Empirical Software Engineering
https://doi.org/10.1007/510664-018-9673-y

@ CrossMark

Security code smells in Android ICC

Pascal Gadient! © . Mohammad Ghafari' © .
Patrick Frischknecht! - Oscar Nierstrasz'

Published online: 14 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Android Inter-Component Communication (ICC) is complex, largely unconstrained, and
hard for developers to understand. As a consequence, ICC is a common source of secu-
rity vulnerabilities in Android apps. To promote secure programming practices, we have
reviewed related research, and identified avoidable ICC vulnerabilities in Android-run
devices and the security code smells that indicate their presence. We explain the vulnerabili-
ties and their corresponding smells, and we discuss how they can be eliminated or mitigated
during development. We present a lightweight static analysis tool on top of Android Lint
that analyzes the code under development and provides just-in-time feedback within the
IDE about the presence of such smells in the code. Moreover, with the help of this tool we
study the prevalence of security code smells in more than 700 open-source apps, and man-
ually inspect around 15% of the apps to assess the extent to which identifying such smells
uncovers ICC security vulnerabilities.

Keywords Security code smells - Vulnerability - Static analysis - Android

1 Introduction

Smartphones and tablets provide powerful features once offered only by computers. However,
the risk of security vulnerabilities on these devices is tremendous: smartphones are increa-
singly used for security-sensitive services like e-commerce, e-banking, and personal health-
care, which make these multi-purpose devices an irresistible target of attack for criminals.

Communicated by: Coen de Roover, David Lo and Jianjun Zhao

P4 Pascal Gadient
gadient@inf.unibe.ch

Mohammad Ghafari
ghafari @inf.unibe.ch

Patrick Frischknecht
patrick.frischknecht@students.unibe.ch

Oscar Nierstrasz
oscar @inf.unibe.ch

Software Composition Group, University of Bern, Bern, Switzerland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9673-y&domain=pdf
http://orcid.org/0000-0001-6433-7356
http://orcid.org/0000-0002-1986-9668
http://orcid.org/0000-0002-9975-9791
mailto: gadient@inf.unibe.ch
mailto: ghafari@inf.unibe.ch
mailto: patrick.frischknecht@students.unibe.ch
mailto: oscar@inf.unibe.ch

Empirical Software Engineering

A recent survey in the Stack Overflow website shows that about 65% of mobile develop-
ers work with Android (Stack Overflow developer survey results: http:/insights.stackovertlow.
com/survey/2017). This platform has captured over 80% of the smartphone market, and just
its official app store contains more than 2.8 million apps. As a result, a security mistake in
an in-house app may jeopardize the security and privacy of billions of users.

The security of smartphones has been studied from various perspectives such as the
device manufacturer (Lei et al. 2013), its platform (Meng et al. 2016), and end users (Jones
and Chin 2015). Numerous security APIs, protocols, guidelines, and tools have been pro-
posed. Nevertheless security concerns are often overridden by other concerns (Balebako and
Cranor 2014). Many developers undermine their significant role in providing security (Xie
etal. 2011). As aresult, security issues in mobile apps continue to proliferate unabated (The
ultimate security vulnerability datasource: http://www.cvedetails.com).

Given this situation, in previous work we identified 28 security code smells, i.e., symp-
toms in the code that signal potential security vulnerabilities (Ghafari et al. 2017). We
studied the prevalence of ten such smells, and realized that despite the diversity of apps in
popularity, size, and release date, the majority suffer from at least three different security
smells, and such smells are in fact good indicators of actual security vulnerabilities.

To promote the adoption of secure programming practices, we build on our previous work,
and identify security smells related to Android Inter-Component Communication (ICC).
Android ICC is complex, largely unconstrained, and hard for developers to understand, and
it is consequently a common source of security vulnerabilities in Android apps.

We have reviewed state-of-the-art papers in security and existing benchmarks for
Android vulnerabilities, and identified twelve security code smells pertinent to ICC vul-
nerabilities. In this paper we present these vulnerabilities and their corresponding smells
in the code, and discuss how they could be eliminated or mitigated during development.
We present a lightweight static analysis tool on top of Android Lint that analyzes the code
under development, and provides just-in-time feedback within the IDE about the presence
of such security smells in the code. Moreover, with the help of this tool we study the preva-
lence of security code smells in more than 700 open-source apps, and discuss the extent to
which identifying these smells can uncover actual ICC security vulnerabilities. We address
the following three research questions:

— RQq: What are the known ICC security code smells? We have reviewed related
work, especially that appearing in top-tier conferences and journals, and identified
twelve avoidable ICC vulnerabilities and the code smells that indicate their pres-
ence. We discuss each smell, the risk associated with it, and its mitigation during app
development.

— RQq: How prevalent are the smells in benign apps? We have developed a tool that
statically analyzes apps for the existence of ICC security smells, and we applied it
to a repository of 732 apps, mostly available on GitHub. We discovered that almost
all apps suffer from at least one category of ICC security smell, but fewer than 10%
suffer from more than two categories of such smells. Interestingly, only small teams
appear to be capable of consistently building software resistant to most security code
smells. Furthermore, long-lived projects have more issues than recently created ones,
and updates rarely have any impact on ICC security.

— RQs: To which extent does identifying security smells facilitate detection of security
vulnerabilities? We inspected the identified smells in 100 apps, and verified whether
they correspond to any security vulnerabilities. Our investigation showed that about
half of the identified smells are in fact good indicators of security vulnerabilities.

@ Springer

http://insights.stackoverflow.com/survey/2017
http://insights.stackoverflow.com/survey/2017
http://www.cvedetails.com

Empirical Software Engineering

To summarize, this work represents an effort to spread awareness about the impact of
programming choices in making apps secure, and to fundamentally reduce the attack sur-
face of ICC APIs in Android. We argue that this helps developers who develop security
mechanisms to identify frequent problems, and also provides developers inexperienced in
security with caveats about the prospect of security issues in their code. Existing analy-
sis tools often overwhelm developers with too many identified issues at once. In contrast
we provide feedback during app development where developers have the relevant context.
Such feedback makes it easier to react to issues, and helps developers to learn from their
mistakes (Tymchuk et al. 2018). This paper goes beyond our earlier work (Ghafari et al.
2017) by (i) providing a completely new study on ICC vulnerabilities, one of the most
prevalent Android security issues, and identifying the corresponding security smells, (ii)
providing more precise, while still lightweight, static analysis tool support to identify such
smells, (iii) integrating our analysis into Android Lint, thus providing just-in-time feedback
to developers, (iv) experimentation on a new dataset of open-source Android apps, and (v)
open-sourcing the lint checks as well as the analyzed data.!

The remainder of this paper is organized as follows. We provide the necessary back-
ground about the Android OS and ICC risks from which Android apps suffer in Section 2.
We introduce ICC-related security code smells in Section 3, followed by our empirical study
in Section 4. We provide a brief overview of the related work in Section 5, before concluding
the paper in Section 6.

2 Background

This section covers the necessary background in the Android platform, and briefly presents
common security threats in the context of ICC scenarios.

2.1 Android Architecture

Android is the most popular operating system (OS) for smartphones and other types of
mobile devices. It provides a rich set of APIs for app developers to access common features
on mobile devices.

An Android app consists of an .apk file containing the compiled bytecode, any needed
data, and resource files. The Android platform assigns a unique user identifier (UID) to
each app at installation time, and runs it in a unique process within a sandbox so that every
app runs in isolation from other apps. Moreover, access to sensitive APIs is protected by a
set of permissions that the user can grant to an app. In general, these permissions are text
strings that correlate to a specific access grant, e.g., android.permission.CAMERA
for camera access.

Four types of components can exist in an app: activities, services, broadcast receivers,
and content providers. In a nutshell:

— Activities build the user interface of an app, and allow users to interact with the app.

— Services run operations in the background, without a user interface.

— Broadcast receivers receive system-wide “intents”, i.e., descriptions of operations to be
performed, sent to multiple apps. Broadcast receivers act in the background, and often
relay messages to activities or services.

'We are collaborating with Google to officially integrate these checks into Android Studio.

@ Springer

Empirical Software Engineering

— Content providers manage access to a repository of persistent data that could be used
internally or shared between apps.

The OS and its apps, as well as components within the same or across multiple apps,
communicate with each other via ICC APIs. These APIs take an infent object as a parameter.
An intent is either explicit or implicit. In an explicit intent, the source component declares
to which target component (i.e., Class or ComponentName instances) the intent is sent,
whereas in an implicit intent, the source component only specifies a general action to be
performed (i.e., represented by a text string), and the target component that will receive
the intent is determined at runtime. Intents can optionally carry additional data also called
bundles. Components declare their ability to receive implicit intents using “intent filters”,
which allow developers to specify the kinds of actions a component supports. If an intent
matches any intent filter, it can be delivered to that component.

2.2 ICCThreats

ICC not only significantly contributes to the development of collaborative apps, but it also
poses a common attack surface. The ICC-related attacks that threaten Android apps are:

— Denial of Service Unchecked exceptions that are not caught will usually cause an app
to crash. The risk is that a malicious app may exploit such programming errors, and per-
form an inter-process denial-of-service attack to drive the victim app into an unavailable
state.

— Intent Spoofing In this scenario a malicious app sends forged intents to mislead a
receiver app that would otherwise not expect intents from that app.

— Intent Hijacking This threat is similar to a man-in-the-middle attack where a mali-
cious app, registered to receive intents, intercepts implicit intents before they reach the
intended recipient, and without the knowledge of the intent’s sender and receiver.

