
Noname manuscript No.
(will be inserted by the editor)

Do Code Review Measures Explain the Incidence of
Post-Release Defects?

Case Study Replications and Bayesian Networks

Andrey Krutauz · Tapajit Dey
· Peter C. Rigby · Audris Mockus

Received: date / Accepted: date

Abstract Aim: In contrast to studies of defects found during code review, we
aim to clarify whether code reviews measures can explain the prevalence of
post-release defects.

Method: We replicate McIntosh et al.’s [51] study that uses additive re-
gression to model the relationship between defects and code reviews. To in-
crease external validity, we apply the same methodology on a new software
project. We discuss our findings with the first author of the original study,
McIntosh. We then investigate how to reduce the impact of correlated pre-
dictors in the variable selection process and how to increase understanding of
the inter-relationships among the predictors by employing Bayesian Network
(BN) models.

Context: As in the original study, we use the same measures authors ob-
tained for Qt project in the original study. We mine data from version control
and issue tracker of Google Chrome and operationalize measures that are close

Andrey Krutauz
Concordia University
Montreal, QC, Canada
E-mail: andrey.krutauz@ensce.concordia.ca

Tapajit Dey
University of Tennessee
Knoxville, Tennessee, USA
E-mail: tdey2@vols.utk.edu

Peter C. Rigby
Concordia University
Montreal, QC, Canada
E-mail: peter.rigby@concordia.ca

Audris Mockus
University of Tennessee
Knoxville, Tennessee, USA
E-mail: audris@utk.edu

ar
X

iv
:2

00
5.

09
21

7v
1

 [
cs

.S
E

]
 1

9
M

ay
 2

02
0

2 Andrey Krutauz et al.

analogs to the large collection of code, process, and code review measures used
in the replicated the study.

Results: Both the data from the original study and the Chrome data showed
high instability of the influence of code review measures on defects with the
results being highly sensitive to variable selection procedure. Models without
code review predictors had as good or better fit than those with review pre-
dictors. Replication, however, confirms with the bulk of prior work showing
that prior defects, module size, and authorship have the strongest relationship
to post-release defects. The application of BN models helped explain the ob-
served instability by demonstrating that the review-related predictors do not
affect post-release defects directly and showed indirect effects. For example,
changes that have no review discussion tend to be associated with files that
have had many prior defects which in turn increase the number of post-release
defects. We hope that similar analyses of other software engineering techniques
may also yield a more nuanced view of their impact. Our replication package
including our data and scripts is publicly available [1].

Keywords code review measures · statistical models · bayesian networks

1 Introduction

For decades code review has been seen as a cornerstone of quality assurance
for software projects. The process evolved from a formal process with check-
lists and face to face meetings [21] to a lightweight and semi-formal review
done via e-mails or specially designed collaboration tools [78]. The lightweight
code review approach was originally used in open source software projects
(OSS), because of their highly distributed nature [55,77] and has also become
a common practice among commercial projects as well [75,7]. Recent studies
suggest that the focus of review has shifted from early defect discovery to
problem discussion and knowledge sharing [7,75,14,72,43]. It is perceived as
a major quality control mechanism to prevent defects in production code [7,
15,58].

An obvious and important scientific question is whether or not code re-
views actually improve software quality, and whether our measurements of
code review have explanatory power. To clarify such theoretical question, sci-
ence resorts to replication to make it self-correcting system [87,17]. Replica-
tion helps establish if the phenomenon is dependable or idiosyncratic [79,86,
6,96]. Our first aim is, therefore to conduct a similar-internal replication (a
replication where only the experimenters varied [30,2]) of a highly reputable
recent result investigating the effects code reviews have on software quality.
We chose a commonly used quality measure: post-release defects. Such defects
affect end-users (and vendor reputation) and are very costly to repair [73],
and, therefore are a primary concern to software industry [38].

RQ 1. Replication: do previously reported associations between
code review measures and post-release defects hold in a similar-
internal replication study?

Do Code Review Measures Explain the Incidence of Post-Release Defects? 3

To investigate a hypothesis-driven scientific question researchers often use
linear regression models 1 to examine the relation between code review (and
other metrics) and software quality [70,44,56]. A recent award-winning work
by McIntosh et al. [50,51] employed additive models to fit non-linear curves
that are more suited for non-monotone or non-linear relationships than linear
regression. We perform an exact replication of that experiment to determine
if we can obtain the same conclusions using the same methods and data.
Specifically, we construct OLS models with restricted cubical splines to model
these relationships and discuss our findings with the first author, McIntosh, of
this study to ensure that he agreed with our conclusions.

RQ 2. Differentiated-external replication: do previously reported
associations between code review measures and post-release defects
hold for another large software project?

Our second goal is to increase external validity [30] of the results to avoid
conclusions that are unique to the specific dataset reported in the paper. To
accomplish this, we apply exactly the same set of methods on a different
software project: Chrome. This is sometimes referred as differentiated-external
replication [2]. We chose the project due to its size and richness and quality of
the associated data that allowed us to obtain measures highly similar to ones
obtained in the Qt project of the replicated study. More specifically, we model
software defects that are reported in a bug tracker. As control variables, we
use many of the previously studied measures that have been shown to impact
defects, including size, complexity, churn, authors, and file ownership [11,34].
The focus of this study is on investigating code review measures many of
which have been examined in past studies, including the number of reviewers,
discussion length, and rushed review in a different setting [51,50,44,77,76].

RQ 3. Structure of the relationships: Are code review measures
directly associated with post-release defects or are they affected by
other measures of the development process that are, in turn, directly
associated with post-release defects?

The findings from RQ1 and RQ2 point to the methodological limitations of
linear regression and additive models when applied to datasets that have high
correlations among the predictors as is typical software engineering data in
general and in code review data in particular [76,51]. The linear (or additive)
models can not reliably determine which of the highly correlated predictors
are affecting the response. Principal Component Analysis (PCA) is typically
applied in such cases but the results are hard to interpret because a linear
combination of unrelated measures, e.g., combining lines of code, number of
reviewers, and other unrelated concepts into a single predictor. This defeats
the original purpose of testing the scientific hypothesis as discussed in Chap-
ters 6.3, 6.7, and 10.2 of [39]. Since automatic variable selection techniques
are highly unstable (see, e.g, [5]), best practices in empirical studies that em-
ploy regression models, recommend the manual removal of highly correlated

1 Machine learning methods focused on maximising prediction performance are widely
used for defect prediction, but such methods are typically not transparent enough to test
scientific hypothesis [48]

4 Andrey Krutauz et al.

variables, or variables that do not contribute to the explanatory power of the
model. Such selection of variables relies on a subjective judgement of the re-
searcher. Another shortcoming of such models is their inability to model the
relations among predictors, which may reveal salient aspects of the develop-
ment process by providing a rich picture of how the predictors may influence
each other and the response.

A Bayesian Network (BN) is a Probabilistic Graphical Model (PGM). PGM
describes probabilistic relationships among variables that describe a problem
domain [35]. This model has several advantages over linear or additive re-
gression models. In particular, it allows for a natural representation of con-
ditional dependence and independence using graph notation where variables
are nodes and dependencies are edges. The removal of the notion of predictor
and response variables disposes of the oversimplifying assumption that a single
response variable is explained by a long list of predictors. Instead the edges
in the Bayesian Network provide a meaningful structure based on collected
data. Each variable in a graph can be interpreted as a predictor or a response
variable based on the topology of the graph. The researcher can then inject
information to understand the impact of an edge of interest [28].

Our main findings from RQ 1, the reproduction of the study by McIntosh et
al. [51], have demonstrated high sensitivity of the regression modeling results
to the subjective steps in the analyses when data contains highly correlated
predictors. In particular, we found that even in exact reproduction we were
unable to confirm the predictive power of code review measures on post-release
defects. We discussed the finding with McIntosh and, according to his opinion,
code review measures are not likely to explain more of the variance than
traditional measures. Moreover, the results are inconsistent across software
releases and heavily depend on the variables selected. We did, however, find
several metrics not related to code reviews, such as churn or prior defects,
that were reproduced reliably despite the subjectivity of the variable selection
process.

The investigation in RQ 2, increased the external validity of the findings
by confirming that a relatively small set of measures, churn and prior defects,
are related to post-release defects on a large and unrelated software project.
As on the Qt dataset, the impact of review measures was inconsistent across
software releases and heavily depend on the variables selected.

In RQ 3, to reduce the subjectivity of variable selection process and to
untangle the complex web of dependencies among the predictors, we applied
Bayesian Networks (BN) on both datasets. The approach revealed that there
is no direct relation between review measures and defects. The graph shows,
for example, that modules with more self-approved changes also have more
changes with no discussion, more reviewers, and also more prior defects. An
increase in review issues increases the share of the work done by the minor
authors, which, in turn, is associated with increased number of defects.

This paper is organized as follows. In Section 2, we discuss the case study
design, the systems under study, and the data extraction process. We also give
a brief overview of the Chrome code review process. In Section 3, we replicate

Do Code Review Measures Explain the Incidence of Post-Release Defects? 5

and reproduce McIntosh et al.’s [51] study, describe the model construction,
results, and discussion. In Section 4, we describe BNs and discuss the findings
from these models. Threats to validity are discussed in Section 5. The final
section concludes the paper and suggests future work. Our replication package
including our data and scripts is publicly available [1].

2 Case study design and data

In this section we discuss the case study design including the projects under
study and reasons for their selection. We describe the data sources, steps in
the data extraction, and analysis approach. We discuss the Bayesian Network
modeling methodology in Section 4.

2.1 Systems under study

McIntosh et al. [51] mined code review data from Android, LibreOffice, QT,
ITK, and VTK. They did not conduct an analysis on Android and LibreOffice
because they found that many of the reviews were not linked to bug reports
which did not allow them to study the impact of review on bugs. In total,
they studied two QT releases and one release for VTK and ITK. For the
reproduction, McIntosh provided the Qt and ITK data that was used in their
work [51]. The ITK data had only 24 defective components and 344 commits
with reviews. We feel that this dataset is too small to produce meaningful
statistical models. Although we include the ITK results in our replication
package [1], we only present the Qt results in this work. To improve external
validity, we replicate the study on the Google Chrome project, because like QT,
it is large and primarily written in C++. A further reason for studying Chrome
is that it is an open source web browser, that is mostly developed by paid
Google developers and its development practices mirror those used internally
at Google. Chrome developers are required to perform code review on each
change and use Reitvield, the precursor to Gerrit, to improve traceability of
bugs, changes, and reviews.

