ?] and the
player rolls a throw with a value of 4, the game becomes [1, 5] [3, 6] [7, 2] [3, 4]. Another roll
with a value of 5 transforms the game to [1, 5] [3, 6] [7, 2] [3, 4] [5, ?].

Game Score

The score of a bowling game is the sum of the individual scores of its frames.
Story: As the scorekeeper, I want to know a player’s current game score at all times.
Example: The score of the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2,

6] is 81. Partial scores are possible for an incomplete game if the frame scores are known up to
the last complete frame. The score of the game [1, 5] [3, 6] [7, ?] is 15. The frame [7, ?] is not
yet complete.

Strike

A frame is called a strike if all 10 pins are knocked down in the first throw. In this case, there is
no second throw. A strike frame can be written as [10, 0]. The score of a strike equals 10 plus
the sum of the next two throws of the subsequent frame.

Story: As the scorekeeper, I want to be able to recognize a strike frame, compute
its score after the next frame has been completed, and compute the game score.

Examples: Suppose [10, 0] and [3, 6] are consecutive frames. Then the first frame
is a strike and its score equals 10 + 3 + 6 = 19. The game [10, 0] [3, 6] [7, 2] [3, 6]
[4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 94. The partial game [10, 0] [3,
6] has a score of 28.

Spare

A frame is called a spare when all 10 pins are knocked down in two throws. The score of a
spare frame is 10 plus the value of the first throw from the subsequent frame.

Story: As the scorekeeper, I want to be able to recognize a spare frame, compute the score
of a game containing a spare frame after the first throw of the next frame has been rolled, and
compute the game’s score.

Examples: [1, 9], [4, 6], [7, 3] are all spares. If you have two frames [1, 9] and [3, 6] in a
row, the spare frame’s score is 10 + 3 = 13. The game [1, 9] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3]
[4, 5] [8, 1] [2, 6] has a score of 88. The partial game [1, 9] [3, 6] has a score of 22.

Strike and Spare

A strike can be followed by a spare. The strike’s score is not affected when this happens.
Story: As the scorekeeper, I want to make sure that the score of a strike is computed right

when it’s followed by a spare.

Examples: In the sequence [10, 0] [4, 6] [7, 2], a strike is followed by a spare. In this case,
the score of the strike is 10 + 4 + 6 = 20, and the score of the spare is 4 + 6 + 7 = 17. The game
[10, 0] [4, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 103.

Multiple Strikes

Two strikes in a row are possible. You must take care when this happens as you need the
values of throws from the next two frames to compute the score of the first strike..

Story: As the scorekeeper, I want to make sure that I can record two consecutive strikes
correctly in the game, and correctly compute the score of the first strike after the next two
throws have been rolled.

Examples: In the sequence [10, 0] [10, 0] [7, 2], the score of the first strike is 10 + 10 + 7 =
27. The score of the second strike is 10 + 7 + 2 = 19. The game [10, 0] [10, 0] [7, 2] [3, 6] [4, 4]
[5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 112. The score of the partial game [10, 0] [10, 0]
[7, ?] is 27 (we cannot compute the scores of the last two frames yet).

Multiple Spares

Two spares in a row are possible. The score of the first spare is not affected when this happens.
Story: As the scorekeeper, I want to be able to compute the score of a game with two spares

in a row, and the scores of the first spare after the next spare has been completed.
Example: The game [8, 2] [5, 5] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score

of 98.

Spare as the Last Frame

When the last frame in a game is a spare, the player will be given a bonus throw. However, this
bonus throw does not belong to a regular frame. It is only used to calculate the score of the last
spare.

Story: As the scorekeeper, I hate it when the last frame is a spare: let the game please figure
out that the next roll is a bonus throw and compute the score of the last frame and the whole
game based on the value of that bonus throw.

Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1]
[2, 8] is a spare. If the bonus throw is [7], the last frame has a score of 2 + 8 + 7 = 17. The game
has a score of 90.

Strike as the Last Frame

When the last frame of the game is a strike, the player will be given two bonus throws.
However, these two bonus throws do not belong to a regular frame. They are only used to
calculate score of the last strike frame.

Story: As the scorekeeper, I hate it even more when the last frame of a game is a strike: let
the game please figure out that the next rolls are bonus throws and compute the score of the last
frame and the whole game based on the value of those bonus throws.

Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1]
[10, 0] is a strike. If the bonus throws are [7, 2], the last frame’s score is 10 + 7 + 2 = 19. The
game score is 92.

Bonus is a Strike

No more bonus throws are granted when the last frame in the game is a spare and the bonus
throw is a strike.

Story: As the scorekeeper, I hate it most when the last frame is spare and the bonus throw is
a strike: please God, let the game figure this scenario out correctly.

Example: In the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 8], the last
frame is a spare. If the bonus throw is [10], the game score is 93.

Best Score

A perfect game consists of all strikes (a total of 12, including the bonus throws), and has a
score of 300.

Story: As the scorekeeper, I love it when the game is just a sequence of strikes, including
the bonus throws, because I know that the player then deserves a perfect score of 300.

Example: A perfect game looks like [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10,
0] [10, 0] [10, 0] with bonus throws [10, 10]. Its score is 300.

Random Game

Story: As the scorekeeper, I want to make sure that the game [6, 3] [7, 1] [8, 2] [7, 2] [10, 0]
[6, 2] [7, 3] [10, 0] [8, 0] [7, 3] [10] has a score of 135.

Congratulations, you are done!

Specification for Bowling Score Keeper without Slicing

The game consists of 10 frames as shown above. The player has two opportunities in each
frame to knock down 10 pins. The score for the frame is the total number of pins knocked
down, plus bonuses for strikes and spares.

A spare is when the player knocks down all 10 pins in two tries. The bonus for that frame is
the number of pins knocked down by the next ball rolled. So, the score in frame 3 above is 10
(the total number knocked down), plus a bonus of 5 (the number of pins knocked down on the
next roll.).

A strike is when the player knocks down all 10 pins on his or her first try. The bonus for that
frame is the value of the next two balls rolled.

A player who rolls a spare or strike in the tenth frame is allowed to roll the extra
balls to complete the frame. However, no more than three balls can be rolled in tenth
frame.

Appendix 3: Industry Questionnaire
Demographics
Respondent ID*
Company*
Location*
Function*

Education
1. Please state your academic degree title(s) (e.g., BS in computer science, MS in management).
2. Please state any certification(s) that you have received during your professional career (e.g. SEI certification as Personal Soft­
ware Process (PSP) developer, CMMI certification, or ITIL certification as application engineer).

Professional experience
3. Please state the roles that you have performed during your professional career (e.g. developer XX months/years, tester YY
months/years). *
4. Please describe the type of code you currently build (e.g. web interfaces using html+css+javascript; business logic using beans).
5. Please state the programming languages that you have used (during your education as well), and the number of years of experi­
ence in each one.

Programming Language 1
5.1.1 Programming language*
5.1.2 Years (education)*
5.1.3 Years (professional career)*

Programming Language 2
5.2.1 Programming language
5.2.2 Years (education)
5.2.3 Years (professional career)

Programming Language 3
5.3.1 Programming language
5.3.2 Years (education)
5.3.3 Years (professional career)

6. How would you rate your programming experience?*
• No experience (only casual usage)
• Little experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

7. How would you rate your Java experience?*
• No experience (only casual usage)
• Little experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

8. Which development methodologies have you used so far?
(e.g., waterfall, iterative, spiral, agile. If you choose agile, please indicate the type (scrum, tdd, xp, etc.). Include the methodologies
you used in academia as well. State the number of years of experience in each one.)

Methodology 1
8.1.1 Methodology*
8.1.2 Years (education)*
8.1.3 Years (professional career)*

Methodology 2
8.2.1 Methodology
8.2.2 Years (education)
8.2.3 Years (professional

Methodology 3
8.3.1 Methodology
8.3.2 Years (education)
8.3.3 Years (professional career)

Testing experience
9. How would you rate your unit testing experience?

