Empir Software Eng @ CrossMark
https://doi.org/10.1007/s10664-017-9582-5

How effective are mutation testing tools? An empirical
analysis of Java mutation testing tools with manual
analysis and real faults

Marinos Kintis! © . Mike Papadakis! -
Andreas Papadopoulos? - Evangelos Valvis? -
Nicos Malevris? - Yves Le Traon!

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Mutation analysis is a well-studied, fault-based testing technique. It requires
testers to design tests based on a set of artificial defects. The defects help in performing test-
ing activities by measuring the ratio that is revealed by the candidate tests. Unfortunately,
applying mutation to real-world programs requires automated tools due to the vast number
of defects involved. In such a case, the effectiveness of the method strongly depends on the
peculiarities of the employed tools. Thus, when using automated tools, their implementation
inadequacies can lead to inaccurate results. To deal with this issue, we cross-evaluate four
mutation testing tools for Java, namely PIT, MUJAVA, Major and the research version of PIT,
PITRry, with respect to their fault-detection capabilities. We investigate the strengths of the
tools based on: a) a set of real faults and b) manual analysis of the mutants they introduce.
We find that there are large differences between the tools’ effectiveness and demonstrate

Communicated by: Michaela Greiler and Gabriele Bavota

< Marinos Kintis
marinos.kintis@uni.lu

Mike Papadakis
michail.papadakis @uni.lu

Andreas Papadopoulos
p3100148 @aueb.gr

Evangelos Valvis
p3130019 @aueb.gr

Nicos Malevris
ngm@aueb.gr

Yves Le Traon
yves.letraon @uni.lu

Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg,
Luxembourg, Luxembourg

Department of Informatics, Athens University of Economics and Business, Athens, Greece

Published online: 21 December 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9582-5&domain=pdf
http://orcid.org/0000-0002-9068-6514
mailto:marinos.kintis@uni.lu
mailto:michail.papadakis@uni.lu
mailto:p3100148@aueb.gr
mailto:p3130019@aueb.gr
mailto:ngm@aueb.gr
mailto:yves.letraon@uni.lu

Empir Software Eng

that no tool is able to subsume the others. We also provide results indicating the applica-
tion cost of the method. Overall, we find that PITry achieves the best results. In particular,
PITry outperforms the other tools by finding 6% more faults than the other tools combined.

Keywords Mutation testing - Fault detection - Tool comparison - Human study - Real
faults

1 Introduction

Software testing forms the most popular practice for identifying software defects (Ammann
and Offutt 2008). It is performed by exercising the software under test with test cases that
check whether its behaviour is as expected. To analyse test thoroughness, several criteria,
which specify the requirements of testing, i.e., what constitutes a good test suite, have been
proposed. When the criteria requirements have been fulfilled they provide confidence on
the function of the tested systems.

Empirical studies have demonstrated that mutation testing is effective in revealing faults
(Chekam et al. 2017), and capable of subsuming, or probably subsuming, almost all the
structural testing techniques (Ammann and Offutt 2008; Jia and Harman 2011). Mutation
testing requires test cases that reveal the artificially injected defects. This practice is par-
ticularly powerful as it has been shown that when test cases are capable of distinguishing
the behaviour of the original (non-mutated) and the defective (mutant) programs, they are
also capable of distinguishing the expected behaviour from the faulty one (Chekam et al. 2017).

The defective program versions are called mutants and they are typically introduced
using syntactic transformations. Clearly, the effectiveness of the technique depends on the
mutants that are employed. For instance if the mutants are trivial, i.e., they are found
by almost every test that exercises them, they do not contribute to the testing process.
Therefore, testers performing mutation testing should be cautious about the mutants they
use. Recent research has demonstrated that the method is so sensitive to the employed
mutants that it can lead experiments to incorrect conclusions (Papadakis et al. 2016). There-
fore, particular care has to be taken when selecting mutants in order to avoid potential
threats to validity. Similarly, the use of mutation testing tools can lead to additional threats
to validity or incompetent results (due to the peculiarities of the mutation testing tools
employed).

To date, many mutation testing tools have been developed and used by researchers and
practitioners (Papadakis et al. 2017). However, a key open question is how effective these
tools are and how reliable are the research results based on them. Thus, in this paper, we
seek to investigate the fault revelation ability of popular mutation testing tools with the goal
of identifying their differences, weaknesses and strengths. In short, our aim is threefold:
a) to inform practitioners about the effectiveness and relative cost of the studied mutation
testing tools, b) to provide constructive feedback to tool developers on how to improve their
tools, and c) to make researchers aware of the tools’ inadequacies.

To investigate these issues, we compare the fault revelation ability of four mutation testing
tools on a set of real faults from the Defects4] benchmark (Just et al. 2014). These tools are:
three widely-used tools for Java (Papadakis et al. 2017), namely MUJAVA (Ma et al. 2005),
MAJOR (Just et al. 2011) and PIT (Coles 2010) and the research version of PIT, PITgry
(Coles et al. 2016). We also included PITry in the tools studied because it is an improved
version of PIT and our initial results suggest that it is a more effective version of the tool
(Laurent et al. 2017a). We complement our analysis using human analysis and comparison

@ Springer

Empir Software Eng

of the tools to detect potential weaknesses and suggest improvements. Our results demon-
strate that PITry is more effective than the other tools, managing to reveal approximately
6% more real faults, with a statistically significant difference. However, due to some known
limitations of PITRy, it cannot fully subsume the other tools.

Regarding a reference effectiveness measure (control comparison at 100% coverage
level), we found that PITry scores best with 91%, followed by MUJAVA with 85% and
MAJOR with 80%. These results suggest that existing tools have a much lower effectiveness
than what they should or what researchers believe they ought to. Therefore, our findings
empbhasise the need to build a reference mutation testing tool that will be strong enough and
capable of at least subsuming the existing mutation testing tools.

Another concern, when using mutation, is its application cost. This is mainly due to the
manual effort involved in constructing test cases and due to the effort needed for deciding
when to stop testing. The former point regards the need for generating test cases whilst the
latter pertains to the identification of the so-called equivalent mutants, i.e., mutants that are
functionally equivalent to the original program. Both these tasks are labour-intensive and
should be performed manually. Our manual study shows that the mutants of MUJAVA (for
the subjects studied) require 138 test cases in order to be killed, the ones of MAJOR 97,
the ones of PITry 105 and the ones of PIT 80. With respect to the number of equivalent
mutants, MUJAVA, MAJOR, PITry and PIT produced 203, 94, 382 and 43, respectively.

This paper forms an extended study of our previous one (Kintis et al. 2016), published
in the 16™ International Working Conference on Source Code Analysis and Manipulation,
which investigated the effectiveness of MUJAVA, MAJOR and PIT based on manual analysis.
We extend our study by investigating the actual fault revelation ability of the tools, based
on a benchmark set of real faults and by considering the research version of the PIT tool
(Coles et al. 2016). The extended results demonstrate that PITry forms the most prominent
choice with respect to fault revelation as it outperforms the other tools both in terms of fault
and mutant detection. Another new finding is that MUJAVA does not operate well on most
of the subjects of the benchmark set we study and that PIT and MAJOR perform similarly.
Overall, the contributions of the present paper can be summarised in the following points:

1. A controlled study investigating the fault revelation ability of four mutation testing tools
for the Java programming language, including the three most popular ones.

2. An extensive, manual study of 6,493 mutants investigating the strengths and weak-
nesses of the Java mutation testing tools considered.

3. Insights on the relative cost of the tools’ application in terms of the number of equivalent
mutants that have to be manually analysed and the number of test cases that have to be
generated.

4. Recommendations on specific mutation operators that need to be implemented in these
tools in order to improve their effectiveness.

The rest of the paper is organised as follows: Section 2 presents the necessary background
information and Section 3 presents the posed research questions and the adopted experi-

mental procedure. Sections 4 and 5 discuss our results and potential threats to the validity.
Finally, Section 6 details the previous research studies and Section 7 concludes the paper.

2 Background

This section details mutation testing and presents the studied mutation testing tools.

@ Springer

Empir Software Eng

2.1 Mutation Testing

Mutation testing is a well-studied technique that introduces artificial faults to the program
under test, which is termed the original program in mutation’s terminology. According to
the findings of the most recent survey in the area (Papadakis et al. 2017), which summarises
the advances in the field between 2008 and 2017, mutation enjoys increased research interest
with a growing trend of high-quality publications per year.

Mutation induces simple syntactic changes to the program under test, creating many
different versions of the original program, termed mutants. Mutants are produced using a
set of syntactic rules called mutation or mutant operators. The process requires practitioners
to design test cases that are able to distinguish the mutants’ behaviour from that of the
original program. In essence, these test cases should force the original program and its
mutants to result in different outputs, i.e., they should kill the mutants. In this study, we
investigate the fault-revealing ability of mutants (produced by the tools studied) based on
real faults. We say that a mutant reveals a fault iff the test cases that kill the mutant also lead
to the discovery of the underlying fault.

Unfortunately, not all mutants can be killed. Some mutants are semantically equivalent
to the original program but syntactically different, thus, they result in the same output as the
original program for all possible inputs. These mutants are called equivalent mutants. As
mentioned earlier, test cases are evaluated based on their ability to kill mutants. This effec-
tiveness measure is called mutation score and is the ratio of killed mutants to the killable
ones.! A test suite that kills all killable mutants, i.e. achieves an 100% mutation score, is
called mutation adequate test suite.

The problem of identifying and removing equivalent mutants is known as the Equivalent
Mutant Problem (Kintis 2016; Kintis et al. 2017a; Papadakis et al. 2015). Regrettably, the
Equivalent Mutant Problem has been shown to be undecidable in its general form (Budd and
Angluin 1982), thus, no complete, fully automated solution can be devised to tackle it. This
problem is largely considered an open issue in mutation’s literature, but recent advances pro-
vide promising results towards practical, automated solutions, albeit partial, e.g., Papadakis
et al. (2015), Kintis et al. (2015), and Kintis and Malevris (2015).

Another problem of mutation testing is that it produces many mutants that are redun-
dant, i.e., they are killed when other mutants are killed (Kintis et al. 2010). These mutants
can inflate the mutation score making it skew. Thus, previous research has shown that these
mutants can have harmful effects on the mutation score measurement with the effect of lead-
ing experiments to incorrect conclusions (Papadakis et al. 2016). Therefore, when mutation
testing is used as a comparison basis, there is a need to deflate the mutation score measure-
ment by removing redundant mutants. This can be done by using a subset of the generated
mutants which is representative of all the generated ones in the sense that when its mutants
are killed, all killable mutants (of the generated set) are also killed.

A way to approximate this representative set was first introduced by Kintis et al. (2010)
with the notion of the disjoint mutants. Disjoint mutants approximate the minimum “subset
of mutants that need to be killed in order to reciprocally kill the original set”. Ammann et al.
(2014) presented another way to approximate this set based on the notion of dynamic mutant
subsumption. Given a test set T, mutant A dynamically subsumes mutant B if the test cases
that kill A also kill B and A is killable based on T'. In our study, we use disjoint mutants,
computed following the best practices presented in the recent survey in the area (Papadakis

IThe killable mutant set is the set of all the generated mutants excluding the equivalent ones.

@ Springer

Empir Software Eng

et al. 2017), to remove mutant redundancy and utilise the disjoint mutation score as a more
accurate alternative of the mutation score (Papadakis et al. 2016). Similarly to the definition
of the mutation score, the disjoint mutation score is the ratio of the killed disjoint mutants
to the total disjoint ones.

Mutation’s effectiveness depends largely on the used mutants (Ammann and Offutt
2008). Thus, the actual implementation of mutation testing tools can impact the effective-
ness of the technique. Indeed, many different mutation testing tools exist that are based on
different architectural designs and implementations. As a consequence, it is not possible for
researchers, and practitioners alike, to make an informed decision on which tool to use and
on the strengths and weaknesses of the tools.

This paper addresses the aforementioned issue by analysing the effectiveness of four
mutation testing tools for the Java programming language, namely MUJAVA, MAJOR, PIT
and PITRry, based on real faults and on the results of an extensive manual study. In particular,
we evaluate the tools based on their fault-revealing ability, i.e., based on the number of faults
their mutants can reveal and on their mutant-killability, i.e., on the ability of the produced
mutants to kill the mutants of the other tools. Before presenting the conducted empirical
study, the considered tools and their implementation details are introduced.

2.2 Java Mutation Testing Tools

Our recent survey, summarising 10 years of mutation testing research (2008-2017), con-
cluded that mutation is a well-studied technique with a plethora of mutation testing tools
available (Papadakis et al. 2017). In the present study, we choose to work on Java since it
is widely used by practitioners and forms the subject of most of the recent research papers.
Thus, we selected to evaluate the effectiveness, in term of real-fault detection and mutant-
killability, of the most popular Java mutation testing tools. In our survey (Papadakis et al.
2017), we analysed more than 400 papers related to mutation research and found that the
most frequently used Java mutation testing tools are MUJAVA (Ma et al. 2005), MAJOR
(Just et al. 2011) and PIT (Coles 2010). Thus, in this study we focus on these tools and the
research version of PIT, PITry (Coles et al. 2016), whose initial evaluation suggested that it
outperforms PIT (Laurent et al. 2017a). In the following, these tools are briefly introduced.

