
Noname manuscript No.
(will be inserted by the editor)

Negative Results for Software Effort Estimation

Tim Menzies, Ye Yang, George Mathew, Barry
Boehm, Jairus Hihn

Abstract Context: More than half the literature on software effort estimation (SEE) focuses
on comparisons of new estimation methods. Surprisingly, there are no studies comparing
state of the art latest methods with decades-old approaches.

Objective: To check if new SEE methods generated better estimates than older methods.
Method: Firstly, collect effort estimation methods ranging from “classical” COCOMO

(parametric estimation over a pre-determined set of attributes) to “modern” (reasoning via
analogy using spectral-based clustering plus instance and feature selection, and a recent
“baseline method” proposed in ACM Transactions on Software Engineering). Secondly,
catalog the list of objections that lead to the development of post-COCOMO estimation
methods. Thirdly, characterize each of those objections as a comparison between newer and
older estimation methods. Fourthly, using four COCOMO-style data sets (from 1991, 2000,
2005, 2010) and run those comparisons experiments. Fifthly, compare the performance of
the different estimators using a Scott-Knott procedure using (i) the A12 effect size to rule out
“small” differences and (ii) a 99% confident bootstrap procedure to check for statistically
different groupings of treatments).

Results: The major negative results of this paper are that for the COCOMO data sets,
nothing we studied did any better than Boehm’s original procedure.

Conclusions: When COCOMO-style attributes are available, we strongly recommend
(i) using that data and (ii) use COCOMO to generate predictions. We say this since the
experiments of this paper show that, at least for effort estimation, how data is collected is
more important than what learner is applied to that data.

Categories/Subject Descriptors: D.2.9 [Software Engineering]: Time Estimation; K.6.3
[Software Management]: Software Process

Keywords: effort estimation, COCOMO, CART, nearest neighbor, clustering, feature selec-
tion, prototype generation, bootstrap sampling, effect size, A12.

T. Menzies, G. Mathew
CS, North Carolina State Univ., USA E-mail: tim.menzies@gmail.com, E-mail: george.meg91@gmail.com

Y. Yang
SSE, Stevens Inst., USA E-mail: ye.yang@stevens.edu

B. Boehm
CS, Univ. of Southern California, USA E-mail: barryboehm@gmail.com

J. Hihn
Jet Propulsion Laboratory/California Institute of Technology , USA E-mail: jairus.hihn@jpl.nasa.gov

ar
X

iv
:1

60
9.

05
56

3v
3

 [
cs

.S
E

]
 2

9
Se

p
20

16

2 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

1 Introduction
This paper is about a negative result in software effort estimation– specifically:
– For project data expressed in a certain way (the COCOMO format [7]);
– Despite decades of work into alternate methods;
– Best predictions from that data come from a parametric method proposed in 2000 [7].
This conclusion comes with two caveats. Firstly, not all projects can be expressed in terms
of COCOMO– but when there is a choice, the results of this paper argue that there is value
in using that format. Secondly, our conclusion is about solo prediction methods which is
different to the ensemble approach [35,48,53,54]– but if using ensembles, this paper shows
that parametric estimation would be a viable ensemble member.

For pragmatic and methodological reasons,it is important to report negative results like
the one described above. Pragmatically, it is important for industrial practitioners to know
that (sometimes) they do not need to waste time straining to understand bleeding-edge tech-
nical papers. In the following, we precisely define the class of project data that does not
respond well to bleeding-edge effort estimation techniques. For those kinds of data sets,
practitioners can be rest assured that it is reasonable and responsible and useful to use sim-
ple traditional methods.

Also, methodologically, it is important to acknowledge mistakes. According to Karl
Popper (a prominent figure in the philosophy of science [63]), the “best” theories are the
ones that have best survived vigorous debate. Having been engaged in some high-profile
debates (in the field of software analytics [47]), we assert that such criticisms are very useful
since they help a researcher (1) find flaws in old ideas and (2) evolve better new ideas. That
is, finding and acknowledging mistakes should be regarded as a routine part of standard
operations procedure for science.

Given the above, it is troubling that there are very few negative results in the field of
software analytics. What does happen, occasionally, are reports of small corrections to prior
work. Given the complexity of software analytics, this absence of such failure reports is
highly suspicious. For examples of such reports, see (e.g. as done in [49, 58]).

Why are these reports so rare? There are many possible reasons and here we speculate on
two possibilities. Firstly, such negative reports may not be acknowledged as “worthwhile”
by the community. Forums such as this special issue are very rare (which is why this issue
is so important). Secondly, it is not standard practice in software analytics for researchers
to benchmark their latest results against some supposedly simpler “straw man” method. In
his textbook on Empirical Methods in AI, Cohen [13] strongly advises such “straw man”
comparisons, since sometimes, they reveal that the supposedly superior method is actually
overly complex. Hence it always useful to compare methods against simpler alternative.

That said, in some cases no such method is available making such benchmarking im-
possible. Although as a domain starts to become more mature, these comparisons can be
conducted; see, e.g. the many experiments on defect prediction [66] or tag inference for
Stack Overflow posts [71]. Accordingly, this paper checks an interesting, but currently un-
explored aspect of effort estimation. We check if there exists data sets from which very
old methods do just as well as anything else. We consider data expressed in terms of the
COCOMO ontology: 23 attributes describing a software project, as well as aspects of its
personnel, platform and product features1. We will show that (given this diverse sample of
data types collected from a project) Boehm’s 2000 model works as well (or better) than
everything else we tried. Hence, we strongly recommend that if that kind of data is avail-

1 For full details on these attributes, see §4 of this paper.

Negative Results for Software Effort Estimation 3

able, then it should be collected and it should be processed using Boehm’s 2000 COCOMO
model.

To guide our exploration, this paper asks four research questions. These questions have
been selected based on our experience debating the merits of COCOMO vs alternate meth-
ods. Based on our experience, we assert that each of the following questions has been used
to motivate the development of some alternate to the standard COCOMO-II model:

RQ1: Is parametric estimation no better than using just Lines of Code measures?
(an often heard, but rarely tested, comment).

RQ2: Has parametric estimation been superseded by more recent estimation meth-
ods? We apply our “best” learner, as well as case-based reasoning and regression trees.

RQ3: Are the old parametric tunings irrelevant to more recent projects? CO-
COMO models are learned by “tuning” the default model parameters using local project
data. COCOMO-II shipped with a set of parameters learned from a particular set of projects
from 1995 to 2000. We apply those COCOMO-II tunings, without modification, to a wide
range of projects dating from 1970 to 2010.

RQ4: Is parametric estimation expensive to deploy at some new site? We try tuning
estimation models on small training sets as well as simplifying the specification of projects.

To explore these questions, we use COCOMO since its internal details have been fully
published [7]. Also, we can access a full implementation of the 2000 COCOMO model.

Types of projects C
O

C
81

N
A

SA
93

C
O

C
05

N
A

SA
10

Avionics 26 10 17
Banking 13

Buss.apps/databases 7 4 31
Control 9 18 13

Human-machine interface 12
Military, ground 8

Misc 5 4 5
Mission Planning 16

SCI scientific application 16 21 11
Support tools, 7

Systems 7 3 2

 5

 50

 500

 5000

 1
9
7
0

 1
9
7
5

 1
9
8
0

 1
9
8
5

 1
9
9
0

 1
9
9
5

 2
0
0
0

 2
0
0
5

 2
0
1
0

K
L
O

C

year

COC81,NASA93
COC05

NASA10

Fig. 1: Projects used by the learners in this study. Figure 4 shows project attributes. COC81 is the original
data from 1981 COCOMO book [5]. This comes from projects dating 1970 to 1980. NASA93 is NASA
data collected in the early 1990s about software that supported the planning activities for the International
Space Station. Our other data sets are NASA10 and COC05 (the latter is proprietary and cannot be released
to the research community). The non-proprietary data (COC81 and NASA93 and NASA10) is available at
http://openscience.us/repo or in Figure 3.