• No experience (only casual usage)
• Little experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

(*) Required

career)

10. Do you write automated tests?*
• Yes
• No

10.1. If you answered “yes” above, please give a brief explanation.

11. Do you currently use a tool for unit testing (for executing, monitoring)?*

11.1. If you answered “yes” above, please write the names of the tools.

12. What IDE (Integrated Development Environment) do you currently use?

13. Do you have substantial experience of other IDEs? If so, please specify which ones.

14. How would you rate your experience with the JUnit testing framework?*

• No experience (only casual usage)
• Little experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

15. Have you ever used TDD as a development methodology?*
• Yes
• No

15.1. If you answered “yes” above, how would you rate your TDD experience?
• No experience (only casual usage)
• Little experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

16. Have you ever attended any training on testing or more specifically unit testing?*
• Yes
• No

16.1. If you answered “yes” above, please give a brief description of its content.

17. Have you ever attended any training on TDD?*
• Yes
• No

If you answered “yes” above, please briefly answer the following questions:
17.1. What was taught during the training?
17.2. How long did the training take (in days or hours if possible)?
17.3. When did you take the training?
17.4. Did you take the training at your current job?
17.5. Are you still practising TDD? Why?
18. Have you ever been involved in TDD studies in industry?*

• Yes
• No

18.1. If you answered “yes” above, please share the results you got from the pilot study, and your opinion on its effectiveness.
19. Have you ever attended any coding kata? Required kata = programming exercise

• Yes
• No

19.1. If you answered “yes” above, please state when and which katas (name of the programming exercises) you completed.

Appendix 4: Academic Questionnaire
Demographics

Respondent ID*
University*
Location*

Education
1. Please state your academic degree title(s), if any (e.g., BS in computer science, MS in management).*

(*) Required

2. Please state the roles that you have performed during your professional career, if any (e.g., developer XX months/years, tester
YY months/years, etc.) . .,.

3. Please state the programming languages that you have used (during your education as well), and the number of years of experi­
ence in each one.

Programming Language 1
3.1.1 Progrannuing language*:
3 .1.2 Years (education) Required
3.1.3 Years (professional career), if any

Programming Language 2
3.2.1 Progrannuing language
3 .2.2 Years (education)
3.2.3 Years (professional career), if any

Programming Language 3
3.3.1 Progrannuing language
3.3.2 Years (education)
3.3.3 Years (professional career), if any

4. How would you rate your programming experience?*

No experience (<2 years)

Novice (2-<�5 years)

Intermediate (5-<�10 years)

Expert (> 10 years)

5. Which development methodologies have you used so far? (e.g., waterfall, iterative, spiral, agile. If you choose agile, please state
the type (scrum, tdd, xp, etc.). State the number of years of experience in each one (e.g., waterfall, 1 year of education, 5 years of
professional practice).

Methodology 1
5.1.1 Methodology*
5 .1.2 Years (education)*Required
5.1.3 Years (professional career), if any

Methodology 2
5.2.1 Methodology
5 .2.2 Years (education)
5.2.3 Years (professional career), if any

Methodology 3
5.3.1 Methodology
5.3.2 Years (education)
5.3.3 Years (professional career), if any

6. How would you rate your unit testing experience?*

No experience (<2 years)

Novice (2-<�5 years)

Intermediate (5-<�10 years)

Expert (> 10 years)

7. Have you used a unit testing tool? If you answered yes above, please write the names of the tools.

8. What IDE (Integrated Development Environment) have you used?*

9. How would you rate your Java experience?*

No experience (<2 years)

Novice (2-<�5 years)

Intermediate (5-<�10 years)

Expert (> 10 years)

10. How would you rate your JU nit testing framework experience?*

No experience (<2 years)

Novice (2-<�5 years)

Intermediate (5-<�10 years)

Expert (> 10 years)

11. Have you ever used TDD as a development methodology? *
• Yes
• No

12. If you answered “yes” above, how would you rate your TDD experience?
• No experience (<2 years)
• Novice (2-<=5 years)
• Intermediate (5-<=10 years)
• Expert (>10 years)

13. Please state the certification(s) you have received during your professional career, if any (e.g., SEI certification as Personal
Software Process (PSP) developer, CMMI certification, or ITIL certification as application engineer.)

14. Have you ever attended any training on testing, or more specifically unit testing? If yes, please give a brief explanation of its
content.

15. Have you ever attended any training on TDD?*Required
• Yes
" No

16. If you answered “yes” above, please briefly answer the following questions:
a) What was taught during the training?
b) How long did the training take (in days or hours if possible)?
c) When did you take the training?
d) Did you take the training at a company?

17. Have you ever attended any coding kata?
• Yes
• No

17a. If you answered “yes” above, please state when and which katas (name of the coding task) you completed.

Appendix 5: Breakdown of Experience

Programming Language Experience

Fig. 8 Breakdown of programming language experience

Overall Programming Language Experience

A . ACADEMY -TOTAL B . INDUSTRY -TOTAL

to^^
cquired in industry

C . ACADEMY-STUDENTS D. INDUSTRY -STUDENTS

Overall experience in programming acquired in industry

E. ACADEMY-PRACTITIONERS F. INDUSTRY -PRACTITIONERS

- b x x , izi_^-
Overall experience in programming acquired in industry

Fig. 9 Breakdown of Overall programming language experience

Appendix 6: Collinearity Conditions

Table 16 reports the results of the collinearity analysis for the model with 15 independent
variables. The pattern shown in Table 16 suggests that the testing framework
(UNIT_TESTING_FRAMEWORK2_ADAPTED) might be collinear, as it has values
close to the bounds established for the variance inflation factor (VIF = 4.943) and a
low tolerance (T = 0.202). On the other hand, the collinearity statistics for the other
variables are within the expected values (VIF < 5 and T > 0.2), which is a sign that they
are not collinear.

Ta b l e 17 shows the collinearity diagnostics of the model specified in Table 16. Note
that component 16 has a very high condition index (CI = 86.918 > 30), which suggests
that the level of collinearity is high. Comparing the proportion of variance explained
for each of the model exp lana tory va r i ab le s , we find that the UNIT_
TESTING_FRAMEWORK_ADAPTED and EXPERIMENT_PROGRAMMING_
LANGUAGE variables have an extremely high proportion of variance explained with
values of 0.90 and 0.46, respectively. One way of solving the collinearity problem is to
remove the most collinear variable, which, in this case, is UNIT_TESTING_
FRAMEWORK_ADAPTED.

Model 2

Table 18 reports the collinearity diagnostics of model 2 with 14 variables, which is
composed of all the variables of the original model, except the UNIT_TESTING_
FRAMEWORK_ADAPTED variable that was eliminated on the grounds of
collinearity.

Note that dimension 15 still has a very high condition index (CI = 43 > 30), which
implies that there is a problem of collinearity. There are three closely correlated
variables: EXPERIMENT_PROGRAMMING_LANGUAGE, SITE and TRAINER. In
order to deal with the collinearity problem, we have opted to eliminate the variable
with the highest proportion of variance explained, which in this case is
EXPERIMENT_PROGRAMMING_LANGUAGE with a proportion of variance ex­
plained of 0.40.

Model 3

Table 19 reports the collinearity diagnostics of model 3 with 13 variables, which is composed
of all the variables of model 2 except the EXPERIMENT_PROGRAMMING_ LANGUAGE
variable.

Note that dimension 14 still has a condition index greater than 30 (CI = 33.67 > 30), which
suggests that there is a problem of collinearity. There are three closely correlated variables:
SITE, and TRAINER and CS_DEGREE. According to the non-collinearity condition, we
should eliminate the variable with the highest proportion of variance explained. Bearing in
mind the experimental data type, we know that SITE (which refers to whether the experiment
was conducted in academia or industry) is closely related to TRAINER. Therefore, we will
eliminate the TRAINER variable, as one of the trainers mostly trained subjects in industry and
the other trained subjects in academia, and kept SITE, which is a more interesting variable for
this research.