2.2.1 MUJAVA — Source Code Manipulation

MUJAVA (Ma et al. 2005) is one of the oldest Java mutation testing tools and has been used
in many mutation testing studies. It works by directly manipulating the source code of the
program under test and supports both method-level and class-level mutation operators. The
former handle primitive features of programming languages, such as arithmetic operators,
whereas the latter handle object-oriented features, such as inheritance. Note that MUJAVA
adopts the selective mutation approach (Offutt et al. 1996), i.e., it implements a set of 5
operators whose mutants subsume the mutants generated by other mutation operators not
included in this set. Table 1 presents the method-level operators of the tool, along with a suc-
cinct description of the performed changes. For instance, AORB replaces binary arithmetic
operators with each other and AODS deletes the ++ and - - arithmetic operators.

2.2.2 PIT - Bytecode Manipulation

PIT (Coles 2010) is a mutation testing framework that targets primarily the industry but
has also been used in many research studies. PIT works by manipulating the resulting

@ Springer

Empir Software Eng

bytecode of the program under test and employs mutation operators that affect primitive
programming language features, similarly to the method-level operators of MUJAVA. Table 2
describes the corresponding operators. For example, the “Void Method Calls” operator
deletes method calls of methods that do not return a value and the “Non Void Method Calls”
operator removes method calls of methods that return a value, replacing the method call
with a predefined value, e.g. null. By comparing this table with Table 1, it can be seen
that PIT implements differently specific mutation operators of MUJAVA, for instance, the
changes imposed by PIT’s Conditionals Boundary (CB) operator are a subset of the ones
of MUJAVA’s Relational Operator Replacement (ROR). Additionally, it employs mutation
operators that are not implemented in MUJAVA, e.g. the Void Method Calls (VMC) and Con-
structor Calls (CC) operators. Finally, it should be mentioned that since PIT’s changes are
performed at the bytecode level, they cannot always be mapped onto source code ones.

Table 1 Mutation operators of MUJAVA

Mutation operator Description

AORB: Arithmetic Operator {(op1,0p2) | op1,0p2 € {+, -, %, /, %} AN op1 # op2}
Replacement Binary

AORS: Arithmetic Operator {(op1,0p2) | op1,0p2 € {++, --} A op1 # op2}
Replacement Short-Cut

AOIU: Arithmetic Operator {v, -v)}

Insertion Unary

AOIS: Arithmetic Operator {v, =-v), v, v--), (v, ++V), (v, v++)}

Insertion Short-cut

AODU: Arithmetic Operator {(+v,v), (-v,v)}

Deletion Unary

AODS: Arithmetic Operator {(--v,v), v=-=,V), (++v, V), (V++,V)}

Deletion Short-cut

ROR: Relational Operator {((aopb), false), ((aopb), true), (op1, op2) | op1,0p2 €
Replacement {>, >=, <, <=,==, =} Aop| # op2}

COR: Conditional Operator {(op1,0p2) | op1,0p2 € {&&, | |, "} Aop1 # op2}
Replacement

COD: Conditional Operator {(\cond, cond)}

Deletion

COLI: Conditional Operator {(cond, \cond)}

Insertion

SOR: Shift Operator Replacement {(op1,0p2) | op1,0p2 € {>>, >>>, <<} Aop| # opa}
LOR: Logical Operator {(op1,0p2) | op1,0p2 € {&, |, } Aop1 # opa)}
Replacement

LOLI: Logical Operator Insertion {

LOD: Logical Operator Deletion {(~v, M)}
ASRS: Short-Cut Assignment {(op1, op2) op1, op2 S {+=, -=, x=,

1
Operator Replacement /=, %=, &=, |=" =, >>=,>>>=, <<=} Aop| # op2}

@ Springer

Empir Software Eng

Table 2 Mutation operators of

PIT

Mutation operator

Description

AP: Argument
Propagation

CB: Conditionals
Boundary

CC: Constructor
Calls

I: Increments

IC: Inline Constant

IN: Invert Negatives
M: Math

MYV: Member
Variable
NC: Negate

Conditionals

NVMC: Non Void
Method Calls
RC: Remove

Conditionals

RI: Remove
Increments

RS: Remove
Switch

RV: Return Values

S: Switch

VMC: Void
Method Calls

{(nonVoidMethodCall(..., par), par)}

{(op1,0p2) | (0p1, 0p2) € {(<, <=),
(<=, 9, (>, >=), (>=,>)}}
{(new AClass(),null)}

{(op1, 0p2) | op1, 0p2 € {++, --}A

op1 # op2}

{(c1, 2) [(e, c2) € {(1,0),

((int) x, x+1), (1.0, 0.0), (2.0, 0.0),
((float) x, 1.0), (true, false),
(false, true)}}

{(v, -»)}

{(op1, 0p2) | (0p1, 0p2) € {(+, -),
(=00, (5, s (%), (3, %), (& |,

(], &), (", &), (<<, >>), (>>, <<),

(>>>, <<)}}

{(member_var=. .., member_var=b) | b €
{false, 0,0.0, "\u0000’,null}}
{(op1, 0p2) | (0p1, 0p2) € {(==,

1=), (1=, ==), (<=, >), (>=, <),

(<,>=), (5, <=)l}
{(nonVoidMethodCall(), c¢) | c €
{false, 0,0.0, "\u0000’,null}}
Removes or negates a conditional statement
to force or prevent the execution of the
guarded statements, e.g. {((a op b), true)
or ((LHS && RHS), RHS)}

{(--v,v), (v=-=,v), (++v, V), (v++,v)}

Changes all labels of the switch to the
default one

{(returna, returnb) | (a,b) €

{(true, false), (false, true), (0, 1),
((int) x, 0), ((Long) x, x+1), ((float) x,
-(x+1.0)), (NAN, 0), (non-null, null),
(null, throw RuntimeException)}}
Replaces the switch’s labels with the
default one and vice versa (only for the

first label that differs)

{(voidMethodCall(), @)}

@ Springer

Empir Software Eng

Table 3 Mutation operators of MAJOR

Mutation operator

Description

AOR: Arithmetic Operator Replacement
LOR: Logical Operator Replacement
COR: Conditional Operator
Replacement

ROR: Relational Operator

Replacement

SOR: Shift Operator Replacement
ORU: Operator Replacement Unary
STD: Statement Deletion Operator

LVR: Literal Value Replacement

{(op1,0p2) | op1,0p2 € {+, -, %, /, %} A op1 # op2}
{(op1,0p2) | op1, 0p2 € {&, |} Aop1 # opa}

{(&&, op1), (||, 0p2) | op1 € {==, LHS, RHS, false}, opy €
{!=, LHS, RHS, true}}

{(>,0p1), (<, 0p2), (>=, 0p3), (<=, 0p4), (==, 0ps), (1=, 0pe) |
op1 € {>=, !=, false}, opy € {<=, !=, false}, op3 €

{>, ==, true}, ops € {<, ==, true}, ops € {<=, >=,
false, LHS, RHS}, opg € {<, >, true, LHS, RHS}}
{(op1,0p2) | op1, 0p2 € {>>, >>>, <<} Aop1 # op2}
{(op1,0p2) | op1,0p2 € {+, -, ~} Aop1 # opa}

{(--v,v), v--,v), (++v, V), (v++,V),

(aMethodCall(), @), (aop1 b, @) |op; €

{+=, -=, x=, /=, %=, &=, |=,"

{(c1, c2) | (c1, c2) € {(0, 1), (0, =1),

=, >>=, >>>=, <<=}}

(c1, —c1), (c1,0), (true, false), (false, true)}

2.2.3 MAJOR — AST MANIPULATION

MATJOR (Just et al. 2011) is a mutation testing framework whose architectural design places
it between the aforementioned ones: it manipulates the abstract syntax tree (AST) of the
program under test. MAJOR employs mutation operators that have similar scope to the
previously-described ones. The implemented mutation operators of the tool are based on
selective mutation, similarly to MUJAVA. Table 3 summarises MAJOR’s operators and their
imposed changes. For instance, the tool implements the “Logical Operator Replacement™
which replaces logical operators with each other and the “Conditional Operator Replace-
ment” which replaces the “&&” and ““||” conditional operators with predefined sets of
operators and constructs, e.g. the left-hand side (LHS) or the right-hand side (RHS) of the
expression that contains the “&&” and ““||” operators. Compared to MUJAVA’s operators, it
is evident that the two tools share many mutation operators, but implement them differently.
Compared to PITry, most operators of MAJOR impose a superset of changes with respect
to the corresponding ones of PITry and there are operators of PITry that are completely
absent from MAJOR.

2.2.4 PITRy — the Research Version of PIT

PITRry (Coles et al. 2016; Laurent et al. 2017b) is the research version of PIT (Coles 2010)
which greatly extends PIT’s supported mutation operators with the aim of improving the
tool’s effectiveness. For example, it implements the “Absolute Value Insertion” operator
which inserts the negation of arithmetic variables and the “Constant Replacement” operator
which replaces constants with predefined values or negates them. As can be seen from
Table 4, which describes the tool’s supported operators, PITry’s operators form a superset
of the ones supported by PIT. Additionally, the tool supports most of MUJAVA’s operators
and, similarly to PIT, it employs mutation operators that are not implemented in MUJAVA.

@ Springer

Empir Software Eng

Table 4 Mutation operators of PITry

Mutation operator

Description

ABS: Absolute Value Insertion
AOD: Arithmetic Operator Deletion

AOR: Arithmetic Operator Replacement

AP: Argument Propagation
CRCR: Constant Replacement

CB: Conditionals Boundary
CC: Constructor Calls
I: Increments

IC: Inline Constant

IN: Invert Negatives
M: Math

MYV: Member Variable

NC: Negate Conditionals

NVMC: Non Void Method Calls

OBBN: Bitwise Operator Mutation

ROR: Relational Operator

Replacement

RC: Remove Conditionals

RI: Remove Increments
RS: Remove Switch
RV: Return Values

S: Switch

UOL: Unary Arithmetic Operator
Insertion
VMC: Void Method Calls

{(v, -»)}

{((@aopb), a), (aopb), b)) |op € {+, -, x, /, 5}}

{(op1,0p2) | op1,0p2 € {+, -, %, /, %} A op1 # op2}
{(nonVoidMethodCall(..., par), par)}

{(const, —const), (const, 0), (const, 1), (const, const — 1),
(const, const + 1)}

{(op1,0p2) | (op1,0p2) € {(<, <=), (<=, <), (>, >=), (>=, »)}}
{(new AClass(),null)}

{(op1, 0p2) | op1, 0p2 € {++, --} Aop1 # opa}

{(c1,c2) | (c1,¢2) € {(1,0),

((int) x, x+1), (1.0, 0.0), (2.0, 0.0),

((float) x, 1.0), (true, false), (false, true)}}
{(-v,m)}

{(op1, 0p2) | (0p1,0p2) € {(+, -),

(=), (5,), (%), (5, %), (&,),

(], &), (", &), (<<, >>), (>>, <<), (>>>, <<)}}
{(member_var=...,member_var=b) | b € {false,0,0.0,
‘\u0000’,null}}

{(op1,0p2) | (op1,0p2) € {(==, !=), (1=, ==), (<=, >), (>=,2),
(<,>=), G, <=)l}

{(nonVoidMethodCall(), c) | c € {false,0, 0.0,
‘\u0000’,null}}

{(op1. 0p2) | op1, 0p2 € (&, |} Aop1 # op2}

{(op1, op2) | op1,0p2 € {>, >=, <, <=, ==, =} Aop| # op2}

Removes or negates a conditional statement to force or
prevent the execution of the guarded statements, e.g.
{((aopb), true) or ((LHS && RHS), RHS)}
{(--v,v), v--,v), (++v, V), v++,v)}

Changes all labels of the switch to the default one
{(returna, returnb) | (a,b) €

{(true, false), (false, true), (0, 1),

((int) x, 0), ((Long) x, x+1), ((float) x,
-(x+1.0)), (NAN, 0), (non-null, null),

(null, throw RuntimeException)}}

Replaces the switch’s labels with the default one and vice
versa (only for the first label that differs)

{v, ==v), v, v--), (v, ++v), (v, v++)}

{(voidMethodCall(), @)}

@ Springer

Empir Software Eng

3 Design of the Experiment

This section presents the settings of our study, by detailing the research questions, the
followed procedure and the design of our experiments.

3.1 Research Questions

Mutation testing is popular and widely-used in research (Papadakis et al. 2017). In view of
this, it is mandatory to ensure that mutation testing tools are powerful and do not bias (due
to implementation inadequacies or missing mutation operators) existing research results.
Therefore, our first question regards the effectiveness of the studied tools (measured in
terms of real fault revealing ability). Hence we ask:

RQ1: How do the studied tools perform in terms of real-fault detection?