Two major consequences of ICC attacks are as follows:

— Privilege Escalation The security model in Android does not by default prevent an app
with fewer permissions (low privilege) from accessing components of another app with
more permissions (high privilege). Therefore, a caller can escalate its permissions via
other apps, and indirectly perform unauthorized actions through the callee.

— Data Leak A data leak occurs when private data leaves an app and is disclosed to an
unauthorized recipient.

3 ICC Security Code Smells

In this section we present the guidelines we followed to derive the security code smells from
previous research. Finally, we explain each security smell in detail.

3.1 Literature Review

Although Android security is a fairly new field, it is very active, and researchers in this area
have published a large number of articles in the past few years. In order to answer the first
research question (RQ), and to draw a comprehensive picture of recent ICC smells and
their corresponding vulnerabilities, our study builds on two pillars, i.e., a literature review
and a benchmark inspection.

@ Springer

Empirical Software Engineering

We were essentially interested in any paper that matches our scope, i.e., explaining an
ICC-related issue, and any countermeasures that involve ICC communication in Android.

For our analysis we considered multiple online repositories, such as IEEE Xplore and
the ACM Digital Library, as well as the Google Scholar search engine. In each repository
we formulated a search query comprising Android, ICC, IPC and any other security-related
keywords such as security, privacy, vulnerability, attack, exploit, breach, leak, threat, risk,
compromise, malicious, adversary, defence, or protect. In addition to increase our potential
coverage on Android security, we also collected all related publications in recent editions
of well-known software engineering venues like the International Conference on Software
Engineering (ICSE). This search led initially to 358 publications.

In order to retrieve only relevant information that lies within our scope, i.e., Android
application level ICC security, we first read the title and abstract, and if the paper was
relevant we continued reading other parts.

This process led to the inclusion of 47 papers in our study. We recursively checked both
citations and cited papers until no new related papers were found. This added six new rele-
vant papers in our list that in the end contained 53 relevant papers for an in-depth study, out
a total of 430 papers. During the whole process, which was undertaken by two authors of
this paper, we resolved any disagreement by discussions. The list of included papers in this
study is available on the GitHub page of the project.”

We further studied the well-known DroidBench® and Ghera* benchmarks for our eval-
uation, both built with a focus on ICC. We relied on their technical implementation, or
description where possible, to extract the desired information, i.e., issues under test, symp-
toms, and vulnerabilities. The inspection of these two benchmarks served two different
purposes: on the one hand we wanted to ensure there are no smells that we might have
missed to include in our list. On the other hand, we wanted to rely on some ground truth
while explaining and examining the vulnerability capabilities of the smells.

3.2 List of Smells

We have identified twelve ICC security code smells that are listed in Table 1. For each
smell we report the security issue at stake, the potential security consequences for users, the
symptom in the code (i.e., the code smell), the detection strategy that has been implemented
by our tool for identifying the code smell, any limitations of the detection strategy, and a
recommended mitigation strategy of the issue, principally for developers.

We mined this information from numerous publications and benchmark suites, but only
few of these resources provided detailed information about a given security issue. Therefore
we put in a great manual effort to provide a comprehensive description for each smell, while
consulting other resources such as the official Android documentation and external experts.
For instance, authors who focused on vulnerability detection generally neglected the aspect
of mitigation. This is very problematic, since it is very common for ICC-related issues to
share strong similarities with only subtle differences, e.g., regular directed inter-app com-
munication and broadcasts both rely on intents. Furthermore, manifold vulnerability terms
that are used in the literature insufficiently reflect the symptoms as they do not name

Zhttps://github.com/pgadient/AndroidLintSecurityChecks
3https://github.com/secure-software-engineering/DroidBench
“https://bitbucket.org/secure-it-i/android-app- vulnerability-benchmarks

@ Springer

https://github.com/pgadient/AndroidLintSecurityChecks
https://github.com/secure-software-engineering/DroidBench
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

Empirical Software Engineering

Table 1 The identified ICC security code smells

D Security code smells D Security code smells

SMO1 Persisted dynamic permission SMO07 Broken service permission

SM02 Custom scheme channel SMO08 Insecure path permission

SM03 Incorrect protection level SM09 Broken path permission precedence
SM04 Unauthorized intent SM10 Unprotected broadcast receiver
SMO05 Sticky broadcast SM11 Implicit pending intent

SMO06 Slack WebViewClient SM12 Common task affinity

the involved component, e.g., “Confused Deputy” instead of “Unauthorized Intent”. Better
naming conventions would greatly ease the understanding of security vulnerabilities.

SMO01: Persisted Dynamic Permission Android provides access to protected resources
through a Uniform Resource Identifier (URI) to be granted at runtime.

Issue: Such dynamic access is intended to be temporary, but if the developer forgets
to revoke a permission, the access grant becomes more durable than intended.

Consequently, the recipient of the granted access obtains long-term access to
potentially sensitive data.

Symptom: Context .grantUriPermission () is present in the code without
a corresponding Context . revokeUriPermission () call.

Detection: We report the smell when we detect a permission being dynamically
granted without any revocations in the app.

Limitation: Our implementation does not match a specific grant permission to its
corresponding revocation. We may therefore fail to detect a missing revocation if
another revocation is present somewhere in the code.

Mitigation: Developers have to ensure that granted permissions are revoked when
they are no longer needed. They can also attach sensitive data to the intent instead of
providing its URL
SM02: Custom Scheme Channel A custom scheme allows a developer to register an
app for custom URIs, e.g., URIs beginning with myapp: //, throughout the operating
system once the app is installed. For example, the app could register an activity to
respond to the URI via an intent filter in the manifest. Therefore, users can access the
associated activity by opening specific hyperlinks in a wide set of apps.

Issue: Any app is potentially able to register and handle any custom schemes used
by other apps.

Consequently, malicious apps could access URIs containing access tokens or cre-
dentials, without any prospect for the caller to identify these leaks (Wang et al.
2013).

Symptom: If an app provides custom schemes, then a scheme handler exists in the
manifest file or in the Android code. If the app calls a custom scheme, there exists an
intent containing a URI referring to a custom scheme.

Detection: The android: scheme attribute exists in the intent-filter node
of the manifest file, or IntentFilter.addDataScheme () exists in the source
code.

Limitation: We only check the symptoms related to receiving custom schemes.

Mitigation: Never send sensitive data, e.g., access tokens via such URIs. Instead of
custom schemes, use system schemes that offer restrictions on the intended recipients.

@ Springer

Empirical Software Engineering

The Android OS could maintain a verified list of apps and the schemes that are matched
when there is such a call.

— SMO03: Incorrect Protection Level Android apps must request permission to access
sensitive resources. In addition, custom permissions may be introduced by developers
to limit the scope of access to specific features that they provide based on the protec-
tion level given to other apps. Depending on the feature, the system might grant the
permission automatically without notifying the user, i.e., signature level, or after the
user approval during the app installation, i.e., normal level, or may prompt the user to
approve the permission at runtime, if the protection is at a dangerous level.

Issue: An app declaring a new permission may neglect the selection of the right pro-
tection level, i.e., a level whose protection is appropriate with respect to the sensitivity
of resources (Mitra and Ranganath 2017).

Consequently, apps with inappropriate permissions can still use a protected feature.

Symptom: Custom permissions are missing the right android:protection-
Level attribute in the manifest file.

Detection: We report missing protection level declarations for custom permissions.

Limitation: We cannot determine if the level specified for a protection level is in fact
right.

Mitigation: Developers should protect sensitive features with dangerous or signature
protection levels.

— SM04: Unauthorized Intent Intents are popular as one way requests, e.g., send-
ing a mail, or requests with return values, e.g., when requesting an image file from
a photo library. Intent receivers can demand custom permissions that clients have
to obtain before they are allowed to communicate. These intents and receivers are
“protected”.

Issue: Any app can send an unprotected intent without having the appropriate
permission, or it can register itself to receive unprotected intents.

Consequently, apps could escalate their privileges by sending unprotected intents to
privileged targets, e.g., apps that provide elevated features such as camera access. Also,
malicious apps registered to receive implicit unprotected intents may relay intents while
leaking or manipulating their data (Chin et al. 2011).

Symptom: The existence of an unprotected implicit intent. For intents requesting a
return value, the lack of check for whether the sender has appropriate permissions to
initiate an intent.

Detection: The existence of several methods on the Context class for ini-
tiating an unprotected implicit intent like startActivity, sendBroadcast,
sendOrderedBroadcast, sendBroadcastAsUser, and sendOrdered-
BroadcastAsUser.

Limitation: We do not verify, for a given intent requesting a return value, if the sender
enforces permission checks for the requested action.

Mitigation: Use explicit intents to send sensitive data. When serving an intent, vali-
date the input data from other components to ensure they are legitimate. Adding custom
permissions to implicit intents may raise the level of protection by involving the user in
the process.

— SMO5: Sticky Broadcast A normal broadcast reaches the receivers it is intended for,
then terminates. However, a “sticky” broadcast stays around so that it can immediately
notify other apps if they need the same information.

Issue: Any app can watch a broadcast, and particularly a sticky broadcast receiver
can tamper with the broadcast (Mitra and Ranganath 2017).

@ Springer

Empirical Software Engineering

Consequently, a manipulated broadcast may mislead future recipients.

Symptom: Broadcast calls that send a sticky broadcast appear in the code, and the
related Android system permission exists in the manifest file.