T
ab

le
 1

6
C

oe
ff

ic
ie

nt
s

of
 th

e
lin

ea
r

re
gr

es
si

on
 m

od
el

 w
ith

 1
5

in
de

pe
nd

en
t

va
ri

ab
le

s

M
od

el

U
ns

ta
nd

ar
di

ze
d

C
oe

ff
ic

ie
nt

s
St

an
da

rd
iz

ed

t
C

oe
ff

ic
ie

nt
s

B
et

a

Si
g.

C

ol
lin

ea
ri

ty
 S

ta
tis

tic
s

B

-6
4.

52
7

36
.1

51

2.
47

6

17
.0

18

-1
4.

92
7

8.
90

3

23
.8

61

.3
37

1.
19

8

3.
32

6

.9
59

-9
.5

77

16
.6

05

-1
.8

73

8.
51

1

29
.7

35

St
d.

 E
rr

or

65
.0

70

10
.4

68

11
.3

80

9.
76

7

21
.8

38

8.
84

1

17
.3

29

1.
99

5

1.
97

8

1.
28

9

1.
03

9

7.
41

1

9.
18

7

10
.7

23

13
.5

14

13
.4

77

-.
99

2

3.
45

4

.2
18

1.
74

2

-.
68

4

1.
00

7

1.
37

7

.1
69

.6
06

2.
58

1

.9
23

1.
29

2

1.
80

7

-.
17

5

.6
30

2.
20

6

.3
24

.0
01

.8
28

.0
85

.4
96

.3
16

.1
72

.8
66

.5
46

.0
11

.3
58

.1
99

.0
74

.8
62

.5
30

.0
30

T
ol

er
an

ce

.4
29

.3
98

.6
28

.2
02

.4
64

.2
33

.3
82

.3
21

.5
34

.3
04

.4
12

.5
90

.6
50

.2
90

.2
92

V
IF

2.
33

0

2.
51

2

1.
59

2

4.
94

3

2.
15

7

4.
29

2

2.
62

1

3.
11

9

1.
87

3

3.
29

2

2.
42

6

1.
69

4

1.
54

0

3.
44

9

3.
43

0

1
(C

on
st

an
t)

SI
T

E

T
R

A
IN

E
R

C
S

T
IT

L
E

U
N

IT
T

E
S

T
IN

G
F

R
A

M
E

W
O

R
K

A
D

A
P

T
E

D

E
X

P
E

R
IE

N
C

E
U

N
IT

T
E

S
T

IN
G

F
R

A
M

E
W

O
R

K
L

IK
E

R
T

S
C

A
L

E

E
X

P
E

R
IM

E
N

T
P

R
O

G
R

A
M

M
IN

G
L

A
N

G
U

A
G

E

E
X

P
E

R
IE

N
C

E
E

X
P

E
R

IM
E

N
T

P
R

O
G

R
A

M
M

IN
G

L
A

N
G

U
A

G
E

A
C

A
D

E
M

Y
Y

E
A

R
S

E
X

P
E

R
IE

N
C

E
E

X
P

E
R

IM
E

N
T

P
R

O
G

R
A

M
M

IN
G

L
A

N
G

U
A

G
E

T
N

D
U

S
T

R
Y

Y
E

A
R

S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

A
C

A
D

E
M

Y
Y

E
A

R
S

O
V

E
R

A
L

L
E

X
P

E
R

IE
N

C
E

P
R

O
G

R
A

M
M

IN
G

T
N

D
U

S
T

R
Y

Y
E

A
R

S

E
X

P
E

R
IE

N
C

E
U

N
IT

T
E

S
T

IN
G

L
IK

E
R

T
S

C
A

L
E

E
X

P
E

R
IM

E
N

T
JD

E
U

S
E

D
D

U
M

M
Y

T
D

D
U

S
E

D
D

U
M

M
Y

T
A

S
K

JT
L

D

SL
IC

E
D

 I
T

L
D

 D
U

M
M

Y

.4
25

.0
28

.1
77

-.1
23

.1
19

.2
30

.0
22

.0
86

.2
85

.1
35

-.1
62

.1
90

-.0
17

.0
94

.3
30

D
ep

en
de

nt
 V

ar
ia

bl
e:

 Q
LT

Y

T
a

b
le

1

7
C

o
ll

in
ea

ri
ty

d

ia
g

n
o

st
ic

s
(1

)

C
ol

li
ne

ar
it

y
D

ia
gn

os
ti

cs

M
od

el

D
im

en
si

on

E
ig

en
va

lu
e

C
on

di
ti

on

V
ar

ia
nc

e
P

ro
po

rt
io

ns

(C
on

st
an

t)

S
IT

E

T
R

A
IN

E
R

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

11
.1

13

1.
34

9

.9
05

.7
89

.5
34

.3
60

.2
93

.2
13

.1
64

.0
84

.0
75

.0
51

.0
37

.0
25

.0
07

.0
01

1.
00

0

2.
87

1

3.
50

4

3.
75

4

4.
56

3

5.
55

5

6.
16

1

7.
22

4

8.
23

3

11
.4

97

12
.2

11

14
.6

91

17
.3

46

21
.0

71

38
.6

79

86
.9

18

M
od

el

D
im

en
si

on

V
ar

ia
nc

e
P

ro
po

rt
io

ns

E
X

P
E

R
IE

N
C

E
_

E
X

P
E

R
IM

E
N

T
^

P
R

O
G

R
A

M
M

IN
G

_

L
A

N
G

U
A

G
E

_

IN
D

U
S

T
R

Y

Y
E

A
R

S

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.1
4

.8
6

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
0

.0
0

.0
0

.0
0

.1
5

.0
0

.3
2

.1
4

.2
9

.0
9

.0
0

.0
5

.0
4

O
V

E
R

A
L

L
_

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
A

C
A

D
E

M
Y

_
Y

E
A

R
S

.0
0

.0
1

.0
2

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
1

.0
0

.1
8

.2
4

.1
0

.0
7

.3
8

O
V

E
R

A
L

L
_

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
IN

D
U

S
T

R
Y

_
Y

E
A

R
S

.0
0

.0
3

.0
2

C
S

T
IT

L
E

.0
0

.0
0

.0
0

.0
0

.0
2

.0
5

.0
6

.3
3

.0
5

.0
9

.0
2

.2
2

.1
1

.0
0

.0
4

.0
0

E
X

P
E

R
IE

N
C

E
_

U
N

IT
_

T
E

S
T

IN
G

_
L

U
fE

R
T

S

C
A

L
E

.0
0

.0
0

.0
0

U
N

IT
_T

E
S

T
IN

G
_

F
R

A
M

E
W

O
R

K
_

A
D

A
P

T
E

D

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
0

.0
0

.0
9

.9
0

E
X

P
E

P
JM

E
N

T
_

ID
E

_U
S

E
D

_
D

U
M

M
Y

.0
0

.0
1

.0
0

E
X

P
E

R
IE

N
C

E
_

U
N

IT
_

T
E

S
T

IN
G

_
F

R
A

M
E

W
O

R
K

_
L

K
E

R
T

S
C

A
L

E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
8

.0
8

.4
2

.0
9

.2
0

.0
4

.0
1

.0
4

T
D

D
_U

S
E

D
_

D
U

M
M

Y

.0
0

.0
4

.3
0

E
X

P
E

P
JM

E
N

T
_

P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
8

.0
1

.0
1

.4
2

.4
6

T
A

SK

IT
L

D

.0
0

.0
0

.0
0

E
X

P
E

R
IE

N
C

E
_

E
X

P
E

R
IM

E
N

T
^

P
R

O
G

R
A

M
M

IN
G

L

A
N

G
U

A
G

E
_

A
C

A
D

E
M

Y
_

Y
E

A
R

S

.0
0

.0
0

.0
0

.1
7

.0
3

.0
1

.0
2

.0
0

.2
6

.0
6

.0
8

.0
0

.1
8

.0
9

.0
3

.0
5

S
L

IC
E

D

IT
L

D

D
U

M
M

Y

.0
0

.0
2

.0
3

T
ab

le
 1

7
(c

on
tin

ue
d)