This comparison enables checking whether mutation testing tools have different fault
revelation capabilities when applied to large real world projects. In case we find that the
tools have differences in terms of fault detection, we demonstrate that the choice of muta-
tion testing tools really matters. Given that the effectiveness ranking offered by the above
comparison is bounded to the reference fault set and the automatically generated test suites
used, an emerging question is how the tools compare with each other when mutation ade-
quate test suites are used. In other words, we seek to investigate how effective are the studied
tools in killing the mutants of the other tools and we ask:

RQ2: Does any mutation testing tool lead to tests that kill all the killable mutants produced
by the other tools?

This comparison enables checking whether the mutation adequate tests of one tool can
kill all the killable mutants of the others. A positive answer to the above question indicates
that a single tool is superior to the others, in terms of mutant-killability effectiveness. A
negative answer to this question indicates that there are mutants not covered by the mutation
adequate test suites of the tools. We view these missed mutants as weaknesses of the tools.
The main difference from RQI is that we perform an objective comparison with mutation
adequate test suites, which helps reducing potential threats to validity.

To further compare the mutation testing tools and identify their weaknesses, we need to
assess the quality of their mutation adequate test suites compared to either an independent,
to the used mutants, effectiveness measure or a form of “ground truth”, i.e., a golden set of
mutants. Since both are not known, we constructed a reference mutant set that attempts to
approximate this “ground truth”. This set is composed of the disjoint mutants of all mutants
generated by the tools combined. Therefore we ask:

RQ3: How do the studied tools perform compared to a reference mutant set?

The use of the reference mutant set also helps aggregate all the data and quantify the
relative strengths and weaknesses of the studied tools in one measure (the disjoint mutation
score). Given this analysis, we can identify the most effective (in terms or mutant killability)
mutation testing tool and quantify the differences between the tools.

This is important when choosing a tool, but does not provide any constructive information
on the weaknesses of the tools. Furthermore, this information fails to provide researchers
and tool developers constructive feedback on how to build future tools or strengthen the
existing ones. Therefore, we seek to analyse the observed weaknesses and ask:

@ Springer

Empir Software Eng

RQ4: Are there any actionable findings on how to improve the effectiveness of the studied
tools?

Our intentions thus far have been concentrated on the relative effectiveness of the tools.
Whilst this is important when using mutation, another major concern is the cost of its appli-
cation. Mutation testing is considered to be expensive due to the manual effort involved
in identifying equivalent mutants and designing test cases. Since we manually assess and
apply the mutation testing practice of the studied tools we ask:

RQ5: What is the relative cost, measured by the number of tests and number of equivalent
mutants, of applying mutation testing with the studied tools?

An answer to this question can provide useful information to both testers and researchers
regarding the trade-offs between cost and effectiveness. Also, this analysis will better reflect
the differences of the tools from the cost perspective.

3.2 Mutation Testing Tools

To answer the stated RQs, we applied mutation testing by independently using each one of
the selected tools. More precisely, we used version 3 of MUJAVA, version 1.1.8 of MAJOR,
version 1.1.10 of PIT (Coles 2010) and the version of PITry presented by Coles et al.
(2016) and Laurent et al. (2017b), and applied all the mutation operators provided. In the
case of MUJAVA, only the method-level operators were employed, since the other tools do
not provide object-oriented operators.

3.3 Test Subjects

We study two sets of subjects; one set of large, real-world programs and one set of small
methods (units). The first set is used to assess the real-fault revelation of the tools, whilst
the second one to get results based on manual analysis. Unfortunately, manually analysing
large real-world programs is time consuming and requires extensive manpower. Therefore,
to complete the experiment with reasonable resources we used small units that we selected
from our prior study (Kintis et al. 2016).

The set of large real-world programs used belong to the Defects4] database (Just et al.
2014) (version 1.1.0). This is a benchmark set of reproducible real faults mined from source
code repositories. The benchmark contains real faults carefully located and isolated using
the version control and bug tracking systems of several open source projects. For each one
of the faults, the benchmark contains a buggy and a fixed program version and at least one
test case that reproduces the faulty behaviour. Table 5 presents the name of the projects
utilised in this study (first column), a small description of their application domain (second
column), the source code lines as reported by the c1oc tool? (third column) and the number
of faults available per project (fourth column). Additional details about the benchmark set
and its construction can be found in the demo paper of the Defects4J (Just et al. 2014) and
on its GitHub page.>

The second set (with the small units) is composed of 12 methods; 10 of them were ran-
domly picked from 4 real-world projects (Commons-Math, Commons-Lang, Pamvotis and

Zhttps://github.com/AlDanial/cloc
3https://github.com/rjust/defects4j

@ Springer

https://github.com/AlDanial/cloc
https://github.com/rjust/defects4j

Empir Software Eng

Table 5 Fault benchmark set details

Test Subject Description LoC #Real Faults #Gen. Tests #Faults Found
JFreeChart A chart library 79,949 26 3758 17

Closure Closure compiler 91,168 133 3552 12

Commons Lang Java utilities library 45,639 65 6408 30

Commons Math Mathematics library 22,746 106 8034 53

Joda-Time A date and time library 79,227 27 1667 13

Total - 318,729 357 23,419 125

XStream) and another 2 (Triangle and Bisect) from the mutation testing literature (Ammann
and Offutt 2008). Details regarding the selected subjects are presented in Table 6. The table
presents the name of the test subjects, the names of the studied methods, their source code lines
and number of branches as reported by the JaCoCo library,* the number of generated and
disjoint mutants per tool and the number of the resulting mutants of the reference mutant set.

3.4 Test Suites

To perform our analysis we need test suites. Unfortunately, the two sets of subject we have
contain only some developer tests from the projects’ repositories. This is potentially prob-
lematic in our case since developer tests have small overlap between them (as each test case
is testing a different scenario) and are not produced by any systematic procedure. As a result,
very few of these tests reveal the faults. Furthermore, these tests have not been generated
using any controlled or known procedure and, thus, they can introduce several threats to the
validity of our results, underestimating our measurements. To circumvent this problem, we
used automated tools, to generate test suites (for the large programs, recorded in Table 5)
and manually analysis to generate test suites (for the set of the small programs, recorded in
Table 6).

3.4.1 Automatically Generated Test Suites

To simulate the mutation-based test process, we used multiple test suites that were generated
by two state-of-the-art test generation tools, namely EvoSuite (Fraser and Arcuri 2011) and
Randoop (Pacheco and Ernst 2007). Although this practice may introduce the same threats
to validity as the developer test suites, it has several benefits as the tests are generated with
a specific procedure, they are multiple and they represent our current ability of generating
automated test suites.

For the generation of the test suites, we used version 1.0.3 of EvoSuite and 3.0.8 of
Randoop. To configure and execute the tools, we used the scripts accompanying Defects4J.
It should be noted that in the case of EvoSuite, the test cases were generated based on the
branch coverage criterion. Overall, we proceed with the following procedure:

1. For each fault, we run EvoSuite and Randoop on the fixed version of the project to
generate 3 test suites, two with EvoSuite and one with Randoop, for the classes that
were modified in order to fix the corresponding buggy version.

“http://www.jacoco.org/
SThe reason we chose to generate only one test suite with Randoop is that it generates far more tests than EvoSuite.

@ Springer

http://www.jacoco.org/

Empir Software Eng

981 Wi 6€1 LTl 201 ¥S81 691€ 808 799 (9L1) €St - [eI0L,
9 L 9 L 9 el 61¢ s 6C 91T 1bs 100819
01 8 6 3 L 96T SIe €L I8 (¥0) 0¢ SUIENIPOOIP weangx
S 3 9C ¢ 91 1793 98% 6€1 6 (¥e) T Ayissepo S[3ueLy,
9 9 9 L 9 89 601 81 6C 911 SPONSAOWIAI
LE 6C €C 91 91 8I¢ Lyt 68 39 (1) s¢ 9PONPpE SToAueq
€l 91 4! ! L 861 8¢ L 0L (9D ¢ deim
S v 14 S 4 69 43 LE w (¥1) 81 azipended
LT €l 81 I 8 18 6¢€1 6C 194 (9D St JOoxopupise]
9 € 9 9 9 ¥9 S6 ST LT ®) €1 Aerreqns
01 S 9 9 9 43 SIl €C 0S (01) 0T depyo SueT-suowro))
11 11 11 11 11 SS1 76¢ ocl S9 oD 11 [euo3oyIo
01 6 I L 6 LET T6€ €€l 6L (T €t po3 [IR]A-SUOWIUIOD)
195 JURINUW IUIJY VAVIAIN NI LId YOIV LId VAVIOIW N11d OIVIN Lid (19 #) DO'T POYIRIN 109[qng 1537,

SJURINA] #

sjueInw JUIOfSI(T #

SJUBINW PIJLIAUL) #

195 JUBINW SOUAIQJAI PUE SHUBINW JUIO(SIP ‘SjueInw pIjeIauad :s[rejop 102(qns 153, 9 dqeL,

pringer

N

Empir Software Eng

2. We systematically removed flaky test cases from the generated test suites, i.e. test cases
that produced inconsistent results when run multiple times, using the available scripts
of Defects4].

3. Run the generated test suites against the buggy versions of the projects to identify the
faults they reveal.

Based on the above procedure, we generated the test suites that were used for the pur-
poses of our large-scale experiment (Step 1) and removed flaky tests (Step 2). It is known
that flaky tests exist in practice (Luo et al. 2014) and that automated test generation tools
can create such tests (Shamshiri et al. 2015). In our case, flaky tests were mostly generated
for Joda-Time and Closure; in the first case, tests were susceptible to the date that they
were created on and, in the second, to the project version (buggy or fixed) that they were
created for. Finally, we discovered which faults the generated test suites managed to detect
(Step 3), from the 357 developer faults of the Defects4] database. In order for a fault to be
detected by a generated test suite, the test suite must contain at least one test case that fails
when executed against the project version that contains the fault, i.e. the buggy version. We
term this test suite a triggering one. In total, our test suites managed to detect 125 faults; for
the remaining faults no failure was triggered, thus, the tests did not manage to detect them.

Table 5 presents more details about the results of the previously-described procedure.
More precisely, column “#Gen. Tests” presents the number of test cases in the triggering test
suites per project and column “#Faults Found”, the number of the corresponding discovered
faults. Based on these results, our fault set consists of 125 real faults from 5 open source
projects and our triggering test suites are composed of 23,419 test cases.

3.4.2 Manually Generated Test Suites

To complement our analysis and identify potential weaknesses of the tools, we manually
applied the tools to parts of several real-world projects. Since manual analysis requires
considerable resources, analysing a complete project is infeasible. Thus, we picked and
analysed 12 methods from 6 Java test subjects for 4 times, one time per studied tool. Each
analysis was not dependent on the others as it was performed by a different person. Thus,
in total, we manually analysed 48 methods and 6,493 mutants which constitutes one of the
largest studies in the literature of mutation testing to the best of our knowledge, e.g., Yao
et al. (2014) consider 4,181 mutants, Baker and Habli (2013) consider 2,555. Further, the
present study is the only one in the literature to consider manually analysed mutants when
comparing the effectiveness of different mutation testing tools (see also Section 6).

The primary objective of this experiment is to cross-evaluate the mutant-killability of the
mutation adequate test suites of the tools (for the programs recorded in Table 6) and iden-
tify potential weaknesses in their mutation testing practice. To this end, we performed a
complete manual analysis of the mutants produced by the tools by designing tests that kill
all killable mutants, i.e., by creating mutation adequate test suites, and manually identify-
ing the equivalent mutants generated. To perform this task, we asked different persons to
apply mutation testing on our subjects for each tool studied. To find this number of quali-
fied human subjects we turned to third- and fourth-year Computer Science students of the
Department of Informatics at the Athens University of Economics and Business and adopted
a two-phase manual analysis process:

— The selected methods were given to students attending the “Software Validation, Verifi-
cation and Maintenance” course (Spring 2015 and Fall 2015), taught by Prof. Malevris,
in order to analyse the mutants of the studied tools, as part of their coursework. The

@ Springer

Empir Software Eng

participating students were selected based on their overall performance and their grades
at the programming courses. Specifically, students that had grades greater than 7 out of
10 in programming and software engineering courses were favoured. In total, 8 teams
consisted of 1 or 2 students were selected. These teams were responsible to apply muta-
tion on specific methods that were given to them. It should be noted that the teams
did not have any time limitation for the application of mutation; when they finished
the analysis of one method, another one was given to them for analysis until the end
of the respective semester. Before moving to the mutation analysis of another method,
the results of their previous analysis were checked for correctness by one author of this
paper. All students attended an introductory lecture on mutation testing and appropriate
tutorials before the beginning of their coursework. To facilitate the smooth comple-
tion of their projects and the correct application of mutation, the students were closely
supervised by one of the authors of this paper, with regular team meetings throughout
the semester.