For completeness, we briefly describe Chrome’s code review process which
resembles other modern review practices [74]. A review begins when the change
author submits a patch and invites reviewers. A reviewer examines a change
and either approves it by replying with special keyword lgtm (looks good
to me) or proposes improvements. The author addresses comments either by
fixing issues in code or by replying to the reviewer comments. Subsequent
modifications to the original patch appear in the same review and are called
patchsets. The new patchset triggers a new cycle of review and revision. The
process continues until all issues are fixed and the reviewers are satisfied with
the patch. The code can then be merged to the trunk.

6 Andrey Krutauz et al.

Fig. 1 Chrome data sources and extraction methodology. Reviews are extracted from the
Rietrvield review system. Bugs are extracted from the defect tracking system. The bug and
review ids are contained in the Git commit and linked to the modified files and directories.

2.2 Chrome data extraction

To understand the influence of code review measures on post release defects
we need to create a link between the code review, the source files, and reported
bugs. We collect data from three data sources: Reitvield, Git, and the Chrome
bug tracker (figure 1). The data extraction is divided into the three steps
described below.

Extracting review data: We use the Reitvield API to download code reviews
in JSON format and extract the data into a database. For each code review
patch revision we extract the unique identifier and the set of files modified by
this revision. For every file and revision we also capture the number of added
and removed lines to calculate the size of a change. We process the reviewers
comments. We ignore comments that were added automatically by a bot or
by the patch author.

Extracting Git repository information: We extract commit information i.e.
the commit hash and list of files related to the change from the Git repository.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 7

Table 1 Description of Measures: product, process, human factors, review participation,
and reviewer expertise

Measure Description

Product
Size Number of lines of executable code in component
Complexity The McCabe cyclomatic complexity.

Process

Prior defects Number of defects fixed in component prior to the
considered release period

Effective tests
(Chrome only)

Total number of times a test found an issue during
the review process

Churn Sum of added or removed lines of code per compo-
nent during considered period of time

Change entropy Distribution of changes among files within a com-
ponent

Human Factors

Minor authors Number of unique contributors that contribute less
than 5% of code changes to a component

Major authors Number of unique contributors that contribute at
least 5% of code changes to component

All authors Number of unique contributors to component
Author ownership Proportion of changes to component done by major

authors

Review Participation

Rushed reviews Number of reviews that were concluded faster than
acceptable review rate (200 loc per hour)

Changes without
discussion

Changes that were integrated without discussion
comments

Self approved
changes

Changes that were approved for integration only
by the author

Typical discussion
length

Discussion length typical for that specific compo-
nent measured in number of discussion comments.
Normalized by size of change (churn)

Typical review
window

The amount of time between the patch upload and
its approval for integration. Normalized by size of
change (churn)

All reviews Total number of times the component was reviewed
All reviewers Total number of of reviewers that reviewed a com-

ponent
Review issues Total number of patch revisions created during re-

view process
Effective reviews
(Chrome only)

Number of revisions that led to a code change dur-
ing a single review per component

Review Expertise
Lacking subject
matter expertise

Number of changes that were not authored or ap-
proved by major author

Typical reviewer
expertise

Total number of changes to the component au-
thored or reviewed by this reviewer prior to this
change

We use the Understand static analysis toolkit2 to extract source code measures
from the files.

Extracting defect data: We mine the defects from the Chrome issue tracker
by scraping the pages. We extract the submission date, type of the issue, review
ID, and commit ID for the fix.

2 https://scitools.com/

8 Andrey Krutauz et al.

Post-release defects: We consider a defect to be the post-release defect of
the current release if it was submitted during the time period between the
release dates of the current and the following releases. We use Chrome release
calendar website for release dates information.3 Following McIntosh [51], we
associate the post-release defects with the pre-release reviews and other source
measures using first the file level and then sum the measures to the component,
i.e. directory level. The directory was chosen as the unit of analysis to reduce
the fraction of zero observations because the majority of the files in the system
do not have any defects.

2.3 Collected Measures

The measures we collect to evaluate the impact of code review on post-release
defects are well known and have been used in multiple past studies [51,50,
75,44] and are described in Table 1. We divide them into four categories:
product, process, human factors, review participation, and reviewer expertise.
The code review measures are the number of reviewers, discussion length,
rushed reviews, typical reviewer expertise, etc. The control variables in our
model are also well known and widely used with defect prediction models [55,
34,11,32]. The control variables include the size of the file, the number of prior
defects, and the churn.

3 Code Review Replication and Reproduction Study

We replicate the study published by McIntosh et al. [51]. We strictly follow
the steps of the model construction described in the original paper [51]. We
fit an Ordinary Least Squares (OLS) regression model. Since the dependent
variable is the number of post-release defects and it is highly skewed, we log
transform it. We also create regression models that take non-linear effects into
account. We then compare the goodness of fit among models and discuss the
contribution of each independent variable.

Correlated variables can distort the contribution of a variable to a model
and must be removed. We use the hierarchical clustering analysis (Figures 2
and 3) with the threshold of |ρ| ≥ 0.7 suggested by McIntosh [51] to identify the
highly correlated variables. Then we select which variables will be discarded
using drop-one analysis and the principle of parsimony. The results of this step
are summarized in the Tables 2 and 3.

Redundant variables can be explained by the remaining variables, that is
they do not contribute to the explanatory power of the model and should be re-
moved. Such variables may be overlooked by the pairwise correlation analysis,
therefore we use redun function from Hmisc R package 4. For each indepen-
dent variable a regression model is fitted using as predictors the remaining

3 https://www.chromium.org/developers/calendar
4 https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

Do Code Review Measures Explain the Incidence of Post-Release Defects? 9

Fig. 2 Hierarchical Correlation Analysis for Qt 5.0. For variables correlated at |ρ| ≥ 0.7
the simpler measure is kept. We also conduct a redundancy analysis.

Fig. 3 Hierarchical Correlation Analysis for Chrome 40. For variables correlated at |ρ| ≥ 0.7
the simpler measure is kept. We also conduct a redundancy analysis.

10 Andrey Krutauz et al.

variables. If the model has a R2 greater than 0.9, then the current variable is
considered to be redundant because the linear combination of the remaining
variables can closely approximate this variable.

Non-linear effects and degrees of freedom. Traditional defect prediction
models assume linear dependencies between the dependant and independent
variables. McIntosh et al. [51] showed that for some code review measures this
relation has a non-linear shape. To identify variables that may be nonlinear,
we calculate the Spearman multiple ρ2 scores for each independent variable.
Variables with higher scores are more likely to be non-linear. To fit a non-
linear curve we use restricted cubic splines in the rms R package [33]. Using
this approach we assign knots, which are points where the slope changes, to
potentially non-linear variables. The more knots that are added the greater
the curve complexity. Every additional knot requires a degree of freedom. If
we use all of the degrees of freedom, then there will be a knot for each data
point and the fit will be perfect, but the model will be overfitted to the data.
As a result, the degrees of freedom are budgeted to avoid over fitting while
still allowing variables that have a high ρ2 score to be modelled non-linearly.

To assess model fitness, we report the adjusted R2 to compensate for the
large number of variables [51]. To assess the individual contributions of each
variable, we report its statistical significance and the Wald χ2 maximum like-
lihood test value. The larger the value the greater the impact the variable
has on the model. The results are summarized in Tables 2 and 3. The tables
also contain the results from McIntosh et al. [51] and conform to the same
structure.

3.1 Variable selection and model construction

In our summary table we have approximately 1.3k reviews for Qt 5.0 and 1.4K
for Chrome 40. We start with 16 measures. This gives us 81 and 87 degrees
of freedom for Qt and Chrome respectively. Following previous works, we dis-
card measures with correlation at or above 0.7. We use clustering analysis to
identify these measures, see Figures 2 and 3. We also perform drop one analy-
sis to determine which measures should be discarded from each cluster. Major
authors, author ownership and complexity were removed from Qt dataset. Ma-
jor authors, author ownership and changes without discussion were removed
from Chrome. Using a redundancy test minor authors was removed from both
datasets. We perform a non-linearity analysis. Variables that exhibit a higher
degree of non-linearity require additional degrees of freedom to model their
curved line. The results of the variable selection process and the number of
allocated degrees for each variable can be found in in Tables 2 and 3.

To represent our models, we use the R language notation [68]. For example,
the formula y ∼ a + b means that the response y is modelled by explanatory
variables a and b. McIntosh [51] used the following model for Qt:

Do Code Review Measures Explain the Incidence of Post-Release Defects? 11

log(defects+ 1) ∼ rcs(size, 5) + rcs(all authors, 5)

+ complexity + churn+ rcs(change entropy, 3)

+ rcs(changes w/o discussion, 3)

+ rcs(self − approved changes, 5)

+ rcs(typcal discussion length, 5)

+ rcs(typical reviewer expertise, 5) + rcs(lacking subject matter expertise, 5)

Our Qt model is the following:

log(defects+ 1) ∼ rcs(size, 5) + rcs(prior defects, 5)

+ rcs(churn, 3) + rcs(changeentropy, 3)

+ rcs(all authors, 5) + rcs(changes w/o discussion, 5)

+ self − approved changes+ typcal discussion length

+ typcal review window + rcs(rushed reviews, 3)

+ rcs(lacking subject matter expertise, 3) + typical reviewer expertise

Our Chrome model is the following:

log(defects+ 1) ∼ rcs(size, 5) + rcs(prior defects, 5)

+ complexity + rcs(churn, 3) + rcs(change entropy, 3)

+ rcs(all authors, 5) + rcs(self − approved changes, 5)

+ typical discussion length+ rushed reviews

+ typcal review window + rcs(lacking subject matter expertise, 3)

+ typical reviewer expertise

Restricted Cubic Splines are represented by the rcs function in the formula
where the first argument is the predictor and the second argument is the
number of knots (the amount of nonlinearity) permitted. We fit OLS model
using formulas from above and calculate adjusted R2 to assess goodness of fit.
Tables 2 and 3 summarize the results and contain the original results from
McIntosh et al. [51]. In summary, the response variable is modeled via linear
and non-liner dependencies approximated via cubic splines.