4 5 6 7 8 9 10

11

12

13

14

15

16

.0
0

.0
0

.2
2

.0
0

.01

.0
0

.27

.18

.0
4

.07

.06

.01

.0
4

.03

.0
0

.0
6

.2
0

.25

.15

.01

.0
0

.0
4

.2
0

.01

.0
0

.01

.0
2

.01

.0
4

.0
0

.0
4

.23

.13

.2
6

.0
4

.0
4

.11

.0
2

.0
2

.0
0

.0
0

.0
0

.0
0

.0
4

.0
6

.40

.00

.00

.2
2

.18

.07

.01

.0
0

.03

.05

.43

.0
0

.05

.1
0

.0
6

.0
2

.2
0

.05

.01

.0
0

.0
4

.17

.05

.0
4

.06

.10

.00

.03

.01

.06

.01

.00

.07

.00

.00

.00

.0
0

.0
0

.0
0

.05

.01

.0
0

.0
0

.8
0

.11

.01

T
ab

le
 1

8
C

ol
li

ne
ar

it
y

di
ag

no
st

ic
s

(2
)

w
it

h
14

 v
ar

ia
bl

es

C
ol

lin
ea

rit
y

D
ia

gn
os

tic
s

M
od

el

D
im

en
si

on

E
ig

en
va

lu
e

C
on

di
tio

n
In

de
x

1
1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

M
od

el

D
im

en
si

on

V
ar

ia
nc

e
Pr

op
or

tio
ns

O
V

E
R

A
L

L
_

E
X

PE
R

IE
N

C
E

_
PR

O
G

R
A

M
M

IN
G

_
A

C
A

D
E

M
Y

 Y
E

A
R

S

V
ar

ia
nc

e
Pr

op
or

tio
ns

10
.1

53

1.
34

6

.9
05

.7
86

.5
23

.3
53

.2
93

.2
09

.1
64

.0
84

.0
75

.0
43

.0
36

.0
25

.0
05

1.
00

0

2.
74

7

3.
35

0

3.
59

4

4.
40

4

5.
36

6

5.
88

9

6.
96

4

7.
87

2

11
.0

11

11
.6

72

15
.3

67

16
.7

28

20
.1

50

43
.5

52

1 2 3 4

.0
0

.0
1

.0
2

.0
3

(C
on

st
an

t)

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

1.
00

SI
TE

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
0

.0
0

.0
0

.0
0

.1
5

.0
2

.2
9

.1
4

.3
8

O
V

E
R

A
L

L

E
X

PE
R

IE
N

C
E

PR

O
G

R
A

M
M

IN
G

IN

D
U

S
T

R
Y

Y
E

A
R

S

.0
0

.0
3

.0
2

.0
2

T
R

A
IN

E
R

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
2

.0
0

.3
7

.1
8

.1
2

.2
7

C
S

T
IT

L
E

.0
0

.0
0

.0
0

.0
0

.0
3

.0
5

.0
6

.3
6

.0
5

.0
8

.0
1

.1
2

.1
8

.0
0

.0
7

E
X

PE
R

IE
N

C
E

U

N
IT

T

E
ST

IN
G

L

IK
E

R
T

S
C

A
L

E

.0
0

.0
0

.0
0

.0
0

E
X

PE
R

IE
N

C
E

U

N
IT

 T
E

ST
IN

G

FR
A

M
E

W
O

R
K

L

IK
E

R
T

S
C

A
L

E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
8

.0
9

.4
5

.0
4

.2
7

.0
4

.0
0

E
X

PE
R

IM
E

N
T

ID

E
 U

SE
D

D

U
M

M
Y

.0
0

.0
1

.0
0

.0
0

E
X

PE
R

IM
E

N
T

PR

O
G

R
A

M
M

IN
G

L

A
N

G
U

A
G

E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
0

.0
0

.0
2

.3
6

.1
6

.0
5

.4
0

T
D

D
 U

SE
D

D

U
M

M
Y

.0
0

.0
5

.3
2

.0
5

E
X

PE
R

IE
N

C
E

E

X
PE

R
IM

E
N

T

PR
O

G
R

A
M

M
IN

G

L
A

N
G

U
A

G
E

A

C
A

D
E

M
Y

Y
E

A
R

S

.0
0

.0
0

.0
1

.1
8

.0
4

.0
1

.0
2

.0
0

.2
7

.0
7

.0
8

.0
1

.2
0

.1
0

.0
1

T
A

S
K

JT
L

D

.0
0

.0
0

.0
0

.0
0

E
X

PE
R

IE
N

C
E

E

X
PE

R
IM

E
N

T

PR
O

G
R

A
M

M
IN

G

L
A

N
G

U
A

G
E

IN

D
U

ST
R

Y

Y
E

A
R

S

.0
0

.0
5

.0
4

.0
0

.0
0

.2
3

.0
0

.0
2

.0
0

.2
6

.1
8

.0
1

.0
9

.0
6

.0
4

SL
IC

E
D

IT

L
D

D

U
M

M
Y

.0
0

.0
2

.0
3

.0
1

T
ab

le
 1

8
(c

on
tin

ue
d)

5 6 7 8 9 10

11

12

13

14

15

.0
0

.0
6

.2
0

.2
7

.1
5

.0
2

.0
0

.0
8

.1
6

.0
1

.0
0

.0
1

.0
3

.0
0

.0
5

.2
4

.1
2

.2
6

.0
2

.0
6

.1
1

.0
4

.0
0

.0
0

.0
0

.0
4

.0
7

.4
0

.0
0

.0
1

.2
2

.1
8

.0
8

.0
3

.0
4

.4
3

.0
0

.0
5

.0
9

.0
6

.0
0

.2
1

.0
5

.0
2

.1
7

.0
7

.0
5

.0
6

.1
1

.0
0

.0
3

.0
4

.0
4

.0
1

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
6

.0
1

.0
0

.0
0

.8
0

.1
3

T
ab

le
 1

9
C

ol
lin

ea
ri

ty
 d

ia
gn

os
tic

s
(3

)
w

ith
 1

3
va

ri
ab

le
s

M
od

el

D
im

en
si

on

E
ig

en
va

lu
e

C
on

di
ti

on

V
ar

ia
nc

e
In

de
x

P
ro

po
rt

io
ns

(C
on

st
an

t)

1 2 3 4 5 6 7 8 9 10

11

12

13

14

9.
23

7

1.
33

7

.9
03

.7
78

.5
10

.3
50

.2
92

.2
02

.1
63

.0
83

.0
72

.0
38

.0
26

.0
08

1.
00

0

2.
62

9

3.
19

9

3.
44

5

4.
25

4

5.
14

0

5.
62

0

6.
75

5

7.
52

0

10
.5

34

11
.3

21

15
.5

58

18
.8

95

33
.6

79

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

q
q

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
0

.0
0

.0
0

.0
0

.1
6

.2
6

.2
3

3
?