— The designed test cases and detected equivalent mutants were manually analysed and
carefully verified by at least one of the authors.

To generate the mutation adequate test suites, the students were first instructed to gen-
erate branch adequate test suites, i.e. test suites that covered all feasible branches of the
corresponding methods, and then to randomly pick a live mutant and attempt to kill it incre-
mentally by fulfilling the conditions of the RIP Model® (Ammann and Offutt 2008), until all
live mutants were killed or identified as equivalent. Next, we minimised these mutation ade-
quate test suites by checking, for each contained test case, whether its removal would result
in a decreased mutation score (Ammann and Offutt 2008). More precisely, we adopted the
following process: for each test case, we removed it from the corresponding test suite and
examined if the mutation score drops; if it does, it means that the test is required; in a differ-
ent case, the test is redundant and should be removed. The manual experiment of our study
is concerned with evaluating the effectiveness of the test suites that are explicitly designed
to kill the mutants of one tool in killing the mutants of the other tools. Since redundant tests
are not needed to satisfy any of the criterion requirements (i.e. kill any additional mutant),
they can artificially result in overestimating the strengths of the test suites and bias our
results (Ammann and Offutt 2008). Consider the case where for a mutation tool, say X, we
have generated 10 test cases for its mutation adequate test suite but only 4 out of these 10
are needed to kill all its mutants. If we now compare these 10 tests against the mutants of
another mutation testing tool, say Y, we bias our results towards X because these 6 redun-
dant tests may kill additional mutants of Y that the 4 mutation adequate tests would have
failed to, thus, overestimating the mutant-killability of the mutation adequate test suites of
X. To avoid this bias, we minimised the generated mutation adequate test suites.

Although the detection of killable mutants is an objective process, i.e., the produced
test case either kills the corresponding mutant or not, the detection of equivalent ones is a
subjective one. To deal with this issue, all students were familiarised with the RIP Model
(Ammann and Offutt 2008) and the sub-categories of equivalent mutants described by Yao
et al. (2014). Also, all detected equivalent mutants were independently verified by at least

6The RIP model states that mutants are killed by test cases that reach (execute) the mutated statement and
manage to cause an infection on the program state (the mutant and the original program are in a different state
at the mutated point) and manifest the infection to the program output (the different program states result in
different outputs).

@ Springer

Empir Software Eng

one of the authors. It should be noted that since PITry’s mutants form a superset of PIT
mutants, to manually analyse them one of the authors of this paper extended the manual
analysis of the PIT mutants by designing new test cases that kill (or identify as equivalent)
the PITry mutants that remained alive after the application of PIT’s mutation adequate test
suites. To support replication and wider scrutiny of our manual analysis, we made all its
results publicly available (Kintis et al. 2017b, c).

3.5 Analysis Procedure

To reliably compare the selected tools, it is mandatory to account for redundant mutants
(Papadakis et al. 2016, 2017). Accounting for redundant mutants is necessary in order
to avoid bias from their inflating the mutation score (Papadakis et al. 2016), whilst the
use of mutation adequate tests ensures the accurate estimation of the tools’ effectiveness
(Papadakis et al. 2017). An inaccurate estimation may happen when failing to kill some kill-
able mutants, which consequently results in failing to design tests (to kill these mutants) and,
thus, underestimate effectiveness. Even worse, the use of non-adequate test suites ignores
hard to kill mutants which are important for fault revelation (Andrews et al. 2006; Visser
2016). Additionally, the majority of the mutants that are actually helping to improve test
suites are the hard to kill mutants. Since we know that very few mutants contribute to the
test process (Papadakis et al. 2016), the use of non-adequate test suites can result in major
degradation of the measured effectiveness.

Unfortunately, generating test suites that kill all killable mutants is practically infeasible
because of the inherent undecidability of the problem (Papadakis et al. 2015; Kintis et al.
2017a). Therefore, we are forced to use non-adequate test suites for large programs. To
account for the above reasons, our empirical study involves two parts: the fault-revelation
experiment, performed on open source projects with real faults, whose results answer RQ1;
and, the mutant-killability experiment, performed based on manual analysis of mutants
of sampled functions, whose results answer RQs 2 to 5. RQ1 relies on non-adequate test
suites generated for the large real world programs of Table 5, whilst RQs 2 to 5 rely on
mutation-adequate test suites specially designed for each tool that we study for the pro-
grams of Table 6. For details about the test generation process that we followed, please refer
to Section 3.4.

In RQ1, we are interested in the fault revelation ability of mutation-based test suites
based on the 5 Defects4J subjects (Table 5). Thus, we want to see whether mutation-driven
test cases reveal the faults studied. We measure the fault revelation ability of the studied
mutation testing tools by evaluating the fault-revealing ability of the mutants they produce.
More precisely, we consider a fault as revealed when there is at least one mutant which is
killed only by triggering test cases for that particular fault. This means that testers aiming
at killing these mutants will generate test cases that reveal the studied faults. Of course,
we approximate the true fault revealing cases based on our generated test suites. Thus, if a
mutant is killed only by test cases that reveal a studied fault, we consider that the mutant
reveals the fault, i.e., leads to test cases that reveal the fault.

It is noted that this approach is in accordance with the traditional fundamental premises
of mutation-based test selection process (Geist et al. 1992). According to Geist et al. (1992)
and Ammann and Offutt (2008):

“If the software contains a fault, it is likely that there is a mutant that can only be
killed by a test case that also reveals the fault.”

@ Springer

Empir Software Eng

Evidence supporting this premise has been provided by many researchers, e.g., Chekam
et al. (2017). Therefore, to answer RQ1, we compare the number of revealed faults per tool
and project and rank them accordingly.

To answer RQ2, we used the selected methods and the manually generated mutation ade-
quate test suites (subjects of Table 6). For each selected tool, we used its mutation adequate
test suite and calculated the mutation score and disjoint mutation score that it achieves when
it is evaluated with the mutants produced by the other tools. This process can be viewed as
an objective comparison between the tools, i.e., a comparison that evaluates how the tests
designed for one tool perform when evaluated in terms of the other tool. In case the tests
of one tool can Kkill all the mutants produced by the other tool, then this tool subsumes the
other. Otherwise, none of them subsumes the others. For calculating the disjoint mutation
score, the procedure outlined in the recent survey of Papadakis et al. (2017) was followed.
To compute this score, we need a matrix that records all test cases that kill a mutant. The
construction of such a matrix is available in the case of PITry. For MUJAVA, we extended
the corresponding script to handle certain cases that it failed to work, e.g., a case where
a class that belonged to a package was given as input. Finally, in the case of MAJOR, we
utilised the scripts accompanying Defects4J to produce this matrix.

To answer RQ3, we used the mutation adequate test suites of each one of the studied
tools (from the manually analysed subjects, i.e. Table 6) and measured the disjoint mutation
score they achieve when evaluated against the reference mutant set. The reference mutant
set was constructed by identifying the disjoint mutants of the mutant set composed of all
mutants of all the studied tools for the manually analysed subjects. This score provides the
common ground to compare the tools and rank them with respect to their mutant-killability
effectiveness.

The use of disjoint mutants sets in answering RQ2 and RQ3 is necessary to avoid inflat-
ing the mutation scores from redundant mutants, i.e., mutants subsumed by other mutants
of the merged set of mutants (Papadakis et al. 2016). Redundant mutants inflate the muta-
tion score measurement with the unfortunate result of committing Type I errors (Papadakis
et al. 2016). Since in our case these types of mutants are expected to be numerous, as the
tools support many common types of mutants, the use of disjoint mutants was imperative.

To answer RQ4, for each tool we analysed the mutants that remained alive after the exe-
cution of the mutation adequate test suites of the other tools with the intention of identifying
inadequacies in the tools’ mutant sets. We then gathered all these instances and identified
how we could complement each one of the tools in order to improve its effectiveness and
reach the level of the reference mutant set. Finally, to answer RQ5, we measured and report
the number of test cases required to construct mutation adequate test suites for the mutants
of the tools and the number of equivalent mutants that we found.

4 Empirical Findings

This section presents the empirical findings of our study per posed research question.

4.1 RQ1: Tools’ Real Fault Revelation Ability

This question investigates the performance of the studied tools with respect to fault revela-

tion (studied using the subjects of Table 5). Figure 1 records our results. The figure depicts
how many of the 125 faults the mutants of the tools managed or failed to reveal. Recall that

@ Springer

Empir Software Eng

PITry
PIT
Major

muJava

0 25 50 75 100 125
Faults

B Revealed Faults M Failed-to-reveal Faults

Fig. 1 Comparison of the tools’ fault-revelation ability

a mutant reveals a fault iff the test cases that kill the mutant also lead to the discovery of
the underlying fault (see also Section 2). It should be noted that the exact IDs of the faults
detected by the tools are listed in Table 10 in Appendix A at the end of this paper.

As can be seen from the figure, PITry was successfully applied to all fixed program
versions of the 125 faults and it managed to reveal 122 of the faults, i.e., for the 122 faults
there was at least one generated mutant of PITry which is killed only by test cases that lead
to the discovery of the respective fault. MAJOR and PIT also successfully run on all 125
fixed program versions but they managed to reveal only 114 and 115 faults, respectively.
Finally, MUJAVA was unable to run on all program versions, it was able to handle only 66
of them and revealed 34 faults. Although, we report results for the 66 faults that the tool
was able to run, in most of these cases the tool could not produce many mutants or properly
operate. Hence, it detected only 34 out of the 66 faults. Since MUJAVA could not work
properly on most of the test subjects, we excluded it from any further analysis we make on
the Defects4] benchmark.

Based on the figure’s results, it becomes evident that PITry managed to detect more
faults than MAJOR and PIT and probably subsumes the other tools. However, it should
also be noted that none of the tools subsumes the others; there are faults that are only
revealed by mutants generated by only one tool and not the others and, as a conse-
quence, none of the tools alone can reveal all the faults studied. Specifically, MAJOR
reveals 1 unique fault (Time-27) compared to PITry and 7 unique faults compared
to PIT (Chart-17, Time-13, Time-27, Math-25, Closure-7, Closure-42,
Closure-103). PITry reveals 9 unique faults (Lang-56, Math-6, Math-22,
Math-27,Math-89,Math-105, Closure-27, Closure-49, Closure-52) com-
pared to MAJOR and 7 unique faults compared to PIT (Chart-17, Time-13,Math-25,
Math-27, Closure-7, Closure-42, Closure-103). Finally, PIT does not reveal
any unique fault compared to PITry and reveals 8 unique faults compared to MAJOR
(Lang-56,Math-6,Math-22,Math-89,Math-105, Closure-27,Closure-49
, Closure-52). One interesting finding is that 2 faults (Math-75, Math-90) are not
revealed by any tool. Overall, PITry managed to reveal 122 real faults out of 125 for which
it run successfully, MAJOR revealed 114 out of 125, PIT 115 out of 125 and MUJAVA 34 out
of 66.

In order to determine whether the observed difference between the fault revelation abil-
ity of the tools is statistically significant, we performed a statistical test. Since we want to

@ Springer

Empir Software Eng

Table 7 Fault revelation: -
statistical analysis Comparison p-value A 95% confidence interval (CI)

PITry VS MAJOR 0.011 6.4% 1.8-12.5%
PITry VS PIT 0.008 5.6% 2.5-11.1%
MAIJOR VS PIT 0.067 - —7.4-5.8%

compare the proportions of two different dichotomous measurements (e.g., the proportions
of faults revealed by PITry and MAJOR) when applied to the same sample (125 faults), we
used the McNemar test. The McNemar test is a non-parametric, statistical test for the anal-
ysis of paired binomial proportions. Table 7 presents the results of the statistical analysis:
(a) the (asymptotic) p-value obtained; (b) as an effect measure we adopt the difference A
between the marginal proportions (Fagerland et al. 2014), estimated by the maximum like-
lihood estimate A which denotes the estimated difference between the proportions studied;
and, (c) the corresponding confidence intervals. For the application of the test, we followed
the guidelines of Fagerland et al. (2014). In all cases, the hypotheses examined are the
following:

— Hpy : there is no difference between the proportions of faults revealed by the two tools
— Hj: there is a difference between the proportions of faults detected by the two tools

As can be seen from the table, there is a statistically significant difference (p-value =
0.011) between the fault revelation ability of PITry and MAJOR; the A effect measure
indicates that the fault revelation ability of PITRry is estimated to be 6.4% better than the one
of MAJOR with a 95% confidence interval (CI) from 1.8% to 12.5%. Analogous, statistically
significant results are obtained when comparing PITry with PIT. Finally, we can see that
the null hypothesis Hp cannot be rejected when comparing the fault revelation ability of
MAJOR and PIT (p-value = 0.067), thus, we do not have enough evidence to conclude that
one of these two tools is better.