3.2 Model results and model comparisons

In this section we compare our replication results with those from McIntosh
et al. [51] original study and new results from Chrome. We highlight differences
and discuss their possible causes.

12 Andrey Krutauz et al.

Table 2 Post-release defects prediction model for Qt. Original and replication study results.
Non-linear models do not outperform linear models. While statistically significant, review
measures are unstable and have little predictive power compared to traditional measures.

R
elea

se
5
.0

M
cIn

to
sh

5
.0

5
.1

M
cIn

to
sh

5
.1

N
o
n

lin
ea

r
m

o
d

el
a
d

ju
sted

R
2

0
.6

9
0
.6

2
0
.4

6
0
.6

6
L

in
ea

r
m

o
d

el
a
d

ju
sted

R
2

0
.6

1
0
.6

3
N
o
n
lin

e
a
r
m

o
d
e
l
w
/
o

c
o
d
e
r
e
v
ie
w

v
a
r
ia
b
le
s
a
d
ju

ste
d
R

2
0
.6
1

0
.6
4

O
v
era

ll
D

.F
.

8
0

8
1

7
8

8
1

A
llo

ca
ted

D
.F

.
2
2

2
2

2
4

2
2

O
v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
S

ize
D

.F
.

4
3

4
3

2
1

4
3

χ
2

1
1
0
∗∗∗

7
6
∗∗∗

6
0
∗∗∗

1
4
∗∗

1
0
∗∗

5
∗

4
7
∗∗∗

3
5
∗∗∗

C
o
m

p
lex

ity
D

.F
.

1
n

a
†

†
1

n
a

†
†

χ
2

1
◦

n
a

†
†

<
1
◦

n
a

†
†

P
rio

r
d

efects
D

.F
.

‡
‡

2
1

2
1

3
2

χ
2

‡
‡

4
8
∗∗∗

4
5
∗∗∗

9
∗

<
1
◦

9
0
∗∗∗

7
7
∗∗∗

C
h
u

rn
D

.F
.

1
n

a
2

1
1

n
a

2
1

χ
2

1
◦

n
a

1
5
∗∗∗

7
∗∗∗

<
1
◦

n
a

5
◦

3
◦

C
h

a
n

g
e

en
tro

p
y

D
.F

.
2

1
1

n
a

2
1

2
1

χ
2

8
∗

7
∗∗

<
1
◦

n
a

6
∗

6
∗

3
◦

2
◦

A
ll

a
u

th
o
rs

D
.F

.
‡

‡
3

2
2

1
2

1
χ
2

‡
‡

2
7
4
∗∗∗

6
3
∗∗∗

3
0
∗∗∗

1
5
∗∗∗

1
9
3
∗∗∗

1
3
∗∗∗

M
in

o
r

a
u

th
o
rs

D
.F

.
†

†
‡

‡
1

n
a

‡
‡

χ
2

†
†

‡
‡

2
◦

n
a

‡
‡

M
a

jo
r

a
u

th
o
rs

D
.F

.
†

†
†

†
†

†
†

†
χ
2

†
†

†
†

†
†

†
†

A
u

th
o
r

o
w

n
ersh

ip
D

.F
.

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

S
elf-a

p
p

ro
v
ed

D
.F

.
2

1
1

n
a

1
n

a
1

n
a

χ
2

2
2
∗∗∗

1
◦

7
∗

2
◦

<
1
◦

n
a

<
1
◦

n
a

R
u

sh
ed

rev
iew

s
D

.F
.

†
†

2
1

2
1

2
1

χ
2

†
†

4
◦

<
1
◦

4
8
∗∗∗

2
3
∗∗∗

3
◦

<
1
◦

C
h

a
n

g
es

w
/
o

d
isc.

D
.F

.
2

1
2

1
2

1
2

1
χ
2

6
◦

4
∗

1
8
∗∗

3
◦

3
◦

1
◦

3
6
∗∗∗

2
9
∗∗∗

T
y
p

ica
l

rev
iew

w
in

d
o
w

D
.F

.
†

†
1

n
a

†
†

1
n

a
χ
2

†
†

<
1
◦

n
a

†
†

<
1
◦

n
a

T
y
p

ica
l

d
isc.

len
g
th

D
.F

.
4

3
1

n
a

2
1

1
n

a
χ
2

2
6
∗∗∗

2
4
∗∗∗

<
1
◦

n
a

3
2
∗∗∗

2
1
∗∗

3
◦

n
a

L
a
ck

in
g

su
b

ject
m

a
tter

ex
p

ertise
D

.F
.

2
1

2
1

4
3

1
n

a
χ
2

8
0
∗∗∗

7
0
∗∗∗

3
3
∗∗∗

3
◦

3
4
∗∗∗

2
2
∗∗

<
1
◦

n
a

T
y
p

ica
l

rev
iew

er
ex

p
ertise

D
.F

.
4

3
1

n
a

2
1

1
n

a
χ
2

2
6
∗∗∗

2
4
∗∗∗

<
1
◦

n
a

3
2
∗∗∗

2
1
∗∗

7
∗∗

n
a

D
isca

rd
ed

d
u

rin
g
:†

-
R

em
o
v
ed

d
u

rin
g

co
rrela

tio
n

a
n

a
ly

sis;‡
-

R
em

o
v
ed

d
u

rin
g

red
u

n
d

a
n

cy
a
n

a
ly

sis
S

ta
tistica

l
sig

n
ifi

ca
n

ce:∗
∗
∗
ρ
<

0
.0

0
1
;∗
∗
ρ
<

0
.0

1
;∗
ρ
<

0
.0

5
;◦
ρ
>

=
0
.0

5
O

th
er:

n
a

-
n

o
t

u
sed

Do Code Review Measures Explain the Incidence of Post-Release Defects? 13

Table 3 Post-release defects prediction model for Chrome. Non-linear models do not out-
perform linear models. While statistically significant, review measures are unstable and have
little predictive power compared to traditional measures.

R
elea

se
3
9

4
0

4
1

4
2

4
3

4
4

N
o
n

lin
ea

r
m

o
d

el
a
d

ju
sted

R
2

0
.6

1
0
.5

8
0
.5

9
0
.5

9
0
.5

1
0
.5

3
L

in
ea

r
m

o
d

el
a
d

ju
sted

R
2

0
.5

9
0
.5

4
0
.5

6
0
.5

7
0
.5

0
0
.4

9
w
/
o

c
o
d
e
r
e
v
ie
w

v
a
r
ia
b
le
s
a
d
ju

ste
d
R

2
0
.6
0

0
.5
8

0
.5
9

0
.5
9

0
.4
9

0
.5
3

O
v
era

ll
D

.F
.

6
2

8
7

9
0

8
4

8
3

8
0

A
llo

ca
ted

D
.F

.
2
6

2
1

2
3

2
0

1
9

2
0

O
v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
O

v
era

ll
N

o
n

lin
ea

r
S

ize
D

.F
.

4
3

2
1

4
3

2
1

2
1

2
1

χ
2

2
8
∗∗∗

3
◦

1
◦

1
◦

1
0
∗

<
1
◦

1
◦

<
1
◦

3
◦

2
◦

8
∗

6
∗

C
o
m

p
lex

ity
D

.F
.

1
n

a
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

χ
2

<
1
◦

n
a

3
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

1
◦

n
a

<
1
◦

n
a

P
rio

r
d

efects
D

.F
.

4
3

2
1

4
3

4
3

4
3

2
1

χ
2

4
3
∗∗∗

4
2
∗∗∗

3
7
∗∗∗

3
4
∗∗∗

7
4
∗∗∗

7
1
∗∗∗

6
1
∗∗∗

5
5
∗∗∗

2
1
∗∗∗

2
0
∗∗∗

3
◦

3
◦

C
h
u

rn
D

.F
.

2
1

2
1

2
1

2
1

2
1

2
1

χ
2

1
4
∗∗

8
∗

2
3
∗∗∗

2
2
∗∗∗

3
1
∗∗∗

3
0
∗∗∗

2
6
∗∗∗

2
4
∗∗∗

<
1
◦

<
1
◦

1
1
∗∗

2
◦

C
h

a
n

g
e

en
tro

p
y

D
.F

.
2

1
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

χ
2

<
1
◦

<
1
◦

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

3
∗

n
a

<
1
◦

n
a

A
ll

a
u

th
o
rs

D
.F

.
3

2
4

3
4

3
3

2
3

2
3

2
χ
2

4
9
∗∗∗

2
◦

4
3
∗∗∗

8
∗

4
2
∗∗∗

2
◦

3
3
∗∗∗

<
1
◦

5
1
∗∗∗

4
◦

2
4
∗∗∗

1
◦

M
in

o
r

a
u

th
o
rs

D
.F

.
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
χ
2

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

M
a

jo
r

a
u

th
o
rs

D
.F

.
†

†
†

†
†

†
†

†
†

†
†

†
χ
2

†
†

†
†

†
†

†
†

†
†

†
†

A
u

th
o
r

o
w

n
ersh

ip
D

.F
.

†
†

†
†

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

†
†

†
†

S
elf-a

p
p

ro
v
ed

D
.F

.
4

3
4

3
4

3
4

3
4

3
4

3
χ
2

8
∗

7
◦

1
2
∗

5
◦

2
◦

2
◦

3
◦

2
◦

1
3
∗∗

9
∗∗

9
∗

3
◦

R
u

sh
ed

rev
iew

s
D

.F
.

1
n

a
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

χ
2

1
◦

n
a

1
9
∗∗∗

n
a

2
◦

n
a

1
4
∗∗

n
a

6
∗

n
a

<
1
◦

n
a

C
h

a
n

g
es

w
/
o

d
isc.