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
3

.0
0

.5
4

.1
6

9
4

.0
0

.0
0

.0
0

.0
0

.0
3

.0
5

.0
6

.4
5

.0
3

.0
5

.0
0

.0
2

.0
4 76

3>
E

R
IE

N
C

E
_

U
N

IT
T

E
S

T
IN

G
_

F
R

A
M

E
W

O
R

K
_

L
K

E
R

T
S

C
A

L
E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
9

.0
6

.5
9

.1
1

.1
0

E
X

P
E

R
IE

N
C

E
_

E
X

P
E

R
IM

E
N

T
^

P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E
_

A
C

A
D

E
M

Y
_

Y
E

A
R

S

.0
0

.0
0

.0
1

.1
8

.0
5

.0
1

.0
3

.0
0

.2
9

.0
8

.0
9

.1
9

.0
6

E
X

P
E

P
JE

N
C

E
_

E
X

P
E

R
IM

E
N

T

P
R

O
G

R
A

M
M

IN
G

L

A
N

G
U

A
G

E
_

IN
D

U
S

T
R

Y
_

Y
E

A
R

S

.0
0

.0
5

.0
4

.0
0

.0
1

.2
3

.0
0

.0
3

.0
0

.2
9

.1
8

.0
4

.0
3

T
ab

le
 1

9
(c

on
tin

ue
d)

M
od

el

D
im

en
si

on

2 3 4 5 6 7 8 9 10

11

12

13

14

V
ar

ia
nc

e
P

ro
po

rt
io

ns

O
V

E
R

A
L

L
_

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
A

C
A

D
E

M
Y

_
Y

E
A

R
S

.0
0

.0
1

.0
2

.0
3

.0
0

.0
5

.2
0

.2
8

.1
3

.0
2

.0
0

.2
4

.0
1

.0
1

O
V

E
R

A
L

L
_

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
IN

D
U

S
T

R
Y

_
Y

E
A

R
S

.0
0

.0
2

.0
2

.0
2

.0
2

.0
3

.0
0

.0
4

.2
5

.1
4

.2
7

.0
2

.0
6

.0
9

E
X

P
E

R
IE

N
C

E
_

U
N

IT
T

E
S

T
iN

G
_

L
K

E
R

T

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
3

.0
7

.4
0

.0
2

.1
9

.2
1

.0
6

S
C

A
L

E

E
X

P
E

R
IM

E
N

T

ID
E

_U
S

E
D

_
D

U
M

M
Y

.0
0

.0
1

.0
0

.0
0

.0
4

.0
3

.4
4

.0
0

.0
5

.1
0

.0
6

.1
5

.0
1

.0
9

T
D

D

U
S

E
D

D

U
M

M
Y

.0
0

.0
5

.3
2

.0
7

.1
5

.0
8

.0
5

.0
5

.1
1

.0
0

.0
3

.0
9

.0
1

.0
0

T
A

SK
 I

T
L

D

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
7

.0
0

.0
0

.7
0

.2
2

SL
IC

E
D

_
IT

L
D

D

U
M

M
Y

.0
0

.0
2

.0
3

.0
1

.1
8

.0
3

.0
0

.0
0

.0
0

.0
7

.0
0

.0
1

.4
9

.1
4

T
ab

le
 2

0
C

ol
lin

ea
ri

ty
 d

ia
gn

os
tic

s
(4

)
w

ith
 1

2
va

ri
ab

le
s

M
od

el

D
im

en
si

on

E
ig

en
va

lu
e

C
on

di
ti

on
 I

nd
ex

V

ar
ia

nc
e

P
ro

po
rt

io
ns

(C
on

st
an

t)

E
X

P
E

P
JE

N
C

E
_

U
N

IT
T

E
S

T
IN

G
_

F
R

A
M

E
W

O
R

K
_

L
IK

E
R

T

S
C

A
L

E

E
X

P
E

R
IE

N
C

E
_

E
X

P
E

R
IM

E
N

T

P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E
_

A
C

A
D

E
M

Y
_

Y
E

A
R

S

1 2 3 4 5 6 7 8 9 10

11

12

13

D
im

en
si

on

1 2 3 4 5

3.
37

3

1.
28

8

90
2

76
9

49
8

33
7

29
2

20
2

15
0

07
9

07
2

02
8

01
0

V
ar

ia
nc

e
P

ro
po

rt
io

ns

3V
E

R
A

L
L

_

1.
00

0

2.
55

0

3.
04

7

3.
29

9

4.
09

9

4.
98

8

5.
35

6

6.
43

3

7.
48

0

10
.2

72

10
.7

99

17
.3

06

29
.0

03

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
A

C
A

D
E

M
Y

_
Y

E
A

R
S

00

02

02

03

00

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.9
8

O
V

E
R

A
L

L
_

E
X

P
E

R
IE

N
C

E
_

P
R

O
G

R
A

M
M

IN
G

_
IN

D
U

S
T

R
Y

_
Y

E
A

R
S

.0
0

.0
2

.0
2

.0
2

.0
3

.0
0

.0
0

.0
0

.0
0

.0
0

.0
3

.0
0

.0
0

.0
1

.0
2

.1
3

.4
8

.3
3

E
X

P
E

R
IE

N
C

E
_

U
N

IT
_

T
E

S
T

IN
G

_
L

IK
E

R
T

S

C
A

L
E

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
4

.0
4

.0
6

.4
5

.0
3

.0
5

.0
0

.0
9

.2
3

E
X

P
E

R
IM

E
N

T
^

ID
E

_U
S

E
D

_
D

U
M

M
Y

.0
0

.0
1

.0
0

.0
0

.0
6

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
2

.0
9

.0
3

.6
4

.1
9

.0
3

T
D

D

U
S

E
D

_
D

U
M

M
Y

.0
0

.0
5

.3
5

.0
7

.1
6

.0
0

.0
0

.0
1

.2
0

.0
6

.0
1

.0
3

.0
0

.4
5

.0
3

.1
1

.0
0

.0
9

T
A

SK
_

IT
L

D

.0
0

.0
0

.0
0

.0
0

.0
0

E
X

P
E

R
IE

N
C

E
_

E
X

P
E

R
IM

E
N

T

P
R

O
G

R
A

M
M

IN
G

_
L

A
N

G
U

A
G

E
_

IN
D

U
S

T
R

Y
_

Y
E

A
R

S

.0
0

.0
5

.0
4

.0
0

.0
1

.2
5

.0
1

.0
3

.0
2

.2
7

.1
5

.0
0

.1
8

S
L

IC
E

D
_

IT
L

D

D
U

M
M

Y

.0
0

.0
3

.0
3

.0
2

.1
5

T
ab

le
 2

0
(c

on
tin

ue
d)

6 7 8 9 10

11

12

13

.0
7

.2
1

.3
1

.2
3

.0
0

.0
0

.0
3

.0
8

.0
2

.0
0

.0
5

.3
0

.1
2

.2
5

.0
2

.1
4

.0
1

.0
0

.0
4

.0
5

.4
6

.0
6

.3
3

.0
5

.0
1

.4
6

.0
0

.0
9

.0
6

.0
6

.0
1

.2
2

.1
2

.0
7

.0
6

.0
7

.0
1

.0
4

.0
0

.0
1

.0
0

.0
0

.0
0

.0
0

.0
9

.0
0

.4
9

.4
1

.0
4

.0
0

.0
0

.0
0

.0
8

.0
0

.4
5

.1
9

Model 4

Table 20 shows the collinearity diagnostics of model 4 with 12 variables, which is composed
of all the variables of model 3 except the TRAINER variable. Model 4 is the model that we
finally used in this research. Note that this model meets the collinearity conditions: a) the
condition index of dimension 13 (CI = 29) is less than 30 and b) the proportions of variance
explained are within the established bounds (less than 0.5).

Appendix 7: Multiple Linear Regression – Alternative Model

Quality

Table 21 shows the results of the multiple regression model with respect to the influence of
External Quality. Note that experience is measured on a Likert scale in this case.

Ta b l e 2 1 R esults of the MRL - Quality

Coefficientsa

Model

1 (Constant)

SITE

CS TITLE

EXPERIENCE_UNIT_TESTING_
FRAMEWORK_LIKERT_
SCALE

EXPERIENCE EXPERIMENT
PROGRAMMING
LANGUAGE
LIKERT SCALE

Unstandardized
Coefficients

B

-52.740

32.095

24.603

11.087

3.434

Std. Error

27.988

9.704

9.323

8.998

5.791

Standardized
Coefficients

Beta

.377

.254

.147

.069

t

-1.884

3.308

2.639

1.232

.593

Sig.