Detection: We check for the existence of methods such as sendStickyBroad-
cast, sendStickyBroadcastAsUser, sendStickyOrderedBroadcast,
sendStickyOrderedBroadcastAsUser, removeStickyBroadcast, and
removeStickyBroadcastAsUser on the Context object in the code and the
android.permission.BROADCAST_STICKY permission in the manifest file.

Limitation: We are not aware of any limitations.

Mitigation: Prohibit sticky broadcasts. Use a non-sticky broadcast to report that
something has changed. Use another mechanism, e.g., an explicit intent, for apps to
retrieve the current value whenever desired.

— SMO06: Slack WebViewClient A WebView is a component to facilitate web browsing
within Android apps. By default, a WebView will ask the Activity Manager to choose
the proper handler for the URL. If a WebViewClient is provided to the WebView,
the host application handles the URL.

Issue: The default implementation of a WebViewClient does not restrict access
to any web page (Mitra and Ranganath 2017).

Consequently, it can be pointed to a malicious website that entails diverse attacks
like phishing, cross-site scripting, etc.

Symptom: The WebView responsible for URL handling does not perform ade-
quate input validation. Detection: The WebView.setWebViewClient () existsin
the code but the WebViewClient instance does not apply any access restrictions
in WebView.shouldOverrideUrlLoading(), i.e., it returns false or calls
WebView.loadUrl () right away. Also, we report a smell if the implementation of
WebView.shouldInterceptRequest () returns null.

Limitation: 1t is inherently difficult to evaluate the quality of an existing input
validation.

Mitigation: Use a white list of trusted websites for validation, and benefit from exter-
nal services, e.g., SafetyNet APIL? that provide information about the threat level of a
website.

— SMO7: Broken Service Permission Two different mechanisms exist to start a service:
onBind and onStartCommand. Only the latter allows services to run indefinitely
in the background, even when the client disconnects. An app that uses Android IPC to
start a service may possess different permissions than the service provider itself.

Issue: When the callee is in possession of the required permissions, the caller will
also get access to the service.

Consequently, a privilege escalation could occur (Mitra and Ranganath 2017).

Symptom: The lack of appropriate permission checks to ensure that the caller has
access right to the service.

Detection: We report the smell when the caller uses startService, and then
the callee uses checkCallingOrSelfPermission, enforceCallingOr-
SelfPermission, checkCallingOrSelfUriPermission, or enforce-
CallingOrSelfUriPermission to verify the permissions of the request. Calls
on the Context object for permission check will then fail as the system mistak-
enly considers the callee’s permission instead of the caller’s. Furthermore, reported are

Shttps://developer.android.com/training/safetynet/safebrowsing. html

@ Springer

https://developer.android.com/training/safetynet/safebrowsing.html

Empirical Software Engineering

calls to checkPermission, checkUriPermission, enforcePermission,
or enforceUriPermission methods on the Context object, when additional
calls to getCallingPid or getCallingUid on the Binder object exist.

Limitation: We currently do not distinguish between checks executed in Ser-
vice.onBind or Service.onStartCommand, and we do not verify custom
permission checks based on the user id with getCallingUid.

Mitigation: Verify the caller’s permissions every time before performing a privileged
operation on its behalf using Context .checkCallingPermission () or Con-
text.checkCallingUriPermission () checks. If possible, do not implement
Service.onStartCommand in order to prevent clients from starting, instead of
binding to, a service. Ensure that appropriate permissions to access the service have
been set in the manifest.

— SMO8: Insecure Path Permission Apps can access data provided by a content provider
using path specifications of the form /a/b/c. A content provider may restrict access to
certain data under a given path by specifying so called path permissions. For example,
it may specify that other apps cannot access data located under /data/secret. The
Android framework prohibits access to unauthorized apps only if the requested path
strictly matches the protected path. For instance, //data/secret is different from
/data/secret, and therefore the framework will not block access to it.

Issue: Developers often use the UriMatcher for URI comparison in the query
method of a content provider to access data, but this matcher, unlike the Android
framework, evaluates paths with two slashes as being equal to paths with one slash.

Consequently, access to presumably protected resources may be granted to unautho-
rized apps (Mitra and Ranganath 2017).

Symptom: A UriMatcher.match () is used for URI validation.

Detection: We look for path-permission attributes in the manifest file, and
UriMatcher.match () methods in the code.

Limitation: We are not aware of any limitation.

Mitigation: As long as the bug exists in the Android framework, use your own URI
matcher.

— SMO09: Broken Path Permission Precedence In a content provider, more fine-grained
path permissions e.g., on /data/secret take precedence over those with a larger
scope e.g., on /data.

Issue: A path permission never takes precedence over a permission on the whole
content provider due to a bug that exists in the ContentProvider.enforce-
ReadPermissionInner () method. For example, if a content provider has a
permission for general use, as well as a path permission to protect /data/secret
from untrusted apps, then the general use permission takes precedence.

Consequently, content providers may mistakenly grant untrusted apps access to
presumably protected paths.

Symptom: A content provider is protected by path-specific permissions.

Detection: We look for a path-permission in the definition of a content
provider in the manifest file.

Limitation: We are not aware of any limitation.

Mitigation: As long as the bug exists in Android, instead of path permissions use a
distinct content provider with a dedicated permission for each path.

— SM10: Unprotected Broadcast Receiver Static broadcast receivers are registered in
the manifest file, and start even if an app is not currently running. Dynamic broadcast re-
ceivers are registered at run time in Android code, and execute only if the app is running.

@ Springer

Empirical Software Engineering

Issue: Any app can register itself to receive a broadcast, which exposes the app to
any other app able to initiate the broadcast.

Consequently, if there is no permission check, the receiver may respond to a spoofed
intent yielding unintended behavior or data leaks (Mitra and Ranganath 2017).

Symptom: The Context.registerReceiver () call without any argument
for permission exists in the code Detection: We report cases where the permission
argument is missing or is null.

Limitation: We are not aware of the permissions’ appropriateness.

Mitigation: Register broadcast receivers with sound permissions.

— SM11: Implicit Pending Intent A PendingIntent is an intent that executes the
specified action of an app in the future and on behalf of the app, i.e., with the identity
and permissions of the app that sends the intent, regardless of whether the app is running
or not.

Issue: Any app can intercept an implicit pending intent (Mitra and Ranganath 2017)
and use the pending intent’s send method to submit arbitrary intents on behalf of the
initial sender.

Consequently, a malicious app can tamper with the intent’s data and perform custom
actions with the permissions of the originator. Relaying of pending intents could be
used for intent spoofing attacks.

Symptom: The initiation of an implicit PendingIntent in the code.

Detection: We report a smell if methods such as getActivity, getBroadcast,
getService, and getForegroundService on the PendingIntent object
are called, without specifying the target component

Limitation: Arrays of pending intents are not yet supported in our analysis.

Mitigation: Use explicit pending intents, as recommended by the official
documentation.®

— SM12: Common Task Affinity A task is a collection of activities that users interact
with when carrying out a certain job.” A task affinity, defined in the manifest file, can
be set to an individual activity or at the application level.

Issue: Apps with identical task affinities can overlap each others’ activities, e.g., to
fade in a voice record button on top of the phone call activity. The default value does
not protect the application against highjacking of UI components.

Consequently, malicious apps may hijack an app’s activity paving the way for
various kinds of spoofing attacks (Ren et al. 2015).

Symptom: The task affinity is not empty.

Detection: We report a smell if the value of a task affinity is not empty.

Limitation: We are not aware of any limitation.

Mitigation: If a task affinity remains unused, it should always be set to an empty
string on the application level. Otherwise set the task affinity only for specific activities
that are safe to share with others. We suggest that Android set the default value for a task
affinity to empty. It may also add the possibility of setting a permission for a task affinity.

In summary, each security smell introduces a different set of vulnerabilities. We estab-
lished a close relationship between the smells and the security risks with the purpose of
providing accessible and actionable information to developers, as shown in Table 2.

Shttps://developer.android.com/reference/android/app/PendingIntent.htm]
7https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

@ Springer

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

Empirical Software Engineering

Table 2 The relationship between vulnerabilities and security code smells

Vulnerabilities Security code smells

Denial of service SMO1, SM02, SM03, SM04, SM06, SM07, SM10, SM12

Intent spoofing SM02, SM03, SM04, SM05, SM07, SM08, SM09, SM10, SM11
Intent hijacking SMO02, SM03, SM04, SM05, SM10, SM11

4 Empirical Study

In this section we first present the Lint-based tool with which we detect security code smells,
and introduce a dataset of more than 700 open-source Android projects that are mostly
hosted on GitHub. We then present the results of our investigation into RQ» and RQj3 by ana-
lyzing the prevalence of security smells in our dataset, and by discussing the performance
of our tool, respectively.

The results in Section 4.3 suggest that although fewer than 10% of apps suffer from more
than two categories of ICC security smells, only small teams are capable of consistently
building software resistant to most security code smells. With respect to app volatility, we
discovered that updates rarely have any impact on ICC security, however, in case they do,
they often correspond to new app features. On the other hand, we found that long-lived
projects have more issues than recently created ones, except for apps that receive frequent
updates, where the opposite is true. Moreover, the findings of Android Lint’s security checks
correlate to our detected security smells.

In Section 4.4, our manual evaluation confirms that our tool successfully finds many
different ICC security code smells, and that about 43.8% of the smells in fact represent
vulnerabilities. We consequently hypothesize that the tool can offer valuable support in
security audits, but this remains to be explored in our future work.