Fig. 2: Projects in this study. COC81 is a subset of COCOMO-II. Note that NASA’93 and COC’05 and
NASA’10 have no overlap with the data used to define the version of COCOMO used in this paper.

http://openscience.us/repo

4 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

prec flex resl team pmat rely cplx data ruse time stor pvol acap pcap pcon aexp plex ltex tool sced site docu kloc months
2 2 2 3 3 4 5 4 3 5 6 4 4 4 3 4 3 3 1 3 4 4 77 1830
2 2 2 3 3 5 5 2 3 5 6 2 4 3 3 2 1 2 2 3 4 4 24 648
2 2 2 3 3 4 5 3 3 5 5 4 3 3 3 3 2 2 1 3 4 4 23 492
2 2 3 3 2 4 4 3 2 3 3 4 3 3 3 3 3 4 2 3 5 3 146 3292
2 3 3 5 3 3 4 3 2 4 4 2 5 5 4 5 1 5 3 3 6 3 113 1080
3 3 3 3 3 3 4 3 2 3 3 3 3 3 3 4 3 4 2 3 4 3 184 1043
5 3 3 3 4 4 4 3 2 3 3 2 3 3 3 5 3 4 2 3 5 3 61 336
5 3 3 4 4 4 5 3 2 3 3 2 3 3 3 5 3 4 2 3 6 3 50 637
3 3 3 2 3 4 5 3 2 3 3 3 3 3 3 4 3 4 2 3 5 3 253 2519
3 3 4 3 3 4 4 3 4 3 3 2 3 4 3 3 1 4 5 3 2 3 159 1048
3 3 3 3 3 4 5 3 2 3 3 4 4 4 5 4 4 4 2 1 5 3 324 1735
3 2 4 4 3 4 5 3 4 3 4 5 4 4 3 4 4 3 4 2 6 3 224 691
5 2 2 4 3 4 3 3 4 5 4 3 4 4 3 4 4 4 3 3 3 3 105 320
3 2 2 4 3 4 3 3 3 3 3 2 4 4 3 4 4 4 3 3 3 3 173 329
3 2 4 3 3 4 5 3 4 3 3 4 3 4 4 4 3 3 3 3 5 3 597 1705
4 2 4 3 5 4 3 2 3 3 4 4 2 2 3 3 5 5 3 3 5 3 155 789
4 3 3 3 4 4 4 3 2 3 3 3 4 4 3 5 4 4 2 3 5 3 170 552

scale factors effort multipliers size effort

Fig. 3: The 17 projects in NASA10 (one row per project). For a definition of the terms in row1 (“prec”, “flex”,
“resl” etc.) see Figure 4. As to the different columns, scale factors change effort exponentially while effort
multipliers have a linear impact on effort. Any effort multiplier with a value of “3” is a nominal value; i.e. it
multiplies the effort by a multiple of 1.0. Effort multipliers above and below “3” can each effect project effort
by a multiple ranging from 0.7 to 1.74. For full details on how these values are used, see Figure 5.

Further, we have access to numerous interesting COCOMO data sets: see Figure 1 and
Figure 2. With one exception, our learning experiments do not use the data that generated
standard COCOMO. That exception is the COC81 data– which lets us compare new methods
against the labor intensive methods used to make standard COCOMO– see Figure 2.

Using that data, the experiments of this paper conclude that the answer to all our research
questions is nearly always “no”. The RQ1 experiments show that good estimates use many
variables and poorer estimates result from some trite calculation based on KLOC. As to the
other research questions (RQ2, RQ3, RQ4), those results imply that the continued use of
parametric estimation can still be endorsed– at least for data expressed in terms of the 23
COCOMO attributes.

For a sample of our data see the NASA10 data set in Figure 3.

2 About Effort Estimation

2.1 History

Accurately estimating software development effort is of vital importance. Under-estimation
can cause schedule and budget overruns as well as project cancellation [70]. Over-estimation
delays funding to other promising ideas and organizational competitiveness [35]. Hence,
there is a long history of researchers exploring software effort estimation; e.g. [4, 5, 9, 19,
20, 22, 25, 46, 61, 65, 68, 73, 74, 76]. In 2007, Jorgensen and Shepperd reported on hundreds
of research papers dating back to the 1970s devoted to the topic, over half of which propose
some innovation for developing new estimation models [25]. Since then, many such papers
have been published; e.g. [14, 30–32, 34, 36, 37, 40, 42, 43, 51, 55].

In the 1970s and 1980s, this kind of research was focused on parametric estimation as
done by Putnam and others [4, 5, 19, 20, 74, 76]. For example, Boehm’s COnstructive COst
MOdel (COCOMO) model [5] assumes that effort varies exponentially on size as seen in
this parametric form: effort ∝ a ×KLOC b. To deploy this equation in an organization,
local project data is used to tune the (a, b) parameter values, If local data is unavailable,
new projects can reuse prior tunings, with minor tweaks [50]. COCOMO is a parametric
method; i.e. it is a model-based method that (a) assumes that the target model has a particular

Negative Results for Software Effort Estimation 5

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}

Scale factors:
Flex development flexibility development pro-

cess rigorously
defined

some guidelines,
which can be
relaxed

only general goals
defined

Pmat process maturity CMM level 1 CMM level 3 CMM level 5
Prec precedentedness we have never built

this kind of soft-
ware before

somewhat new thoroughly familiar

Resl architecture or risk resolution few interfaces de-
fined or few risks
eliminated

most interfaces de-
fined or most risks
eliminated

all interfaces de-
fined or all risks
eliminated

Team team cohesion very difficult inter-
actions

basically co-
operative

seamless interac-
tions

Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read-

/write statements
e.g. use of simple
interface widgets

e.g. performance-
critical embedded
systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle

phases not docu-
mented

extensive reporting
for each life-cycle
phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(frequency of major changes
frequency of minor changes

)

12months
1month

6months
2 weeks

2 weeks
2 days

rely required reliability errors are slight in-
convenience

errors are easily re-
coverable

errors can risk hu-
man life

ruse required reuse none multiple program multiple product
lines

sced dictated development
schedule

deadlines moved to
75% of the original
estimate

no change deadlines moved
back to 160% of
original estimate

site multi-site development some contact:
phone, mail

some email interactive multi-
media

stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life

cycle

Effort
months construction effort in months 1 month = 152 hours (includes development & management hours).

Fig. 4: COCOMO-II attributes.

structure, then (b) uses model-based methods to fill in the details of that structure (e.g. to set
some tuning parameters).

Since that work on parametric estimation, researchers have innovated other methods
based on regression trees [68] case-based-reasoning [68], spectral clustering [45], genetic
algorithms [9, 15], etc. These methods can be augmented with “meta-level” techniques like
tabu search [14], feature selection [11], instance selection [34], feature synthesis [51], active
learning [36], transfer learning [37]. temporal learning [44, 55], and many more besides.

2.2 Current Practice

In her keynote address to ICSE’01, Mary Shaw [67] noted that it can take up to a decade
for research innovations to become stable and then another decade after that to become

6 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

widely popular. Given that, it would be reasonable to expect commercial adoption of the
1990s estimation work on regression trees [68] or case-based-reasoning [68]. However, this
has not happened. Parametric estimation is widely-used, especially across the aerospace
industry and various U.S. government agencies. For example:
– NASA routinely checks software estimates in COCOMO [16].
– In our work with the Chinese and the United States software industry, we saw an al-

most exclusive use of parametric estimation tools such as those offered by Price Systems
(pricesystems.com) and Galorath (galorath.com).

– Professional societies, handbooks and certification programs are mostly developed around
parametric estimation methods and tools; e.g. see the International Cost Estimation and
Analysis Society; the NASA Cost Symposium; the International Forum on COCOMO
and Systems/Software Cost Modeling (see the websites http://tiny.cc/iceaa,
http://tiny.cc/nasa_cost, http://tiny.cc/csse).

2.3 But Does Anyone Use COCOMO?

Two of the myths of effort estimation is that (1) no one uses model-based estimation like
COCOMO; and (2) estimates are always better done using expert-based guess-timation.

These myths are misleading. As seen above, model-based parametric methods are widely
used in industry and are strongly advocated by professional societies. Also, while it is true
that expert-based estimation is a common practice [6], this is not to say that this should be
recommended as the best or only way to make estimates:
– Jorgensen [26] reviews studies comparing model- and expert- based estimation and con-

cludes that there there is no clear case that expert-methods are better.
– In 2015, Jorgensen further argued [23] that model-based methods are useful for learning

the uncertainty about particular estimates; e.g. by running those models many times, each
time applying small mutations to the input data.

– Valerdi [72] lists the cognitive biases that can make an expert offer poor expert-estimates.
– Passos et al. show that many commercial software engineers generalize from their first

few projects for all future projects [62].
– Jorgensen & Gruschke [24] document how commercial “gurus” rarely use lessons from

past projects to improve their future expert-estimates. They offer examples where this
failure to revise prior beliefs leads to poor expert-based estimates.