Our previous work (Kintis et al. 2016) that we currently extend has found that MUJAVA is
the most effective tool, followed by MAJOR and PIT. The difference between that ranking
and the one described earlier is that our previous work focused on mutant-killability whereas
the aforementioned results on fault revelation based on real faults. Thus, any difference
between these studies can be attributed to the different characteristics of mutants and real
faults. Indeed, as presented later in this paper, our mutant-killability and efficiency results
are in accordance to the ones presented in our previous work (Kintis et al. 2016). By also
including real faults, this study investigates the effectiveness of the tools in a more thorough
and pragmatic way.

To summarise this subsection’s findings, PITry was found to be the most effective tool
at revealing faults with statistically significant differences compared to PIT and MAJOR.
PITry managed to reveal 122 faults out of the 125 studied with an estimated difference of
approximately 6% compared to PIT and MAJOR. Regarding the comparison of MAJOR and
PIT, our analysis concluded that there are not enough data to indicate that one of the tools
is better than the other.

4.2 RQ2: Tools’ Cross-evaluation

This question investigates the effectiveness of the tools in terms of mutant killability (stud-
ied using the subjects of Table 6). Table 8 presents the respective results per test subject.

@ Springer

Empir Software Eng

%0001 %0°001 %008 %096 %0°001 %0001 %EE %L16 %0001 %0°001 %0°001 %0001 depyo)
%0001 %0°001 %0001 %0001 %0001 %0001 %0°001 %0001 %0001 %0°001 %0001 %0001 [euogoyiIo
%0001 %0°001 %0001 %0°001 %688 %S 66 %818 B1°L6 %0001 %0°001 %0001 %0001 pos
S1a v S v S v SId nv S1d v S1d v POUIPIN

SI-M1Id SL-LId SL-Iofey SL-eag[nur SL-1oley SI-MIId

eAR[NI 1id
%O'LL %PL'S6 %0°C8 %986 B1TL %696 %E'16 %196 %1°06 %8'L6 %BL6L BT S6 oferoAy
%08 %SL6 %0°08 %S 66 %L'99 %066 %0°001 %0°001 %0001 %0°001 WY 1L %9°€6 11bs
%68 %HL'LO WSS %Y'86 %SSS %056 %0°001 %0001 %008 %6°S6 BbSLY %086 QUWIEN9POI3p
T %L'S6 %0001 %0001 %S 88 W1°L6 %0°001 %0°001 %0°L8 %0°L6 BbE19 %T 06 Ayissepo
BIL %bL'E6 %0°001 %0001 beEE PbLE6 %0001 %0001 %0001 %0001 LS8 %86 9PONLAOWAI
wbY6 %88 %L'S6 %S 66 BbL1T %818 %0°001 %0°001 %0001 %0001 %8°¢6 %L 86 9PONPPE
BSL %9°L6 % %bE 66 %0°SL %066 %0001 %0001 %0001 %0001 BL'T6 %186 deim
%L %0001 %0001 %0°001 %0001 %0°001 %0001 %0001 %0°09 %S'€6 %009 %S'€6 azifended
%I9L %196 %EEY BL'L6 %0°001 %0001 %016 %9°C6 %0001 %0°001 %0001 %0001 Joxapupse|
%Y %196 %EEY %9°L6 %0°001 %0001 %0°0S %0°S8 %999 %0°06 %L 99 %0°06 Aerreqns
%0S %6'96 %EE %8°T6 %999 %6°L6 %E € %8 LL %0001 %0°001 %L 99 %688 depyo)
%001 %0°001 %6°06 %S 66 %0°001 %0001 %0°001 %0001 %0001 %0°001 %0001 %0001 [euoSoyIo
B8L %886 %be8S %886 %E8S %Y 66 DY 1L %Y'L6 BbSLY %bY'L6 WY 1L WY’ L6 pos
sIq v sIq v siq v siIq v sIq v siq v poyloly

SL-LId SL-eaenua SL-Iofey SL-eag[nu SI-M1Id SL-LId

IRR L 1ofe]\

S)[NSAI UOTJBNBAS-SSOID S[00], § IqBL

pringer

f's

Empir Software Eng

pringer

N

%196 BL66 BSSL %TS6 BESY %L 96 BSE6 %Y'86 %Y"96 %966 %0001 %0001
%0°001 %0001 BY'IL %S°L6 %0°001 %0°001 %0°001 %0°001 %0001 %0°001 %0°001 %0001
%S°L8 BT 66 %S'LY %T 66 %S T9 %ES6 %0001 %0001 %Y 1L %696 %0001 %0001
%E 06 %166 AR %616 %E 06 %186 %0°001 %0001 %0001 %0°001 %0001 %0°001
%0001 %0°001 BL 99 %8°€6 %0°0S BLT6 %0°001 %0°001 %0001 %0°001 %0001 %0°001
%0001 %0001 BSTE BTSL %B6°LE BSIL %0°001 %0°001 %0001 %0°001 %0001 %0001
%0°001 %0001 BT %196 %YE6 %6°86 BLSY %S'86 BLSY %S'86 %0001 %0°001
%0°SL BT'86 %O°SL %T'86 %0001 %0001 %0°001 %0001 %0001 %0001 %0001 %0001
%0°001 %0°001 %0°S8 %BY'L6 %0°001 %0°001 BS'LY %9°L6 %0°001 %0°001 %0°001 %0001
%0°001 %0°001 %L 99 %116 %0°001 %0°001 BEEY %856 %0001 %0°001 %0°001 %0°001
sid nv siq nv sid v SIa nv SId v siq nv
SL-MLId SL-LId SL-10feN SL-eAg[nur S.L-10feN SL-MNLId

eAR[OW Lid

ofe1ony

11bs
QUWEBN[OPOJIP
Kjisse[o
OPONQAOWI
SPONPPE
deim
azipendes
JOxapupse|
Kelreqns

POUIRIN

(ponunuoo) g IqeL,

Empir Software Eng

The table is divided into 2 parts, the upper part and the lower one, each of which is further
divided into 2 large columns (apart from the one describing the test subjects): the “Major”
column of the upper part of the table presents, in the 3 sub-columns contained, the percent-
age of mutants of the MAJOR tool that the mutation adequate test suites of PIT, PITry and
MUJAVA manage to kill. Each of these 3 columns contains 2 sub-columns (columns “All”
and “Dis.”) that depict the mutation scores achieved by the corresponding test suites when
all generated mutants of MAJOR are considered (column “All”’) and when only the disjoint
ones are used (column “Dis.”); respectively, the “PIT_RV” column of this part of the table
presents the same information but for the mutants of the PITry tool when executed against
the mutation adequate test suites of MAJOR, MUJAVA and PIT. The lower part of the table
presents the respective data for the mutants of PIT and MUJAVA. To exemplify, the “gcd,
Major/PIT-TS/AIl” cell of the upper part of the table indicates that for the gcd method the
mutation adequate test suite of PIT managed to kill 97.4% of the killable mutants of MAJOR,
i.e., achieved a 97.4% mutation score for the mutants of MAJOR. The “gcd, Major/PIT-
TS/Dis.” cell presents the same information but in this case the mutation adequate test suite
of PIT is evaluated against the disjoint mutants of MAJOR.

By examining Table 8, it becomes evident that none of the tools subsumes the others;
all generated test suites face effectiveness losses when evaluated against the mutants of the
other tools. Specifically, PITry s mutation adequate test suites (“PITgy-TS” columns) per-
form the best, with an effectiveness of approximately 100% with respect to MUJAVA, 98%
with respect to MAJOR and 100% with respect to PIT when all mutants are considered; for
the disjoint ones, this score is 100% for PIT and drops to approximately 90% for MAJOR
and 96% for MUJAVA. The next better performing tool is MUJAVA, whose mutation ade-
quate test suites (“muJava-TS” columns) achieve an effectiveness of approximately 96%,
99% and 98% for MAJOR, PITry and PIT, when all mutants are considered and approxi-
mately 91%, 82% and 93% for the disjoint ones, respectively. The mutation adequate test
suites of MAJOR (“Major-TS” columns) achieve a mutation score of approximately 97% for
PITry and MUJAVA and 100% for PIT, for all generated mutants; for the disjoint ones, the
effectiveness (mutant-killability) drops to 72%, 85% and 96%, respectively. Finally, PIT’s
mutation adequate test suites (“PI7-TS” columns) perform the worst, with an effectiveness
of approximately 95% with respect to MUJAVA, MAJOR and PITry when all mutants are
considered; for the disjoint ones, this score drops to approximately 80% for MAJOR, 75%
for MUJAvA and 77% for PITgry.

4.3 RQ3: Comparison with Reference Mutation Tool

This question investigates how the tools’ mutation adequate test suites fare against a refer-
ence mutation testing tool, simulated by the disjoint mutants of the union of all mutants of
the studied tools (studied on the subjects of Table 6). Figure 2 depicts the obtained findings.
The figure presents the percentage of the mutants that can be killed by the corresponding
mutation adequate test suites per method, along with the average score for all methods.
Although, the performance of the tools varies depending on the considered method, it can
be seen that, on average, PITry realises a 92% (mutant-killability) effectiveness score, fol-
lowed by MUJAVA, MAJOR and PIT with 85%, 80% and 63%, respectively. An interesting
observation from these results is that all tools fail to cover a percentage of the mutants of
the reference mutant set which ranges from 0 to 57%. On average, PIT, MAJOR, MUJAVA
and PITry cannot kill 37%, 20%, 15% and 8% of the reference mutants, respectively.
Overall we found that PITRry is the top ranked tool, followed by MUJAVA, MAJOR and
PIT. PITRry achieves a higher mutation score (w.r.t. the reference mutant set) than MUJAVA

@ Springer

Empir Software Eng

80 [

70

50 |-

40 | ff

% of Covered Mutants wrt. Reference Front

20

Per Method

Fig. 2 Comparison of mutation adequate test suites against reference mutation set

in 9 cases, equal in 1 and lower in 2. Compared to MAJOR, PITry performs better in 7
cases, equal in 2 and lower in 3. Compared to PIT, PITry performs better in 11 cases and
equally in 1.

4.4 RQ4: Tools’ Weaknesses and Recommendations

This question is concerned with ways of improving the mutation testing practice of the
studied tools. To this end, Fig. 3 presents the mutants per tool (divided into mutation
operators) that remained alive after the application of the mutation adequate test suites of
the other tools. The figure is divided into six parts, each one illustrating the live mutants
of a corresponding tool with respect to the mutation adequate test suite of another tool.
Note that PIT is not included in the analysis of this section since the previously-presented
results suggest that PITRry is already a more effective version of PIT, thus, we only provide
recommendations for the improvement of PITgry.

4.4.1 Recommendations: PITry

As can be seen from Fig. 3, PITry’s mutation adequate test suites fail to kill mutants gen-
erated by the COR operators of MUJAVA and MAJOR. This operator, although implemented
differently in the two tools, affects compound conditional expressions. Unfortunately PITry
lacks support for such an operator, primarily because the tool manipulates the bytecode
and such expressions are not present in bytecode. Thus, the mutation practice of PITry
can be improved by finding a way to simulate COR’s changes in the bytecode. Addition-
ally, PITry’s CRCR operator can be enhanced because it misses certain cases that MAJOR’s
LVR is applied to due to the aforementioned problem. For instance, at line 410 of the gcd
method of the Commons -Math test subject MAJOR mutates the statement if (u > 0)
to if (u > 1). This change is not made by PITry’s CRCR operator because in the

@ Springer

Empir Software Eng

PITgy-TSvsMajor kxx=
PITgy-TSvsmuJava xzexeza
P IR NSO Major-TSvsPITg,, m— i
Major-TSvsmudava ExXX

mudJava-TSvsPITg, zzz=

LI T S N e A e R

e . PP

Number of Alive (uncovered) Mutants

T YNYIYIMNSN

I

oﬁﬂ E I-II- Non naﬂanﬂnﬂnﬂ mm
Ly B, IR 0%, Y0700, Yedote G W%, LS
%% "% 0&00’90,5 %O T0,90°% Y° /90’;9 1/%990 0 %%

Fig. 3 Tools’ weaknesses: number of alive mutants per mutation operator, test suite and tool

bytecode the zero constant is never pushed onto the stack. In order to make PITry more
effective such cases should be handled accordingly.

4.4.2 Recommendations: MAJOR

By examining Fig. 3, it can be seen that MAJOR’s tests fail to cover MUJAVA’s AOIS
mutants and the analogous mutants of PITry (generated by the UOI operator). Thus, the
tool’s mutation testing practice can be enhanced by implementing the changes imposed by
these operators. Additionally, MAJOR will benefit from adding an operator that negates
arithmetic variables, analogous to MUJAVA’s AOIU and PITry’s ABS and implementing
PITry’s AOD operator which manipulates arithmetic expressions by deleting the corre-
sponding operands one at a time. Finally, we observed that the tests of MAJOR failed to
kill some mutants generated by MUJAVA’s and PITry’s ROR operators. Recall that MAJOR
implements a specialised version of ROR that induces only a subset of its changes. The live
mutants indicate a weakness in this specialised set that can lead to test effectiveness loss.
An example of such a weakness manifested at line 161 of the decodeName method where
MUJAVA’s ROR changed the sub-expression ¢ == escapeReplacementFirstChar
to ¢ > escapeReplacementFirstChar. It is noted that the issue with the ROR
mutants is an implementation choice of MAJOR as detailed in Table 3 and discussed in the
study of Lindstrom and Marki (2016).