We performed analyses similar to our previous work, e.g., exploring the relation between
star rating and smells, or the distribution of smells in app categories, and we did not observe
major differences with our past findings (Ghafari et al. 2017). Our results are therefore in
line with our prior research that did not consider ICC smells, and found that the majority of
apps suffer from security smells, despite the diversity of apps in popularity, size, and release
date.

4.1 Linting Tool

Our Linting tool is built using Android Lint, a static analysis framework from the official
Android Studio IDE? for analyzing Android apps. Android Lint provides various rich inter-
faces for analyzing XML, Java, and Class files in Android. Using these interfaces, one can
implement a so-called “detector” that is responsible for scanning code, detecting issues, and
reporting them. More specifically, each detector is represented by a Java class that imple-
ments Android Lint interfaces to access Android Lint’s abstract syntax trees (ASTs) of the
app built from XML, source, or bytecode. In order to ease the AST traversal, Android Lint
provides an implementation of the visitor design pattern with additional helper methods to
support further interaction with the tree. The majority of methods use idiomatic names that

8https://sites.google.com/a/android.com/tools/tips/lint

@ Springer

https://sites.google.com/a/android.com/tools/tips/lint

Empirical Software Engineering

closely resemble the developer’s intention, e.g., UastUtils.tryResolve () toresolve
a variable, or the class ConstantEvaluator to evaluate constants. The latest Android
Lint provides more than 300 different detectors to check several categories of issues such
as, e.g., Accessibility, Usability, Security, etc.

We extended Android Lint by developing twelve new detectors. These detectors imple-
ment UastScanner’ and XmlScanner interfaces to check the presence of security code
smells in source code and manifest files, respectively. We implemented the detection strate-
gies that we introduced for each security smell in Section 3. The complexity of our detectors
varies; the average size of a detector is 115 lines of code.

Android Lint brings analysis support directly into the Android Studio IDE. Developers
can therefore receive just-in-time feedback during app development about the presence of
security code smells in their code. For this purpose, the .jar file that contains our detectors
should be copied into the Lint directory. These detectors will then be run automatically
during programming in the latest Android Studio IDE (i.e., the Canary build), and notify
developers about the security code smells once they appear in the code under development.
Each notification includes an explanation of the smell, mitigation or elimination strategies,
as well as a link to some references.

Linting in batch mode is also possible through the command line interface, given the
availability of the successfully built projects. In our experience, a successful build often
entails changing build paths, and updating Gradle and its project configurations to a ver-
sion that is compatible with the current release of Android Lint. We created a script to
automate most of this non-trivial process. After a successful build of each project, another
script runs the executable of Android Lint, and collects the analysis results in XML
files.

The tool is publicly available for download from a GitHub repository.'®

4.2 Dataset

We collected all open-source apps from the F-Droid!! repository as well as several other
apps directly from GitHub.!'? In total we collected 3471 apps, of which we could success-
fully build 1487 (42%). For replication of our results we explicitly provide the package
names of all successfully analyzed apps,'? instead of a binary compilation, because of the
dataset’s storage space requirements of more than 27 GBytes. In order to reduce the influ-
ence of individual projects, in case there existed more than one release of a project, we only
considered the latest one. Finally, we were left with 732 apps (21%) in our dataset. The
median project size in our dataset is about 1.2 MB, while the median number of data files
per project is 108.

4.3 Batch Analysis

This section presents the results of applying our tool to all the apps in our dataset.

9The UastScanner is the successor of the J avaScanner, and, in addition to Java, also supports Kotlin,
a new programming language used in the Android platform.

10https://github.com/pgadient/ AndroidLintSecurityChecks

https://f-droid.org/

Zhttps://github.com/pcqpeg/open-source-android-apps
Bhttps://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed _apps.csv

@ Springer

https://github.com/pgadient/AndroidLintSecurityChecks
https://f-droid.org/
https://github.com/pcqpcq/open-source-android-apps
https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv

Empirical Software Engineering

4.3.1 Prevalence of Security Smells

Figure 1 shows how prevalent the smells are in our dataset. Almost all apps suffer from
Common Task Affinity issues (99%) followed by the much less prevalent Unauthorized
Intent smell (11%). The default value of task affinity configurations does not protect the
application against highjacking of Ul components, and only few developers appear to be
aware of the issue and set the property accordingly. Custom Scheme Channel and Implicit
Pending Intent each contribute about 8% of the smells. Furthermore, WebViewClient is in
line with our observation that apps increasingly rely on web components for their UL At
the other end of the spectrum, Sticky Broadcast, Incorrect Protection Level, Broken Service
Permission, and Persisted Dynamic Permission cause less than 2% of all issues. The threat
of path permissions is not very common, as no apps suffered from SMO08 or SM09.

We were also interested in the relative prevalence of different security smells in the apps
(see Fig. 2). Less than 1% did not suffer from any security smell at all, whereas the major-
ity of apps, i.e., over 90%, suffered from one or two different smells. 9% of all apps were
affected by three or more smells. No apps, fortunately, suffered from more than seven dif-
ferent types of smells. It is important to recall that the more issues that are present in a
benign app, the more likely it is that a malign app can exploit it, e.g., with denial of service,
intent spoofing, or intent hijacking attacks.

4.3.2 Contributor Affiliation

Figure 3 shows the relationship between the number of contributors participating in a project
and the mean number of security smell categories apps suffer from. For example, the second

740
729
720
— 700
o)
£ 100 =
£
& 82
a0 80
g
£
5
& 60
E] 60 59
2 49
&
40 34
20
8 9
0 0 0 2 2
O @ .S Q& & & o > & N)
&6\0 &S & & & & & &* &
& & g &S FOUNC S
<° 3¢ <° ° & N &) S & ¥ &
& oS & @'\“‘& & " & & & %5‘& & N
. & J &S & S
& & Qio \%z & & {)o* o Q\Q &£ & S
’{?25‘ Al & ¥ & ‘§ b%\ c}b W C‘é @Q&‘ &
S N - < > & . e
SR B
‘._ﬁ\ &] Q » S < ‘$\ S
< > S © &
N s
%

different types of ICC security smells apps suffer

Fig. 1 Distribution of security smells in the apps

@ Springer

Empirical Software Engineering

07 027%

00 = 041%

05 0.82 %

04 3.14 %

03 4.92 %

different smells found in apps

02 19.95 %

01 70.49 %

apps
Fig.2 Prevalence of different security smells in apps

last bar represents the number of all projects maintained by 41 to 60 participants, while the
line chart shows that projects with this many participants suffer on average from 2.5 secu-
rity smell categories. We see that most apps are maintained by two contributors, followed
by projects developed by individuals. A trend exists that projects with many participants

160 35
140
120
25

100

80

projects

60

different security smells found in apps

40

20 03

1 2 3 4 5 6 7 8 9 10 11-15 16-20 21-40 41-60 >60

contributors per project

‘ #projects ~ ==—# different security smells found in apps |

Fig. 3 Relation between number of a project’s participants, its prevalence, and the average number of
different security smells found

@ Springer

Empirical Software Engineering

are less common than projects with only a few contributors. The more people are involved
in a project the more the security decreases, especially for large teams. More precisely, we
found statistical evidence that only small teams of up to five people are capable of consis-
tently building projects resistant to most security code smells, by using the nonparametric
Mann-Whitney U test that does not require the assumption of normal distributions for the
dataset. The mean different smell occurrences in the groups “projects with one contribu-
tor” and ““projects with six contributors” were 1.263 and 1.705; the distributions in the two
groups differed significantly (Mann-Whitney U = —2.086, nl < n2 = 0, P < 0.05 two-
tailed). Similarly, we found that the distributions in the two groups “projects with six to forty
contributors” and “projects with more than forty contributorn were diverse (Mann-Whitney
U= -2.204,n1 <n2 =0, P < 0.05 two-tailed) with mean different smell occurrences of
1.655 and 2.750, respectively.

4.3.3 App Updates

We investigated the smell occurrences in subsequent app releases. Of the 732 projects, 33
(4%) of them released updates that either resolved or introduced issues. By inspection of
source code we noticed that many of the updates targeted new functionality, e.g., addition
of new implicit intents to share data with other apps, implementation of new notification
mechanisms for receiving events from other apps using implicit pending intents, or registra-
tion of new custom schemes to provide further integration of app related web content into
the Android system. We believe this is due to developers focusing on new features instead
of security.

For the majority of the app updates that introduced new security smells, we found that
the dominant cause for decreased security is the accommodation of social interactions and
data sharing features in the apps updates. Hence, developers should be particularly cautious
when integrating new functionality into an app.

4.3.4 Evolution

Every new Android version introduces changes that strengthen security. The targeting of
outdated Android releases will not only limit the supported feature set to the respec-
tive release, but also introduce potential security issues as security fixes are continuously
integrated into the OS with each update.

Figure 4 shows the evolution of security smells across different Android releases. For
those apps that had more than one release in our dataset, we only considered the latest
release. The horizontal axis shows the different Android releases apps are targeting in their
configuration, whereas the vertical axis shows the contribution of a specific smell to the
total amount of smells detected. As in previous work (Ghafari et al. 2017), we see changes
in some of the security smells apps suffer from. We believe that the positive trend in Unau-
thorized Intent within apps is the consequence of built-in sharing functionalities to external
services. The relative growth of Implicit Pending Intent could correlate to the introduction
of a new storage access framework in Android release 19, which heavily relies on intents,
and allows developers to browse and open documents, images, and other files with ease.
Google’s efforts to raise the developer’s awareness of web-related security issues appears
to be working: the occurrences of Slack WebView Client have decreased in more recent
releases. Despite the lack of comprehensive data on API levels 10 and 11 due to the rela-
tively few apps available for study, the occurrences of the majority of smells remain constant
as a result of the early feature availability since API level 1.