Much research has concluded that the best estimations come from combining the predictions
from multiple oracles [3, 12, 35, 72]. Note that it is much easier to apply this double-check
strategy using expert+model-based methods than by comparing the estimates from multiple
expert teams. For example, all the model-based methods studied in this paper can gener-
ate estimates in just a few seconds. In comparison, expert-based estimation is orders of
magnitude slower– as seen in Valerdi’s COSYSMO expert-method. While a strong propo-
nent of this approach, Valerdi concedes that “(it is) extremely time consuming when large
sample sizes are needed” [72]. For example, he once recruited 40 experts to three expert
sessions, each of which ran for three hours. Assuming a 7.5 hour day, then that study took
3 ∗ 3 ∗ 40/7.5 = 48 days .

COSYSMO is an elaborate expert-based method. An alternate, more lightweight expert-
method is “planning poker” [57] where participants offer anonymous “bids” on the comple-
tion time for a project. If the bids are widely divergent, then the factors leading to that dis-
agreement are elaborated and debated. This cycle of bid+discuss continues until a consensus
has been reached.

While planning poker is widely advocated in the agile community, there are surpris-
ingly few studies assessing this method (one rare exception is [57]). Also, planning poker is

http://tiny.cc/iceaa
http://tiny.cc/nasa_cost
http://tiny.cc/csse

Negative Results for Software Effort Estimation 7

used to assess effort for particular tasks in the scrum backlog– which is a different and sim-
pler task than the initial estimation of large-scale projects. This is an important issue since,
for larger projects, the initial budget allocation may require a significant amount of intra-
organizational lobbying between groups with competing concerns. For such large-estimate-
projects, it can be challenging to change the initial budget allocation. Hence, it is important
to get the initial estimate as accurate as possible.

2.4 COCOMO: Origins and Development

These concerns with expert-based estimation date back many decades and were the genesis
for COCOMO. In 1976, Robert Walquist (a TRW division general manager) told Boehm:

“Over the last three weeks, I’ve had to sign proposals that committed us to budgets
of over $50 million to develop the software. In each case, nobody had a good expla-
nation for why the cost was $50M vs. $30M or $100M, but the estimates were the
consensus of the best available experts on the proposal team. We need to do better.
Feel free to call on experts & projects with data on previous software cost.”

TRW had a previous model that worked well for a part of TRW’s software business [76],
but it did not relate well to the full range of embedded software, command and control
software, and engineering and scientific software involved in TRW’s business base. Having
access to experts and data was a rare opportunity, and a team involving Ray Wolverton, Kurt
Fischer, and Boehm conducted a series of meetings and expert exercises to find the relative
significance of various cost drivers. Combining local expertise and data, plus some prior
results such as [4, 20, 65, 74], and early versions of the RCA PRICE S model [19], a model
called SCEP was created (Software Cost Estimation Program). Except for one explainable
outlier, the estimates for 20 projects with solid data were within 30% of the actuals, most
within 15% of the actuals.

After gathering some further data from subsequent TRW projects and about 35 projects
from teaching software engineering courses at UCLA and USC along with commercial short
courses on software cost estimation, Boehm was able to gather 63 data points that could be
published and to extend the model to include alternative development modes that covered
other types of software such as business data processing. The resulting model was called
the COnstructive COst MOdel, or COCOMO, and was published along with the data in the
book Software Engineering Economics [5]. In COCOMO-I, project attributes were scored
using just a few coarse-grained values (very low, low, nominal, high, very high). These
attributes are effort multipliers where a off-nominal value changes the estimate by some
number greater or smaller than one. In COCOMO-I, all attributes (except KLOC) influence
effort in a linear manner.

Following the release of COCOMO-I Boehm created a consortium for industrial orga-
nizations using COCOMO . The consortium collected information on 161 projects from
commercial, aerospace, government, and non-profit organizations. Based on an analysis of
those 161 projects, Boehm added new attributes called scale factors that had an exponential
impact on effort (e.g. one such attribute was process maturity). Using that new data, Boehm
and his colleagues developed the tunings shown in Figure 5 that map the project descrip-
tors (very low, low, etc) into the specific values used in the COCOMO-II model (released in
2000 [7]):

effort = a
∏
i

EMi ∗KLOC b+0.01
∑

j SFj (1)

Here, EM,SF are effort multipliers and scale factors respectively and a, b are the local
calibration parameters (with default values of 2.94 and 0.91). Also, effort measures “de-
velopment months” where one month is 152 hours of work (and includes development and

8 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

_ = None; Coc2tunings = [[
vlow low nom high vhigh xhigh
scale factors:
’Flex’, 5.07, 4.05, 3.04, 2.03, 1.01, _],[
’Pmat’, 7.80, 6.24, 4.68, 3.12, 1.56, _],[
’Prec’, 6.20, 4.96, 3.72, 2.48, 1.24, _],[
’Resl’, 7.07, 5.65, 4.24, 2.83, 1.41, _],[
’Team’, 5.48, 4.38, 3.29, 2.19, 1.01, _],[
effort multipliers:
’acap’, 1.42, 1.19, 1.00, 0.85, 0.71, _],[
’aexp’, 1.22, 1.10, 1.00, 0.88, 0.81, _],[
’cplx’, 0.73, 0.87, 1.00, 1.17, 1.34, 1.74],[
’data’, _, 0.90, 1.00, 1.14, 1.28, _],[
’docu’, 0.81, 0.91, 1.00, 1.11, 1.23, _],[
’ltex’, 1.20, 1.09, 1.00, 0.91, 0.84, _],[
’pcap’, 1.34, 1.15, 1.00, 0.88, 0.76, _],[
’pcon’, 1.29, 1.12, 1.00, 0.90, 0.81, _],[
’plex’, 1.19, 1.09, 1.00, 0.91, 0.85, _],[
’pvol’, _, 0.87, 1.00, 1.15, 1.30, _],[
’rely’, 0.82, 0.92, 1.00, 1.10, 1.26, _],[
’ruse’, _, 0.95, 1.00, 1.07, 1.15, 1.24],[
’sced’, 1.43, 1.14, 1.00, 1.00, 1.00, _],[
’site’, 1.22, 1.09, 1.00, 0.93, 0.86, 0.80],[
’stor’, _, _, 1.00, 1.05, 1.17, 1.46],[
’time’, _, _, 1.00, 1.11, 1.29, 1.63],[
’tool’, 1.17, 1.09, 1.00, 0.90, 0.78, _]]

def COCOMO2(project, a = 2.94, b = 0.91, # defaults
tunes= Coc2tunings):# defaults

sfs,ems,kloc = 0, 5 ,22
scaleFactors, effortMultipliers = 5, 17

for i in range(scaleFactors):
sfs += tunes[i][project[i]]

for i in range(effortMultipliers):
j = i + scaleFactors
ems *= tunes[j][project[j]]

return a * ems * project[kloc] ** (b + 0.01*sfs)

Fig. 5: COCOMO-II: effort estimates from a project. Here, project has 5 scale factors plus 17 effort multipliers
plus KLOC. “Xhigh” is show for “extremely high”. Each attribute except KLOC and effort is scored using
the scale very low = 1, low=2, up to xhigh=6. Note all attributes extend across the entire range very low
to extremely high since, in Boehm’s modeling work, not all effects extend across the entire range. For an
explanation of the attributes shown in green, see Figure 4.

management hours). For example, if effort=100, then according to COCOMO, five develop-
ers would finish the project in 20 months.

2.5 COCOMO and Local Calibration

COCOMO models are learned by “tuning” the default model parameters using local project
data. When local data is scarce, approximations can be used to tune a model using just a
handful of examples.

For example, COCOMO’s local calibration procedure, adjusts the impact of the scale
factors and effort multipliers by tuning the a, b values of Equation 1 while keeping the other
values of the tuning matrix constant as shown in Figure 5. Effectively, local calibration
trims a 23 variable model into a model with two variables: (one to adjust the linear effort
multipliers, and another to adjust the exponential scale factors).