D
.F

.
†

†
†

†
†

†
†

†
†

†
†

†
χ
2

†
†

†
†

†
†

†
†

†
†

†
†

T
y
p

ica
l

rev
iew

w
in

d
o
w

D
.F

.
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

1
n

a
χ
2

1
◦

n
a

1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

T
y
p

ica
l

d
isc.

len
g
th

D
.F

.
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

1
n

a
χ
2

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

L
a
ck

in
g

su
b

ject
m

a
tter

ex
p

ertise
D

.F
.

2
1

2
1

2
1

2
1

1
n

a
2

1
χ
2

7
∗

3
◦

3
◦

<
1
◦

3
2
∗∗∗

7
∗∗∗

2
0
∗∗∗

5
∗

7
∗∗

n
a

1
9
∗∗∗

1
0
∗∗

T
y
p

ica
l

rev
iew

er
ex

p
ertise

D
.F

.
1

n
a

1
n

a
1

n
a

1
n

a
1

n
a

1
n

a
χ
2

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

<
1
◦

n
a

7
∗

n
a

1
0
∗

n
a

D
isca

rd
ed

d
u

rin
g
:†

-
R

em
o
v
ed

d
u

rin
g

co
rrela

tio
n

a
n

a
ly

sis;‡
-

R
em

o
v
ed

d
u

rin
g

red
u

n
d

a
n

cy
a
n

a
ly

sis
S

ta
tistica

l
sig

n
ifi

ca
n

ce:∗
∗
∗
ρ
<

0
.0

0
1
;∗
∗
ρ
<

0
.0

1
;∗
ρ
<

0
.0

5
;◦
ρ
>

=
0
.0

5
O

th
er:

n
a

-
n

o
t

u
sed

14 Andrey Krutauz et al.

Fig. 4 A wide margin of error for nonlinear predictions, for example, prior defects in Qt
5.0. Nonlinear models are unnecessary, see Tables 2 and 3.

3.3 Comparing linear and non-linear models

To illustrate the nonlinear effect we select an independent variable with the
highest potential of nonlinearity from the model and calculate predicted num-
ber of post-release defects as the function of this variable, using Predict func-
tion from R rms package. The rest of the variables are fixed at their median
values. As an illustration, we choose prior defects for Qt because it had the
highest Spearman squared value among independent variables participating
in the model. We then plot the results in Figure 4. Although the shape of
the plot may suggest some nonlinearity, the grey funnel, which is the error
margin, is too wide to claim with confidence that these variables have a non-
linear relation with the response variable. The goodness of fit R2 also shows
that nonlinear models do not yield better results than regular linear models.
Discussion with McIntosh revealed that the text of the original paper was am-
biguous and they only log transformed the dependent variable. We find that
a log transformation of skewed independent variables provides a reasonable
model without adding the complexity of a non-linear model.

3.4 Models with and without review measures

The results show that although many of the code review measures are statis-
tically significant, they usually tend to have lower values of Wald χ2 test than
other measures, suggesting their lower contribution to explanatory power of
the model. Even the most prominent measures, like typical discussion length
and rushed reviews are repeatedly outperformed by measures like size, prior
defects, and all authors. As a further investigation, we fit a model without
review measures and record the values of adjusted R2 (shown in bold in the
section of R2 values in the Tables 2, 3). The decrease in the values of ad-

Do Code Review Measures Explain the Incidence of Post-Release Defects? 15

justed R2 in both datasets is minimal, meaning that overall contribution of
the review measures to the explanatory power of the model is limited. In ad-
dition to low contribution to the model the performance of review variables
is inconsistent between datasets and releases. For instance, in McIntosh et al.
rushed reviews was discarded from the model in Qt 5.0 during the correlation
analysis, however, in Qt 5.1 this measure is one of the strongest predictors of
post-release defects. The typical discussion length is one of the most influen-
tial variables for both Qt releases in both studies, but in Chrome dataset the
contribution of this variable is insignificant. Discussing our results with McIn-
tosh, he stated that he did not believe that review measures could dominate
traditional measures. Our answer to RQ1, Replication, is summarized below.

Conclusion 1: The review measures contributed little to the perfor-
mance of the model, with the R2 remaining almost unchanged from the
model that included only the traditional predictors, such as the number
of prior-defects, size, and authors.

3.5 Impact of individual variables

Size of component is a well-known predictor in empirical software studies.
McIntosh et al. show that in the Qt project size provides significant contri-
bution to the explanatory power of the model. Our result is similar for Qt
dataset. However, in Chrome dataset the contribution of the size measure is
quite small (Table 3).

Prior defects and all authors have been shown to be good predictors of
future defects [32,11]. McIntosh et al. discard prior defects in Qt 5.0 due to
redundancy. In our study, the redundancy analysis on the Qt 5.0 dataset does
not indicate that prior defects are redundant and, on the contrary, is statisti-
cally significant. For the Qt 5.1 release, both McIntosh et al. and our model
keep prior defects but find it to be a poor predictor. The all authors measure
is redundant in Qt 5.0 release in our study contrary to the McIntosh et al..
For Qt 5.1 the all authors is the most influential predictor in the model. This
result is replicated in both studies. In Chrome dataset these two variables are
repeatedly found to be the most influential variables of the model. A possi-
ble explanation for this inconsistency could be that these two variables share
a common cause. Defects are not always fixed by the owner of the module,
especially in big teams. That means that more developers are touching the
file, and the more developers modifying a file the higher the risk of the future
defects. Intuitively, the growth in these two measures should be related, but
our correlation and redundancy analysis fails to find this. These inconsistent
results suggest that traditional variable selection techniques are not capable
of coping with the high correlations in our datsets and indicate the need for a
different approach that can deal with complex interactions between variables.

16 Andrey Krutauz et al.

Review measures . The important measures in the Qt dataset are similar to
what McIntosh et al. found. The self-approved changes has low impact on post-
release defects. The rushed reviews variable was discarded in 5.0 release, but in
5.1 it appears as one of the most influential variables. The typical discussion
length variable has moderate to strong influence in both releases. For the
Chrome dataset the review measures are not statistically significant in most
cases. When they are, such as in lacking subject matter expertise the result
is inconsistent across releases. The overall performance of review variables
is inconsistent in both studies suggesting the following conclusion to RQ 2,
Differentiated-external replication.

Conclusion 2: The inconsistent performance across projects and re-
leases of strong predictors, like all authors, prior defects and others,
suggests a possible issue with the traditional variable selection approach
and indicates the need for an approach that is capable of dealing with
a more complex inter-variable relations.

4 Bayesian Networks Models

To address the concern of the unexpected absence of the relationship between
code review measures and post-release defects demonstrated in the previous
models, and the lack of reproducibility due to the subjectivity in variable se-
lection approaches that are necessary in a traditional model, such as the one
used in Section 3, we use Bayesian Networks (BN) as an alternative modeling
approach. Our goal in using the BN model is not to create the best predictive
model for post-release defects. Instead, we focus on understanding the com-
plex interaction between the variables described by the data, and determining
which variables directly impact the number of post-release defects in such a
generative model.5

4.1 Background: Bayesian Network

Bayesian Network models have several advantages over regression models. To
be precise, regression analysis is a very simple BN where there is one directed
link from each independent variable to the dependent variable. BNs, there-
fore, can help with multicollinearity by establishing the relationships among
independent variables. In the process of BN construction we can control the
number of edges (relations) by specifying a connection strength threshold.

5 A generative model specifies a joint probability distribution over all observed variables,
whereas a discriminative model provides a model only for the target variable(s) conditional
on the predictor variables. Thus, while a discriminative model allows only sampling of the
target variables conditional on the predictors, a generative model can be used, for example,
to simulate (i.e. generate) values of any variable in the model, and consequently, to gain an
understanding of the underlying mechanics of a system, generative models are essential.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 17

Once the Bayesian Network is constructed we can use the graphical repre-
sentation to learn about less obvious interactions among variables and infer
how the injection of specific facts affects variables of interest. We use BN to
investigate the lack of consistency in the replication in the previous sections.

One important concept related to the BNs is the concept of Markov Blan-
ket [64]. The Markov Blanket for a node in a Bayesian Network is the set of
nodes composed of its parents, its children, and its children’s other parents
(co-parents). The Markov blanket of a node contains all the variables that
shield the node from the rest of the network i.e. for a node A, its Markov
Blanket MBA, and a node B : B 6= A,B /∈MBA, we have the property that:

Pr(A|MBA, B) = Pr(A|MBA)

This means that the Markov blanket of a node is the only knowledge needed
to predict the behavior of that node.

We will construct a BN model without assuming any domain expertise,
edges, or assumptions about prior data distributions. Instead we will use min-
imal a-priori model that focuses on the search for the best Bayesian graphical
representation for the dataset (i.e. structure learning using hill climbing).

Despite the promises of BNs, they tend to be quite sensitive to data, and
operational data is often problematic [54,97]. Careful preprocessing is needed
to ensure a reliable and reproducible result. We next discuss discretization of
variables and structure learning with hill climbing approaches used to address
these concerns.

4.1.1 Discretization

For our regression model, we found that all our variables have a long-tailed dis-
tribution that could not be corrected even by a log-transformation. Since BN
structure learning methods for continuous data require a normal distribution,
we discretize the data, as is often done with prediction that involves classi-
fiers [83]. Discretizing variables while preserving relationships among them is
an NP-hard problem [18], but several heuristics exist. The commonly used
supervised methods optimize discretization to improve explanatory power for
a single response variable, such as, Chi-square, or MDLP. However, these are
not suitable for a BN structure search, because we do not know a-priori which
variables will be responses (have arrows pointing to them) and which will
be independent (have no incoming arrows). While some research on multi-
dimensional discretization methods exist [66], we are not aware of any such
method that has a robust implementation in a statistical package. We, there-
fore, use unsupervised discretization methods. The added benefit is that the
discretization was totally response-variable agnostic unlike the commonly used
supervised discretization methods, which prevents any bias towards specific fit
that may accompany supervised methods.