@ Springer

Empirical Software Engineering

100%

90%

80%

70%
SM12: Common Task Affinity

B SM04: Unauthorized Intent

= SM11: Implicit Pending Intent

® SM02: Custom Scheme Channel
SM10: Unprotected Broadcast Receiver
SMO6: Slack WebViewClient

B SMOS5: Sticky Broadcast

B SMO3: Incorrect Protection Level

60%

50%

40%

percentage of all issues found

30% ® SMO7: Broken Service Permission
20%

10%

0% P i, e .
7 8 9 0 11 14 15 16 17 18 19 21

Fig.4 Evolution of security code smells in different Android releases

4.3.5 Comparison to Existing Android Lint Checks

In order to compare our findings with other issues in the apps, we correlated the results
from the existing Android Lint framework with security code smells. We wanted to explore
whether frequent reports of specific Android Lint issue categories were also indicative of
security issues, or in other words, if security checks by the Android Lint framework agree
with our security smells and whether other quality aspects of an app could relate to its
security level. We collected all available issue reports for each app and then extracted the
occurrences of each detected issue.

We applied the Pearson product-moment correlation coefficient algorithm for each ICC
security smell category combination according to the following formula:

Y- D~)
VX =—02 (- »?

x is the array of all apps issue occurrences in category ICC security code smells,

where

Pearson(x,y) =

y is the array of all apps issue occurrences in the respective Android Lint category, and

X, y represent the corresponding sample means.

It provides a linear correlation between two vectors represented as a value in the range of
—1 (total negative linear correlation) and +1 (total positive linear correlation). The corre-
lation of the Android Lint categories and our ICC smell category in Table 3 reveals several
interesting findings: (1) Our ICC security category strongly correlates with the Android Lint
security category (40.72), which contains checks for a variety of security-related issues
such as the use of user names and passwords in strings, improper cryptography parame-
ters, and bypassed certificate checks in WebView components. (2) Another discovery is
the minor correlation between the ICC security smells and the Android Lint correctness

@ Springer

Empirical Software Engineering

Table 3 Correlation of ICC

security smells with Android Android Lint category Correlation with ICC
Lint issue categories security smells
Security 0.72
Correctness 0.29
Correctness: Messages 0.27
Accessibility 0.25
Performance 0.25
Usability: Typography 0.21
Internationalization 0.13
Internationalization: Bidirectional 0.11
Usability: Icons 0.11
Usability 0.07

category (40.29). This category includes checks for erroneously configured project build
parameters, incomplete view layout definitions, and usages of deprecated resources. (3)
Furthermore, we assume that usability does not impede security (40.07), because issues in
usability are closely related to UI mechanics. (4) Finally, minor correlations are shown for
performance, accessibility, and internationalization. These three categories have in common
that they rely heavily on UI controls and configurations.

To further assess how our tool performs on real world apps against the Android Lint
detections, we take the 100 apps with the most and least prevalent ICC security smells
and compare them to Android Lint’s analysis results. We expect to see significant similar-
ities in the increase of issues detected as our security smells correlate to Android Lint’s
security checks, i.e., the least vulnerable apps should suffer less in both, the Android Lint
checks and our security smell detectors. Figure 5 illustrates two plots, each presenting
our analysis results for the 100 apps suffering the most and the least from ICC security
smells, respectively. The vertical axis represents the condensed mean number of found
issues, that is, we conflated all detected ICC security smell issues, regardless of their
smell categories, into “ICC Security Smells”. The remaining Android Lint categories on
the x-axis are treated accordingly. The crosses represent the mean value of the number of
different issues apps are suffering from in each category, and, as we hid any outliers to
increase readability, these values can exceed the first quartiles. The least and most affected
apps clearly correspond in terms of issue frequency among specific categories, that is,
the mean number of issues found in each category is between 29% and 332% higher on
behalf of the 100 most vulnerable apps. Besides the ICC Security Smells category with
an increase of 219% in issues found, the Android Lint security category experienced an
increase of 152%. The Correctness: Message and the Usability: Typography categories
of Android Lint achieved, unexpectedly, an increase in issues found of about 332% and
174%, respectively. After manual verification, we discovered that these gains were mostly
caused by flawed language dictionary entries used for internationalization, such as miss-
ing or misunderstood language dependent string declarations, spelling mistakes, and the use
of strings containing three dots instead of the ellipsis character. While the 100 most vul-
nerable apps appear to prominently incorporate translations for several different languages,
the 100 least vulnerable apps rarely make use of these features, hence, they suffer from
much fewer issues. The remaining categories encountered an increase of less than 139%.

@ Springer

Empirical Software Engineering

s apps are suffering in each category

different issues
IS
-

(a) 100 least vulnerable apps

g in each category

different issues apps are sufferin

(b) 100 most vulnerable apps

Fig.5 Prevalence of Android Lint issues in the 100 most and least vulnerable apps

Interestingly, the internationalization category does not encounter a noticeable increase in
issues due to its limited scope, i.e., it only covers five specific flaws regarding insufficient
language adaption, and the use of uncommon characters or encodings. We propose that some
of these issue detections should be reallocated to other categories, e.g., spelling mistakes
should be assigned to internationalization, and vice versa the issue Set7Text/18n in the cate-
gory internationalization that reports any use of methods that potentially fail with number
conversions.

@ Springer

Empirical Software Engineering

4.3.6 Influence of Project Age and Activity

To explore the effect of recent updates, which we believed would improve app security, we
evaluated our ICC category as well as the Android Lint security and correctness categories
according to time since the last commit. More precisely, we were interested in the question:
Do recent updates improve app security? A related question arises from the age of a project,
i.e., are mature projects more secure than recent creations? We investigated these two ques-
tions based on available GitHub metadata, and brought the dates into perspective with the
reported issues.

Figure 6 shows the mean number of detected issues per app on the vertical axis, either
for the ICC security smells, or the Android Lint security category. The black dots reveal
the app’s project creation dates, whereas red dots indicate the most recent commit dates of
projects, hence every app is represented by one black and one red dot in each plot. The
creation date for the majority of apps dates back to less than 6.5 years. We can clearly see
in every plot a correlation between both the creation date, and the date of the last commit
to the overall issue count, based on the pictured linear trends (dotted lines). These trends,
which are very similar in terms of elevation, are a further indicator for the close relationship
between our tool and the Android Lint checks. Moreover, the Lint security category shows
strong evidence that mature projects have more security issues than recent ones. We assume
that this is caused by the less comprehensive checks that older IDEs performed on the source
code. Similarly, apps that frequently introduce changes, i.e., receive updates, are prone to
have more issues.

4.3.7 Influence of Code Size

Another popular indicator used in software analysis is the code size, which we measured in
thousands of lines of code (kLOC) with the open-source tool cloc.'* As Android projects
consist aside from source code of different configuration, resource and other utility files, we
first ran the analysis of adopted software languages (e.g., Java, Kotlin, XML) that required
each of those items, before we excluded all elements except the Java code in the main Java
source folders for the kKLOC measurements. We conjectured that we would see a trend of
small teams developing small apps that are less likely to have problems. In contrast, we
expect that aging projects are more likely to have smells as they are larger than more recent
ones. Figure 7 illustrates the relation between the kLOC and other relevant properties.

In Fig. 7a we categorized projects according to their size on the x-axis, while the left y-
axis displays contributors per project, and the right y-axis the number of different categories
of security smells found in apps, and the number of different languages used. We see a trend
that larger projects rely on more contributors with a minor exception at 20-24 kLOC.

Furthermore, it is interesting to see that projects of up to 10 kLOC are maintained by
five or fewer developers. In addition, we see that larger projects tend to suffer from more
smells, and those projects are also using more languages. After a manual inspection of
apps exploiting different languages we discovered that those apps are rather collections of
frameworks, e.g., for network penetration tests using a plethora of different tools written in
different languages.

Figure 7b uses the same feature for the x-axis, but presents on the left y-axis the num-
ber of projects, and on the right y-axis the number of days since project creation, and the

4https://github.com/AlDanial/cloc

@ Springer

https://github.com/AlDanial/cloc

Empirical Software Engineering

8
7 .
o 6
£
5]
=
3
[z
o 5 . o o o
©
123
Q
Q
@©
©w 4 o oo o o . . . oo L) >
©
=
Iz
€
gs e o e e e o o eomes some o .
E%
F*
2
1
0 .
Mar/2009 Jul’2010 Oct/2011 Feb/2013 May/2014 Sep/2015 Dec/2016 Mar/2018
e project creation project last commit ~ «---- Linear (project creation) ~ «---+ Linear (project last commit)
(a) Relation of dates to our ICC security smells
8 . .)
7 . . - o o @ oo -
o 6 o o . oo - e . .
£
o
=
3
e 5 L] e o @ L] L] L] -ee o ®e o L] 00 00 o L] - -
a2
Q.
Q
@©
q(n) 4 ® 000 00 0 cee®m o @mee © COMOC NEMES ¢ @ CWN® S L WEN VES
2
2
§
s 3
£
=l
F*
2
1 . e o e oeme ®we ® ®w ocwen . * 00 esow mum
0 .
Mar/2009 Jul’2010 Oct/2011 Feb/2013 May/2014 Sep/2015 Dec/2016 Mar/2018

e project creation project last commit ~ «---- Linear (project creation) ~ «--«-+ Linear (project last commit)

(b) Relation of dates to Lint security

Fig. 6 GitHub project creation and last commit date in relation to each project’s issue count

number of days since last update. The majority of projects in our dataset consist of less
than 10 kLOC, and especially projects with 1-4 KLOC have been very prevalent, followed
by apps that are less than 500 LOC. Only six projects contained more than 50 kLOC.