.062

.001

.010

.221

.554

Collinearity
Statistics

Tolerance VIF

.520 1.922

.727 1.375

.473 2.115

.505 1.980

OVERALL_EXPERIENCE_ 2.344
PROGRAMMING_LIKERT_
SCALE

EXPERIENCE_UNIT_TESTING_
LIKERT_SCALE

EXPERIMENT_IDE_USED_
DUMMY

TDD_USED_DUMMY

TASK_ITLD

SLICED_ITLD_DUMMY

5.380 .046 .436 .664 .618 1.618

-11.366

20.240

2.620

5.744

36.935

7.270

8.448

10.077

13.467

13.617

-.191

.231

.024

.063

.406

-1.563

2.396

.260

.427

2.712

.121

.018

.795

.671

.008

.451

.728

.776

.308

.301

2.216

1.374

1.288

3.252

3.324

Dependent Variable: QLTY

Productivity

Table 22 shows the results of the multiple regression model with respect to the influence of

Productivity. Note that experience is measured on a Likert scale in this case.

Table 22 MRL results – Productivity

Coefficientsa

Model Unstandardized
Coefficients

B Std.
Error

Standardized t
Coefficients

Beta

Sig. Collinearity
Statistics

Tolerance VIF

1 (Constant)

SITE

CS_TITLE

EXPERIENCE_UNIT_TESTING_
FRAMEWORK_LIKERT_SCALE

EXPERIENCE_EXPERIMENT_
PROGRAMMING_LANGUAGE_
LIKERT_SCALE

OVERALL_EXPERIENCE_
PROGRAMMING_LIKERT_
SCALE

-43.041

14.541

19.392

11.869

24.194

8.388

8.059

7.778

.190

22 3

.175

-.161 5.006 -.004

1.614 4.651 .035

EXPERIENCE UNIT TESTING
LIKERT SCALE

EXPERIMENT IDE USED
DUMMY

TDD USED DUMMY

TASK ITLD

SLICED ITLD DUMMY

-6.628

19.122

-4.760

11.285

31.924

6.285

7.303

8.711

11.642

11.771

-.124

.243

-.049

.138

.391

-1.779

1.734

2.406

1.526

-.032

.347

-1.055

2.619

-.546

.969

2.712

.078

.086

.018

.130

.974

.729

.294

.010

.586

.335

.008

.520

.727

.473

.505

.618

.451

.728

.776

.308

.301

1.922

1.375

2.115

1.980

1.618

2.216

1.374

1.288

3.252

3.324

Dependent Variable: PROD

Appendix 8: Residual Analysis by Experiment

Quality

Fig. 10 Residual by Experiment – QLTY

Table 23 Effect of the experiment on Quality

Tests of Between-Subjects Effects

Source Type III Sum df Mean
of Squares Square

Sig. Partial Eta Noncent. Observed
Squared Parameter Powerb

Dependent Variable: Unstandardized Residual QLTY

Corrected Model

Intercept

EXP CODE

Error

Total

Corrected Total

7137.509a

370.491

7137.509

127758.601

134896.110

134896.110

9

1

9

105

115

114

793.057

370.491

793.057

1216.749

5.866 .305

.304 .085

5.866 .305

a R Squared = .053 (Adjusted R Squared = -.028)
b Computed using alpha = .05

F

The results reported in Table 24 show that the model residuals plotted against the

EXPERIMENT_CODE variable are significant (p-value = 0.006 < 0.05), which means that

the variances are not homogeneous.

Table 24 Levene test for QLTY

Levene’s Test of Equality of Error Variancesa

F df1

Dependent Variable: Unstandardized Residual QLTY

2.798 9

df2

105 .006

Tests the null hypothesis that the error variance of the dependent variable is equal across groups
a Design: Intercept + EXP_CODE

Productivity

Fig. 11 Residual by Experiment – PROD

Table 25 Effect of the experiment on PRODUCTIVITY

Tests of Between-Subjects Effects

Source Type III Sum
of Squares

df Mean
Square

Dependent Variable: Unstandardized Residual PROD

Corrected Model

Intercept

EXP CODE

Error

Total

Corrected Total

9282.965a

88.286

9282.965

87693.492

96976.457

96976.457

9

1

9

105

115

114

1031.441

88.286

1031.441

835.176

F

1.235

.106

1.235

Sig.

.282

.746

.282

Partial
Eta
Squared

.096

.001

.096

Noncent.
Parameter

11.115

.106

11.115

Observed
Powerb

.578

.062

.578

a R Squared = .096 (Adjusted R Squared = .018)
b Computed using alpha = .05

The results reported in Table 26 show that the model residuals plotted against the

EXPERIMENT_CODE variable are not significant (p-value = 0.155 > 0.05), which suggests

that the residual variances are homogeneous.

Table 26 Levene test for PROD

Levene’s test of equality of error variancesa

F df1

Dependent Variable: Unstandardized Residual PROD

1.507 9

df2

105

Sig.

.155

Tests the null hypothesis that the error variance of the dependent variable is equal across groups
a Design: Intercept + EXP_CODE

Appendix 9: SPSS Scripts

Filter

USE ALL.

COMPUTE filter_$=(EXP_CODE ~= 11 and (TASK_ITLD = 1 or TASK_ITLD = 2)) .

VARIABLE LABELS filter_$ 'EXP_CODE ~= 11 and (TASK_ITLD = 1 or TASK_ITLD = 2)

(FILTER)'.

VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.

FORMATS filter_$ (f1.0).

FILTER BY filter_$.

EXECUTE.

Original MLR Model

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT QLTY_ITLD
/METHOD=ENTER SITE TRAINER CS_TITLE

UNIT TESTING FRAMEWORK2 ADAPTED
EXPERIENCE uSlT TESTING~FRAMEWORK LIKERT SCALE
EXPERIMENT~PROGRAMMING LANGUAGE
EXPERIENCE~EXPERIMENT ?ROGRAMMING LANGUAGE ACADEMY YEARS
EXPERIENCE~EXPERIMENT~PROGRAMMING~LANGUAGE~INDUSTRY YEARS
OVERALL EX?ERIENCE PROGRAMMING ACADEMY YEARS
OVERALL~EXPERIENCE~PROGRAMMING~INDUSTRY YEARS
EXPERIENCE UNIT TESTING LIKERT~SCALE
EXPERIMENT~IDE USED DUMMY
TDD USED DUMMY"
TASK ITL5
SLICED ITLD DUMMY

/SCATTERPLOT=(*ZPRED ,*ZRESID)
/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
/SAVE RESID ZRESID.

MLR Results for QLTY

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT QLTY_ITLD
/METHOD=ENTER SITE CS_TITLE

EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE
EXPERIENCE~EXPERIMENT PROGRAMMING~LANGUAGE ACADEMY YEARS
EXPERIENCE~EXPERIMENT~PROGRAMMING~LANGUAGE~INDUSTRY YEARS
OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARNS
OVERALL~EXPERIENCE~PROGRAMMING~INDUSTRY YEARS
EXPERIENCE UNIT TESTING LIKERT~SCALE
EXPERIMENT~IDE USED DUMMY
TDD USED DUMMY"
TASK ITL5
SLICED ITLD DUMMY

/SCATTERPLOT=(*ZPRED ,*ZRESID)
/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
/SAVE RESID ZRESID.

MLR Results for PROD

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT PROD_ITLD
/METHOD=ENTER SITE CS TITLE

EXPERIENCE UNIT TESTING~FRAMEWORK LIKERT SCALE
EXPERIENCE~EXPERIMENT PROGRAMMING~LANGUAGE ACADEMY YEARS
EXPERIENCE~EXPERIMENT~PROGRAMMING~LANGUAGE~INDUSTRY YEARS
OVERALL EX?ERIENCE PROGRAMMING ACADEMY YEARS
OVERALL~EXPERIENCE~PROGRAMMING~INDUSTRY YEARS
EXPERIENCE UNIT TESTING LIKERT~SCALE
EXPERIMENT" IDEFUSED DUMMY
TDD USED DNMMY ~
TASK ITL5
SLICED ITLD DUMMY

/SCATTERPLOT=(*ZPRED ,*ZRESID)
/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
/SAVE RESID ZRESID.