Following the recommendations from Garcia et al.’s [29] survey, we use
the Equal Frequency discretization method and the implementation in the

18 Andrey Krutauz et al.

arules package. The defects node was discretized to a binary no-defect/defect
variable, because around 73% of the directories have no defects, therefore it
makes sense to just predict whether or not there will be a defect for our dataset.
Two levels were also assigned to minor authors, rushed reviews, typical review
window, and lacking subject matter expertise because more than 50% of entries
were zero. Based on the data distributions for the remaining variables three
levels were deemed appropriate. We present the distribution of the variables
in our replication package [1] as additional evidence for the choice of our
discretization levels.

4.1.2 BN Structure Search: Hill Climbing

To learn the BN structure from our data, we chose a well-performing and
widely used [19] Hill-Climbing (HC) algorithm from the bnlearn R package.
This HC algorithm attempts to maximize the network score with several scor-
ing functions available in the bnlearn package: e.g., BIC, AIC, BDE. A detailed
study examining how well different scores performed concluded that in general
all scores perform similarly and for large data sets Bayesian scores are more
suitable [16]. Since our dataset is not particularly large, at least for the indi-
vidual releases, we decided not to use Bayesian scores e.g., BDE, instead we
chose to focus on the information theoretic scores e.g., AIC, BIC. We finally
selected the BIC score because it is more appropriate for constructing explana-
tory models, while AIC is better suited for building predictive models [89,85].

Hill-Climbing has the known limitation of finding a local maxima, and there
are several enhanced versions of the algorithm that deal with this shortcoming.
The R implementation provides parameters for the number of random restarts
and perturbations as tuning parameters to deal with this problem. However,
these parameters can make the results noisy, with different settings inducing
slightly different networks. To mitigate this effect, we use the non-parametric
bootstrap model averaging method, which provides confidence levels for both
the existence of an edge and its direction [28]. This enables us to select a
model based on a confidence threshold. Friedman et al. [28] argued that the
threshold is domain specific and needs to be determined for each domain. To
identify a suitable threshold, we performed a simulation study, by generating a
simulated dataset for the same number of nodes. The result of the simulation
showed that a threshold of 0.65 was suitable to accurately recover the original
structure. We also investigated alternative thresholds to assess the stability of
the results as described in Section 5.

Finally, due to the HC algorithm not being a deterministic one, we repeated
the process of generating a model 100 times, according to the recommendation
by Arcuri and Briand [3] and generated our final model based on the averaged
result of these 100 runs.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 19

4.1.3 Combining Data for Qt and Chrome Releases

We created new datasets by combining the data for all the Qt releases, the
Chrome releases, and also combined the data for all releases for the two
projects, which gave us three new datasets. Combining the datasets makes
our final model more robust and the result is arguably more generalizable,
because of having more training examples and not being prone to overfit to
the specific characteristics of one particular release.

4.1.4 BN Model Performance Measures

Model performance can be evaluated using explanatory and predictive perfor-
mance measures [85]. We first create an explanatory model that allows us to
understand which software engineering measures have the greatest influence
on post-release defects. We use the variance explained, which is the proportion
of the log-likelihood score of the model relative to the baseline model which
assumes that all the variables are independent.

We test the predictive power of our BN models for the purpose of compar-
ison between similar models and to demonstrate the practical applicability of
the models. Training and testing the models with Cross-fold validation is not
appropriate because we have time ordered data. To ensure that we are not
using future data to predict past observations, we trained our model on the
earlier 70% of the data and test it on the subsequent 30% of the data. We use
the Accuracy and Cohen’s Kappa measures as the performance measures for
our models.

4.1.5 CPT: the probability of having a defect given each variable

To determine the individual impact that each variable has on post-release
defects, we create Conditional Probability Tables (CPT) for each variable in
the Markov Blanket that directly influences defects. The CPTs are trained
with the gRain package in R, using Junction Tree belief propagation method
(Lauritzen-Spiegelhalter algorithm [37,47,42]) from the BN models. See [37]
for details about how the CPT tables are calculated. The code for CPT con-
struction is available in our replication package [1].

4.2 Results for BN models

We created BN models for each release, each project, and for the entire com-
bined dataset. The results are summarized in Table 4. Importantly, the post-
release defects variable, i.e. the defects node in the Markov Blanket, was influ-
enced by but did not influence any of the other variables. This is reassuring,
because it is not possible for post-release defects to influence pre-release mea-
sures (going backward in time). Our models were able to properly account for

20 Andrey Krutauz et al.

Table 4 Variables in Markov Blanket of defects for each BN model and the model perfor-
mance as measured by Variance Explained, Accuracy, and Kappa.

Release Variables in Markov Blan-
ket of defects

Variance Explained Accuracy Kappa

Qt 50 priordefects, changesnodisc 51.4% 0.85 0.43
Qt 51 allauthors, size 32.9% 0.86 0.44
Qt combined priordefects, changesnodisc 27.2% 0.87 0.42
Chrome 39 allreviews, priordefects 19.8% 0.75 0.5
Chrome 40 priordefects 25.4% 0.76 0.48
Chrome 41 allchangescount, priordefects 30.7% 0.78 0.51
Chrome 42 priordefects 32.9% 0.77 0.46
Chrome 43 minorauthors 25.6% 0.76 0.42
Chrome 44 allchangescount, minorauthors 36.1% 0.8 0.48
Chrome combined minorauthors, priordefects 19.5% 0.76 0.41
All minorauthors, priordefects,

size
32.7% 0.83 0.45

the fact by correctly identifying the prior defects in the priordefects variable
as having the influence on post-release defects.

Table 4 shows the model performance measures: variance explained, Ac-
curacy, and Kappa. We observe that Kappa values varied between 0.41 and
0.51, which signifies a fair or moderate agreement according to both Landis
and Koch [46] and Fleiss [27]. Similarly, the accuracy of the models was also
observed to be high, between 0.75 and 0.87, and the models had reasonable
variance explained, between 19.5% and 51.4%.

4.3 Variables directly affecting post release defects

Table 4 shows the variables that directly influence the defects node in the
Markov Blanket. Of the 11 review measures one is present in Qt 50, changesnodisc,
and another, allreviews, is present in Chrome release 39. In Table 5, we see the
probability of a defect given each the review measure. A directory with two or
more changes that are reviewed without discussion increases the probability
of post-release defects by 42.3% in Qt 50. For Chrome 39, the more often a
directory is reviewed the more often there are defects and in the case of 36 or
more reviews for a directory the probability of observing a defect increases to
69.8%.

Of the 10 non-review “traditional” measures six are present in one or
more releases, see Table 4. allauthors,size are present in one release each.
allchangescount, and minorauthors, are each in 2/8 releases. priordefects the
most common predictor is present in 5/8 releases. In Table 5, we see the prob-
ability of a defect given each measure. We observe that all the predictors have
a positive impact on defects, i.e. larger numbers increase the probability of de-
fects. Below we discuss “traditional” measures that are present in more than
one release. Having one or more minorauthors that modify the files in a direc-
tory can also drastically increase the number of post-release defects by over
70%. Moderate changes to a component, e.g., allchangescount < 50, can in-
crease the number of defects by up to 33.8%. Components with many changes,

Do Code Review Measures Explain the Incidence of Post-Release Defects? 21

Table 5 CPT: The conditional probability of post-release defects for each measure. As an
example, having one or more minor authors making changes in a component increases the
probability of post-release defects by over 70%.

For release Qt 50: 12.5% of observations had defect
priordefects probability of defects changesnodisc probability of defects

0 4.8% 0 5.6%
1 7.6% 1 9.7%

[2, 528] 30.6% [2, 95] 42.3%
For release Qt 51: 17.1 % of observations had defect

allauthors probability of defects size probability of defects
1 6.1% [0, 78) 4.1%
2 10.5% [78, 395) 11.7%

[3, 57] 44.1% [395, 81654] 34.9%
For Qt - Combined: 14.4 % of observations had defect

priordefects probability of defects changesnodisc probability of defects
0 7.0% 0 7.3%
1 10.4% 1 14.4%

[2, 624] 30.8% [2, 191] 40.9%
For release Chrome 39: 42.1% of observations had defect

priordefects probability of defects allreviews probability of defects
[0, 5) 20.7% [0, 10) 18.3%
[5, 18) 45.1% [10, 36) 39.4%

[18, 1588] 64.9% [36, 1573] 69.8%
For release Chrome 40: 32.2% of observations had defect

priordefects probability of defects
[0, 5) 11.9%
[5, 18) 28.4%

[18, 1588] 59.6%
For release Chrome 41: 39.8% of observations had defect

priordefects probability of defects allchangescount probability of defects
[0, 4) 16.0% [1, 10) 13.5%
[4, 18) 33.5% [10, 48) 33.8%

[18, 1660] 73.7% [48, 2415] 73.4%
For release Chrome 42: 38.8% of observations had defect

priordefects probability of defects
[0, 4) 15.3%
[4, 17) 34.9%

[17, 1649] 69.2%
For release Chrome 43: 28.8% of observations had defect

minorauthors probability of defects
0 19.1%

[1, 108] 71.4%
For release Chrome 44: 30% of observations had defect

allchangescount probability of defects minorauthors probability of defects
[1, 13) 8.1% 0 19.6%
[13, 52) 23.7% [1, 96] 75.9%

[52, 1925] 59.4%
For Chrome - Combined: 35.6% of observations had defect

priordefects probability of defects minorauthors probability of defects
[0, 4) 13.8% 0 25.2%
[4, 18) 32.0% [1, 108] 76.1%

[18, 1702] 63.1%
For All releases combined: 26.9% of observations had defect

priordefects probability of defects minorauthors probability of defects
[0, 2) 7.4% 0 18.9%
[2, 8) 23.1% [1, 108] 69.5%

[8, 1702] 54.6%
size probability of defects

[0, 113) 7.3%
[113, 571) 21.9%

[571, 106595] 50.3%

22 Andrey Krutauz et al.

Fig. 5 The Bayesian network graph for the combined Chrome and Qt data. The model con-
firms that review measures only indirectly impact post-release defects. Traditional measures,
such as prior defects, have direct impact.