@ Springer

Empirical Software Engineering

14 18
16
12
14
10 g
&
.‘g 12 £5
g . 2%
5 8 / 3
2 S g
o 4 R
g /s E3
> 4 wc
2 ’ g >
£ o / 22
- T T / 33
o ——————" g
Y "]
e 6 ET
-~ Q ax
4 e ————— -)
©
4 *
2
2
0 0
<05 0.5-0.9 1-4 5-9 10-14 15-19 20-24 25-49 >=50
#kLOC

[# contributors per project == # different security smells found in apps == =# different languages used|

(a) Relation of kLOC to contributors, ICC security smells, and used languages

350 2500
300
2000
250
=4
2o
1500 9 8
o 200 ss
S O o
-3 S8
s ag
#* o e
150 g
1000 A %
>T
S
=+
100
500
50
0 0
<05 0.5-0.9 1-4 5-9 10-14 15-19 20-24 25-49 >=50
#kLOC
[# projects —i# days since project creation === # days since last update |

(b) Relation of KLOC to number of projects, days since project creation, and days since last update
Fig. 7 Different project properties in relation to KLOC
Interestingly, we cannot derive clearly any major trend regarding the age of projects and
LOC, although projects of 25-49 KLOC evidently are older than the others. On the con-

trary, we can see a minor trend regarding the time since last update. It appears that smaller
apps are updated less frequently than larger apps. We expect that the larger an application

@ Springer

Empirical Software Engineering

becomes, the more maintenance work is required due to library updates, obsolete external
references, and content changes.

4.4 Manual Analysis

To assess the performance of our tool and show how reliable these findings are to detect
security vulnerabilities, we manually analyzed 100 apps. We invited two participants to
independently evaluate the precision and recall of our tool. Participant A is a senior devel-
oper with more than 5 years of professional experience in development and security of
mobile apps. Participant B is a junior developer with less than two years of experience
in Java and C# software development. We provided both participants an introduction to
Android security, and individually explained every smell in detail. We subsequently selected
the top 100 apps, that is more than 13% of the whole corpus, with most smells in accor-
dance with our ICC security smell list, for which we can say with 95% confidence that the
population’s mean smell occurrences of the top 100 apps are between 3.04 and 3.48, while
they are between 1.38 and 1.50 for the whole data set of about 732 apps. Then we provided
the participants with our tool, the sources of the top 100 apps, and a spreadsheet to record
their observations. Each participant was asked to import the sources of each app in Android
Studio, which had been prepared to run a customized version of our analysis plug-in, to
verify each reported smell according to the symptoms of any smell described in Section 3.
We were also interested in vulnerability detection capability of security smells, '3 thus the
participants were asked to investigate if a security smell indicates the presence of a security
vulnerability based on the vulnerability information available in the benchmarks.

4.4.1 Tool Evaluation

While the assessment of true positives (TPs, reported code that is a smell) and false positives
(FPs, reported code that is not a smell) requires participants to manually check only the
tool’s results, the extraction of true negatives (TNs, unreported code that is not a smell)
and false negatives (FNs, unreported code that is a smell) is resource intensive and error
prone. Therefore to avoid an exhaustive code inspection, we developed a relaxed analysis
that shows ICC-related APIs in the code to support the participants.

We obtained relatively high smell detection rates, especially for SM02, SM04, SM10,
SM11 and SM12, as indicated by the TPs in Fig. 8. The reason is that these smells occur
frequently and are straightforward to detect, mostly relying on some very specific method
calls and permissions.

We encountered above average FPs in SM12 due to the intended use of task affin-
ity features in apps that try to separate activities with empty task affinities. This smell
would require additional semantical, architectural, and Ul information for proper assess-
ment. While some of the exposed activities are non-interactive, and thus supposedly secure,
some of them are interactive and could be misused in combination with other spoofing tech-
niques, like clickjacking, in which an adversary unexpectedly shows the exposed activity to
trick users into providing unintended inputs. In particular, call recorders and various client-
server apps for chat, video streaming, home automation, and other network services have
been affected by this issue.

I5We define a vulnerability capability as the possibility a security issue can compromise a user’s security and
privacy.

@ Springer

Empirical Software Engineering

4500

3000 *

780

650
TN

FN
mFP
520
uTP

~ supplementary issues

ssues found in 100 app corpus

390

260

130
0 —— —— g = :
<

Fig.8 Tool evaluation results

Our participant had to check 7241 locations in the code to examine the TNs and FNs in
100 apps. In more than 98.36% of cases participants confirmed that there are no security
smells beyond what the tool could identify; we consider this very low proportion of FNs,
i.e., 1.7%, encouraging.

We are surprised to see only a few FNs in SM04 as we expected much more to appear
due to the countless ways that intents can be created in Android. A substantial number of
FNs were missed because of complex chained executions and calls initiated from sophis-
ticated UI related classes containing URIs. For SM06, we discovered that the FNs have
been frequently caused by lack of context, e.g., unawareness of data sensitivity, or custom
logic that does not mitigate the vulnerability. For example, our tool was unable to verify
the correctness of custom web page white-listing implementations for WebView browser
components, which would actually reduce security if implemented incorrectly.

We did not encounter any instances of the two smells SMO8 and SM09, that is, we
retrieved zero reports on both of them for our 100 app dataset, hence, we excluded them for
all subsequent plots and discussions in this subsection.

We could find common security smells while reviewing the feedback from the two
participants, for example, that some apps were using shouldOverrideUrlLoading
without URL white-listing to send implicit intents to open the device’s default browser,
rather than using their own web view for white-listed pages, thus fostering the risk of data
leaks. Another discovery was the use of regular broadcasts for intra-app communication.
For these scenarios, developers should solely rely on the LocalBroadcastManager
to prevent accidental data leaks. The same applies for intents that are explicitly used for

@ Springer

Empirical Software Engineering

communication within the app, but do not include an explicit target, which would similarly
mitigate the risk of data leaks. Moreover, unused code represents a severe threat. Several
apps requested specific permissions without using them, increasing the impact of potential
privilege escalation attacks.

4.4.2 Tool Performance

Figure 9 presents the tool’s performance based on the precision, recall, and lastly the F-
measure for existing smells in 100 apps. All smells except SM03 and SM06 show out-
standing results, nonetheless, some of them could be biased as a result of their low occur-
rences which is true for SM01 and SMO7. We performed a follow up manual investigation of
SMO03 and SMO06. Apparently, the detection of SM03 suffers from the difficulty to discern
data sensitivity and the need to approximate the required protection level. Besides that,
SMO6 is heavily affected by custom web API implementations that (mis)use security fea-
tures, which are, in fact, not secure.

4.4.3 Smells and Their Vulnerability Capability

Figure 10 shows the vulnerability capability perception of both participants against the
reported smells. For each smell we show two grouped columns: the left column reports
the results from the more experienced participant A (PA), and the right column reports the
results from the less experienced participant B (PB). Each column consists of three different
segments yes, uncertain, and no. The category yes is used for all reported smells that intro-
duce critical risks, such as plain-text exposure of user passwords through network sockets.
The uncertain category is used for risks that potentially exist, and are challenging to inspect
manually, for instance, vulnerabilities that require prerequisites for successful exploitation
such as potentially dangerous user-defined schemes. Finally, all smells assigned to the no

L E AN XK

[|
0.80 X

0.70

0.60 .
precision
0.50 M recall
0.40 >< X F-measure
0.30 .
0.20
0.10
0.00
$ & & S S &) & & Y
& ~o¢>‘“‘\ & & & ¥ & & « f&‘\\\\
q@‘& @Q _\@o &6 © 4\& Qé\J\\ PO &\& &J.
& < & & & & & Sl & &
& & <° & & £ & & &
& & & S . & o 5 Nd &
3 &S & N N o Q D &
> $ & & > & & & & &
& O & N < & © & \ o
&5 & o> S K\) & RN N
< N o S &) S S
@Q\- S %,@ N
N
< %@

Fig.9 Tool performance

@ Springer

Empirical Software Engineering

700

600

500

400

300

#vulnerabilities in 100 apps

200

100 |

= —_ - o - = = = - >
E 2 g £ ' z
4 g S £ 2 5 g 5 E g
g &) = <] <] z g] en <
5 < g g & 2 5 & £)
-9 g 5 = P a 27 b=} e
o 5 o1 S 2) © s 5 Pt
8 2 3 = el o 2 3 £ =]
g 3 £ z 3 = z g Fr g
£ - = 3 5} = 3] =
= g 3 =] Ty] @ a 2 g
[a] S 2 S = =5 = e g
= Z £ % s % 3 3 g S
3 3 8 =y a2 o < £ = o]
z o g = 8 & 2 = &
4 & 5 @ 2 2 : = g
5 % o Z] I & E E
— 7] E S =}
g z E
@ s

wn

‘ mno (part. A) no (part. B) uncertain (part. A) uncertain (part. B) myes (part. A) yes (part. B) ‘

Fig. 10 Vulnerability capability of detected issues

category are not vulnerable to any attacks, either because they do not contain any user infor-
mation, or because they are sufficiently secure with respect to the participant’s opinion.
Apps that send static non-sensitive information commonly match this category. For all our
considerations the participants were told to treat any user data as sensitive, since they could
potentially contain sensitive information at run time.