Menzies’ preferred local calibration procedure is the COCONUT procedure of Figure 6
(first written in 2002 and first published in 2005 [50]). For some number of repeats, CO-
CONUT will ASSESS some GUESSES for (a, b) by applying them to some training data. If
any of these guesses prove to be useful (i.e. reduce the estimation error) then COCONUT
will recurse after constricting the guess range for (a, b) by some amount (say, by 2/3rds).
COCONUT terminates when (a) nothing better is found at the current level of recursion

Negative Results for Software Effort Estimation 9

def COCONUT(training, # list of projects
a=10, b=1, # initial (a,b) guess
deltaA = 10, # range of "a" guesses
deltaB = 0.5, # range of "b" guesses
depth = 10, # max recursive calls
constricting=0.66):# next time,guess less

if depth > 0:
useful,a1,b1= GUESSES(training,a,b,deltaA,deltaB)

if useful: # only continue if something useful
return COCONUT(training,

a1, b1, # our new next guess
deltaA * constricting,
deltaB * constricting,
depth - 1)

return a,b

def GUESSES(training, a,b, deltaA, deltaB,
repeats=20): # number of guesses

useful, a1,b1,least,n = False, a,b, 10**32, 0

while n < repeats:
n += 1
aGuess = a1 - deltaA + 2 * deltaA * rand()
bGuess = b1 - deltaB + 2 * deltaB * rand()
error = ASSESS(training, aGuess, bGuess)

if error < least: # found a new best guess
useful,a1,b1,least = True,aGuess,bGuess,error

return useful,a1,b1

def ASSESS(training, aGuess, bGuess):

error = 0.0

for project in training: # find error on training
predicted = COCOMO2(project, aGuess, bGuess)
actual = effort(project)
error += abs(predicted - actual) / actual

return error / len(training) # mean training error

Fig. 6: COCONUT tunes a, b of Figure 5’s COCOMO function.

def RIG():

DATA = { COC81, NASA83, COC05, NASA10 }

for data in DATA: # e.g. data = COC81

errors= {}
for learner in LEARNERS: #e.g. learner=COCONUT
for n in range(10): # ten times repeat

for project in DATA: # e.g. one project
training = data - project # leave-one-out
model = learn(training)
estimate = guess(model, project)
actual = effort(project)
error = abs(actual - estimate)/actual
errors[learner][n] = error

print rank(errors) # some statistical tests

Fig. 7: The experimental rig used in this paper.

or (b) after 10 recursive calls– at which point the guess range has been constricted to
(2/3)10 ≈ 1% of the initial range.

3 Experimental Methods

In this section, we discuss the methods used to explore the research questions defined in the
introduction.

10 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

3.1 Choice of Experimental Rig

“Ecological inference” is the conceit that “what holds for all, also holds for parts of the
population” [45, 64]. To avoid ecological inference, our rig in Figure 7 runs separately for
each data set.

Since some of our methods include a stochastic algorithm (the COCONUT algorithm
of Figure 6), we repeat our experimental rig N = 10 times (10 was selected since, after
experimentation, we found our results looked the same at N = 8 and N = 16).

It is important to note that Figure 7 is a “leave-one-out experiment”; i.e. training is con-
ducted on all-but-one example, then tested on the “holdout” example not seen in training.
This separation of training and testing data is of particular importance in this study. As
shown in Figure 1, our data sets (NASA10, COC81, NASA93, and COC05) contain infor-
mation on 17, 63, 92, and 93 projects, respectively. When fitted to the 24 parameters of the
standard COCOMO model (shown in Figure 4), there may not be enough information to
constrain the learning– which means that it is theoretically possible that data could be fitted
to almost anything (including spurious noise). To detect such spurious models, it is vital to
test the learned model against some outside source such as the holdout example.

We assess performance via Standardized Error(SE); i.e.

SE =
∑n

i=1(abs(actuali−predictedi))/n∑n
i=1(abs(actuali−sampled))/n

∗ 100 (2)

This measure is derived from Standardized Accuracy(SA) defined by Shepperd & Mac-
Donnell [69] (SE = 1 − SA). In Equation 2, actual represents the true value, predicted
represents the estimated value by the predictor and sampled is a value drawn randomly
from a list of random samples(with replacement) from the training data. Shepperd and Mac-
Donnell also propose another measure that reports the performance as a ratio of some other,
much simpler, “straw man” approach (they recommend the mean effort value of N > 100
random samples of the training data).

3.2 Choice of Learners

Our LOC(n) “straw man” estimators just uses lines of code in the n nearest projects. For
distance, we use:

dist(x, y) =

√∑
i

wi(xi − yi)2 (3)

where xi, yi are values normalized 0..1 for the range min..max and wi is a weighting factor
(defaults to wi = 1). When estimating for n > 1 neighbors, we combine estimates via the
triangle function of Walkerden and Jeffery [73]; e.g.. for loc(3), the estimate from the first,
second and third closest neighbor with estimates a, b and c respectively is

effort = (3a+ 2b+ 1c)/6 (4)

We also baseline the COCOMO-II and COCONUT models using the Automatically
Transformed Linear Baseline Model(ATLM) proposed by Whigham et al. [75]. ATLM is a
multiple linear regression model of the form

effort i = β0 + β1.x1i + β2.x2i + . . .+ βn.xni + εi (5)

where efforti is the quantitative response(effort) for project i and xi are the inde-
pendent variables of describing the project. The prediction weights βi are determined us-
ing a least square error estimation. Transformations are also employed on the independent

Negative Results for Software Effort Estimation 11

variables(xi) based on their nature. If the variable is continuous in nature, either a logarith-
mic, a square root transformation or no transformation is employed such that the skewness
of the independent variable in the training set is minimized. If the variable is of categorical
nature, no transformation is performed on the model.

Apart from the LOC “straw man” and the ATLM baseline we also compare COCOMO-II
and COCONUT with CART and Knear(n) as they proved their value in the 1990s [68, 73].
That said, CART and Knear(n) still have currency: recent results from IEEE TSE 2008
and 2012 still endorse their use for effort estimation [17, 32, 35]). Also, according to the
Shaw’s timetable for industry adoption of research innovations (discussed in the introduc-
tion), CART and Knear(n) should now be mature enough for industrial use. Further, to
account for some of the more recent work on effort estimation, we also use TEAK and
PEEKING2 [34, 60].

CART [8] is an iterative dichotomization algorithm that finds the attribute that most
divides the data such that the variance of the goal variable in each division is minimized.
The algorithm then recurses on each division. Finally, the cost data in the leaf divisions are
averaged to generate the estimate.

Knear(n) estimates a new project’s effort by a nearest neighbor method [68]. Unlike
LOC(n), a Knear(n) method uses all attributes (all scale factors and effort multipliers as
well as lines of code) to find the n-th nearest projects in the training data. Knear(3) com-
bines efforts from three nearest neighbors using Equation 4. Knear(n) is an example of
CBR; i.e. case-based reasoning. CBR for effort estimation was first pioneered by Shepperd
& Schofield in 1997 [68]. Since then, it has been used extensively in software effort estima-
tion [2, 28, 30–33, 39–42, 68, 73]. There are several reasons for this. Firstly, it works even if
the domain data is sparse [59]. Secondly, unlike other predictors, it makes no assumptions
about data distributions or some underlying parametric model.

TEAK is built on the assumption that spurious noise leads to large variance in the
recorded efforts [34]. TEAK’s pre-processor removes such regions of high variance as fol-
lows. First, it applies greedy agglomerate clustering to generate a tree of clusters. Next, it
reflects on the variance of the efforts seen in each sub-tree and discards the sub-trees with
largest variance. Estimation is then performed on the surviving examples. PEEKING2 [60]
is a far more aggressive “data pruner” than TEAK and combines data reduction operators,
feature weighting, and Principal Component Analysis(PCA). PEEKING2 is described in
Figure 8. One important detail with TEAK and PEEKING2 is that when they prune data,
they only do so on the training data. Given a test set, TEAK and PEEKING2 will always try
to generate estimates for all members of that test set.

3.3 Choice of Statistical Ranking Methods

The last line of our experimental rig shown in Figure 7 ranks multiple methods for learning
effort estimators. For this paper, those multiple methods are the range of l treatments of size
ls = | l | explored within each research question. For example, RQ1 studies the differences
in output produced by ls = 4 methods: two COCOMO variants and two others that just use
lines of code counts.

This study ranks methods using the Scott-Knott procedure recommended by Mittas &
Angelis in their 2013 IEEE TSE paper [56]. This method sorts a list of l treatments with ls

measurements by their median score. It then splits l into sub-lists m,n in order to maximize
the expected value of differences in the observed performances before and after divisions.
For example, for RQ1, we would sort ls = 4 methods based on their median score, then
divide them into three sub-lists of of size ms,ns ∈ {(1, 3), (2, 2), (3, 1)}. Scott-Knott would
declare one of these divisions to be “best” as follows. For lists l,m, n of size ls,ms,ns where

12 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

– PEEKING2’s feature weighting scheme changes wi in Equation 3 according to how much an at-
tribute can divide and reduce the variance of the effort data (the greater the reduction, the larger the
wi score).

– PEEKING2’s PCA tool uses an accelerated principle component analysis that synthesises new at-
tributes ei, e2, ... that extends across the dimension of greatest variance in the data with attributes
d. PCA combines redundant variables into a smaller set of variables (so e � d) since those redun-
dancies become (approximately) parallel lines in e space. For all such redundancies i, j ∈ d, we can
ignore j since effects that change over j also change in the same way over i. PCA is also useful
for skipping over noisy variables from d– these variables are effectively ignored since they do not
contribute to the variance in the data.