> 50 can see post-release probabilities increase by over 60%. The relationship
between priordefects is clearly shown in the CPT tables with a large number
of prior defects, increasing the probability of post-release defects by between
30.6% and 73.7%.

4.4 Indirect relationships and Visual Representation

In Figure 5, we present a snapshot of the BN model with only the defects node,
the nodes in its Markov Blanket, and the nodes that directly affect the nodes
in the Markov Blanket for ease of interpretation, since the complete BN models
with all nodes are rather complicated. However, the complete BN models for
individual Chrome and Qt releases, the aggregate Chrome and Qt datasets,
and for the combined dataset are available in our replication package [1].

The dotted edges indicate that the coefficient is negative for that edge, i.e.
increasing the value of the parent node decreases the value of the child node
and vice versa. The immediate parents of the defects node (consequently, the
Markov blanket for the defects node in this case) are colored in light blue and
the defects node is denoted in a rectangular shape. The effect of each individual
variable on the defects node is shown in Table 5. We do see a review measure:
allreviews affecting the variable minorauthors in the BN, but it has no direct
impact on the number of defects in our combined model.

The variables indicated as the most important in the traditional model-
ing approach are also the ones indicated as most important in BN modeling
approach, except in the traditional model the minor authors variable was dis-
carded as being redundant, and all authors was used instead, while in BN
approach minor authors have a direct influence on defects. This illustrates the

Do Code Review Measures Explain the Incidence of Post-Release Defects? 23

ability of BNs to address some of the issues posed by correlated predictors, a
situation common in software engineering.

The results from the two approaches are largely consistent in terms of in-
dicating which variables are most significant in explaining the post release
defects, and both approaches show that review-related measures have no di-
rect influence over the post release defects variable in the combined model
and no review measures are statistically significant in more than one individ-
ual release. By obtaining the same result using two completely independent
modeling approaches increases our confidence in the findings. Our conclusion
to RQ 3, Structure of the relationships, is summarized in the following box.

Conclusion 3: Only prior defects, module size, and minor authors
have direct effects on (form a Markov blanket for) post-release defects
in the combined model

4.5 Addressing the issue of highly correlated variables — problem of
subjectivity in variable selection.

We have claimed before that BN modeling approach is not affected by the
presence of highly correlated variables, and that can be seen in our BN model
as well. The three author related variables: all authors, minor authors, and
major authors were highly correlated in our data. Therefore, in the traditional
modeling approach only one of them, all authors was used in the final model.

In the combined BN model, the three variables appear connected to each
other, as can be seen in Figure 5 (the three nodes are inside the blue dotted
polygon). The relationship among the nodes from the BN model is easily in-
terpretable: more allauthors implies more minor authors and major authors,
while increase in minor authors inevitably decreases major authors as all au-
thors is the sum of minor and major authors. The BN model also suggests that
the minor authors variable has substantially more influence over defects than
major authors or all authors, thus it resolves the subjectivity in the variable
selection problem.

To illustrate the usefulness of BNs it is worth making a few additional
observations. The size of the module tends to be associated with code smells,
effort, and defects (see, e.g., [88,59,4,53]). Not surprisingly, size affects both
prior defects and defects, since relative module size tends to be stable release
to release.

More interestingly, the BN model in Figure 5 suggests that, for example,
the presence of minor authors both, increases the size of the module (perhaps
via unnecessary code bloat), and also has a direct effect on the number of post-
release defects (perhaps due to lack of understanding of the module). Thus it
has a double effect on defects: direct, and mediated via module size.

The variable minor authors is, in turn, affected by the total number of au-
thors, the number of changes made to the module, and the number of review

24 Andrey Krutauz et al.

issues. Arguably, the arrow should be pointing towards the review issues from
minor authors as it is the minor authors that are likely to submit problematic
code or be screened more vigorously during the review (see more discussion on
incorporation prior knowledge in Section 5). However all these three relation-
ships (except the direction of the third, which can be addressed by introducing
a suitable prior) are rather intuitive.

Finally, it is worth considering the most important predictor of defects:
prior defects. Apart from size, it is also related to the proportion of changes
with no discussion, suggesting less aggressive reviews, the typical number of
reviewers, and, surprisingly, is better for more complex modules. As noted
earlier, the arrows should arguably be reversed: modules with prior defects
probably invite more scrutiny with a larger review team. Why the modules
with larger review teams tend to have higher proportion of changes with no
discussion may be worth a further investigation.

Conclusion 4: BN’s can help address some difficulties posed by cor-
related predictors and the generative models help articulate potential
mechanisms of how development process and product measure inter-
act.

5 Limitations

In this section, we discuss factors that in our opinion may pose a threat to
validity of the results we present. We inherit validity threats from the study
we replicate and discuss new threats related to BNs.

5.1 External validity.

McIntosh et al. [51] mined Android, LibreOffice, QT, ITK, and VTK, but in
the end the only project with enough bugs and links to reviews for a reasonable
analysis was QT. Given the instability of the predictors and the difficulty in
linking reviews on projects, we decided to use a new modelling framework on a
single large successful project, Google Chrome, instead of a broad study of the
predictors across multiple projects. While single case studies have value [80,
52], clearly our results do not generalize beyond these two projects.

5.2 Regression model

We remove highly correlated variables and use the same model as McIn-
tosh et al. [50]. We do not consider interactions among variables because the
model was already unstable and the additional complexity would further re-
duce stability in variable selection.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 25

5.3 Latent variables.

Dealing with hidden variables in Bayesian Networks remains an open research
question and an inherent limitation to all modeling techniques dealing with
real observational data. However, this problem is not a serious threat to our
results, since we do not attempt to establish any causal relationship among the
variables. Our assumption to exclude potentially relevant unobserved variables
is ameliorated by the use of prominent predictors of software defects used in
extensive prior research on the subject.

5.4 Discretization.

We transform our count variables to discrete variables using the Equal Fre-
quency method as discussed in Section 4.1.1, and use two or three levels, based
on the distribution of the original variables, for our discretized variables for
the sake of simplicity in our final model. No discretization method is optimal,
and the choice of the number of levels has subjectivity. However, as can be
seen in the with the conditional probabilities in Table 5 the interpretations
and bins seem reasonable given the software engineering context.

5.5 Threshold.

In order to obtain the final structure from averaged model we use an arbitrary
threshold of confidence. We verify the robustness of the network by gradually
reducing the threshold and plotting the new structure. The conclusion of the
sensitivity analysis is that the overall structure remains stable. In particular,
the Markov Blanket of defects variable remains unchanged even for a threshold
value of 0.45.

5.6 False Positive/Negative edges in the Bayesian Network.

We used the best performing BN structure method as reported in [19], and the
final models were constructed based on repeating the search process 100 times.
However, there is still the possibility of false positive or negative edges in the
model, but the impact of it on the final result is unlikely to be significant.

5.7 Prior knowledge in BN structure search.

We do not use any prior knowledge of the problem domain while learning the
BN structure. For instance, we have some prior knowledge about the direc-
tions: e.g., the defects node should not have any outgoing edges since it is
measured after the release, and the prior defects node should not have any
incoming edges since this information is known a-priori. This knowledge can

26 Andrey Krutauz et al.

be incorporated into the search process by providing the initial partial struc-
ture as a parameter for the search function. Our unrestricted structure search
yielded a model where the first assumption does hold, but second one does
not. There is room for an argument that incorporating this prior knowledge
will result in a more realistic model, but a counter-argument may be made as
well. For example, in our model prior defects might represent a proxy mea-
sure for the inherent defectiveness of the module, and using the assumed prior
knowledge would have excluded this possibility. Since this analysis was pri-
marily concerned with direct effects on defects and all the discovered links
were pointing inward (rendering the question moot), the ways to specify and
incorporate expert knowledge while being important by itself is beyond the
scope of this analysis.

6 Discussion of Related Work

In 1976 Fagan published the first empirical evaluation of software review, i.e.
inspection [22]. The work quantified the defect finding effectiveness of inspec-
tion based on the number of defects found per thousand lines of source code
(KLOC) and percentage of total defects found by inspection. On the IBM
system under study 38 defects per KLOC were found by inspection vs 8 per
KLOC found by unit tests. Inspection found 82% of the total defects found
for the released product. In the intervening 40 years, code review has changed
dramatically from the rigid inspection process that Fagan introduced.

Most of the early work on inspection focused on minor variations in the
inspection process but kept the formality, measurability, and rigidity intact[49,
40,41,45,94]. The most important finding was that the inspection meeting
need not be held in person to find a substantial number of defects [93,20,67].
This lead the way to online review tools that ultimately lead to the currently
popular and widely studied Gerrit [57,51] and the pull request mechanism of
GitHub [95,71,31].

There is also a long history of examining the factors that make peer review
effective. Porter et al. [69] examined both the process and the inputs to the
process (e.g., reviewer expertise, and artifact complexity). In terms of the
number of defects found during review, Porter et al. concluded that the best
predictor was the level of expertise of the reviewers. Varying the processes had
a negligible impact on the number of defects found. This finding is echoed by
others (e.g., [82,41]).

Rigby et al. [77,74,78,76] examined open source software based review on
multiple projects including the Linux kernel, the Apache server, and KDE.
They created regression models with the number of defects found during re-
view and the amount of time take for review. They found remarkably similar
practices across project that had very little process, but relied on expert re-
viewers frequently reviewing each commit. In a study at Microsoft and AMD,
Rigby and Bird [75] found that these lightweight review practices were also

Do Code Review Measures Explain the Incidence of Post-Release Defects? 27

used in industry. They also found that the focus had shifted from a defect
finding activity to a problem solving one.