According to the reports by PA, 38.5% of smells represent potential threats, i.e., uncer-
tain category, and only 5.3% of smells represent critical threats, i.e., yes category. In other
words, only about 44% of security smells could lead to security vulnerabilities.

A further comparison of the reports between the two participants shows that they expect
somewhat similar risks for the smell categories SM05, SM07, and SM12, whereas the
participants tended to interpret diversely the threat caused by Custom Scheme Channel,
Unauthorized Intent, and Slack WebViewClient smells. We reviewed the feedback of the par-
ticipants and discovered that for Custom Scheme Channel predefined system schemes are
considered less harmful for PA (category no), while PB assigns them to the category uncer-
tain. For Unauthorized Intent PB assessed the risks similar to PA, however, PB encountered
difficulties to predict adequately the threat capability of many intent instances, thus PB
assigned them to section uncertain. For the smell Slack WebViewClient PB performed a
conservative risk assessment by not assigning any custom security feature implementations
to no, instead PB assigned them to uncertain, unlike PA who concluded many of them as
secure. An example thereof is an app with a network security penetration test suite that
requires opening insecure web pages for security validation purposes.

It is interesting to observe that PB, in contrast to PA, does consider fewer instances
as harmful for SM11 and SM12. For the first smell SM11: Implicit Pending Intent PB

@ Springer

Empirical Software Engineering

considers intents with assigned actions frequently as secure, while PA considers them as
potential risk, which is more accurate. For the second smell SM12: Common Task Affinity
PB considers most apps that used empty task affinity properties as secure, while PA per-
formed a more thorough analysis of the Ul and considered additionally the misuse capability
of such exposed views, which resulted in many assignments to the category uncertain. We
conclude that the very complex and flexible ICC implementation provided by Android over-
whelms inexperienced developers, even worse, it could mislead those developers to create
insecure code due to their misunderstanding.

Overall, most of the vulnerabilities seem to emerge from SM10 and SM11 that collec-
tively contribute to more than 72% of all detected critical issues. On the other hand, SM04
on its own provides with 77% the largest proportion of false alarms regarding vulnerability
capabilities.

4.5 Threats to Validity

One important threat to validity is the completeness of this study, i.e., whether we could
identify and study all related papers in the literature. Although we could not review all
publications, we strived to explore top-tier software engineering and security journals and
conferences as well as highly-cited work in the field. For each relevant paper we also recur-
sively looked at both citing and cited papers. Moreover, to ensure that we did not miss any
important paper, for each identified issue we further constructed more specific queries and
looked for any new paper on GoogleScholar.

We were only interested in studying benign apps as in malicious ones it is unlikely that
developers will spend any effort to accommodate security concerns. Thus, we merely col-
lected apps that were available on GitHub and the F-Droid repository. However, our dataset
may still have malicious apps that evaded the security checks of the community or the
marketplace.

We analyzed the existence of security smells in the source code of an app, whereas third-
party libraries could also introduce smells.

Our analysis is intra-procedural and suffers from inherent limitations of static analysis.
Moreover, many security smells actually constitute security risks only if they deal with
sensitive data, but our analysis cannot determine such sensitivity.

The Android Lint tool we used for the analysis is prone to errors that could lead to FNs,
for example, when Android Lint crashes due to file parsing issues, an immediate termination
of the inspection occurs which could cause some misses.

Finally, the fact that the results of our analysis tool are validated against manual analysis
performed by the authors is a threat to construct validity through potential bias in exper-
imenter expectancy. We mitigated this threat by including an external participant in the
process in addition to the co-author who simultaneously played the senior developer’s role.

5 Related Work

Reaves et al. studied Android-specific challenges to program analysis, and assessed exist-
ing Android application analysis tools. They found that these tools mainly suffer from lack
of maintenance, and are often unable to produce functional output for applications with
known vulnerabilities (Reaves et al. 2016). Li et al. studied the state-of-the-art work that
statically analyses Android apps (Li et al. 2017). They found that much of this work sup-
ports detection of private data leaks and vulnerabilities, a moderate amount of research is

@ Springer

Empirical Software Engineering

dedicated to permission checking, and only three studies deal with cryptography issues.
Unfortunately, much state-of-the-art work does not publicly share the concerned artifacts.
Linares-Vasquez et al. mine 660 Android vulnerabilities available in the official Android
bulletins and their CVE details,'¢ and present a taxonomy of the types of vulnerabili-
ties (Linares-Vasquez et al. 2017). They report on the presence of those vulnerabilities
affecting the Android OS, and acknowledge that most of them can be avoided by relying
on secure coding practices. Finally, Sadeghi et al. review 300 research papers related to
Android security, and provide a taxonomy to classify and characterize the state-of-the-art
research in this area (Sadeghi et al. 2016). They find that 26% of existing research is dedi-
cated to vulnerability detection, but each study is usually concerned with specific types of
security vulnerabilities. Our work expands on such studies to provide practitioners with an
overview of the security issues that are inherent in insecure programming choices.

Some research is devoted to educating developers in secure programming. Xie et al.
interviewed 15 professional developers about their software security knowledge, and real-
ized that many of them have reasonable knowledge but do not apply it as they believe it is
not their responsibility (Xie et al. 2011). Weir et al. conducted open-ended interviews with a
dozen app security experts, and determined that app developers should learn analysis, com-
munication, dialectics, feedback, and upgrading in the context of security (Weir et al. 2016).
Witschey et al. surveyed developers about their reasons for adopting or not adopting secu-
rity tools (Witschey et al. 2015). Interestingly, they found the perceived prestige of security
tool users and the frequency of interaction with security experts to be important for pro-
moting security tool adoption. Acar et al. suggest a high-level research agenda to achieve
usable security for developers. They propose several research questions to elicit develop-
ers’ attitudes, needs and priorities in the area of security (Acar et al. 2016). Our work is
complementary to these studies in the sense that we provide an initial assessment of devel-
opers’ security knowledge, and we highlight the significant role of developers in making
apps more secure.

Numerous researchers have dedicated their work to detecting common ICC vulnerabili-
ties. Despite the fact that their expression has changed over time, the vulnerability classes
have remained largely the same. Chin et al. discuss the ICC implementation of Android and
examine closely the interaction between sent and received ICC messages (Chin et al. 2011).
Despite the fact that their work is based on a small corpus containing only 20 apps, they
were able to detect various denial-of-service issues in numerous application components,
and conclude that the message-passing system in Android enables rich applications, and
encourages component reuse, while leaving a large potential for misuse when developers do
not take any precautions.

Felt et al. discovered that permission re-delegation, also known as confused deputy or
privilege escalation attack, is a common threat, and they pose OS level mitigations concep-
tually similar to the same origin policy in web browsers (Felt et al. 2011). The community
aimed on the one hand for preciseness, as countless tools to detect these flaws in ICC
have been released, notably Epicc (Octeau et al. 2013) and IccTA (Li et al. 2015) with a
significantly improved precision. On the other hand, the app coverage began to play a major
role, as in the work of Bosu et al. who recently discovered with their tool inadequate security
measures, including privilege escalation vulnerabilities, among inter-app data-flows from
110000 real-world apps (Bosu et al. 2017).

16http://cve.mitre.org — Common Vulnerabilities and Exposures, a public list of known cyber-security
vulnerabilities.

@ Springer

http://cve.mitre.org

Empirical Software Engineering

Along with passive analysis, active countermeasures and attacks have emerged in the
scientific community. Garcia et al. crafted a state-of-the-art tool to automatically detect
and exploit vulnerable ICC interfaces to provoke denial-of-service attacks amongst oth-
ers (Garcia et al. 2017). They identified exploits for more than 21% of all apps appraised
as vulnerable. Xie et al. presented a bytecode patching framework that incorporates addi-
tional self-contained permission checks avoiding privilege issues during runtime, generating
a remarkably low computational overhead (Xie et al. 2017). Ren et al. successfully
investigated design glitches in the multitasking implementation of Android, uncovering
task hijacking attacks that affected every OS release and were potentially duping user
perception (Ren et al. 2015). They considered in particular the taskAffinity and taskParen-
tReparenting attributes of the manifest file that allow views to be dynamically overlaid on
other apps, and provided proof-of-concept attacks. Wang et al. assessed the threat of data
leakage on Apple iOS and Android mobile platforms and show serious attacks facilitated by
the lack of origin-based protection on ICC channels (Wang et al. 2013). Interestingly, they
found effective attacks against apps from such major publishers as Facebook and Dropbox,
and more importantly, indicate the existence of cross-platform ICC threats. Researchers
have found interest in reinforcing the Android ICC core framework. Khadiranaikar et al.
propose a certificate-based intent system relying on key stores that guarantee integrity dur-
ing message exchanges (Khadiranaikar et al. 2017). In addition to securing the ICC-based
communication, Shekhar et al. proposed a separation of concerns to reduce the susceptibility
for manipulation of Android apps, by explicitly restricting advertising frameworks (Shekhar
et al. 2012). Ahmad et al. elaborated on problematic ICC design decisions on Android, and
found that missing consistent message types and conformance checking, unpredictable mes-
sage interactions, and a lack of coherent versioning could break inter-app communication
and pose a severe risk (Ahmad et al. 2016). They recommend a centralized message-type
repository that immediately provides feedback to developers through the IDE.