4.4.3 Recommendations: MUJAVA

As can be seen from Fig. 3, MUJAVA’s weaknesses centre around mutation operators that
affect literal values, namely MAJOR’s LVR and PITRry’s IC and CRCR operators. Thus,
MUJAVA will benefit from implementing such operators. Furthermore, we found MUJAVA’s
implementation of the ROR mutation operator inconsistent; for example, at line 25 of the
wrap method, the tool did not replace the original statement, if (newLineStr ==
null), withif (true), as it was supposed to, leading to inadequacies in the resulting

@ Springer

Empir Software Eng

Table 9 Tools’ application cost: number of equivalent mutants and required tests

MAJOR PITRry MUJAVA PIT

Method #Eq. #Tests #Eq. #Tests #Eq. #Tests #Eq. #Tests
ged 17 6 70 7 23 7 9 7
orthogonal 3 8 22 8 5 9 0 8
toMap 5 7 18 6 7 5 2 5
subarray 5 6 12 5 6 3 4
lastIndexOf 2 8 10 8 4 12 1 7
capitalize 6 5 22 4 14 9 1 6
wrap 8 10 36 7 19 7 4 6
addNode 11 8 57 22 33 34 3 8
removeNode 2 5 14 5 7 6 0 3
classify 7 25 42 22 38 27 1 16
decodeName 24 5 57 7 28 10 16 6
sqrt 4 4 22 4 17 6 3 4
Total 94 97 382 105 203 138 43 80

test suites. Similar examples are present at line 248 of toMap and 1282 of 1ast IndexOf.
These implementation defects lower the test effectiveness of the resulting mutation adequate
test suites and addressing them will improve the tool’s test quality. Finally, the tool will
benefit from implementing PITry’s AOD operator, as it was the case with MAJOR.

4.5 RQS5: Tools’ Application Cost

The answer to this question provides insights on the relative cost of the tools’ application
in terms of the number of equivalent mutants that have to be manually analysed and the
number of test cases required to kill all the corresponding killable mutants (studied using the
subjects of Table 6). Table 9 presents the corresponding findings. The table is divided into 4
parts, each one for a studied tool, and presents the examined cost metrics in the sub-columns
of these parts (“#Eq.” and “#Tests”).

We can observe that 12% of MAJOR’s and PITry’s mutants are equivalent and 11%
of MUJAVA’s and 6% of PIT’s ones. PIT was the tool that generated the least number of
equivalent mutants, followed by MAJOR and MUJAVA, with PITry generating the greatest
number of equivalent mutants. Thus, PIT requires the least amount of human effort in iden-
tifying the equivalent mutants generated, whereas PITry the greatest. Regarding the number
of killing test cases the tools require, PIT requires 80 test cases, MAJOR 97, PITry 105
and MUJAVA 138. Thus, PIT and MAIJOR require the least amount of effort in generating
mutation adequate test suites and MUJAVA the greatest, with PITry placed in the middle.

It is interesting to notice that although PITry generates a high number of mutants, it
requires a considerably lower number of mutation adequate test cases indicating that the
current version of the tool faces high mutant redundancy. As discussed in the Background
section (Section 2), mutant redundancy is an important problem in mutation testing and all
mutation tools suffer from it to a certain degree. Of course, redundancy depends on the
number of generated mutants: more mutants increase the redundancy amongst them. PITry
generates a considerable number of mutants, thus, redundancy cannot be avoided which in

@ Springer

Empir Software Eng

Killable Mutants ———
1000 - Equivalent Mutants wessses

800 |-
600 - I

400

Number of Generated Mutants

200

WR’ Ul 4/#4/04/6,:?0&/ RS L/lro 00808k, 0990/96‘0)9‘5'/\0 V@VOJO&AO@(;:GOO/ vt 4’P4/O4/P4;OG@::OS?O@/ RS (/olb,lro
() o

ToT05070.70.55.C5,550,50. 5.5
Oo(/%o/(/%&o&f%o/ %9 %0%0% % BB BN

mulava PIT Major PITgy

Fig. 4 Contribution of mutation operators to generated and equivalent mutants per tool

turn suggests that the efficiency of the tool can be improved. Additionally, the results on the
number of mutation adequate test cases required by PITry (presented earlier) support this
statement. Future versions of PITry should take this redundancy into account and attempt
to reduce it. It should be mentioned that to avoid the problems caused by redundant mutants,
we use disjoint mutants and the disjoint mutation score in our study (Kintis et al. 2010;
Papadakis et al. 2017) (see also Section 2.1).

To better understand the nature of the generated equivalent mutants, Fig. 4 illustrates the
contribution of each mutation operator to the generated killable and equivalent mutants per
tool. In the case of PIT, RC and CB generate the most equivalent mutants and in the case
of MUJAVA, AOIS and ROR. For MAJOR, ROR generates most of the equivalent mutants,
followed by LVR, AOR and COR. In the case of PITry, UOI generates the most equivalent
mutants, followed by ROR, CRCR and ABS.

To summarise our findings, our results suggest that PITry is the most effective tool in
terms of fault revelation, generating mutants that manage to reveal 122 faults out of the 125
studied ones, followed by MAJOR and PIT, with 114 and 115 faults revealed, respectively
(see also Section 4.1). PITry also scores better when the tools are evaluated based on their
mutant-killability with a 92% effectiveness score, followed by MUJAVA, MAJOR and PIT
with 85%, 80% and 63%, respectively (see also Section 4.3). Finally, regarding the effi-
ciency of the tools, our results indicate that PITry is the most expensive tool, followed by
MUJAVA, MAJOR and PIT (see also Section 4.5). Considering that PITry was found the
most effective tool both in terms of fault revelation and mutant killability, it is no surprise
that it is the least efficient one. Analogously, PIT requires less effort, a fact justified by its
lower performance.

5 Threats to Validity

As every empirical study, this one faces several threats to its validity. Here we discuss these
threats along with the actions we took to mitigate them.

External Validity External validity refers to the ability of a study’s results to generalise.
Such threats are likely due to the programs, faults or test suites that we use, as they might not

@ Springer

Empir Software Eng

be representative of actual cases. To mitigate the underlying threats, we utilised a publicly
available benchmark (Defects4J), which was built independently from our work and con-
sists of several real-world, open-source projects and real faults. We also used 6 additional
test subjects and manually analysed 12 methods whose application domain varies. More
research is needed to adequately answer questions related to the effectiveness of the tools on
different domains and fault types. Moreover, as we used automatically generated test suites
(to study the fault-revelation question), our results might not generalise to developer test
suites. However, although we cannot claim that our results are generalisable, our findings
indicate specific inadequacies in the mutants produced by the studied tools. These involve
incorrect implementation or not supported mutation operators, evidence that is unlikely to
be case-specific.

Internal Validity Internal validity includes potential threats to the conclusions we draw.
Our conclusions are based on two subject sets, one with large programs and real faults,
and one with small methods that we manually analyse, i.e., to identify equivalent mutants
and compose mutation adequate test suites. Thus, one may come to different conclusions in
case it applies manual analysis on the programs with real faults. However, our results are
consistent between the two subject sets and thus, we believe that this threat is not of actual
importance. We also used automatically generated test suites in combination to the mutation
testing tools. Thus, the use of the tools might have introduced errors in our measurements.
For instance, it could be the case where test oracles generated by the tools are weak and
cannot capture mutants or the studied faults. We also performed our experiments on the
clean (fixed) program versions, which may differ from that of the buggy version (Chekam
et al. 2017), because the existing Java tools only operate on passing test suites. Moreover,
this is common practice in this type of experiments. To mitigate these threats, we carefully
checked our scripts, verified a sample of our results, performed sanity checks and generated
multiple test suites using two different tools. However, we consider these threats of no
substantial importance since our results are consistent in both the manual and automated
scenarios we analyse.

Other threats are due to the manual analysis we performed. To control this fact, we
ensured that this analysis was performed by different persons to avoid any bias in the results
and that all results produced by students were independently checked for correctness by at
least one of the authors. Another potential threat is due to the fact that we did not control
the test suite size and used the automated generation tools, EvoSuite twice, and Randoop
only once. However, our study focuses on investigating the effectiveness of the studied tools
when used as a means to generate strong tests (Papadakis and Malevris 2010a), which are
the results of both test generation tools combined. To cater for wider scrutiny, we made
publicly available all the data of this study (Kintis et al. 2017b, c).

Construct Validity Construct validity pertains to the appropriateness of the measures
utilised in our experiments. For the effectiveness comparison, we used the fault revelation
(using real faults), mutation score and disjoint mutation score measurements. These are
well-established measures in mutation testing literature (Papadakis et al. 2017). All of our
results (both the ones of fault revelation and mutant killability) are under-approximated by
the employed test suites, therefore, they may differ under different and potentially stronger
test suites. Another threat originates from evaluating the tools’ effectiveness based on the
reference fault and mutant set that are revealed by the manually generated or automatically
generated test suites. We deemed this particular measure appropriate because it constitutes a
metric that combines the overall performance of the tools and enables their ranking. Finally,

@ Springer

Empir Software Eng

the number of equivalent mutants and generated tests might not reflect the actual cost of
applying mutation. We adopted these metrics because they involve manual analysis which
is a dominant cost factor when testing.

6 Related Work

Mutation testing is a well-studied technique with a rich history of publications, as recorded
in the recent survey of Papadakis et al. (2017) which summarises the advances in the area
from 2008 to 2017, extending the previous surveys of Offutt (2011) and Yia and Harman
(Jia and Harman 2011).

The original suggestion of mutation was a method to help programmers generate effec-
tive test cases (DeMillo et al. 1978). Since then, researchers have used it to support various
other software engineering tasks (Offutt 2011). In particular, mutation analysis has been
employed in: test generation (Papadakis and Malevris 2010a), test oracle selection and
assessment (Fraser and Zeller 2012), debugging (Papadakis and Traon 2015), test assess-
ment (Papadakis et al. 2016) and in regression testing (Zhang et al. 2012). It has also
been applied to artefacts other than source code, such as models (Devroey et al. 2016) and
software product lines configurations (Henard et al. 2014).

The main problems of mutation testing are the large number of mutants and the so-called
equivalent mutant problem (Papadakis et al. 2015; Kintis 2016). To tackle these problems
several mutant selection strategies were suggested. Mutant sampling is perhaps the simplest and
most effective way of doing so. Depending on the sampling ratio it provides several trade-
offs between reduced number of mutants and effectiveness loss (fault detection) (Papadakis
and Malevris 2010b), e.g., sampling ratios of 10 to 60% have a loss on fault detection from
26 to 6%. Selective mutation (Offutt et al. 1996) is another form of mutant reduction that
only applies specific types of mutants. However, recent research has shown that there are no
significant differences between selective mutation and random sampling (Zhang et al. 2010;
Kurtz et al. 2016). To deal with the equivalent mutant problem researchers have adopted
compiler optimisations (Papadakis et al. 2015; Kintis et al. 2017a), constraint based tech-
niques (Offutt and Pan 1997) and verification techniques (Bardin et al. 2015). However,
despite the efforts this problem remains open especially in the case of Java. This is the main
reason why we manually identified and report on the equivalent mutants produced by the
tools.

Another problem related to mutation testing regards the generation of redundant mutants.
These mutants do not help the testing process, whilst at the same time they introduce noise
to the mutation score measurement. Papadakis et al. (2016) experimented and demonstrated
that there is a good chance of drawing wrong conclusions (approximately 60%) for arbi-
trary experiments when measuring test thoroughness using all mutants rather than with only
the disjoint/subsuming ones. Unfortunately, the above-mentioned result suggests that it is
likely to conclude that one testing method is superior to another one but in fact it is not. The
problem of redundant mutants has been initially identified by Kintis et al. (2010) with the
notion of disjoint mutants. Later Ammann et al. (2014) formalised the concept based on the
notion of dynamic subsumption. Unfortunately, these techniques focus on the undesirable
effects of redundant mutants and not their identification. Perhaps the only available tech-
nique that is capable of identifying such mutants is “Trivial Compiler Equivalence” (TCE)
(Papadakis et al. 2015; Kintis et al. 2017a). TCE is based on compiler optimisations and
identifies duplicated mutants (mutants that are mutually equivalent but differ from the origi-
nal program). According to the studies of Papadakis et al. (2015) and Kintis et al. (2017a)

@ Springer

Empir Software Eng

a considerable number of mutants are duplicated and can be easily removed based on com-
piler optimisations. All these studies identified the problems caused by redundant mutants
but none of them studied the particular weaknesses of modern mutation testing tools as we
do here. Additionally, to deal with redundant mutants we used: (1) the mutation score; (2)
the disjoint mutation score; and, (3) the fault detection as effectiveness measures.