– PEEKING2’s prototype generator clusters the data along the dimensions found by accelerated PCA.
Each cluster is then replaced with a “prototype” generated from the median value of all attributes in
that cluster. Prototype generation is a useful tool for handling outliers: large groups of outliers get
their own cluster; small sets of outliers get ignored via median prototype generation.

– PEEKING2 generates estimates for a test case by finding its nearest cluster, then the two nearest
neighbors within that cluster (where “near” is computed using Equation 3 plus feature weighting).
If these neighbors are found at distance n1, n2, n1 < n2 and have effort values E1, E2 then the
final estimate is an extrapolation favoring the closest one:

n = ni + n2; estimate = E1
n2

n
+ E2

n1

n

Fig. 8: Inside PEEKING2 [60].

l = m ∪ n, the “best” division maximizes E(∆); i.e. the difference in the expected mean
value before and after the spit:

E(∆) =
ms

ls
abs(m.µ− l.µ)2 + ns

ls
abs(n.µ− l.µ)2

Scott-Knott then checks if that “best” division is actually useful. To implement that check,
Scott-Knott would apply some statistical hypothesis test H to check if m,n are significantly
different. If so, Scott-Knott then recurses on each half of the “best” division.

For a more specific example, consider the results from l = 5 treatments:
rx1 = [0.34, 0.49, 0.51, 0.6]
rx2 = [0.6, 0.7, 0.8, 0.9]
rx3 = [0.15, 0.25, 0.4, 0.35]
rx4= [0.6, 0.7, 0.8, 0.9]
rx5= [0.1, 0.2, 0.3, 0.4]

After sorting and division, Scott-Knott declares:
– Ranked #1 is rx5 with median= 0.25
– Ranked #1 is rx3 with median= 0.3
– Ranked #2 is rx1 with median= 0.5
– Ranked #3 is rx2 with median= 0.75
– Ranked #3 is rx4 with median= 0.75
Note that Scott-Knott found little difference between rx5 and rx3. Hence, they have the same
rank, even though their medians differ.

Scott-Knott is better than an all-pairs hypothesis test of all methods; e.g. six treatments
can be compared (62 − 6)/2 = 15 ways. A 95% confidence test run for each comparison
has a very low total confidence: 0.9515 = 46%. To avoid an all-pairs comparison, Scott-
Knott only calls on hypothesis tests after it has found splits that maximize the performance
differences.

For this study, our hypothesis test H was a conjunction of the A12 effect size test of
and non-parametric bootstrap sampling; i.e. our Scott-Knott divided the data if both boot-
strapping and an effect size test agreed that the division was statistically significant (99%
confidence) and not a “small” effect (A12 ≥ 0.6).

Negative Results for Software Effort Estimation 13

For a justification of the use of non-parametric bootstrapping, see Efron & Tibshi-
rani [18, p220-223]. For a justification of the use of effect size tests see Shepperd & Mac-
Donell [69]; Kampenes [29]; and Kocaguneli et al. [38]. These researchers warn that even
if an hypothesis test declares two populations to be “significantly” different, then that result
is misleading if the “effect size” is very small. Hence, to assess the performance differences
we first must rule out small effects. Vargha and Delaney’s non-parametric A12 effect size
test explores two lists M and N of size m and n:

A12 =

 ∑
x∈M,y∈N

1 if x > y

0.5 if x == y

 /(mn)

This expression computes the probability that numbers in one sample are bigger than in
another. This test was recently endorsed by Arcuri and Briand at ICSE’11 [1].

4 Results

4.1 COCOMO vs Just Lines of Code

This section explores RQ1: is parametric estimation no better than using simple lines of
code measures?

An often heard, but not often tested, criticism of parametric estimation methods is that
they are no better than just using simple lines of code measures. As shown in Figure 9, this is
not necessarily true. This figure is a comparative ranking for LOC(1) LOC(3), COCOMO-II
and COCONUT. The rows of Figure 9 are sorted by the SE figures. These rows are divided
according to their rank, shown in the left column: better methods have lower rank since
they have lower SE error values. The right-hand-side column displays the median error (as a
black dot) inside the inter-quartile range (25th to 75th percentile, show as a horizontal line).

The key feature of Figure 9 is that just using lines of code is not better than parametric
estimation. If the reader is surprised by this result, then we note that with a little mathemat-
ics, it is possible to show that the results of Figure 9 are not surprising. From Equation 1,
recall that the minimum effort is bounded by the sum of the minimum scale factors and the
product of the minimum effort multipliers. Similar expressions hold for the maximum effort
estimate. Hence, for a given KLOC, the range of values is given by:

0.18 ∗KLOC 0.97 ≤ effort ≤ 154 ∗KLOC 1.23

Dividing the minimum and maximum values results in an expression showing how effort
can vary for any given KLOC.:

154/0.18 ∗KLOC 1.23−0.97 = 856 ∗KLOC 0.25 (6)

Equation 6 explains why just using KLOC performs so badly. That equation had two com-
ponents: KLOC raised to a small exponent (0.25), and a constant showing the influence of
all other COCOMO variables. The large value of 856 for that second component indicates
that many factors outside of KLOC influence effort. Hence, it is hardly surprising that just
using KLOC is a poor way to do effort estimation.

14 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

NASA10 (new NASA data up to 2010):
rank treatment median IQR
1 COCOMO-II 37 57 s
1 COCONUT 39 54 s
1 loc(3) 47 93 s
1 loc(1) 75 98 s

COC05 (new COCOMO data up to 2005):
rank treatment median IQR
1 COCOMO-II 12 52 s
2 loc(1) 21 56 s
2 loc(3) 22 55 s
2 COCONUT 22 89 s

NASA93 (NASA data up to 1993):
rank treatment median IQR
1 COCONUT 12 48 s
1 COCOMO-II 15 50 s
2 loc(1) 23 63 s
2 loc(3) 35 65 s

COC81 (original data from the 1981 COCOMO book):
rank treatment median IQR
1 COCOMO-II 3 21 s
1 COCONUT 4 24 s
2 loc(3) 14 36 s
2 loc(1) 19 42 s

Fig. 9: COCOMO vs just lines of code. SE values seen in leave-one-studies, repeated ten times. For each
of the four tables in this figure, better methods appear higher in the tables. In these tables, median and IQR
are the 50th and the (75-25)th percentiles. The IQR range is shown in the right column with black dot at the
median. Horizontal lines divide the “ranks” found by our Scott-Knott+bootstrapping+effect size tests (shown
in left column).

4.2 COCOMO vs Other Methods

This section explores RQ2: Has parametric estimation been superseded by more re-
cent estimation methods? and RQ3: Are the old parametric tunings irrelevant to more
recent projects?

Figure 10 compares COCOMO and COCONUT with standard effort estimation meth-
ods from the 1990s (CART and Knear(n)) as well as ATLM (the baseline effort estimation
method proposed in 2015 by Whigham et.al. [75] (a method defined by its authors to better
define effort estimation experiments– and perhaps to encourage more repeatability in these
kinds of studies). In that comparison, COCOMO-II’s error is not ranked worse than any
other method (sometimes COCONUT had a slightly lower median SE but that difference
was small: ≤ 2%).

Figure 11 compares COCOMO and COCONUT to more recent effort estimation meth-
ods (TEAK and PEEKING2). Once again, nothing was ever ranked better than COCOMO-II
or COCONUT.

From these results, we recommend that effort estimation researchers take care to bench-
mark their new method against older ones.

As to COCONUT, this method was often ranked equaled to COCOMO-II. In several
cases COCOMO-II and COCONUT were ranked first and second and the median difference
in their scores is very small.

From this data, we conclude that it is not always true the parametric estimation has been
superseded by more recent innovations such as CART, Knear(n), TEAK or PEEKING2.

Negative Results for Software Effort Estimation 15

Also, the COCOMO-II tunings from 2000 are useful not just for the projects prior to 2000
(all of COC81, plus some of NASA93) but also for projects completed up to a decade after
those tunings (NASA10).

4.3 COCOMO vs Simpler COCOMO

This section explores RQ4: Is parametric estimation expensive to deploy at some new
site?. To that end, we assess the impact a certain simplifications imposed onto COCOMO-II.

4.3.1 Range Reductions

The cost with deploying COCOMO in a new organization is the training effort required to
generate consistent project rankings from different analysts. If we could reduce the current
six point scoring scale (very low, low, nominal, high, very high and extremely high) then
there would be less scope to disagree about projects. Accordingly, we tried reducing the six
point scale to just three:
– Nominal: same as before;
– Above: anything above nominal;
– Below: anything below nominal.