Decision Trees for the QLTY

TREE QLTY_ITLD [s] BY
SITE [n]
CS_TITLE [n]
EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE [o]
EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_ACADEMY_YEARS [s]
EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_YEARS [s]
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS [s]
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS [s]
EXPERIENCE_UNIT_TESTING_LIKERT_SCALE [o]
EXPERIMENT_IDE_USED_DUMMY [o] TDD_USED_DUMMY [o]
TASK_ITLD [n]
SLICED_ITLD_DUMMY [o]
/TREE DISPLAY=TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES NODEDEFS=YES SCALE=AUTO
/PRINT MODELSUMMARY IMPORTANCE SURROGATES RISK TREETABLE
/GAIN SUMMARYTABLE=YES TYPE=[NODE] SORT=DESCENDING CUMULATIVE=NO
/METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE
/GROWTHLIMIT MAXDEPTH=AUTO MINPARENTSIZE=12 MINCHILDSIZE=6
/VALIDATION TYPE=NONE OUTPUT=BOTHSAMPLES
/CRT MINIMPROVEMENT=0.0001
/MISSING NOMINALMISSING=MISSING.

Decision Trees for the PROD

TREE PROD_ITLD [s] BY
SITE [n]
CS_TITLE [n]
EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE [o]
EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_ACADEMY_YEARS [s]
EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_YEARS [s]
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS [s]
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS [s]
EXPERIENCE_UNIT_TESTING_LIKERT_SCALE [o] EXPERIMENT_IDE_USED_DUMMY [o]
TDD_USED_DUMMY [o]
TASK_ITLD [n]
SLICED_ITLD_DUMMY [o]

/TREE DISPLAY=TOPDOWN NODES=BOTH BRANCHSTATISTICS=YES NODEDEFS=YES SCALE=AUTO
/PRINT MODELSUMMARY IMPORTANCE SURROGATES RISK TREETABLE
/GAIN SUMMARYTABLE=YES TYPE=[NODE] SORT=DESCENDING CUMULATIVE=NO
/PLOT IMPORTANCE MEAN INCREMENT=10
/METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE
/GROWTHLIMIT MAXDEPTH=AUTO MINPARENTSIZE=12 MINCHILDSIZE=6
/VALIDATION TYPE=NONE OUTPUT=BOTHSAMPLES
/CRT MINIMPROVEMENT=0.0001
/MISSING NOMINALMISSING=MISSING.

Appendix 10: Decision Trees CART (CRT)

QLTY

Figure 12 shows the decision tree for the QLTY response variable with different number of
cases for the parent node (N) and the child node (n).

N=20,
n=20

\1f.
y.:

%

Node 0
n
DBV

Predicted

L

I

58.816
42.181

124
100.0
58.816

•

b
SLICEDJTLD_DUMMY

Improvement-214.210

MP
Std

% Pre

Node 1
n
Dev.

Jicted

48.530
43.801
83
66.9
48.530

> No

M M
Std.

%

Moth

Dev.

Predicted

L

2
79.640
29.565
41
33.1
79.640

N=10,
n=10 Mean 5S.S16

Sid. Ocv. 43 181
n 124
X 100.0

1 Jj
r~H

SUCED_ITU)J*JMMY

Nodel
MtJn 48.530
Std Otv. -13501

% 66.9
Predicted 4S.510

1 —...1
I....:

"

NodeJ
n 79.6*0
Dev 29.S6S

L-J

< - 0 6

Std. Otv J 7 074

E>

,1,

ill;
'~Ji 1 C

< I2S

' V
Mean 597.7S Mein
Sid. Otv. 37.440 Std. Oev

i Q r

,
a

J

Mean 44.947
Std t>v. 42.485
n 37

Predicted 14.947 EC

N=5,
n=5

N=10,
n=5

L̂ -j i -UU-i

H a
:-.:; ?:•:

N=12,
N=6

mmmm
m

. . |u

•."."""niM

MUM n i«

L
. . . . ' " ' " • : •

L . 1 -..

... s

•
Ir

..J»

"**"" ""i

-
i»

bsTp

r " j

Fig. 12 CART decision tree for QLTY

Productivity

Figure 13 shows the decision tree for the PROD response variable with different number of
cases for the parent node (N) and the child node (n).

N=20,
n=20

N=5,
n=5

1,'..,.
' I : :

X

Node 0

Dev.

Predicted

39.132
38.016

124
100.0
39.132

lid

< 'NO

Node 1
Mean
Sid. Dev.

% Piediued

1

1

27,077
33.649
S3
66.9
27.077

Mode 2
Mean 63.S34
Sid. Dev. 34.798

I • . ..Il

N=10,
n=10

N=10,
n=5

N=12,
N=6

Node 0
Mean
Std. Oev.
II

% Predicted

1

-;•• i ; :
38.016

124
100.0
39.132

H

Me,
SI I

"

< -
1

v:

Node 1

lev.

Predicted

1

27.077
33.649
83
66.9
27.077

Node 2
Mean 63.534
Std. Dev. 34.798

-Il

Fig. 13 CART decision tree for PROD

References

Adelson B (1981) Problem solving and the development of abstract categories in programming languages. Mem
Cogn 9(4):422–433

Adelson B (1984) When novices surpass experts: the difficulty of a task may increase with expertise. J Exp
Psychol: Learn Mem Cogn 10(3):483

Agarwal R, Tanniru MR (1991) Knowledge extraction using content analysis. Knowl Acquis 3:421–441
Aranda A, Dieste O, Juristo N (2014) Evidence of the presence of bias in subjective metrics: analysis within a

family of experiments. Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2014). London, UK, pp 24–27

Arisholm E, Gallis H, Dyba T, Sjoberg DIK (2007) Evaluating pair programming with respect to system
complexity and programmer expertise. IEEE Trans Softw Eng 33(2):65–86

Armour PG (2004) Beware of counting LOC. Commun ACM 47(3):21–24
Askar P, Davenport D (2009) An investigation of factors related to self-efficacy for java programming among

engineering students. Turk Online J Educ Technol 8(1):26–32
Belsley DA (1991) Conditioning diagnostics: collinearity and weak data in regression. Wiley
Bob U (2005) The bowling game kata. Retrieved from http://butunclebob.com/ArticleS.UncleBob.

TheBowlingGameKata
Brandmaier AM, von Oertzen T, McArdle JJ, Lindenberger U (2013) Structural equation model trees. Psychol

Methods 18:71–86
Burkhardt J, Détienne F, Wiedenbeck S (1997) Mental representations constructed by experts and novices in

object-oriented program comprehension. In: Howard S, Hammond J, Lindgaard G (eds) Springer US, pp
339–346

Burkhardt J, Détienne F, Wiedenbeck S (2002) Object-oriented program comprehension: effect of expertise, task
and phase. Empir Softw Eng 7(2):115–156

Camerer CF, Johnson EJ (1997) 10 the process-performance paradox in expert judgment: How can experts know
so much and predict so badly? Research on Judgment and Decision Making: Currents, Connections, and
Controversies. 342

Campbell RL, Bello LD (1996) Studying human expertise: beyond the binary paradigm. J Exp Theor Artif Intell
8(3-4):277–291

Chase WG, Simon HA (1973) The mind’s eye in chess
Chmiel R, Loui MC (2004) Debugging: from novice to expert. ACM SIGCSE Bull 36(1):17–21
Chulis K (2012) Optimal segmentation approach and application. clustering vs. classification trees. Retrieved

from http://www.ibm.com/developerworks/library/ba-optimal-segmentation/
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates,

Hillsdale
Colvin G (2008) Talent is overrated: What really separates world-class performers from Everybody Else. Penguin

Publishing Group
Crosby M, Scholtz J, Widenbeck S (2002) The roles beacons play in comprehension for novice and expert

programmers. 14th Workshop of the Psychology of Programming Interest Group, Brunel University. pp 58–73
Curtis B (1984) Fifteen years of psychology in software engineering: individual differences and cognitive

science. IEEE Press, Orlando
Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems. Commun

ACM 31(11):1268–1287
Darcy DP, Ma M (2005) Exploring individual characteristics and programming performance: Implications for

programmer selection. Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, 314a.