Manual analysis has been used extensively in the mutation testing literature. Yao et al.
(2014) analysed 4,181 mutants to provide insights into the nature of equivalent and stubborn
mutants. Nan et al. (Li et al. 2009) manually analysed 2,919 mutants to compare test cases
generated for mutation testing with the ones generated for various control and data flow
coverage criteria. Deng et al. (2013) analysed 5,807 mutants generated by MUJAVA to inves-
tigate the effectiveness of the SDL mutation operator. Papadakis et al. (2014) used manual
analysis to study mutant classification strategies and found that such techniques are help-
ful only to partially improve test suites (of low quality). Older studies on mutant selection
involved manual analysis to identify equivalent mutants and generate adequate test suites
(Offutt et al. 1996).

Previous work on the differences of mutation testing frameworks for Java is due to Delahaye
and Du Bousquet (2015). Delahaye and Du Bousquet compare several tools based on vari-
ous criteria, such as the supported mutation operators, implementation differences and ease
of usage. The study concluded that different mutation testing tools are appropriate to dif-
ferent scenarios. A similar study was performed by Rani et al. (2015). This study compared
several Java mutation testing tools when executed against a common test suite generated
based on boundary value analysis and equivalence partitioning. The authors concluded that
PIT generated the smallest number of mutants, most of which were killed by the employed
test suite (only 2% survived), whereas, MUJAVA generated the largest number of mutants,
30% of which survived. This result indicates that the mutants of PIT are easier-to-kill than
the ones of MUJAVA which is in accordance to the results presented in our study.

Gopinath et al. (2016) investigated the effectiveness of mutation testing tools by using
various metrics, e.g., comparing the mutation score (obtained by the test subjects’ accom-
panying test suites) and number of disjoint/minimal mutants that they produce. They found
that the examined tools exhibit considerable variation of their performance and that no
single tool is consistently better than the others.

The main differences between our study and the aforementioned ones are that we compare
the tools based on their real-fault revelation ability and cross-evaluated their mutant-
killability effectiveness based on the results of complete manual analysis. This twofold
comparison is one of the strengths of the present paper as it is the first one in the literature
to compare mutation testing tools in such a way. Further, we identified specific limitations
of the tools and provided actionable recommendations on how each of the tools can be
improved. Lastly, we analysed and reported the number and characteristics of equivalent
mutants produced by each tool.

7 Conclusions

Mutation testing tools are widely used as a means to support research. This practice inten-
sifies the need for reliable, effective and robust mutation testing tools. Today most of the
tools are mature and robust, hence the emerging question regards their effectiveness, which
is currently unknown.

In this paper, we reported results from a controlled study that involved manual
analysis (on a sample of program functions selected from open source programs) and

@ Springer

Empir Software Eng

simulation experiments on open source projects with real faults. Our results showed that
one tool, PITry, the research version of PIT, performs considerably better than the other
studied tools, namely MUJAVA, MAJOR and PIT. At the same time our results showed that
none of the tools always subsumes the others (PITry reveals 5.6% unique faults, whilst
MAIJOR reveals 1.6%). Based on this finding, we identified weaknesses of the tools and made
actionable recommendations on how to strengthen and improve their mutation testing practice.

Overall, our results demonstrate that PITry is the most prominent choice of mutation
testing tool for Java, as it successfully revealed 97% of the real faults we studied and
performed best in our manual analysis experiment.

Acknowledgements Marinos Kintis and Nicos Malevris are partly supported by the Research Centre of
Athens University of Economics and Business (RC AUEB).

Appendix A

Table 10 MAJOR’s, PITRy, PIT and MUJAVA fault revelation on real faults studied

Project-BuglD MAJOR PITry PIT MUJAVA

Runs? Reveals? Runs? Reveals? Runs? Reveals? Runs? Reveals?

Chart-1 v v v v v v

Chart-2 v v v v v v v v
Chart-4 v v v v v v

Chart-5 v v v v v v v v
Chart-6 v v v v v v v v
Chart-8 v v v v v v v

Chart-11 v v v v v v v

Chart-14 v v v v v v

Chart-15 v v v v v v

Chart-16 v v v v v v v

Chart-17 v v v v v

Chart-18 v v v v v v v v
Chart-19 v v v v v v

Chart-22 v v v v v v v

Chart-23 v v v v v v

Chart-24 v v v v v v v v
Chart-26 v v v v v v

Time-1 v v v v v v v

Time-2 v v v v v v v

Time-4 v v v v v v

Time-5 v v v v v v v

Time-6 v v v v v v

Time-8 v v v v v v v

Time-9 v v v v v v v v

@ Springer

Empir Software Eng

Table 10 (continued)

Project-BugID MAJOR PITry PIT MUJAVA

Runs? Reveals? Runs? Reveals? Runs? Reveals? Runs? Reveals?

Time-11
Time-12
Time-13
Time-15
Time-17
Time-27
Lang-5

AN NENEN
<
Q\

< S

Lang-7

Lang-9

Lang-10
Lang-11
Lang-12
Lang-16
Lang-19
Lang-23
Lang-24
Lang-27
Lang-33
Lang-35
Lang-36
Lang-37
Lang-39
Lang-41
Lang-43
Lang-44
Lang-45
Lang-46
Lang-47
Lang-49
Lang-52
Lang-54
Lang-56
Lang-58
Lang-59
Lang-60
Lang-61
Math-1

Math-3

Math-4

Math-5

NN
Q\

\

AN N N N N N N N N N N N N N N N N N N NN N N N NN
<\
<\

NN NENENENEN
\

AN NN
ANENENEN

AN N N T R N S NE NN NN
\

SN N N T N N N N N N N N NN N N N N N N N N N N N N N N SR NENENEN
SN N N T N N N N N N N N N N N N S N N N N N N N N N N N N N N N N NEN
AN NN
AN N N N N N N N N T N N N N N N N N N N N N N NENEN

N N YR SENE NN

@ Springer

Empir Software Eng

Table 10 (continued)

Project-BugID MAJOR PITry PIT MUJAVA

Runs? Reveals? Runs? Reveals? Runs? Reveals? Runs? Reveals?

Math-6

Math-8

Math-10
Math-11
Math-14
Math-22
Math-23
Math-24
Math-25
Math-27
Math-29
Math-31
Math-32
Math-35
Math-36
Math-37
Math-42
Math-45
Math-46
Math-47
Math-49
Math-51
Math-55
Math-56
Math-59
Math-60
Math-61
Math-63
Math-66
Math-70
Math-73
Math-75
Math-77
Math-85
Math-86
Math-87
Math-89
Math-90
Math-92
Math-93

v

ANENENEN

SNENEN
AN N N SR NENIEN
A N N N N NN
{\

AN NN NN

NN N N N N N N N N N N N N N NN
SN N N T N N N N N N N N N N N RN

NN

AN NN

AN NN
(\

\

N N N T N N N N N N N N N N N N N NN N N N N N N N N N N N N N N R
<

N N N T NN EN
N N N T N N N N N N N N N N N NN N N N N N N N N SN NENEN

@ Springer

Empir Software Eng

Table 10 (continued)

Project-BugID MAJOR PITry PIT MUJAVA

Runs? Reveals? Runs? Reveals? Runs? Reveals? Runs? Reveals?

Math-95
Math-97
Math-98
Math-99
Math-101
Math-102
Math-103
Math-104
Math-105
Closure-7
Closure-27
Closure-33
Closure-42
Closure-49
Closure-52
Closure-54
Closure-56
Closure-73
Closure-82
Closure-103
Closure-106
Total

v v

(\

v

N N SN N N NENEN
NN NN NN NN
NN NN

ANEN

AN N N N N N N N N N N N N N NN NN
NN N NENEN N

AN N N N N N N N N N N N N NN
AN N N N N N N N N N N N N NEN
AN N N N N N N N N N N N N NEN

NN NN Y

_.
N
Q
—_
—_
'S
—_
N
Q

122 125 115 66 34

References

Ammann P, Offutt J (2008) Introduction to software testing, 1st edn. Cambridge University Press, New York

Ammann P, Delamaro ME, Offutt J (2014) Establishing theoretical minimal sets of mutants. In: Seventh
IEEE international conference on software testing, verification and validation, ICST 2014, March 31,
2014-April 4, 2014, Cleveland, Ohio, USA, pp 21-30. https://doi.org/10.1109/ICST.2014.13

Andrews J, Briand L, Labiche Y, Namin A (2006) Using mutation analysis for assessing and comparing
testing coverage criteria. IEEE Trans Softw Eng 32(8):608-624. https://doi.org/10.1109/TSE.2006.83

Baker R, Habli I (2013) An empirical evaluation of mutation testing for improving the test quality of safety-
critical software. IEEE Trans Softw Eng 39(6):787-805. https://doi.org/10.1109/TSE.2012.56

Bardin S, Delahaye M, David R, Kosmatov N, Papadakis M, Traon YL, Marion J (2015) Sound and
quasi-complete detection of infeasible test requirements. In: 8th IEEE international conference on
software testing, verification and validation, ICST 2015, Graz, Austria, April 13-17, 2015, pp 1-10,
https://doi.org/10.1109/ICST.2015.7102607

Budd TA, Angluin D (1982) Two notions of correctness and their relation to testing. Acta Informatica
18(1):31-45. https://doi.org/10.1007/BF00625279

Chekam TT, Papadakis M, Traon YL, Harman M (2017) An empirical study on mutation, statement and
branch coverage fault revelation that avoids the unreliable clean program assumption. In: Proceedings of
the 39th international conference on software engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, pp 597-608. https://doi.org/10.1109/ICSE.2017.61

Coles H (2010) The PIT mutation testing tool. http://pitest.org/, Last accessed October 2017

@ Springer

https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1109/ICST.2015.7102607
https://doi.org/10.1007/BF00625279
https://doi.org/10.1109/ICSE.2017.61
http://pitest.org/

Empir Software Eng

Delahaye M, Du Bousquet L (2015) Selecting a software engineering tool: lessons learnt from mutation
analysis. Software: Practice and Experience 45(7):875-891. https://doi.org/10.1002/spe.2312

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the practicing programmer.
IEEE Computer 11(4):34—41. https://doi.org/10.1109/C-M.1978.218136

Deng L, Offutt J, Li N (2013) Empirical evaluation of the statement deletion mutation operator. In:
IEEE sixth international conference on software testing, verification and validation, pp 84-93.
https://doi.org/10.1109/ICST.2013.20

Devroey X, Perrouin G, Papadakis M, Legay A, Schobbens P, Heymans P (2016) Featured model-based
mutation analysis. In: Proceedings of the 38th international conference on software engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, pp 655-666. https://doi.org/10.1145/2884781.2884821

Fagerland MW, Lydersen S, Laake P (2014) Recommended tests and confidence intervals for paired binomial
proportions. Stat Med 33(16):2850-2875. https://doi.org/10.1002/sim.6148

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: SIG-
SOFT/FSE’11 19th ACM SIGSOFT symposium on the foundations of software engineering (FSE-19)
and ESEC’ 11: 13th european software engineering conference (ESEC-13), Szeged, Hungary, September
5-9,2011, pp 416-419. https://doi.org/10.1145/2025113.2025179

Fraser G, Zeller A (2012) Mutation-driven generation of unit tests and oracles. IEEE Trans Software Eng
38(2):278-292. https://doi.org/10.1109/TSE.2011.93

Geist R, Offutt A, Harris JFC (1992) Estimation and enhancement of real-time software reliability through
mutation analysis. IEEE Trans Comput 41(5):550-558. https://doi.org/10.1109/12.142681

Gopinath R, Ahmed I, Alipour MA, Jensen C, Groce A (2016) Does choice of mutation tool matter? Softw
Qual J 1-50. https://doi.org/10.1007/s11219-016-9317-7

Henard C, Papadakis M, Traon YL (2014) Mutation-based generation of software product line test configu-
rations. In: Search-based software engineering - 6th international symposium, SSBSE 2014, Fortaleza,
Brazil, August 26-29, 2014. Proceedings, pp 92—-106. https://doi.org/10.1007/978-3-319-09940-8_7

Coles H, Laurent T, Henard C, Papadakis M, Ventresque A (2016) PIT: a practical mutation testing tool for
Java (demo). In: ISSTA, pp 449—452. https://doi.org/10.1145/2931037.2948707

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649-678. https://doi.org/10.1109/TSE.2010.62

Just R, Schweiggert F, Kapfhammer GM (2011) MAJOR: An efficient and extensible tool for mutation anal-
ysis in a Java compiler. In: 26th IEEE/ACM international conference on automated software engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011, pp 612-615. https://doi.org/10.1109/ASE.
2011.6100138