Recent works have focused on the non-defect finding benefits of code re-
view. For example, interviews of Microsoft and OSS developers have been
conducted to understand developer motivations for code review [7,12]. They
found that while developers want to find defects, they were also interested in
spreading knowledge and discussing alternative solutions. Indeed, code review
has also been shown to be effective at spreading knowledge and reducing the
impact of code ownership [75,44,91]. Other works focused on the types and
utility of feedback provided by developers [14,9,43] and on the ability of code
reviews to identify security vulnerabilities [13,58]

Despite these additional benefits of code review, the primary goal is still
defect finding [7,12]. The literature abounds with papers that use product
and process metrics to predict where defects will occur, for example, [25,61,
84]. These models have also been used to understand changes in development
practices, such as co-location vs remote developers [11], the impact of developer
turnover [53] and much more. As far as we know, McIntosh et al.’s [51,50] is the
first to examine to include peer review measures into a defect model. Earlier
works [69,76] measured how many defects where found during the review,
but did not look at the long-term impact of review on defects. As a result, our
work first replicates McIntosh et al.’s work that covered only releases (two Qt
releases, one release from ITK, and one from VTK), we expand the study to
include six releases of the Chrome project.

A case for use of BNs in the context of Software Engineering was made
by Fenton et.al. [26,23], while the earliest publications utilizing BNs we could
find [36] constructed search of the structure based on the statistical significance
of partial correlations in the context of modeling delays in globally distributed
development. [90,65] considered the application of Bayesian networks to pre-
diction of effort, [24,60,62] used Bayesian networks to predict defects, and [63]
used BN approach for an empirical analysis of faultiness of a software. In a
similar work, [8] used modified BNs (Markov Bayesian network) for software
reliability prediction. [92] used BNs for predicting maintainability of Object
Oriented software, and [10] used BNs as a software productivity estimation
tool. We are not aware of prior applications of Bayesian Networks for mod-
eling software reviews. On the other hand, Bayesian structure learning is a
big domain in itself with a wide range of algorithms, but its use in software
engineering context is not very common.

6.1 Conclusion

Prior works have shown that the defects are both effectively and efficiently
found during code review [21,70,76]. Recent works provided qualitative evi-
dence that reviews provide benefits beyond defect detection, such as knowledge
sharing [81,7,78,14,43,72]. In contrast, the goal of this work is to understand

28 Andrey Krutauz et al.

if code review measures can quantify the longterm impact of peer review on
post-release defects.

Conclusion 1: Reproduction and Replication

McIntosh et al. [50,51] were the first to study the impact of code review mea-
sures on post-release defects. We replicated their study using data they pro-
vided and as well as on the Chrome data we extracted. We discussed our
findings with the first author of the original study. McIntosh et al. found that
review participation had an influence on post-release defects, but we were
unable to replicate these results. Instead we found that review measures con-
tributed little to the performance of the model. The R2 values with and with-
out review measures were almost identical. In agreement with existing defect
prediction work [55,34,11,32], our results show that prior defects, the module
size, and the number of authors are the strongest predictors of post-release
defects. Review measures are neither necessary nor sufficient to create a good
defect prediction model.

Conclusion 2: Inconsistent Models

It is extremely difficult to replicate an empirical software study that involves
both mining operational data and statistical modelling. Despite using exactly
the same data and modelling approach we obtain substantially different re-
sults. In both our study and that of McIntosh et al. [51] a key problem is the
need to select an uncorrelated set of variables. The variable selection process
is inherently subjective because differences in expert opinions may lead to
different sets of variables.

Furthermore, in both studies, the models were performed per project and
per release. Even strong predictors, such as prior-defects varied substantially
in their predictive power between project releases. This result suggests an issue
with the traditional variable selection used in regression models.

Conclusion 3: Direct effects

Regression models require the researcher to define a response and a set of
predictors. This approach lacks tools to distinguish between an actual rela-
tionship and the effect of a shared confound. In contrast, Bayesian Networks
remove the need for variable selection and shows the Bayesian relationships
among variables. The term “direct effect” is meant to quantify an influence
that is not mediated by other variables in the model or, more accurately, the
sensitivity of Y to changes in X while all other factors in the analysis are held
fixed. Indirect effects can manifest themselves on the response only through
affecting the value of predictors that gave direct effects on the response.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 29

According to our BN, only three measures directly impact post-release
defects: the number of prior defects, the number of minor authors, and the size
of the module. The code review measures, such as rushed reviews, number of
review participants, and discussion length, did not directly impact the number
of post-release defects.

Conclusion 4: Generative models and indirect effects

The use of BN provides a way to evaluate the indirect effects that code re-
views have on defects through the influence on other variables. Such indirect
effects bedevil traditional analysis methods that use observational data. If the
set of observed variables is complete, it is possible to calculate an impact of
intervention akin to the results that could be obtained only in randomized
experiments. For example, changes that have no review discussion tend to be
associated with files that have had many prior defects which in turn increase
the number of post-release defects. A further example from our BN model
shows that having 5 or more reviewers is seen to increase chance of having
post-release defects from 20% to 33% through mediating variables allauthors
and minorauthors.

We have demonstrated the difficulties in using traditional models on obser-
vational data. Although individual code reviews find defects, we were unable to
find any direct effect of review measures on post-release defects. By using BN
we found that code review measures indirectly effect post-release defects. We
hope that other researchers will use the approaches presented here to untan-
gle the relationships among software measures. These indirect effects should
provide a more nuanced understanding of software engineering. We make our
scripts and data available in our replication package [1].

References

1. Replication package, 2018. Our scripts and data are available: https://github.com/
CESEL/ReviewPostReleaseDefectsReplication.

2. J. P. F. Almqvist. Replication of controlled experiments in empirical software
engineering-a survey. 2006.

3. A. Arcuri and L. Briand. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In 2011 33rd International Conference on Software
Engineering (ICSE), pages 1–10. IEEE, 2011.

4. E. Arisholm and L. C. Briand. Predicting fault-prone components in a java legacy
system. In International Symposium on Empirical Software Engineering, pages 8 – 17,
2006.

5. P. Austin and J. Tu. Automated variable selection methods for logistic regression
result in unstable models for predicting ami mortality. Journal of clinical epidemiology,
57:1138–46, 12 2004.

6. R. Axelrod. Advancing the art of simulation in the social sciences. In Simulating social
phenomena, pages 21–40. Springer, 1997.

7. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code
review. In Proceedings of the 2013 International Conference on Software Engineering,
pages 712–721. IEEE Press, 2013.

https://github.com/CESEL/ReviewPostReleaseDefectsReplication
https://github.com/CESEL/ReviewPostReleaseDefectsReplication

30 Andrey Krutauz et al.

8. C.-G. Bai. Bayesian network based software reliability prediction with an operational
profile. Journal of Systems and Software, 77(2):103–112, 2005.

9. M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews in open-
source projects: Which problems do they fix? In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 202–211, New York,
NY, USA, 2014. ACM.

10. S. Bibi, I. Stamelos, and L. Angelis. Bayesian belief networks as a software productivity
estimation tool. In 1st Balkan Conference in Informatics, Thessaloniki, Greece, 2003.

11. C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t touch my code!:
examining the effects of ownership on software quality. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pages 4–14. ACM, 2011.

12. A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley. Process aspects and social
dynamics of contemporary code review: Insights from open source development and
industrial practice at microsoft. IEEE Transactions on Software Engineering, 43(1):56–
75, Jan 2017.

13. A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni. Identifying the characteristics
of vulnerable code changes: An empirical study. In Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE 2014,
pages 257–268, New York, NY, USA, 2014. ACM.

14. A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code reviews: An empirical
study at microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 146–156, May 2015.

15. F. Camilo, A. Meneely, and M. Nagappan. Do bugs foreshadow vulnerabilities? a study
of the chromium project. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 269–279, May 2015.

16. A. M. Carvalho. Scoring functions for learning bayesian networks. Inesc-id Tec. Rep,
12, 2009.

17. R. Carver. The case against statistical significance testing. Harvard Educational Review,
48(3):378–399, 1978.

18. B. S. Chlebus and S. H. Nguyen. On finding optimal discretizations for two attributes.
In International Conference on Rough Sets and Current Trends in Computing, pages
537–544. Springer, 1998.

19. T. Dey and A. Mockus. Deriving a usage-independent software quality metric. Empirical
Software Engineering, 25(2):1596–1641, 2020.

20. S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and S. V. Wiel. Estimating software
fault content before coding. In Proceedings of the 14th International Conference on
Software Engineering, pages 59–65, 1992.

21. M. Fagan. A history of software inspections. In Software pioneers, pages 562–573.
Springer, 2002.

22. M. E. Fagan. Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal, 15(3):182–211, 1976.

23. N. Fenton, P. Krause, and M. Neil. Software measurement: Uncertainty and causal
modeling. IEEE software, 19(4):116–122, 2002.

24. N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R. Mishra.
Predicting software defects in varying development lifecycles using bayesian nets. In-
formation and Software Technology, 49(1):32–43, 2007.

25. N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Transactions on Software Engineering, 25(5):675–689, Sep 1999.

26. N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Transactions on software engineering, 25(5):675–689, 1999.

27. J. L. Fleiss, B. Levin, M. C. Paik, et al. The measurement of interrater agreement.
Statistical methods for rates and proportions, 2(212-236):22–23, 1981.

28. N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with bayesian networks:
A bootstrap approach. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 196–205. Morgan Kaufmann Publishers Inc., 1999.

29. S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera. A survey of discretization
techniques: Taxonomy and empirical analysis in supervised learning. IEEE Transactions
on Knowledge and Data Engineering, 25(4):734–750, 2013.

Do Code Review Measures Explain the Incidence of Post-Release Defects? 31

30. O. S. Gómez, N. Juristo, and S. Vegas. Understanding replication of experiments in soft-
ware engineering: A classification. Information and Software Technology, 56(8):1033–
1048, 2014.

31. G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen. Work practices and chal-
lenges in pull-based development: The integrator’s perspective. In Proceedings of the
37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages
358–368, Piscataway, NJ, USA, 2015. IEEE Press.

32. T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using
software change history. Software Engineering, IEEE Transactions on, 26(7):653–661,
2000.