NASA10: (new NASA data up to 2010):
rank treatment median IQR
1 COCOMO-II 34 55 s
1 COCONUT 41 61 s
1 CART 46 55 s
1 Knear(1) 49 89 s
2 Knear(3) 71 104 s
3 ATLM 90 77 s

COC05: (new COCOMO data up to 2005):
rank treatment median IQR
1 COCOMO-II 13 51 s
1 CART 14 48 s
2 Knear(1) 22 51 s
2 Knear(3) 22 54 s
2 COCONUT 22 81 s
3 ATLM 94 47 s

NASA93: (NASA data up to 1993):
rank treatment median IQR
1 COCONUT 13 48 s
1 COCOMO-II 15 50 s
2 Knear(1) 33 71 s
2 Knear(3) 34 63 s
2 CART 34 63 s
3 ATLM 53 56 s

COC81: (original data from the 1981 COCOMO book):
rank treatment median IQR
1 COCOMO-II 3 20 s
1 COCONUT 4 25 s
2 CART 13 37 s
2 Knear(3) 19 48 s
3 Knear(1) 30 75 s
4 ATLM 75 42 s

Fig. 10: COCOMO vs standard methods. Displayed as per Figure 9.

16 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

NASA10 (new NASA data up to 2010):
rank treatment median IQR
1 COCONUT 37 58 s
1 COCOMO-II 38 56 s
2 TEAK 87 118 s
2 PEEKING2 100 67 s

COC05 (new COCOMO data up to 2005):
rank treatment median IQR
1 COCOMO-II 13 55 s
1 COCONUT 20 86 s
2 TEAK 33 84 s
2 PEEKING2 34 79 s

NASA93 (NASA data up to 1993):
rank treatment median IQR
1 COCONUT 12 50 s
1 COCOMO-II 15 49 s
1 TEAK 37 84 s
2 PEEKING2 43 76 s

COC81 (original data from the 1981 COCOMO book):
rank treatment median IQR
1 COCOMO-II 3 21 s
1 COCONUT 4 24 s
2 TEAK 15 61 s
2 PEEKING2 19 58 s

Fig. 11: COCOMO vs newer methods. Displayed as per Figure 9.

To do this, the tunings table of Figure 5 was altered. For each row, all values below nominal
were replaced with their mean (and similarly with above-nominal values). For example, here
are the tunings for time before and after being reduced to below, nominal, above:

range vlow low nominal high vhigh xhigh
before 1.22 1.09 1.00 0.93 0.86 0.80

reduced 1.15 1.15 1.00 0.863 0.863 0.863
below above

4.3.2 Row Reductions

New COCOMO models are tuned only after collecting 100s of new examples. If that was
not necessary, we could look forward to multiple COCOMO models, each tuned to different
specialized (and small) samples of projects. Accordingly, we explore tuning COCOMO on
very small data sets.

To implement row reduction, training data was shuffled at random and training was
conducted on all rows or just the first four or eight rows (denoted r4,r8 respectively). Note
that, given the positive results obtained with r8 we did not explore larger training sets.

4.3.3 Column Reduction

Prior results tell us that row reduction should be accompanied by column reduction. A study
by Chen et al. [10] combines column reduction (that discards noisy or correlated attributes)
with row reduction. Their results are very clear: as the number of rows shrink, better esti-
mates come from using fewer columns. Miller [52] explains why this is so: the variance of a
linear model learned by minimizing least-squares error decreases as the number of columns
in the model decreases. That is, as the number of columns decrease, prediction reliability
can increase (caveat: if you remove too much, there is no information left for predictions).

Negative Results for Software Effort Estimation 17

Accordingly, this experiment sorts the attributes in the training set according to how
well they select for specific effort values. Let x ∈ ai denote the list of unique values seen
for attribute ai. Further, let there be N rows in the training data; let r(x) denote the n
rows containing x; and let v(r(x)) be the variance of the effort value in those rows. The
values of “good” attributes select most for specific efforts; i.e. those attributes minimize
E(σ, ai) =

∑
x∈ai

(
n/N ∗ v(r(x))

)
This experiment sorted all training data attributes by E(σ, ai) then kept the data in the

lower quarter or half or all of the columns (denoted c0.25 or c0.5 or c1 respectively). Note
that, due to the results of Figure 9, LOC was excluded from column reduction.

4.3.4 Results

Figure 12 compares results found when either all or some reduced set of ranges, rows,
and columns are used. Note our nomenclature: the COCONUT:c0.5,r8 results are those
seen after training on eight randomly selected training examples reduced to below, nominal,
above, while ignoring 50% of the columns.

Figure 12 suggests that it is defensible to learn a COCOMO model from just four to
eight projects. Most of the r8 results are top-ranked with the exception of the COC81 results
(but even there, the absolute difference between the top r8 results and standard COCOMO
is very small: just 2%).

Overall, Figure 12 suggests that the modeling effort associated with COCOMO-II could
be reduced. Hence, it need not be expensive to deploy parametric estimation at some new
site. Projects attributes do not need to be specified in great detail: a simple three point scale
will suffice: below, nominal, above. As to how much data is required for modeling, a mere
four to eight projects can suffice for calibration. Hence, it should be possible to quickly
build many COCOMO-like models for various specialized sub-groups using just a three-
point scale

5 Threats to Validity

Questions of validity arise in terms of how the projects (data-sets) are chosen for our exper-
iments. While we used all the data sets that could be shared between our team, it is not clear
if our results would generalize to other as yet unstudied data-sets. One the other hand, in
terms of the parametric estimation literature, this is one of the most extensive and elaborate
studies yet published.

To increase external validity, all the data used in this work is available on-line in the
PROMISE code repository. Also, our use of a leave-one-out experimental rig plus the public
availability of three of our four data sets (NASA93, COC81, NASA10) means that other
researchers would be able to reproduce exactly our rig on exactly the code used in this
study.

One source of bias in this study are the learners used for the defect prediction studies.
Data mining is a large and active field and any single study can only use a small subset of the
known data mining algorithms. Any case studies in SE data mining can only explore a small
subset of options, selected by the biases of the researcher. The best any researcher can hope
to do is state their biases and make some attempt to compensate for them. Accordingly:
– The biases of the authors of this paper made us select a parametric modeling method

(COCOMO) as the main modeling method.
– We then made a conscious decision to reverse those biases and explore non-parametric

methods (PEEKING2 and TEAK) as well as decision-tree methods (CART).

18 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

NASA10 (new NASA data up to 2010):
rank treatment median IQR
1 COCOMO-II 34 56 s
1 COCONUT 39 58 s
1 COCONUT:c1,r8 40 48 s
1 COCONUT:c0.5,r8 41 75 s
2 COCONUT:c1,r4 47 59 s
2 COCONUT:c0.25,r8 50 75 s
2 COCONUT:c0.5,r4 59 65 s
3 COCONUT:c0.25,r4 71 44 s

COC05 (new COCOMO data up to 2005):
rank treatment median IQR
1 COCOMO-II 13 51 s
2 COCONUT:c1,r8 19 53 s
2 COCONUT:c0.5,r8 22 57 s
2 COCONUT:c1,r4 23 78 s
2 COCONUT 23 82 s
2 COCONUT:c0.5,r4 24 68 s
2 COCONUT:c0.25,r4 26 73 s
2 COCONUT:c0.25,r8 27 72 s

NASA93 (NASA data up to 1993):
rank treatment median IQR
1 COCONUT 12 53 s
1 COCONUT:c0.5,r8 13 46 s
1 COCOMO-II 14 49 s
1 COCONUT:c0.25,r8 15 48 s
2 COCONUT:c1,r8 17 61 s
2 COCONUT:c1,r4 18 59 s
2 COCONUT:c0.25,r4 20 44 s
2 COCONUT:c0.5,r4 21 67 s

COC81 (original data from the 1981 COCOMO book):
rank treatment median IQR
1 COCOMO-II 3 18 s
1 COCONUT 4 29 s
1 COCONUT:c1,r4 5 15 s
1 COCONUT:c0.5,r4 5 20 s
2 COCONUT:c0.25,r4 6 30 s
2 COCONUT:c0.5,r8 7 22 s
2 COCONUT:c0.25,r8 7 36 s
2 COCONUT:c1,r8 8 25 s

Fig. 12: COCOMO vs simpler COCOMO. Displayed as per Figure 9.