Daun M, Salmon A, Weyer T, Pohl K (2015) The impact of students’ skills and experiences on empirical results:
A controlled experiment with undergraduate and graduate students. Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, Art. No. 29.

De Groot AD (1978) Thought and choice in chess. Walter de Gruyter
Erdogmus H, Morisio M, Torchiano M (2005) On the effectiveness of the test-first approach to programming.

Softw Eng IEEE Trans 31(3):226–237
Ericsson KA (2006a) The influence of experience and deliberate practice on the development of superior expert

performance. The Cambridge Handbook of Expertise and Expert Performance, pp 683–703
Ericsson KA (2006b) An introduction to cambridge handbook of expertise and expert performance: Its

development, organization, and content. In: Ericsson KA, Charness N, Hoffman RR, Feltovich PJ (eds)
The cambridge handbook of expertise and expert performance. Cambridge University Press, pp 3–19

Ericsson KA, Charness N (1994) Expert performance: its structure and acquisition. Am Psychol 49(8):725

http://butunclebob.com/ArticleS.UncleBob
http://www.ibm.com/developerworks/library/ba-optimal-segmentation/

Ericsson KA, Lehmann AC (1996) Expert and exceptional performance: evidence of maximal adaptation to task
constraints. Annu Rev Psychol 47(1):273–305

Ericsson KA, Krampe RT, Tesch-Römer C (1993) The role of deliberate practice in the acquisition of expert
performance. Psychol Rev 100(3):363–406

Experience (2015) from http://www.merriam-webster.com/dictionary/experience. Retrieved 7 Oct 2015
Faul F, Erdfelder E, Lang A, Buchner A (2007) G* power 3: a flexible statistical power analysis program for the

social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191
Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach, third edition. CRC Press.
Field A, Miles J, Field Z (2012) Discovering statistics using R. SAGE Publications
Glenwick DS (2016) Handbook of methodological approaches to community-based research: Qualitative,

quantitative, and mixed methods. Oxford University Press
Green SB (1991) How many subjects does it take to do A regression analysis. Multivar Behav Res 26(3):499–510
Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press
Heiberger RM, Holland B (2013) Statistical analysis and data display: an intermediate course with examples in S-

plus, R, and SAS. Springer, New York
ISO I (2011) IEC25010: 2011 systems and software engineering–systems and software quality requirements and

evaluation (SQuaRE)–System and software quality models. Int Organ Stand
Jeffries R, Turner AA, Polson PG, Atwood ME (1981) The processes involved in designing software. Cogn

Skills Acquis 255:283
Jørgensen M, Faugli B, Gruschke T (2007) Characteristics of software engineers with optimistic predictions. J

Syst Softw 80(9):1472–1482
Kitchenham B, Mendes E (2004) Software productivity measurement using multiple size measures. IEEE Trans

Softw Eng 30(12):1023–1035
Larkin J, McDermott J, Simon DP, Simon HA (1980) Expert and novice performance in solving physics

problems. Science (New York, NY) 208(4450):1335–1342
Lee WK, Chung IS, Yoon GS, Kwon YR (2001) Specification-based program slicing and its applications. J Syst

Archit 47(5):427–443
Lui KM, Chan KCC (2006) Pair programming productivity: novice–novice vs. expert–expert. Int J Hum-Comput

Stud 64(9):915–925
MacCallum R, Zhang S, Preacher K, Rucker D (2002) On the practice of dichotomization of quantitative

variables. 7:10–40
MacDorman KF, Whalen TJ, Ho C, Patel H (2011) An improved usability measure based on novice and expert

performance. Int J Hum-Comput Interact 27(3):280–302
Madeyski L (2005) Preliminary analysis of the effects of pair programming and test-driven development on the

external code quality. Proceedings of the 2005 Conference on Software Engineering: Evolution and
Emerging Technologies. pp. 113–123

Marakas GM, Elam JJ (1998) Semantic structuring in analyst and representation of facts in requirements analysis.
Inf Syst Res 9(1):37–63

Mayer RE (1997) From novice to expert. In: Helander M, Landauer TK, Prabhu P (eds) Handbook of human-
computer interaction, 2nd edn. Elsevier Science B.V, pp. 781–795

McDaniel MA, Schmidt FL, Hunter JE (1988) Job experience correlates of job performance. J Appl Psychol
73(2):327

McKeithen KB, Reitman JS, Rueter HH, Hirtle SC (1981) Knowledge organization and skill differences in
computer programmers. Cogn Psychol 13(3):307–325

Miles J, Shevlin M (2001) Applying regression and correlation: A guide for students and researchers. SAGE
Publications

Müller MM, Höfer A (2007) The effect of experience on the test-driven development process. Empir Softw Eng
12(6):593–615

Muller MM, Padberg F (2004) An empirical study about the feelgood factor in pair programming. Proceedings
10th International Symposium on Software Metrics. pp 151–158

Munir H, Moayyed M, Petersen K (2014) Considering rigor and relevance when evaluating test driven
development: a systematic review. Inf Softw Technol 56(4):375–394

Nisbet R, Elder J, Miner G (2009) Handbook of statistical analysis and data mining applications. Academic Press
O’brien R (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690
Ricca F, Di Penta M, Torchiano M, Tonella P, Ceccato M (2007) The role of experience and ability in

comprehension tasks supported by UML stereotypes. 29th International Conference on Software
Engineering. pp 375–384

Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual participant data: Rationale, conduct, and
reporting. BMJ 340. doi:10.1136/bmj.c221

http://www.merriam-webster.com/dictionary/experience

Runeson P (2003) Using students as experiment subjects – an analysis on graduate and freshmen student data.
Proceedings 7Th International conference on empirical assessment & evaluation in software engineering. pp 95–102

Sheppard SB, Curtis B, Milliman P, Love T (1979) Modern coding practices and programmer performance.
Computer 12:41–49

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014) Measuring and modeling programming
experience. Empir Softw Eng 19(5):1299–1334

Sim SE, Ratanotayanon S, Aiyelokun O, Morris E (2006) An initial study to develop an empirical test for
software engineering expertise. Institute for Software Research, University of California, Irvine, CA, USA,
Technical Report# UCI-ISR-06-6

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE Trans Softw Eng SE-10(5):
595–609

Soloway E, Bonar J, Ehrlich K (1983) Cognitive strategies and looping constructs: an empirical study. Commun
ACM 26(11):853–860

Sonnentag S (1995) Excellent software professionals: experience, work activities, and perception by peers.
Behav Inform Technol 14(5):289–299

Sonnentag S (1998) Expertise in professional software design: a process study. J Appl Psychol 83(5):703–715
Votta LG (1994) By the way, has anyone studied any real programmers, yet? Software Process Workshop, 1994.

Proceedings., Ninth International. pp 93–95
Weisberg S (2005). Applied Linear Regression, third edition. John Wiley & Sons, Inc., Hoboken, NJ
Weiser M (1981) Program slicing. IEEE Press, San Diego
Weiser J, Shertz J (1984) Programming problem representation in novice and expert programmers. Int J Man-

Mach Stud 19:391–398
Wiedenbeck S (1985) Novice/expert differences in programming skills. Int J Man-Mach Stud 23(4):383–390
Williams L, Kudrjavets G, Nagappan N (2009) On the effectiveness of unit test automation at microsoft. software

reliability engineering, 2009. ISSRE ‘09. 20th International symposium on. pp 81–89
Winship C, Mare RD (1984) Regression models with ordinal variables. Am Sociol Rev 49(4):512–525
Ye N, Salvendy G (1994) Quantitative and qualitative differences between experts and novices in chunking

computer software knowledge. Int J Hum-Comput Interact 6(1):105–118