33. F. E. Harrell Jr. rms: Regression modeling strategies. r package version 4.0-0. City,
2013.

34. A. E. Hassan. Predicting faults using the complexity of code changes. In Proceed-
ings of the 31st International Conference on Software Engineering, pages 78–88. IEEE
Computer Society, 2009.

35. D. Heckerman. A tutorial on learning with bayesian networks. In Learning in graphical
models, pages 301–354. Springer, 1998.

36. J. D. Herbsleb and A. Mockus. An empirical study of speed and communication in
globally-distributed software development. IEEE Transactions on Software Engineer-
ing, 29(6):481–494, June 2003.

37. S. Højsgaard et al. Graphical independence networks with the grain package for r.
Journal of Statistical Software, 46(10):1–26, 2012.

38. L. Huang and B. Boehm. How much software quality investment is enough: A value-
based approach. IEEE software, 23(5):88–95, 2006.

39. G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

40. J. C. Knight and E. A. Myers. An improved inspection technique. ACM Communica-
tions, 36(11):51–61, 1993.

41. S. Kollanus and J. Koskinen. Survey of software inspection research. Open Software
Engineering Journal, 3:15–34, 2009.

42. D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.
2009.

43. O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: How developers
see it. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 1028–1038, May 2016.

44. O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigating
code review quality: Do people and participation matter? In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, pages 111–120. IEEE,
2015.

45. O. Laitenberger and J. DeBaud. An encompassing life cycle centric survey of software
inspection. Journal of Systems and Software, 50(1):5–31, 2000.

46. J. R. Landis and G. G. Koch. An application of hierarchical kappa-type statistics in
the assessment of majority agreement among multiple observers. Biometrics, pages
363–374, 1977.

47. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical
Society: Series B (Methodological), 50(2):157–194, 1988.

48. M. Lin, H. C. Lucas Jr, and G. Shmueli. Research commentarytoo big to fail: large
samples and the p-value problem. Information Systems Research, 24(4):906–917, 2013.

49. J. Martin and W. T. Tsai. N-Fold inspection: a requirements analysis technique. ACM
Communications, 33(2):225–232, 1990.

50. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review
coverage and code review participation on software quality: A case study of the qt, vtk,
and itk projects. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 192–201. ACM, 2014.

51. S. Mcintosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of the impact of
modern code review practices on software quality. Empirical Softw. Engg., 21(5):2146–
2189, Oct. 2016.

32 Andrey Krutauz et al.

52. T. Menzies, A. Brady, J. Keung, J. Hihn, S. Williams, O. El-Rawas, P. Green, and
B. Boehm. Learning project management decisions: A case study with case-based rea-
soning versus data farming. IEEE Transactions on Software Engineering, 39(12):1698–
1713, Dec 2013.

53. A. Mockus. Organizational volatility and its effects on software defects. In ACM
SIGSOFT / FSE, pages 117–126, Santa Fe, New Mexico, November 7–11 2010.

54. A. Mockus. Engineering big data solutions. In ICSE’14 FOSE, pages 85–99, 2014.
55. A. Mockus, R. T. Fielding, and J. Herbsleb. A case study of open source software

development: the apache server. In Proceedings of the 22nd international conference on
Software engineering, pages 263–272. Acm, 2000.

56. R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact design
quality? a case study of the qt, vtk, and itk projects. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages
171–180. IEEE, 2015.

57. M. Mukadam, C. Bird, and P. C. Rigby. Gerrit software code review data from android.
In 2013 10th Working Conference on Mining Software Repositories (MSR), pages 45–
48, May 2013.

58. N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan. Do bugs fore-
shadow vulnerabilities? an in-depth study of the chromium project. Empirical Software
Engineering, 22(3):1305–1347, Jun 2017.

59. N. Nagappan, B. Murphy, and V. R. Basili. The influence of organizational structure
on software quality: an empirical case study. In ICSE 2008, pages 521–530, 2008.

60. M. Neil and N. Fenton. Predicting software quality using bayesian belief networks. In
Proceedings of the 21st Annual Software Engineering Workshop, pages 217–230. NASA
Goddard Space Flight Centre, 1996.

61. S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting vulnerable software
components. In Proceedings of the 14th ACM conference on Computer and communi-
cations security, pages 529–540. ACM, 2007.

62. A. Okutan and O. T. Yıldız. Software defect prediction using bayesian networks. Em-
pirical Software Engineering, 19(1):154–181, 2014.

63. G. J. Pai and J. B. Dugan. Empirical analysis of software fault content and fault prone-
ness using bayesian methods. IEEE Transactions on software Engineering, 33(10):675–
686, 2007.

64. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
2014.

65. P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger. A probabilistic model for
predicting software development effort. IEEE Transactions on software engineering,
31(7):615–624, 2005.

66. A. Perez, P. Larranaga, and I. Inza. Supervised classification with conditional gaussian
networks: Increasing the structure complexity from naive bayes. International Journal
of Approximate Reasoning, 43(1):1–25, 2006.

67. D. Perry, A. Porter, M. Wade, L. Votta, and J. Perpich. Reducing inspection interval
in large-scale software development. Software Engineering, IEEE Transactions on,
28(7):695–705, 2002.

68. J. Pinheiro, D. Bates, S. DebRoy, and D. Sarkar. R development core team. 2010. nlme:
linear and nonlinear mixed effects models. r package version 3.1-97. R Foundation for
Statistical Computing, Vienna, 2011.

69. A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources of variation in
software inspections. ACM Transactions Software Engineering Methodology, 7(1):41–
79, 1998.

70. A. Porter, H. Siy, A. Mockus, and L. G. Votta. Understanding the sources of variation
in software inspections. ACM Transactions on Software Engineering and Methodology,
January 1998.

71. M. M. Rahman and C. K. Roy. An insight into the pull requests of github. In Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages
364–367, New York, NY, USA, 2014. ACM.

72. M. M. Rahman, C. K. Roy, and R. G. Kula. Predicting usefulness of code review
comments using textual features and developer experience. In 2017 IEEE/ACM 14th

Do Code Review Measures Explain the Incidence of Post-Release Defects? 33

International Conference on Mining Software Repositories (MSR), pages 215–226, May
2017.

73. N. Report. The economic impacts of inadequate infrastruc-ture for software testing,
2002.

74. P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German. Contemporary peer
review in action: Lessons from open source development. IEEE software, 29(6):56–61,
2012.

75. P. C. Rigby and C. Bird. Convergent contemporary software peer review practices. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 202–212. ACM, 2013.

76. P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer Review on Open-Source
Software Projects: Parameters, Statistical Models, and Theory. ACM Transactions on
Software Engineering and Methodology, 23(4):35:1–35:33, September 2014.

77. P. C. Rigby, D. M. German, and M.-A. Storey. Open Source Software Peer Review
Practices: A Case Study of the Apache Server. In ICSE ’08: Proceedings of the 30th
International Conference on Software engineering, pages 541–550, New York, NY, USA,
2008. ACM.

78. P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review on open
source software projects. In Proceedings of the 33rd International Conference on Soft-
ware Engineering, pages 541–550. ACM, 2011.

79. P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering, 14(2):131, 2009.

80. P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg., 14(2):131164, Apr. 2009.

81. C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The effectiveness of software develop-
ment technical reviews: a behaviorally motivated program of research. IEEE Transac-
tions on Software Engineering, 26(1):1–14, Jan 2000.

82. C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The Effectiveness of Software De-
velopment Technical Reviews: A Behaviorally Motivated Program of Research. IEEE
Transactions Software Engineering, 26(1):1–14, 2000.

83. M. Scutari. Learning bayesian networks in r, an example in systems biology, 2013.
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf.

84. S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve code
change-based bug prediction. IEEE Transactions on Software Engineering, 39(4):552–
569, 2013.

85. G. Shmueli. To explain or to predict? Statistical science, pages 289–310, 2010.
86. F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. Mendonça, and

S. Fabbri. Replicating software engineering experiments: addressing the tacit knowledge
problem. In Empirical Software Engineering, 2002. Proceedings. 2002 International
Symposium n, pages 7–16. IEEE, 2002.

87. F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. The role of replications in empirical
software engineering. Empirical software engineering, 13(2):211–218, 2008.

88. D. I. Sjoberg, A. Yamashita, B. Anda, A. Mockus, and T. Dyba. Quantifying the effect
of code smells on maintenance effort. IEEE Transactions on Software Engineering,
39(8):1144–1156, 2013.

89. E. Sober. Instrumentalism, parsimony, and the akaike framework. Philosophy of Science,
69(S3):S112–S123, 2002.

90. I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris. On the use of bayesian belief net-
works for the prediction of software productivity. Information and Software Technology,
45(1):51–60, 2003.

91. P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code ownership
and its relationship with software quality in the scope of modern code review. In
Proceedings of the 38th International Conference on Software Engineering, ICSE ’16,
pages 1039–1050, New York, NY, USA, 2016. ACM.

92. C. Van Koten and A. Gray. An application of bayesian network for predicting object-
oriented software maintainability. Information and Software Technology, 48(1):59–67,
2006.

93. L. G. Votta. Does every inspection need a meeting? SIGSOFT Softw. Eng. Notes,
18(5):107–114, 1993.

http://www.bnlearn.com/about/slides/slides-useRconf13.pdf

34 Andrey Krutauz et al.

94. K. E. Wiegers. Peer Reviews in Software: A Practical Guide. Addison-Wesley Infor-
mation Technology Series. Addison-Wesley, 2001.

95. Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for it: Determinants of
pull request evaluation latency on github. In 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories, pages 367–371, May 2015.

96. J. C. ZCarver. Towards reporting guidelines for experimental replications: A proposal.
In 1st international workshop on replication in empirical software engineering, pages
2–5. Citeseer, 2010.

97. Q. Zheng, A. Mockus, and M. Zhou. A method to identify and correct problem-
atic software activity data: Exploiting capacity constraints and data redundancies. In
ESEC/FSE’15, pages 637–648, Bergamo, Italy, 2015. ACM.

	1 Introduction
	2 Case study design and data
	3 Code Review Replication and Reproduction Study
	4 Bayesian Networks Models
	5 Limitations
	6 Discussion of Related Work