6 Conclusion
The past few decades have seen a long line of innovative methods applied to effort esti-
mation. This paper has compared a sample of those methods to a decades-old parametric
estimation method.

Based on that study, we offered a negative result in which a decades old effort estimation
method performed as well, or better, as more recent methods:
– RQ1: just using LOC for estimation is far worse that parametric estimation over many

attributes (see §4.1);
– RQ2: new innovations in effort estimation have not superseded parametric estimation

(see §4.2);

Negative Results for Software Effort Estimation 19

– RQ3: Old parametric tunings are not out-dated (see §4.2);
– RQ4: It is possible to simplify parametric estimation with some range, row and column

pruning to reduce the cost of deploying those methods at a new site (see §4.3);
Hence, we conclude that in 2016, it is still a valid and a recommended practice to first try
parametric estimation. In these experiments, four to eight projects were enough to learn
good predictors (and we are exploring methods to reduce that even further). This is an im-
portant result since, given the rapid pace of change on software engineering, it is unlikely
organizations will have access to dozens and dozens of prior relevant projects to learn from.

Our take-away message here is that the choice of data to collect may be more important
than what learner is applied to that data. Certainly, it is true that not all projects can be
expressed in terms of COCOMO. But when there is a choice, we recommend collecting
data like Figure 3, and then processing that data using COCOMO-II.

7 Future Work
The negative results of this paper makes us question some of the newer (and supposedly
better) innovative techniques for effort estimation. The unique and highly variable charac-
teristics of SE project data place great limitation on the results obtained by naively applying
some brand-new algorithm. Perhaps one direction for future direction is to investigate how
innovative new techniques can extend (rather than replace) existing and successful estima-
tion methods.

Having endorsed the use of parametric methods such as COCOMO, it is appropriate to
discuss current plans for new versions of that approach. Recent changes in the software in-
dustry suggest it is time to revise COCOMO-II. The rise of agile methods, web services,
cloud services, parallelized software on multi-core chips, field-programmable-gate-array
(FPGA) software, apps, widgets, and net-centric systems of systems (NCSOS) have caused
the COCOMO II developers and users to begin addressing an upgrade to the 14-year-old
COCOMO II. Current discussions of a potential COCOMO III have led to a reconsidera-
tion of the old COCOMO 1981 development modes, as different development phenomena
appear to drive the costs and schedules of web-services, business data processing, real-time
embedded software, command and control, and engineering and scientific applications.

Additionally, while calibrating COCOMO II model and developing COCOMO III, we
were also seeing time-competitive Agile projects in well-jelled, domain-experienced rapid
development organizations, which demonstrates tremendous effort reduction and schedule
acceleration [21]. Finally, the emerging community-based software development, i.e. soft-
ware crowd sourcing [27], challenges the underlying assumptions of traditional software
estimation laws. Access to external workforce and competition factors are becoming critical
development influential factors and need to be further investigated.

Efforts to characterize these models and to gather data to calibrate models for dealing
with them are underway. Contributors to the definition and calibration are most welcome.

Acknowledgements
The research described in this paper was carried out, in part, at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the US National Aeronautics and
Space Administration. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not constitute or imply
its endorsement by the US Government.

References
1. A. Arcuri and L. Briand. A practical guide for using statistical tests to assess randomized algorithms in

software engineering. In ICSE’11, pages 1–10, 2011.

20 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

2. Martin Auer, Adam Trendowicz, Bernhard Graser, Ernst Haunschmid, and Stefan Biffl. Optimal project
feature weights in analogy-based cost estimation: Improvement and limitations. IEEE Trans. Softw. Eng.,
32:83–92, 2006.

3. Dan Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis, Lane
Department of Computer Science and Electrical Engineering, West Virginia University, 2007. Available
from https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443.

4. R. Black, R. Curnow, R. Katz, and M. Bray. Bcs software production data, final technical report radc-tr-
77-116. Technical report, Boeing Computer Services, Inc., March 1977.

5. B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
6. B. Boehm. Safe and simple software cost analysis. IEEE Software, pages 14–17, September/October

2000.
7. Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece, A. Winsor

Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo II. Prentice Hall, 2000.
8. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. 1984.
9. C.J. Burgess and Martin Lefley. Can genetic programming improve software effort estimation? a com-

parative evaluation. Information and Software Technology, 43(14):863–873, December 2001.
10. Zhihao Chen, Barry Boehm, Tim Menzies, and Daniel Port. Finding the right data for software cost

modeling. IEEE Software, 22:38–46, 2005.
11. Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can improve software cost estimation.

In PROMISE’05, 2005. Available from http://menzies.us/pdf/05/fsscocomo.pdf.
12. S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software engineering cost models.

IEEE Transaction on Software Engineerining, 25(4), July/August 1999.
13. P.R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.
14. A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes. How effective is tabu search

to configure support vector regression for effort estimation? In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, PROMISE ’10, pages 4:1–4:10, 2010.

15. R. Cordero, M. Costamagna, and E. Paschetta. A genetic algorithm approach for the calibration of
cocomo-like models. In 12th COCOMO Forum, 1997.

16. J. B. Dabney. Return on investment for IV&V, 2002-2004. NASA funded study. Results Available from
http://sarpresults.ivv.nasa.gov/ViewResearch/24.jsp.

17. Karel Dejaeger, Wouter Verbeke, David Martens, and Bart Baesens. Data mining techniques for software
effort estimation: A comparative study. IEEE Transactions on Software Engineering, 38:375–397, 2012.

18. Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. Mono. Stat. Appl. Probab.
Chapman and Hall, London, 1993.

19. F. Freiman and R. Park. Price software model - version 3: An overview. In Proceedings, IEEE-PINY
Workshop on Quantitative Software Models, IEEE Catalog Number TH 0067-9, pages 32–41, October
1979.

20. J. Herd, J. Postak, W. Russell, and J. Stewart. Software cost estimation study-study results, final technical
report, radc-tr-77-220. Technical report, Doty Associates, June 1977.

21. Dan Ingold, Barry Boehm, and Supannika Koolmanojwong. A model for estimating agile project process
and schedule acceleration. In ICSSP 2013, pages 29–35, 2013.

22. R. Jensen. An improved macrolevel software development resource estimation model. In 5th ISPA
Conference, pages 88–92, April 1983.

23. M. Jorgensen. The world is skewed: Ignorance, use, misuse, misunderstandings, and how to
improve uncertainty analyses in software development projects, 2015. CREST workshop, 2015,
http://goo.gl/0wFHLZ.

24. M. Jørgensen and T.M. Gruschke. The impact of lessons-learned sessions on effort estimation and
uncertainty assessments. Software Engineering, IEEE Transactions on, 35(3):368 –383, May-June 2009.

25. M. Jørgensen and M. Shepperd. A systematic review of software development cost estimation stud-
ies, January 2007. Available from http://www.simula.no/departments/engineering/
publications/J{\OT1\o}rgensen.2005.12.

26. Magne Jorgensen. A review of studies on expert estimation of software development effort. Journal of
Systems and Software, 70(1-2):37–60, February 2004.

27. M. Li K. Mao, Y. Yang and M. Harman. Pricing crowdsourcing-based software development tasks. In
ICSE, New Ideas and Emerging Results, pages 1205–1208, San Francisco, CA, USA, 2013.

28. G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd. Experiences using casebased reasoning to predict
software project effort, 2000.

29. Vigdis By Kampenes, Tore Dybå, Jo Erskine Hannay, and Dag I. K. Sjøberg. A systematic review of
effect size in software engineering experiments. Information & Software Technology, 49(11-12):1073–
1086, 2007.

https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443
http://menzies.us/pdf/05/fsscocomo.pdf
http://sarpresults.ivv.nasa.gov/ViewResearch/24.jsp
http://www.simula.no/departments/engineering/publications/J{\OT1\o }rgensen.2005.12
http://www.simula.no/departments/engineering/publications/J{\OT1\o }rgensen.2005.12

Negative Results for Software Effort Estimation 21

30. Jacky Wai Keung. Empirical evaluation of analogy-x for software cost estimation. In ESEM ’08: Inter-
national Symposium on Empirical Software Engineering and Measurement, pages 294–296, New York,
NY, USA, 2008. ACM.

31. Jacky Wai Keung and Barbara Kitchenham. Experiments with analogy-x for software cost estimation. In
ASWEC ’08: Proceedings of the 19th Australian Conference on Software Engineering, pages 229–238,
Washington, DC, USA, 2008. IEEE Computer Society.

32. Jacky Wai Keung, Barbara A. Kitchenham, and David Ross Jeffery. Analogy-x: Providing statistical
inference to analogy-based software cost estimation. IEEE Trans. Softw. Eng., 34(4):471–484, 2008.