Just R, Jalali D, Ernst MD (2014) Defects4;: a database of existing faults to enable controlled testing studies
for Java programs. In: International symposium on software testing and analysis, ISSTA 14, San Jose,
CA, USA - July 21-26, 2014, pp 437-440. https://doi.org/10.1145/2610384.2628055

Kintis M (2016) Effective methods to tackle the equivalent mutant problem when testing software with
mutation. PhD thesis, Department of Informatics, Athens University of Economics and Business

Kintis M, Malevris N (2015) MEDIC: a static analysis framework for equivalent mutant identification. Inf
Softw Technol 68:1-17. https://doi.org/10.1016/j.infsof.2015.07.009

Kintis M, Papadakis M, Malevris N (2010) Evaluating mutation testing alternatives: a collateral experiment.
In: Proceedings of the 17th asia-pacific software engineering conference, pp 300-309. https://doi.org/10.
1109/APSEC.2010.42

Kintis M, Papadakis M, Malevris N (2015) Employing second-order mutation for isolating first-order equiva-
lent mutants. Software Testing, Verification and Reliability (STVR) 25(5-7):508-535. https://doi.org/10.
1002/stvr.1529

Kintis M, Papadakis M, Papadopoulos A, Valvis E, Malevris N (2016) Analysing and comparing the effec-
tiveness of mutation testing tools: a manual study. In: International working conference on source code
analysis and manipulation, pp 147-156

Kintis M, Papadakis M, Jia Y, Malevris N, Traon YL, Harman M (2017a) Detecting trivial mutant equiva-
lences via compiler optimisations. IEEE Trans Softw Eng PP(99):1-1. https://doi.org/10.1109/TSE.2017.
2684805

Kintis M, Papadakis M, Papadopoulos A, Valvis E, Malevris N, Traon YL (2017b) Accompanying data for
the paper: how effective mutation testing tools are? An empirical analysis of Java mutation testing tools
with manual analysis and real faults. https://doi.org/10.6084/m9.figshare.5558587.v1

Kintis M, Papadakis M, Papadopoulos A, Valvis E, Malevris N, Traon YL (2017c) Supporting site for the
paper: how effective mutation testing tools are? An empirical analysis of Java mutation testing tools with
manual analysis and real faultss. http://pages.cs.aueb.gr/~kintism/papers/emse2017/

Kurtz B, Ammann P, Offutt J, Delamaro ME, Kurtz M, Gok¢e N (2016) Analyzing the validity of selective
mutation with dominator mutants. In: Proceedings of the 24th ACM SIGSOFT international symposium

@ Springer

https://doi.org/10.1002/spe.2312
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICST.2013.20
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1002/sim.6148
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/12.142681
https://doi.org/10.1007/s11219-016-9317-7
https://doi.org/10.1007/978-3-319-09940-8_7
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ASE.2011.6100138
https://doi.org/10.1109/ASE.2011.6100138
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.6084/m9.figshare.5558587.v1
http://pages.cs.aueb.gr/~kintism/papers/emse2017/

Empir Software Eng

on foundations of software engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pp 571—
582. https://doi.org/10.1145/2950290.2950322

Laurent T, Papadakis M, Kintis M, Henard C, Traon YL, Ventresque A (2017a) Assessing and improving the
mutation testing practice of pit. In: IEEE international conference on software testing, verification and
validation, ICST

Laurent T, Ventresque A, Papadakis M, Henard C, Traon Y (2017b) PITry: the extended version of PIT.
https://github.com/laurenttho3/extendedpitest, Last Accessed October 2017

Li N, Praphamontripong U, Offutt J (2009) An experimental comparison of four unit test criteria: mutation,
edge-pair, all-uses and prime path coverage. In: International conference on software testing, verification
and validation workshops, pp 220-229. https://doi.org/10.1109/ICSTW.2009.30

Lindstrom B, Marki A (2016) On strong mutation and subsuming mutants. In: Proceedings of the 11th
international workshop on mutation analysis

Luo Q, Hariri F, Eloussi L, Marinov D (2014) An empirical analysis of flaky tests. In: Proceedings of the
22nd ACM SIGSOFT international symposium on foundations of software engineering, ACM, New
York, NY, USA, FSE 2014, pp 643-653. https://doi.org/10.1145/2635868.2635920

Ma YS, Offutt J, Kwon YR (2005) MuJava: an automated class mutation system. Software Testing,
Verification and Reliability 15(2):97-133. https://doi.org/10.1002/stvr.308

Offutt AJ, Pan J (1997) Automatically detecting equivalent mutants and infeasible paths. Softw Test, Verif
Reliab 7(3):165-192. https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR 143>3.0.
CO;2-U

Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental determination of sufficient
mutant operators. ACM Trans Softw Eng Methodol 5(2):99-118

Offutt J (2011) A mutation carol: past, present and future. Inf Softw Technol 53(10):1098-1107. https://doi.
org/10.1016/j.infsof.2011.03.007

Pacheco C, Ernst MD (2007) Randoop: feedback-directed random testing for Java. In: Companion to the 22nd
annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and applica-
tions, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pp 815-816. https://doi.org/10.
1145/1297846.1297902

Papadakis M, Malevris N (2010a) Automatic mutation test case generation via dynamic symbolic execution.
In: 21st international symposium on software reliability engineering, pp 121-130. https://doi.org/10.11
09/ISSRE.2010.38

Papadakis M, Malevris N (2010b) An empirical evaluation of the first and second order mutation testing
strategies. In: Third international conference on software testing, verification and validation, ICST 2010,
Paris, France, April 7-9, 2010, workshops proceedings, pp 90-99. https://doi.org/10.1109/ICSTW.201
0.50

Papadakis M, Traon YL (2015) Metallaxis-fl: mutation-based fault localization. Softw Test Verif Reliab
25(5-7):605-628. https://doi.org/10.1002/stvr.1509

Papadakis M, Delamaro ME, Traon YL (2014) Mitigating the effects of equivalent mutants with mutant
classification strategies. Sci Comput Program 95:298-319. https://doi.org/10.1016/j.scic0.2014.05.012

Papadakis M, Jia Y, Harman M, Traon YL (2015) Trivial compiler equivalence: a large scale empirical study
of a simple, fast and effective equivalent mutant detection technique. In: 37th international conference
on software engineering, vol 1, pp 936-946. https://doi.org/10.1109/ICSE.2015.103

Papadakis M, Henard C, Harman M, Jia Y, Le Traon Y (2016) Threats to the validity of mutation-based test
assessment. In: Proceedings of the 25th international symposium on software testing and analysis, ACM,
New York, NY, USA, ISSTA 2016, pp 354-365. https://doi.org/10.1145/2931037.2931040

Papadakis M, Kintis M, Zhang J, Jia Y, Traon YL, Harman M (2017) Mutation testing advances: an analysis
and survey. Advances in Computers

Rani S, Suri B, Khatri SK (2015) Experimental comparison of automated mutation testing tools for Java. In:
4th international conference on reliability, infocom technologies and optimization, pp 1-6. https://doi.org/
10.1109/ICRITO.2015.7359265

Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A (2015) Do automatically generated unit tests
find real faults? An empirical study of effectiveness and challenges (t). In: 2015 30th IEEE/ACM interna-
tional conference on automated software engineering (ASE), pp 201-211. https://doi.org/10.1109/ASE.
2015.86

Visser W (2016) What makes killing a mutant hard. In: Proceedings of the 31st IEEE/ACM international
conference on automated software engineering, ASE 2016, Singapore, September 3-7, 2016, pp 39-44.
https://doi.org/10.1145/2970276.2970345

Yao X, Harman M, Jia Y (2014) A study of equivalent and stubborn mutation operators using human analysis
of equivalence. In: Proceedings of the 36th international conference on software engineering, pp 919—
930. https://doi.org/10.1145/2568225.2568265

@ Springer

https://doi.org/10.1145/2950290.2950322
https://github.com/laurenttho3/extendedpitest
https://doi.org/10.1109/ICSTW.2009.30
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1002/stvr.308
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3$<$165::AID-STVR143$>$3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3$<$165::AID-STVR143$>$3.0.CO;2-U
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ISSRE.2010.38
https://doi.org/10.1109/ISSRE.2010.38
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1016/j.scico.2014.05.012
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1109/ICRITO.2015.7359265
https://doi.org/10.1109/ICRITO.2015.7359265
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1145/2970276.2970345
https://doi.org/10.1145/2568225.2568265

Empir Software Eng

Zhang L, Hou S, Hu J, Xie T, Mei H (2010) Is operator-based mutant selection superior to random mutant
selection? In: Proceedings of the 32nd ACM/IEEE international conference on software engineering -
volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pp 435-444. https://doi.org/10.1145/18
06799.1806863

Zhang L, Marinov D, Zhang L, Khurshid S (2012) Regression mutation testing. In: International symposium
on software testing and analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, pp 331-341.
https://doi.org/10.1145/2338965.2336793

Marinos Kintis is a research associate at the Interdisciplinary Centre for Security, Reliability and Trust at the
University of Luxembourg. He received the PhD degree from the Department of Informatics of the Athens
University of Economics and Business in 2016. The main topic of his dissertation was the introduction of
effective techniques to ameliorate the adverse effects of the Equivalent Mutant Problem when testing software
with Mutation. His main research interests include software and security testing and program analysis. He
was awarded a Best Paper Award at the 16th International Working Conference on Source Code Analysis
and Manipulation (SCAM 2016) and is one of the organisers of the 13th International Workshop on Mutation
Analysis (MUTATION 2018).

Mike Papadakis is a research scientist at the Interdisciplinary Centre for Security, Reliability and Trust (SnT)
at the University of Luxembourg. He received a Ph.D. diploma in Computer Science from the Athens Uni-
versity of Economics and Business. His research interests include software testing, static analysis, prediction
modelling, mutation analysis and search-based software engineering.

@ Springer

https://doi.org/10.1145/1806799.1806863
https://doi.org/10.1145/1806799.1806863
https://doi.org/10.1145/2338965.2336793

Empir Software Eng

Andreas Papadopoulos is a last-year undergraduate student in the Department of Informatics at the Athens
University of Economics and Business (AUEB). His interests include Software Testing and Program Anal-
ysis, a subject in which he has participated in two published papers. He is currently working as a software
developer in the financial sector.

Evangelos Valvis is an undergraduate computer science student, currently in his last year of studies at the
Department of Informatics of the Athens University of Economics and Business. He has been a co-author
in three publications so far, one of them received a Best Paper Award at the 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM 2016). His research interests include but are
not limited to: software testing and security.

@ Springer

Empir Software Eng

Nicos Malevris is a Professor in the Department of Informatics at the Athens University of Economics and
Business (AUEB). He obtained his PhD from the University of Liverpool, UK, where he also served as a
member of staff. He holds a MSc degree in Operational Research from the University of Southampton, UK
and a BSc degree in Mathematics from the University of Athens, Greece. He has been with the Department of
Informatics at AUEB, since 1991. His research interests include software quality assurance and in particular
software testing and software reliability. He has gained experience in that area for more than 25 years, having
been involved in research projects and having published a significant number of papers in journals and
conferences. He serves at the Editorial Board of high quality International journals and has also been on the
program committees of international conferences.

Yves Le Traon is professor at University of Luxembourg where he leads the SERVAL (SEcurity, Reasoning
and VALidation) research team. His research interests within the group include (1) innovative testing and
debugging techniques, (2) Android apps security and reliability using static code analysis, machine learning
techniques and, (3) model-driven engineering with a focus on IoT and CPS. His reputation in the domain of
software testing is acknowledged by the community. He has been General Chair of major conferences in the
domain, such as the 2013 IEEE International Conference on Software Testing, Verification and Validation
(ICST), and Program Chair of the 2016 IEEE International Conference on Software Quality, Reliability and
Security (QRS). He serves at the editorial boards of several, internationally-known journals (STVR, SoSym,
IEEE Transactions on Reliability) and is author of more than 140 publications in international peer-reviewed
conferences and journals.

@ Springer

	How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with manual analysis and real faults
	Abstract
	Introduction
	Background
	Mutation Testing
	Java Mutation Testing Tools
	muJava – Source Code Manipulation
	PIT – Bytecode Manipulation
	Major – AST Manipulation
	PITRV – the Research Version of PIT

	Design of the Experiment
	Research Questions
	Mutation Testing Tools
	Test Subjects
	Test Suites
	Automatically Generated Test Suites
	Manually Generated Test Suites

	Analysis Procedure

	Empirical Findings
	RQ1: Tools' Real Fault Revelation Ability
	RQ2: Tools' Cross-evaluation
	RQ3: Comparison with Reference Mutation Tool
	RQ4: Tools' Weaknesses and Recommendations
	Recommendations: PITRV
	Recommendations: Major
	Recommendations: muJava

	RQ5: Tools' Application Cost

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Conclusions
	Acknowledgements
	Appendix A APlease check captured Appendix Table if presented correctly.
	References