In summary, existing studies have often dealt with a specific issue, whereas we cover
a broader range of issues, making the results more actionable for practitioners. Moreover,
previous work often overwhelms developers with many identified issues at once, whereas
we provide feedback during app development where developers have the relevant context.
Such feedback makes it easier to react to issues, and helps developers to learn from their
mistakes (Tymchuk et al. 2018).

6 Conclusion

We have reviewed ICC security code smells that threaten Android apps, and implemented a
linting plug-in for Android Studio that spots such smells, by linting affected code parts, and
providing just-in-time feedback about the presence of security code smells.

We applied our analysis to a corpus of more than 700 open-source apps. We observed
that only small teams are capable of consistently building software resistant to most security
code smells, and fewer than 10% of apps suffer from more than two ICC security smells.
We discovered that updates rarely have any impact on ICC security, however, in case they
do, they often correspond to new app features. Thus developers have to be very careful
about integration of new functionality into their apps. Moreover, we found that long-lived
projects suffer from more issues than recently created ones, except for apps that are updated
frequently, for which that effect is reversed. We advise developers of long-lived projects to
continuously update their IDEs, as old IDEs have only limited support for security issue
reports, and therefore countless security issues could be missed.

@ Springer

Empirical Software Engineering

A manual investigation of 100 apps shows that our tool successfully finds many differ-
ent ICC security code smells, and about 43.8% of them in fact represent vulnerabilities,
thus it constitutes a reasonable measure to improve the overall development efficiency and
software quality.

We recommend security aspects such as secure default values and permission systems, to
be considered in the initial design of a new API, since this would effectively mitigate many
issues like the very prevalent Common Task Affinity smell. We plan to explore the extent to
which APIs can be made secure by design. While we analyzed the existence of ICC security
smells in apps, studying their absence, i.e., secure ICC uses, could offer different insights
that we plan to pursue in future. Moreover, we are interested in evaluating the usefulness of
our tool during a security audit process, as well as in an app development session.

Acknowledgements We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Agile Software Analysis” (SNSF project No.200020-162352, Jan 1, 2016 - Dec. 30,
2018). We also thank Astrid Ytrehorn for her contribution to the empirical study.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Acar Y, Fahl S, Mazurek M (2016) You are not your developer, either: a research agenda for usable security
and privacy research beyond end users. In: IEEE SecDev 2016

Ahmad W, Kistner C, Sunshine J, Aldrich J (2016) Inter-app communication in Android developer chal-
lenges. In: 2016 IEEE/ACM 13th working conference on mining software repositories (MSR). IEEE, pp
177-188

Balebako R, Cranor L (2014) Improving app privacy: nudging app developers to protect user privacy. IEEE
Secur Priv 12(4):55-58

Bosu A, Liu F, Yao DD, Wang G (2017) Collusive data leak and more: large-scale threat analysis of
inter-app communications. In: Proceedings of the 2017 ACM on Asia conference on computer and
communications security. ACM, pp 71-85

Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing inter-application communication in Android. In:
Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys
’11. ACM, New York, pp 239-252

Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delegation: attacks and defenses. In:
USENIX security symposium, vol 30, p 88

Garcia J, Hammad M, Ghorbani N, Malek S (2017) Automatic generation of inter-component communication
exploits for Android applications. In: Proceedings of the 2017 11th joint meeting on foundations of
software engineering. ACM, pp 661-671

Ghafari M, Gadient P, Nierstrasz O (2017) Security smells in Android. In: 2017 IEEE 17Th international
working conference on source code analysis and manipulation (SCAM), pp 121-130

Jones BH, Chin AG (2015) On the efficacy of smartphone security: a critical analysis of modifications in
business students’ practices over time. Int J Inf Manag 35(5):561-571

Khadiranaikar B, Zavarsky P, Malik Y (2017) Improving Android application security for intent based
attacks. In: 2017 8th IEEE annual information technology, electronics and mobile communication
conference (IEMCON). IEEE, pp 62-67

Li L, Bartel A, Bissyandé TF, Klein J, Traon YL, Arzt S, Rasthofer S, Bodden E, Octeau D, McDaniel
PM (2015) Iccta: Detecting inter-component privacy leaks in Android apps. In: Proceedings of the 37th
international conference on software engineering - volume 1, ICSE ’15. IEEE Press, Piscataway, pp 280—
291

Li L, Bissyandé TF, Papadakis M, Rasthofer S, Bartel A, Octeau D, Klein J, Traon Le (2017) Static analysis
of Android apps: a systematic literature review. Inf Softw Technol 88:67-95

@ Springer

Empirical Software Engineering

Linares-Vasquez M, Bavota G, Escobar-Veldsquez C (2017) An empirical study on Android-related vulnera-
bilities. In: Proceedings of the 14th international conference on mining software repositories, MSR *17.
IEEE Press, Piscataway, pp 2—13

Mitra J, Ranganath V-P (2017) Ghera: a repository of Android app vulnerability benchmarks. In: Proceedings
of the 13th international conference on predictive models and data analytics in software engineering.
ACM, pp 43-52

Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Traon YL (2013) Effective inter-component
communication mapping in Android with Epicc: an essential step towards holistic security analysis.
In: Presented as part of the 22nd USENIX security symposium (USENIX security 13). USENIX, pp
543-558

Reaves B, Bowers J, Gorski III SA, Anise O, Bobhate R, Cho R, Das H, Hussain S, Karachiwala H, Scaife N,
Wright B, Butler K, Enck W, Patrick T (2016) *Droid: assessment and evaluation of Android application
analysis tools. ACM Comput Surv 49(55):1-55, 30

Ren C, Zhang Y, Xue H, Wei T, Liu P (2015) Towards discovering and understanding task hijacking in
Android. In: USENIX security symposium, pp 945-959

Sadeghi A, Bagheri H, Garcia J, Malek S (2016) A taxonomy and qualitative comparison of program analysis
techniques for security assessment of Android software. IEEE Trans Softw Eng PP(99):1-1

Shekhar S, Dietz M, Wallach DS (2012) Adsplit: Separating smartphone advertising from applications. In:
USENIX security symposium

Tymchuk Y, Ghafari M, Nierstrasz O (2018) JIT Feedback — what experienced developers like about
static analysis. In: Proceedings of the 26th IEEE international conference on program comprehension
(ICPC’18)

Wang R, Xing L, Wang X, Chen S (2013) Unauthorized origin crossing on mobile platforms threats and
mitigation. In: ACM conference on computer and communications security

Weir C, Rashid A, Noble J (2016) Reaching the masses: a new subdiscipline of app programmer education.
In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering, FSE 2016. ACM, pp 936-939

Witschey J, Zielinska O, Welk A, Murphy-Hill E, Mayhorn C, Zimmermann T (2015) Quantifying develop-
ers’ adoption of security tools. In: Proceedings of the 2015 10th joint meeting on foundations of software
engineering, ESEC/FSE 2015. ACM, pp 260-271

Lei W, Grace M, Zhou Y, Chiachih W, Jiang X (2013) The impact of vendor customizations on Android secu-
rity. In: Proceedings of the 2013 ACM SIGSAC conference on computer & communications security,
CCS ’13. ACM, New York, pp 623-634

Xie J, Lipford HR, Chu B (2011) Why do programmers make security errors? In: 2011 IEEE symposium on
visual languages and human-centric computing (VL/HCC), pp 161-164

Xie J, Xiao F, Xiaojiang D, Luo B, Guizani M (2017) Autopatchdroid: a framework for patching inter-
app vulnerabilities in Android application. In: 2017 IEEE international conference on communications
(ICC). IEEE, pp 1-6

Meng X, Song C, Ji Y, Shih M-W, Lu K, Zheng C, Duan R, Jang Y, Lee B, Qian C, et al. (2016) Toward
engineering a secure Android ecosystem: a survey of existing techniques. ACM Comput Surv (CSUR)
49(2):38

Pascal Gadient is a PhD candidate in the Software Composition
Group of the University of Bern (Switzerland). His research interests
are security in mobile apps and mining software repositories.

@ Springer

Empirical Software Engineering

Mohammad Ghafari is a senior research assistant in the Software
Composition Group, and a lecturer in the Computer Science Institute
of the University of Bern. He obtained a doctoral degree in Soft-
ware Engineering from Politecnico di Milano (Italy) in 2015, and has
been affiliated with the University of Bern since 2016. His research
interest is at the confluence of program analysis, mining software
repositories, and secure software engineering.

Patrick Frischknecht is a software developer and a student of Com-
puter Science at the University of Bern.

Oscar Nierstrasz is a professor at the Institute of Computer Science
of the University of Bern, where he founded the Software Com-
position Group in 1994. He is co-author of over 300 publications
in diverse topics related to object-oriented software development
and software evolution. He is co-author of the open-source books
“Object-Oriented Reengineering Patterns” and “Pharo by Example”.

@ Springer

	Security code smells in Android ICC
	Abstract
	Abstract
	Introduction
	Background
	Android Architecture
	ICC Threats

	ICC Security Code Smells
	Literature Review
	List of Smells

	Empirical Study
	Linting Tool
	Dataset
	Batch Analysis
	Prevalence of Security Smells
	Contributor Affiliation
	App Updates
	Evolution
	Comparison to Existing Android Lint Checks
	Influence of Project Age and Activity
	Influence of Code Size

	Manual Analysis
	Tool Evaluation
	Tool Performance
	Smells and Their Vulnerability Capability

	Threats to Validity

	Related Work
	Conclusion
	References