33. C. Kirsopp and M. Shepperd. Making inferences with small numbers of training sets. IEEE Proc., 149,
2002.

34. E. Kocaguneli, T. Menzies, A. Bener, and J. Keung. Exploiting the essential assumptions of analogy-
based effort estimation. IEEE Transactions on Software Engineering, 28:425–438, 2012. Available from
http://menzies.us/pdf/11teak.pdf.

35. E. Kocaguneli, T. Menzies, and J.W. Keung. On the value of ensemble effort estimation. Software
Engineering, IEEE Transactions on, 38(6):1403–1416, Nov 2012.

36. Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David Cok, and Ray Madachy. Active learning and
effort estimation: Finding the essential content of software effort estimation data. IEEE Transactions on
Software Engineering, 39(8):1040–1053, 2013.

37. Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. Transfer learning in effort estimation. Empirical
Software Engineering, pages 1–31, 2014.

38. Ekrem Kocaguneli, Thomas Zimmermann, Christian Bird, Nachiappan Nagappan, and Tim Menzies.
Distributed development considered harmful? In ICSE, pages 882–890, 2013.

39. Jingzhou Li and Guenther Ruhe. A comparative study of attribute weighting heuristics for effort estima-
tion by analogy. International Symposium on Empirical Software Engineering, page 74, 2006.

40. Jingzhou Li and Guenther Ruhe. Decision support analysis for software effort estimation by analogy.
In PROMISE ’07: Proceedings of the Third International Workshop on Predictor Models in Software
Engineering, page 6, 2007.

41. Jingzhou Li and Guenther Ruhe. Analysis of attribute weighting heuristics for analogy-based software
effort estimation method aqua+. Empirical Softw. Engg., 13:63–96, February 2008.

42. Y. Li, M. Xie, and Goh T. A study of the non-linear adjustment for analogy based software cost estima-
tion. Empirical Software Engineering, pages 603–643, 2009.

43. C. Lokan and E. Mendes. Cross-company and single-company effort models using the isbsg database: a
further replicated study. In The ACM-IEEE International Symposium on Empirical Software Engineer-
ing, November 21-22, Rio de Janeiro, 2006.

44. C. Lokan and E. Mendes. Applying moving windows to software effort estimation. In Empirical Software
Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium on, pages 111–122,
2009.

45. Tim Menzies, Andrew Butcher, David R. Cok, Andrian Marcus, Lucas Layman, Forrest Shull, Burak
Turhan, and Thomas Zimmermann. Local versus global lessons for defect prediction and effort estima-
tion. IEEE Trans. Software Eng., 39(6):822–834, 2013. Available from http://menzies.us/pdf/
12localb.pdf.

46. Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort estimation.
IEEE Transactions on Software Engineering, November 2006. Available from http://menzies.
us/pdf/06coseekmo.pdf.

47. Tim Menzies, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald. Problems with precision.
IEEE Transactions on Software Engineering, September 2007. http://menzies.us/pdf/
07precision.pdf.

48. Tim Menzies, Ekrem Kocagüneli, Leandro Minku, Fayola Peters, and Burak Turhan. Chapter 20 -
Ensembles of Learning Machines. In Sharing Data and Models in Software Engineering, pages 239–
265. 2015.

49. Tim Menzies, Fayola Peters, and Andrian Marcus. Ooops... (errata report for “Better Cross-Company
Learning”). In MSR’13, 2013. http://www.slideshare.net/timmenzies/msr13-mistake.

50. Tim Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for calibrating software effort
models. In Proceedings, ICSE, 2005. Available from http://menzies.us/pdf/04coconut.
pdf.

51. Tim Menzies and Martin Shepperd. Special issue on repeatable results in software engineering predic-
tion. Empirical Software Engineering, 17(1-2):1–17, 2012.

52. A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002.
53. Leandro L. Minku and Xin Yao. A principled evaluation of ensembles of learning machines for software

effort estimation. In Industrial Management & Data Systems, volume 106, pages 9:1–9:10, 2011.

http://menzies.us/pdf/11teak.pdf
http://menzies.us/pdf/12localb.pdf
http://menzies.us/pdf/12localb.pdf
http://menzies.us/pdf/06coseekmo.pdf
http://menzies.us/pdf/06coseekmo.pdf
http://menzies.us/pdf/07precision.pdf
http://menzies.us/pdf/07precision.pdf
http://menzies.us/pdf/04coconut.pdf
http://menzies.us/pdf/04coconut.pdf

22 Tim Menzies, Ye Yang, George Mathew, Barry Boehm, Jairus Hihn

54. Leandro L. Minku and Xin Yao. Ensembles and locality: Insight on improving software effort estimation.
In Information and Software Technology, volume 55, pages 1512–1528, 2013.

55. Leandro L. Minku and Xin Yao. How to make best use of cross-company data in software effort estima-
tion? In ICSE’14, pages 446–456, 2014.

56. Nikolaos Mittas and Lefteris Angelis. Ranking and clustering software cost estimation models through
a multiple comparisons algorithm. IEEE Trans. Software Eng., 39(4):537–551, 2013.

57. Kjetil Molokken-Pstvold, Nils Christian Haugen, and Hans Christian Benestad. Using planning poker
for combining expert estimates in software projects. Journal of Systems and Software, 81:21062117,
December 2008.

58. Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How We Refactor, and How We Know It.
IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

59. Ingunn Myrtveit, Erik Stensrud, and Martin Shepperd. Reliability and validity in comparative studies of
software prediction models. IEEE Trans. Softw. Eng., 31(5):380–391, May 2005.

60. Vasil Papakroni. Data carving: Identifying and removing irrelevancies in the data. Master’s thesis, Lane
Department of Computer Science and Electrical Engineering, West Virginia Unviersity, 2013.

61. R. Park. The central equations of the price software cost model. In 4th COCOMO Users Group Meeting,
November 1988.

62. Carol Passos, Ana Paula Braun, Daniela S. Cruzes, and Manoel Mendonca. Analyzing the impact of
beliefs in software project practices. In ESEM’11, 2011.

63. K.R. Popper. Conjectures and Refutations,. Routledge and Kegan Paul, 1963.
64. D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical software engineering. In

Proceedings of ASE’11, 2011.
65. L. Putnam. A macro-estimating methodology for software development. In Proceedings, IEEE COMP-

CON76 Fall, pages 38–43, September 1976.
66. Giuseppe Scanniello, Carmine Gravino, Andrian Marcus, and Tim Menzies. Class level fault prediction

using software clustering. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 640–645. IEEE, 2013.

67. Mary Shaw. The coming-of-age of software architecture research. In Proceedings of the 23rd Interna-
tional Conference on Software Engineering, ICSE ’01, pages 656–, Washington, DC, USA, 2001. IEEE
Computer Society.

68. M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE Transactions
on Software Engineering, 23(12), November 1997. Available from http://www.utdallas.edu/

˜rbanker/SE_XII.pdf.
69. Martin J. Shepperd and Steven G. MacDonell. Evaluating prediction systems in software project estima-

tion. Information & Software Technology, 54(8):820–827, 2012.
70. Spareref.com. Nasa to shut down checkout & launch control system, August 26, 2002. http://www.

spaceref.com/news/viewnews.html?id=475.
71. Clayton Stanley and Michael D Byrne. Predicting tags for stackoverflow posts. In Proceedings of ICCM,

volume 2013, 2013.
72. R. Valerdi. Convergence of expert opinion via the wideband delphi method: An application in

cost estimation models. In Incose International Symposium, Denver, USA, 2011. Available from
http://goo.gl/Zo9HT.

73. Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based software effort estimation.
Empirical Softw. Engg., 4(2):135–158, 1999.

74. C. Walston and C. Felix. A method of programming measurement and estimation. IBM Systems Journal,
16(1):54–77, 1977.

75. Peter A. Whigham, Caitlin A. Owen, and Stephen G. Macdonell. A baseline model for software effort
estimation. ACM Trans. Softw. Eng. Methodol., 24(3):20:1–20:11, May 2015.

76. R. Wolverton. The cost of developing large-scale software. IEEE Trans. Computers, pages 615–636,
June 1974.

http://www.utdallas.edu/~rbanker/SE_XII.pdf
http://www.utdallas.edu/~rbanker/SE_XII.pdf
http://www.spaceref.com/news/viewnews.html?id=475
http://www.spaceref.com/news/viewnews.html?id=475

	1 Introduction
	2 About Effort Estimation
	3 Experimental Methods
	4 Results
	5 Threats to Validity
	6 Conclusion
	7 Future Work

